Supporting Information for

Fragile Intermediate Identification and Reactivity Elucidation in

Electrochemical Oxidative α-C(sp³)-H Functionalization of Tertiary Amines

Kailun Liang,^{†[a]} Dongmei Zhang,^{†[b]} Yanming Su,^[a] Lijun Lu,^[a] Jun Hu,^[d] Yi-Hung Chen,^{*[a]}

Xinxing Zhang,*[b] and Aiwen Lei*[ac], Hong Yi,*[a]

[a] K. Liang,[†] Y. Su, L. Lu, Prof. Y. Chen, Prof. A. Lei, Prof. H. Yi

The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei (P. R. China)

E-mail: hong.yi@whu.edu.cn; aiwenlei@whu.edu.cn; yihungchen@whu.edu.cn

Prof. A. Lei, National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022 (P. R. China)

[b] D. Zhang,[†] Prof. X. Zhang

College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China.

E-mail: zhangxx@nankai.edu.cn

[c] National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.

R. China

[d] Prof. J. Hu

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.

E-mail: njuchemhj@126.com

[†] These authors contributed equally to this work.

Table of Contents

1. Experimental methods	S2
1.1. Fabrication of the bipolar ultramicroelectrode (BPE) onto a nanopipette	S2
1.2. Mass spectrometry	S2
1.3. General procedure for electrochemical experiments	S2
1.4. Optimization of reaction conditions	S4
1.5. Cyclic voltammetry (CV) measurements	S4
1.6. Scale-up experiments	S5
2. Supporting experimental results	S6
3. Analytical data of products	S7
4. NMR spectra of products	S21
5. References	S61

1. Experimental methods

1.1 Fabrication of the bipolar ultramicroelectrode (BPE) onto a nanopipette

The method for the fabrication of the BPE was adopted from a previous study¹ and is only briefly introduced here. A bare nanopipette was made from a quartz capillary (QF100-50-10, Sutter Instrument) using a laser-based P-2000 pipette puller (Sutter Instrument Co., Novato, CA, USA). The resulting nanopipette had an opening of ~500 nm. Method for depositing a thin layer of carbon into the nanopipette is based on the pyrolysis of butane. In brief, butane gas passes (~30 kPa) through the nanopipette from its rear end and heated by a butane fire under a nitrogen atmosphere by inserting the nanopipette into a thicker quartz tube (O.D. 3.0 mm and I.D. 1.5 mm) fed with ~5 kPa N₂. Typically, a pyrolysis time of 10 s is enough for depositing sufficient carbon into the tip, and the carbon film was measured to be around 150 nm thick.

1.2 Mass spectrometry

All the mass spectrometry experiments were carried out in the atmosphere. Mass spectra were acquired using an LTQ-XL mass spectrometer (Thermo-Fisher, Waltham, MA). The inlet capillary temperature of the mass spectrometer was maintained at 275 °C. The tube lens voltage on the LTQ-XL was set to be 0 V to avoid in-source fragmentation of the fragile radicals. The applied positive voltage was set to be 650-700 V in this study to trigger both the electrospray and oxidation reactions. Solutions of 1-phenylpyrrolidine (10 μ M), mixture of 1-phenylpyrrolidine (10 μ M) and phenyl *trans*-styryl sulfone (50 μ M), tri-*n*-propylamine (50 μ M), and mixture of tri-*n*-propylamine (50 μ M) and phenyl *trans*-styryl sulfone (50 μ M) filled in the BPE nanopipette were sprayed for mass analysis.

1.3 General procedure for electrochemical experiments

All glasswares were oven dried at 110 °C for hours and cooled down under vacuum. Vinyl sulfones were prepared according to reported procedures.² Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrochemical reaction is dual display potentiostat (DJS-292B) (Shanghai Xinrui Instruments & Meters Co., Ltd., China). Cyclic voltammograms were obtained on a CorrTest[®] CS2350H

bipotentiostat. The anode electrode is carbon felt electrode (15 mm × 10 mm × 3 mm) and the cathode electrode is platinum plate electrode (15 mm × 15 mm × 0.3 mm). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp.60-90 °C). ¹H and ¹³C NMR data were recorded with Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts were reported relative to tetramethylsilane (0 ppm for ¹H), CDCl₃ (77.16 ppm for ¹³C), respectively. High resolution mass spectra (HRMS) were measured with Thermo Orbitrap Elite, accurate masses were reported for the molecular ion + proton (M+H)⁺.

The synthesis of **3ca** is representative for the synthesis of allylic alkylamines: In an oven-dried undivided three-necked bottle (6 mL) equipped with a stir bar. The bottle was equipped with carbon felt anode (15 mm × 10 mm × 3 mm) and platinum plate cathode (15 mm × 15 mm × 0.3 mm). Tributylamine (**1c**, 0.9 mmol, 3 equiv.), phenyl *trans*-styryl sulfone (**2a**, 0.3 mmol, 1 equiv.), ${}^{n}Bu_{4}NBF_{4}$ (0.6 mmol, 2 equiv.) in acetonitrile (MeCN, 6 mL) and H₂O (0.5 mL) were stirred and electrolyzed at a constant current of 6 mA under nitrogen atmosphere at room temperature for 3 h. After completion of the reaction, the reaction mixture was extracted with DCM for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated in vacuum. The pure product was obtained by flash column chromatography on silica gel eluting with petroleum ether/EtOAc/Et₃N (250/5/3).

The synthesis of **3ra** is representative for the synthesis of allylic arylamines: In an oven-dried undivided three-necked bottle (6 mL) equipped with a stir bar. The bottle was equipped with carbon felt anode (15 mm \times 10 mm \times 3 mm) and platinum plate cathode (15 mm \times 15 mm \times 0.3 mm). 1-Phenylpyrrolidine (**1r**, 0.6 mmol, 2 equiv.), phenyl *trans*-styryl sulfone (**2a**, 0.3 mmol, 1 equiv.), CsOAc (0.9 mmol, 3 equiv.), "Bu₄NBF₄ (0.6 mmol, 2 equiv.) in *N*, *N*-dimethylformamide (DMF, 6 mL) and H₂O (0.5 mL) were stirred and electrolyzed at a constant current of 6 mA under nitrogen atmosphere at room temperature for 3 h. After completion of the reaction, the reaction mixture was extracted with DCM for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated in vacuum. Purification by removal of excess 1-phenylpyrrolidine by heating to 120

°C under vacuum. The pure product was obtained by flash column chromatography on silica gel eluting with petroleum ether/EtOAc/Et₃N (250/1/1).

1.4 Optimization of reaction conditions

Table S1. Optimization of reaction conditions.

n 1c 3.0 equiv.	+ Ph SO_2Ph $2 \text{ equiv. } {}^nBu_4NBF_4$ 2a $6.0 \text{ mL } CH_3CN, 0.5 \text{ mL } F_4$ $6 \text{ mA, 3 h, r.t., N_2}$	H ₂ O 3ca
Entry	Variation from the standard	Yield [%] ^b
-	conditions	
1	None	74 ^a
2	No H ₂ O	21
3	THF (6 mL), H ₂ O (0.5 mL)	50
4	Nickel plate instead of platinum	70
5	plate Carbon felt instead of platinum plate	41
6	^{<i>n</i>} Bu ₄ NPF ₆ instead of ^{<i>n</i>} Bu ₄ NBF ₄	63
7	2.0 equiv. 1c	54
8	10 mÅ, 1.8 h	68
9	6 mA, 3.5 h	70
10	Under air atmosphere	52
11	No electricity	n.d.

Standard conditions: Carbon felt anode (15 mm × 10 mm × 3 mm), platinum plate cathode (15 mm × 15 mm × 0.3 mm), constant current = 6 mA, **1c** (0.9 mmol, 3.0 equiv. based on **2a**), **2a** (0.3 mmol), ${}^{n}Bu_{4}NBF_{4}$ (2 equiv. based on **2a**), CH₃CN (6.0 mL), H₂O (0.5 mL), room temperature, N₂ atmosphere, 3 h, undivided cell. a Isolated yields were shown. b Yields were determined by 1 H NMR, calibrated using CH₂Br₂ as the internal standard.

1.5 Cyclic voltammetry (CV) measurements

Cyclic voltammetry measurements were performed in a three-electrode cell connected to a Schlenk line under air atmosphere at room temperature. The working electrode was a glass carbon electrode, the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution, and separated from reaction by a salt bridge. Commercially available MeCN (6 mL) containing "Bu₄NBF₄ (0.1 M) was poured into the electrochemical cell in

all experiments. The concentration of substrates is 0.01 M. The scan rate is 0.1 V/s.

1.6 Scale-up experiments

In an oven-dried undivided three-necked bottle (100 mL) equipped with a stir bar. The bottle was equipped with carbon felt anode (15 mm × 10 mm × 3 mm) and platinum plate cathode (15 mm × 15 mm × 0.3 mm). Tributylamine (1c, 13.5 mmol, 3 equiv.), phenyl *trans*-styryl sulfone (2a, 4.5 mmol, 1 equiv.), "Bu₄NBF₄ (9 mmol, 2 equiv.) in acetonitrile (MeCN, 90 mL) and H₂O (7.5 mL) were stirred and electrolyzed at a constant current of 6 mA under nitrogen atmosphere at room temperature for 45 h. After completion of the reaction, the reaction mixture was extracted with DCM for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated in vacuum. The pure product (830 mg, 64%) was obtained by flash column chromatography on silica gel eluting with petroleum ether/EtOAc/Et₃N (250/5/3).

2. Supporting experimental results

Figure S1. (A) Typical mass spectra showing the dimerization of the reactive species generated from 1-phenylpyrrolidine; (B) Possible structures accountable for the mass peaks from the dimerization.

3. Analytical data of products

(*E*)-*N*, *N*-diethyl-4-phenylbut-3-en-2-amine (3aa): isolated yield (54%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 6.43 (d, *J* = 16.0 Hz, 1H), 6.27 – 6.20 (m, 1H), 3.45 – 3.42 (m, 1H), 2.68 – 2.51 (m, 4H), 1.22 (dd, *J* = 6.7, 1.7 Hz, 3H), 1.05 (td, *J* = 7.1, 1.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.46, 133.37, 130.05, 128.64, 127.28, 126.31, 57.56, 43.53, 17.49, 13.12. HRMS (ESI) calculated for C₁₄H₂₂N⁺ (M+H)⁺: 204.1747; found: 204.1743.

(*E*)-1-phenyl-*N*, *N*-dipropylpent-1-en-3-amine (3ba): isolated yield (55%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.0 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.23 – 7.17 (m, 1H), 6.39 (d, *J* = 15.9 Hz, 1H), 6.13 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.06 – 3.00 (m, 1H), 2.53 – 2.46 (m, 2H), 2.39 – 2.32 (m, 2H), 1.72 – 1.62 (m, 1H), 1.55 – 1.36 (m, 5H), 0.93 – 0.85 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 137.58, 131.75, 130.31, 128.62, 127.21, 126.32, 65.17, 52.83, 25.85, 21.96, 12.08, 11.59. HRMS (ESI) calculated for C₁₇H₂₈N⁺ (M+H)⁺: 246.2216; found: 246.2213.

(E)-N, N-dibutyl-1-phenylhex-1-en-3-amine (3ca): isolated yield (74%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.32 – 7.28 (m, 2H), 7.23 – 7.17 (m, 1H), 6.38 (d, *J* = 15.9 Hz, 1H), 6.13 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.18 – 3.13 (m, 1H), 2.58 – 2.51 (m, 2H), 2.43 – 2.27 (m, 2H), 1.70 – 1.54 (m, 1H), 1.52 – 1.22 (m, 11H), 0.93 – 0.89 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 137.60, 131.65, 130.48, 128.63, 127.21, 126.33, 62.93, 50.49, 35.26, 31.16, 20.81, 20.13, 14.33, 14.30. HRMS (ESI) calculated for C₂₀H₃₄N⁺ (M+H)⁺: 288.2686; found: 288.2679.

(E)-N, N-diisopentyl-5-methyl-1-phenylhex-1-en-3-amine (3da): ¹H NMR yield (80%), calibrated using CH₂Br₂ as the internal standard. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.3 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.26 – 7.14 (m, 1H), 6.39 (d, *J* = 15.9 Hz, 1H), 6.12 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.28 – 3.33 (m, 1H), 2.63 – 2.50 (m, 2H), 2.37 – 2.30 (m, 2H), 1.72 – 1.64 (m, 1H), 1.62 – 1.54 (m, 2H), 1.53 – 1.44 (m, 1H), 1.42 – 1.28 (m, 5H), 0.96 – 0.82 (m, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 137.59, 131.65, 130.43, 128.64, 127.24, 126.35, 60.63, 48.70, 42.16, 38.06, 26.44, 24.91, 23.38, 23.24, 22.76, 22.67. HRMS (ESI) calculated for C₂₃H₄₀N⁺ (M+H)⁺: 330.3155; found: 330.3148.

(*E*)-*N*-isopropyl-*N*-methyl-3-phenylprop-2-en-1-amine (3ea): isolated yield (35%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.18 (m, 1H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.28 (dt, *J* = 15.8, 6.7 Hz, 1H), 3.20 (dd, *J* = 6.7, 1.4 Hz, 2H), 2.96 – 2.86 (m, 1H), 2.22 (s, 3H), 1.05 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.28, 132.12, 128.64, 128.45, 127.41, 126.38, 56.44, 52.97, 36.66, 18.08. HRMS (ESI) calculated for C₁₃H₂₀N⁺ (M+H)⁺: 190.1590; found: 190.1586.

(E)-N, N-diisopropyl-3-phenylprop-2-en-1-amine (3fa): isolated yield (35%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.29 (t, J = 7.7 Hz, 2H), 7.23 – 7.15 (m, 1H), 6.50 (dt, J = 15.9, 1.6 Hz, 1H), 6.24 (dt, J = 15.8, 6.2 Hz, 1H), 3.28 (dd, J = 6.2, 1.6 Hz, 2H), 3.14 – 3.05 (m, 2H), 1.04 (d, J = 6.6 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 137.74, 131.98, 130.10, 128.60, 127.07,

126.27, 48.41, 47.79, 20.85. HRMS (ESI) calculated for $C_{15}H_{24}N^+$ (M+H)⁺: 218.1903; found: 218.1896.

(E)-N, N-diisopropyl-4-phenylbut-3-en-2-amine (3ga): isolated yield (43%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.31 – 7.27 (m, 2H), 7.21 – 7.14 (m, 1H), 6.40 (dd, J = 16.1, 1.5 Hz, 1H), 6.28 (dd, J = 16.1, 5.1 Hz, 1H), 3.71 – 3.65 (m, 1H), 3.19-3.09 (m, 2H), 1.23 (d, J = 6.8 Hz, 3H), 1.05 (dd, J = 6.7, 2.1 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 138.16, 136.81, 128.62, 127.63, 126.89, 126.20, 50.44, 45.16, 23.20, 20.19. HRMS (ESI) calculated for C₁₆H₂₆N⁺ (M+H)⁺: 232.2060; found: 232.2056.

(*E*)-*N*-butyl-*N*-ethyl-4-phenylbut-3-en-2-amine + (*E*)-*N*, *N*-diethyl-1-phenylhex-1-en-3-amine (3ha): isolated yield (64%, 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.24 – 7.17 (m, 1H), 6.42 (dd, *J* = 16.0, 9.3 Hz, 1H), 6.24 (dd, *J* = 16.0, 7.2 Hz, 0.81H), 6.12 (dd, *J* = 15.9, 8.9 Hz, 0.15H), 3.49 – 3.42 (m, 0.83H), 3.23 – 3.17 (m, 0.16H), 2.75 – 2.32 (m, 4H), 1.51 – 1.38 (m, 2H), 1.36 – 1.19 (m, 5H), 1.07 – 1.03 (m, 3H), 0.94 – 0.88 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.56, 133.33, 130.06, 128.65, 127.26, 126.33, 62.89, 57.69, 49.78, 44.28, 43.82, 35.17, 30.60, 20.90, 20.12, 17.27, 14.30, 14.25, 13.65, 13.38. HRMS (ESI) calculated for C₁₆H₂₆N⁺ (M+H)⁺: 232.2060; found: 232.2055.

(*E*)- N_I , N_I , N_2 -triethyl- N_2 -(4-phenylbut-3-en-2-yl) ethane-1,2-diamine (3ia): isolated yield (53%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.24 – 7.18 (m, 1H), 6.44 (d, J = 16.0 Hz, 1H), 6.23 (dd, J = 16.0, 7.2 Hz, 1H), 3.50 – 3.42 (m, 1H), 2.71 – 2.48 (m, 10H), 1.23 (d, J = 6.7 Hz, 3H), 1.08 – 1.00 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 137.45, 132.75, 130.36, 128.63, 127.30, 126.33, 58.27, 52.78, 48.32, 47.68, 45.47, 17.32, 13.60, 11.87. HRMS (ESI) calculated for C₁₈H₃₁N₂⁺ (M+H)⁺: 275.2482; found: 275.2477.

2-(Cinnamyl(methyl)amino)-2-methylpropan-1-ol (3ja): isolated yield (43%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.33 – 7.29 (m, 2H), 7.25 – 7.19 (m, 1H), 6.49 (d, *J* = 15.9 Hz, 1H), 6.19 (dt, *J* = 15.9, 6.5 Hz, 1H), 3.37 (s, 2H), 3.19 (dd, *J* = 6.6, 1.4 Hz, 2H), 2.22 (s, 3H), 1.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.17, 131.82, 128.94, 128.68, 127.50, 126.36, 68.40, 57.74, 52.64, 34.28, 20.87. HRMS (ESI) calculated for C₁₄H₂₂NO⁺ (M+H)⁺: 220.1696; found: 220.1690.

(*E*)-2-(ethyl(4-phenylbut-3-en-2-yl)amino)ethan-1-ol (3ka): isolated yield (46%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.35 – 7.28 (m, 2H), 7.27 – 7.18 (m, 1H), 6.43 (dd, *J* = 16.1, 1.2 Hz, 1H), 6.20 (dd, *J* = 16.0, 7.0 Hz, 1H), 3.64 – 3.34 (m, 3H), 2.76 – 2.67 (m, 1H), 2.65 – 2.52 (m, 3H), 1.24 (d, *J* = 6.7 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.17, 131.55, 130.95, 128.68, 127.51, 126.37, 58.56, 56.87, 50.91, 44.05, 17.06, 14.14. HRMS (ESI) calculated for C₁₄H₂₂NO⁺ (M+H)⁺: 220.1696; found: 220.1692.

(*E*)-1-methyl-2-styrylpyrrolidine (3la)³: isolated yield (68%). ¹H NMR (400 MHz, CDCl₃) δ 7.39
(d, J = 6.9 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.22 (t, J = 7.3 Hz, 1H), 6.50 (d, J = 15.8 Hz, 1H), 6.10
(dd, J = 15.8, 8.4 Hz, 1H), 3.15 (td, J = 8.0, 4.0 Hz, 1H), 2.68 (q, J = 8.2 Hz, 1H), 2.30 (s, 3H), 2.22
(q, J = 9.0 Hz, 1H), 2.06 - 1.99 (m, 1H), 1.94 - 1.84 (m, 1H), 1.82 - 1.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.13, 132.12, 131.84, 128.67, 127.51, 126.43, 69.81, 56.88, 40.48, 32.28, 22.45.

(*E*)-1-ethyl-2-styrylpyrrolidine (3ma): isolated yield (66%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.30 (dd, J = 8.4, 6.8 Hz, 2H), 7.25 – 7.15 (m, 1H), 6.48 (d, J = 15.8 Hz, 1H), 6.13 (dd, J = 15.8, 8.5 Hz, 1H), 3.26 (td, J = 8.5, 2.6 Hz, 1H), 2.96 – 2.77 (m, 2H), 2.19 – 1.95 (m, 3H), 1.95 – 1.66 (m, 3H), 1.11 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.15, 132.42, 131.73, 128.66, 127.47, 126.41, 68.67, 53.13, 48.26, 31.92, 22.22, 13.83. HRMS (ESI) calculated for C₁₄H₂₀N⁺ (M+H)⁺: 202.1590; found: 202.1584.

(*E*)-1-butyl-2-styrylpyrrolidine (3na)⁴: isolated yield (65%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.3 Hz, 2H), 7.34 (dd, *J* = 8.5, 6.7 Hz, 2H), 7.28 – 7.23 (m, 1H), 6.52 (d, *J* = 15.8 Hz, 1H), 6.16 (dd, *J* = 15.8, 8.3 Hz, 1H), 3.27 (td, *J* = 8.6, 2.6 Hz, 1H), 2.87 – 2.79 (m, 2H), 2.16 (q, *J* = 8.8 Hz, 1H), 2.10 – 1.69 (m, 5H), 1.57 – 1.47 (m, 2H), 1.39 – 1.27 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.30, 132.86, 131.45, 128.67, 127.41, 126.42, 68.86, 54.50, 53.77, 31.93, 31.16, 22.39, 21.03, 14.22.

Ph ΩН

(*E*)-2-(2-styrylpyrrolidin-1-yl)ethan-1-ol (3oa): isolated yield (55%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.32 – 7.28 (m, 2H), 7.24 – 7.19 (m, 1H), 6.48 (d, *J* = 15.9 Hz, 1H), 6.05 (dd, *J* = 15.8, 8.5 Hz, 1H), 3.70 – 3.54 (m, 2H), 3.24 (td, *J* = 8.5, 3.1 Hz, 1H), 3.06 – 2.93 (m, 2H), 2.72 (s, 1H), 2.30 (dt, *J* = 12.4, 3.8 Hz, 1H), 2.26 – 2.17 (m, 1H), 2.05 – 2.97 (m, 1H), 1.92 – 1.76 (m, 2H), 1.72 – 1.63 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.93, 132.08, 131.93, 128.60, 127.52, 126.41, 68.39, 59.96, 55.47, 53.34, 31.90, 22.50. HRMS (ESI) calculated for C₁₄H₂₀NO⁺ (M+H)⁺: 218.1539; found: 218.1533.

(*E*)-4-(4-phenylbut-3-en-2-yl)morpholine + (*E*)-4-ethyl-3-styrylmorpholine (3pa): ¹H NMR yield (33%, 3:1), calibrated using CH₂Br₂ as the internal standard. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.35 – 7.28 (m, 2H), 7.28 – 7.21 (m, 1H), 6.61 (d, *J* = 16.0 Hz, 0.73H), 6.47 (d, *J* = 15.9 Hz, 0.21H), 6.17 (dd, *J* = 15.9, 8.2 Hz, 0.23H),6.05 (dd, *J* = 16.0, 8.8 Hz, 0.72H), 3.92 – 3.87 (m, 0.79H), 3.78 – 3.70 (m, 2H), 3.48 – 3.43 (m, 0.77H), 3.06 – 2.97 (m, 1H), 2.94 – 2.86 (m, 1.48H), 2.62 – 2.54 (m, 1H), 2.34 – 2.20 (m, 2H), 1.29 – 1.24 (m, 0.77H), 1.05 (t, *J* = 7.2 Hz, 2.18H). ¹³C NMR (101 MHz, CDCl₃) δ 136.63, 133.94, 131.55, 128.76, 128.72, 127.93, 127.64, 126.48, 126.41, 71.38, 67.35, 67.25, 64.77, 63.31, 50.86, 50.45, 49.11, 17.86, 11.11. HRMS (ESI) calculated for C₁₄H₂₀NO⁺ (M+H)⁺: 218.1539; found: 218.1532.

(E)-1-benzyl-2-styrylpyrrolidine (3qa)⁵: isolated yield (45%). ¹H NMR (400 MHz, CDCl₃) δ 7.43
- 7.37 (m, 2H), 7.34 - 7.26 (m, 6H), 7.25 - 7.18 (m, 2H), 6.56 (d, J = 15.8 Hz, 1H), 6.19 (dd, J = 15.8, 8.4 Hz, 1H), 4.07 (d, J = 13.0 Hz, 1H), 3.13 (d, J = 13.0 Hz, 1H), 2.98 (t, J = 8.3 Hz, 2H), 2.17 (q, J = 8.8 Hz, 1H), 2.07 - 1.97 (m, 1H), 1.87 - 1.69 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.51,

137.25, 132.72, 131.84, 129.16, 128.67, 128.27, 127.48, 126.89, 126.44, 68.03, 58.47, 53.50, 31.92, 22.27. HRMS (ESI) calculated for C₁₉H₂₂N⁺ (M+H)⁺: 264.1747; found: 264.1740.

(*E*)-1-phenyl-2-styrylpyrrolidine (3ra)¹: isolated yield (80%). ¹H NMR (400 MHz, CDCl₃) δ 7.33
(d, J = 7.4 Hz, 2H), 7.27 (t, J = 7.4 Hz, 2H), 7.21 - 7.18 (m, 3H), 6.67 - 6.63 (m, 3H), 6.45 (d, J = 15.8 Hz, 1H), 6.21 (dd, J = 15.8, 5.2 Hz, 1H), 4.32 - 4.30 (m, 1H), 3.54 (t, J = 7.2 Hz, 1H), 3.27 (q, J = 8.0 Hz, 1H), 2.17 - 1.89 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 147.65, 137.13, 131.76, 129.55, 129.14, 128.60, 127.34, 126.46, 115.84, 112.30, 60.84, 48.85, 33.10, 23.49.

(*E*)-1-(4-fluorophenyl)-2-styrylpyrrolidine (3sa)¹: isolated yield (74%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.25 (m, 4H), 7.23 – 7.09 (m, 1H), 6.98 – 6.78 (m, 2H), 6.61 – 6.49 (m, 2H), 6.43 (dd, *J* = 15.8, 1.4 Hz, 1H), 6.19 (dd, *J* = 15.8, 5.5 Hz, 1H), 4.25 – 4.20 (m, 1H), 3.54 – 3.49 (m, 1H), 3.25 – 3.19 (m, 1H), 2.25 – 1.81 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 155.06 (d, *J* = 234.3 Hz), 144.34 (d, *J* = 2.0 Hz), 137.03, 131.72, 129.67, 128.64, 127.43, 126.45, 115.47 (d, *J* = 22.2 Hz), 112.70 (d, *J* = 7.1 Hz), 61.29, 49.37, 33.23, 23.60. ¹⁹F NMR (377 MHz, CDCl₃) δ -130.46.

(*E*)-1-(2-fluorophenyl)-2-styrylpyrrolidine (3ta): isolated yield (44%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 4H), 7.21 – 7.13 (m, 1H), 6.99 – 6.89 (m, 2H), 6.78 – 6.73 (m, 1H), 6.67

- 6.62 (m, 1H), 6.50 (d, J = 15.9 Hz, 1H), 6.11 (dd, J = 15.9, 6.7 Hz, 1H), 4.45 (q, J = 6.4 Hz, 1H), 3.84 - 3.77 (m, 1H), 3.43 - 3.29 (m, 1H), 2.22 - 2.16 (m, 1H), 2.09 - 1.98 (m, 1H), 1.96 - 1.80 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.62 (d, J = 242.4 Hz), 137.15, 136.69 (d, J = 9.1 Hz), 131.97, 130.19, 128.59, 127.36, 126.42, 124.28 (d, J = 3.0 Hz), 117.92 (d, J = 7.1 Hz), 116.80 (d, J = 5.1Hz), 116.26 (d, J = 21.2 Hz), 61.83 (d, J = 3.0 Hz), 51.41 (d, J = 7.1 Hz), 33.30, 23.90 (d, J = 2.0Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -125.14. HRMS (ESI) calculated for C₁₈H₁₉FN⁺ (M+H)⁺: 268.1496; found: 268.1488.

(*E*)-1-(4-bromophenyl)-2-styrylpyrrolidine (3ua)¹: ¹H NMR yield (70%), calibrated using CH₂Br₂ as the internal standard. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.14 (m, 7H), 6.57 – 6.46 (m, 2H), 6.39 (dd, *J* = 15.9, 1.3 Hz, 1H), 6.17 (dd, *J* = 15.9, 5.3 Hz, 1H), 4.29 – 4.24 (m, 1H), 3.53 – 3.48 (m, 1H), 3.24 (td, *J* = 9.0, 6.8 Hz, 1H), 2.22 – 2.15 (m, 1H), 2.11 – 1.96 (m, 2H), 1.94 – 1.88 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.49, 136.90, 131.73, 131.00, 129.86, 128.66, 127.51, 126.47, 113.94, 107.70, 60.89, 48.92, 33.12, 23.47.

(E)-1-(4-(methylthio)phenyl)-2-styrylpyrrolidine (3va): ¹H NMR yield (75%), calibrated using CH₂Br₂ as the internal standard.. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.13 (m, 7H), 6.64 – 6.53 (m, 2H), 6.42 (d, *J* = 15.8 Hz, 1H), 6.19 (dd, *J* = 15.9, 5.4 Hz, 1H), 4.29 (td, *J* = 7.4, 6.9, 2.2 Hz, 1H), 3.54 (ddd, *J* = 9.6, 7.3, 2.6 Hz, 1H), 3.27 (td, *J* = 9.0, 6.7 Hz, 1H), 2.39 (s, 3H), 2.23 – 1.88 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 146.61, 136.97, 131.96, 131.31, 129.73, 128.63, 127.44,

126.46, 122.33, 112.95, 60.87, 48.89, 33.09, 23.46, 19.75. HRMS (ESI) calculated for C₁₉H₂₂NS⁺ (M+H)⁺: 296.1467; found: 296.1461.

(E)-N, N-dibutyl-1-(*p*-tolyl)hex-1-en-3-amine (3ab): isolated yield (65%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 7.9 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 6.35 (d, *J* = 15.9 Hz, 1H), 6.07 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.16 – 3.11 (m, 1H), 2.57 – 2.50 (m, 2H), 2.41 – 2.28 (m, 5H), 1.67 – 1.55 (m, 1H), 1.48 – 1.21 (m, 11H), 0.91 (t, *J* = 7.2 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 136.98, 134.79, 131.57, 129.32, 126.23, 63.00, 50.48, 35.27, 31.09, 21.27, 20.82, 20.14, 14.32, 14.29. HRMS (ESI) calculated for C₂₁H₃₆N⁺ (M+H)⁺: 302.2842; found: 302.2834.

(*E*)-*N*, *N*-dibutyl-1-(*m*-tolyl)hex-1-en-3-amine (3ac): isolated yield (76%). ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.14 (m, 3H), 7.06 – 6.97 (m, 1H), 6.35 (d, *J* = 15.9 Hz, 1H), 6.11 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.17 – 3.11 (m, 1H), 2.58 – 2.51 (m, 2H), 2.40 – 2.30 (m, 5H), 1.65 – 1.57 (m, 1H), 1.49 – 1.22 (m, 11H), 0.91 (t, *J* = 7.3 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 138.17, 137.52, 131.77, 130.18, 128.54, 128.01, 127.02, 123.50, 62.95, 50.49, 35.31, 31.16, 21.53, 20.81, 20.14, 14.32, 14.30. HRMS (ESI) calculated for C₂₁H₃₆N⁺ (M+H)⁺: 302.2842; found: 302.2834.

(E)-N, N-dibutyl-1-(4-(*tert*-butyl)phenyl)hex-1-en-3-amine (3ad): isolated yield (54%). ¹H NMR
(400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 4H), 6.42 (d, J = 15.9 Hz, 1H), 6.15 (dd, J = 15.8, 8.8 Hz, 1H),
3.22 – 3.17 (m, 1H), 2.67 – 2.52 (m, 2H), 2.43 – 2.37 (m, 2H), 1.78 – 1.60 (m, 1H), 1.55 – 1.25 (m, 20H), 0.96 (t, J = 7.3 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.32, 134.80, 131.47, 129.58,

126.05, 125.57, 63.05, 50.50, 35.35, 34.66, 31.45, 31.08, 20.83, 20.13, 14.32, 14.30. HRMS (ESI) calculated for $C_{24}H_{42}N^+$ (M+H)⁺: 344.3312; found: 344.3303.

(E)-N, N-dibutyl-1-(4-fluorophenyl)hex-1-en-3-amine (3ae): isolated yield (72%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 2H), 6.99 (t, *J* = 8.7 Hz, 2H), 6.34 (d, *J* = 15.9 Hz, 1H), 6.04 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.17 – 3.11 (m, 1H), 2.57 – 2.50 (m, 2H), 2.38 – 2.31 (m, 2H), 1.65 – 1.57 (m, 1H), 1.49 – 1.23 (m, 11H), 0.93 – 0.89 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 162.18 (d, *J* = 249.5 Hz), 133.73 (d, *J* = 3.0 Hz), 130.47, 130.20, 127.75 (d, *J* = 8.1 Hz), 115.47 (d, *J* = 21.2 Hz), 62.87, 50.46, 35.15, 31.13, 20.79, 20.13, 14.31, 14.28. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.28. HRMS (ESI) calculated for C₂₀H₃₃FN⁺ (M+H)⁺: 306.2592; found: 306.2584.

(*E*)-*N*, *N*-dibutyl-1-(3-fluorophenyl)hex-1-en-3-amine (3af): isolated yield (52%). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (q, *J* = 7.7 Hz, 1H), 7.09 (dd, *J* = 20.1, 9.0 Hz, 2H), 6.92 – 6.87 (m, 1H), 6.35 (d, *J* = 15.9 Hz, 1H), 6.15 (dd, *J* = 15.9, 8.6 Hz, 1H), 3.16 (q, *J* = 7.6 Hz, 1H), 2.58 – 2.50 (m, 2H), 2.38 – 2.31 (m, 2H), 1.64 – 1.57 (m, 1H), 1.52 – 1.21 (m, 11H), 0.91 (t, *J* = 7.2 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.28 (d, *J* = 246.4 Hz), 139.95 (d, *J* = 7.1 Hz), 131.98, 130.60, 130.03 (d, *J* = 8.1 Hz), 122.23 (d, *J* = 2.0 Hz), 113.99 (d, *J* = 22.2 Hz), 112.72 (d, *J* = 22.2 Hz), 62.79, 50.47, 35.04, 31.12, 20.78, 20.11, 14.30, 14.28. ¹⁹F NMR (377 MHz, CDCl₃) δ -113.72. HRMS (ESI) calculated for C₂₀H₃₃FN⁺ (M+H)⁺: 306.2592; found: 306.2583.

(E)-N, *N*-dibutyl-1-(4-chlorophenyl)hex-1-en-3-amine (3ag): isolated yield (58%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 4H), 6.34 (d, *J* = 15.9 Hz, 1H), 6.11 (dd, *J* = 15.9, 8.6 Hz, 1H), 3.17 – 3.12 (m, 1H), 2.57 – 2.50 (m, 2H), 2.37 – 2.31 (m, 2H), 1.68 – 1.56 (m, 1H), 1.49 – 1.20 (m, 11H), 0.91 (td, *J* = 7.2, 2.4 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 136.05, 132.77, 131.29, 130.41, 128.74, 127.52, 62.84, 50.46, 35.05, 31.13, 20.78, 20.12, 14.31, 14.28. HRMS (ESI) calculated for C₂₀H₃₃ClN⁺ (M+H)⁺: 322.2296; found: 322.2293.

(*E*)-1-(4-bromophenyl)-*N*, *N*-dibutylhex-1-en-3-amine (3ah): isolated yield (50%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 6.32 (d, *J* = 15.9 Hz, 1H), 6.13 (dd, *J* = 15.9, 8.6 Hz, 1H), 3.17 – 3.11 (m, 1H), 2.57 – 2.50 (m, 2H), 2.37 – 2.31 (m, 2H), 1.69 – 1.55 (m, 1H), 1.50 – 1.21 (m, 11H), 0.91 (td, *J* = 7.2, 2.4 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 136.49, 131.69, 131.47, 130.44, 127.87, 120.87, 62.84, 50.46, 35.02, 31.13, 20.78, 20.11, 14.31, 14.28. HRMS (ESI) calculated for C₂₀H₃₃BrN⁺ (M+H)⁺: 366.1791; found: 366.1790.

(E)-N, N-dibutyl-1-(4-phenoxyphenyl)hex-1-en-3-amine (3ai): isolated yield (59%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 4H), 7.12 – 7.05 (m, 1H), 7.03 – 6.98 (m, 2H), 6.97 – 6.92 (m, 2H), 6.36 (d, *J* = 15.8 Hz, 1H), 6.05 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.17 – 3.12 (m, 1H), 2.63 – 2.47 (m, 2H), 2.39 – 2.32 (m, 2H), 1.64 – 1.57 (m, 1H), 1.53 – 1.21 (m, 11H), 0.91 (td, *J* = 7.2, 1.9 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 157.47, 156.43, 132.93, 130.83, 129.85, 129.57, 127.62, 123.29, 119.18, 118.83, 62.94, 50.48, 35.27, 31.14, 20.81, 20.15, 14.33, 14.30. HRMS (ESI) calculated for C₂₆H₃₈NO⁺ (M+H)⁺: 380.2948; found: 380.2940.

(*E*)-1-([1,1'-biphenyl]-4-yl)-*N*, *N*-dibutylhex-1-en-3-amine (3aj): isolated yield (49%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.51 (m, 4H), 7.43 (dd, *J* = 10.4, 7.9 Hz, 4H), 7.37 – 7.28 (m, 1H), 6.42 (d, *J* = 15.9 Hz, 1H), 6.18 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.21 – 3.15 (m, 1H), 2.60 – 2.53 (m, 2H), 2.40 – 2.34 (m, 2H), 1.68 – 1.59 (m, 1H), 1.54 – 1.22 (m, 11H), 0.94 – 0.90 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 140.96, 140.07, 136.58, 131.27, 130.63, 128.90, 127.37, 127.34, 127.05, 126.75, 63.03, 50.51, 35.22, 31.10, 20.82, 20.15, 14.33, 14.30. HRMS (ESI) calculated for C₂₆H₃₈N⁺ (M+H)⁺: 364.2999; found: 364.2995.

(*E*)-*N*, *N*-dibutyl-1-(naphthalen-2-yl)hex-1-en-3-amine (3ak): isolated yield (49%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (t, *J* = 7.3 Hz, 3H), 7.70 (s, 1H), 7.59 (d, *J* = 8.6 Hz, 1H), 7.50 – 7.34 (m, 2H), 6.55 (d, *J* = 15.9 Hz, 1H), 6.26 (dd, *J* = 15.9, 8.7 Hz, 1H), 3.24 – 3.19 (m, 1H), 2.61 – 2.54 (m, 2H), 2.42 – 2.36 (m, 2H), 1.69 – 1.61 (m, 1H), 1.56 – 1.23 (m, 11H), 1.02 – 0.80 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 134.99, 133.81, 132.93, 131.84, 130.89, 128.22, 127.99, 127.77, 126.32, 125.93, 125.74, 123.80, 63.09, 50.52, 35.21, 31.12, 20.82, 20.18, 14.35, 14.31. HRMS (ESI) calculated for C₂₄H₃₆N⁺ (M+H)⁺: 338.2842; found: 338.2837.

N, *N*-dibutyl-1,1-diphenylhex-1-en-3-amine (3al): isolated yield (46%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.10 (m, 10H), 6.03 (d, *J* = 10.4 Hz, 1H), 3.29 – 3.23 (m, 1H), 2.56 – 2.49 (m, 2H), 2.31 – 2.24 (m, 2H), 1.61 – 1.57 (m, 1H), 1.49 – 1.39 (m, 1H), 1.35 (q, *J* = 7.3 Hz, 2H), 1.29 – 1.05

(m, 8H), 0.86 - 0.80 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.70, 142.92, 140.38, 130.10, 130.05, 128.23, 128.15, 127.39, 127.16, 127.03, 57.25, 50.14, 35.94, 31.07, 20.72, 19.92, 14.38, 14.23. HRMS (ESI) calculated for C₂₆H₃₈N⁺ (M+H)⁺: 364.2999; found: 364.2992.

(E)-N, N-dibutyl-1-(thiophen-2-yl)hex-1-en-3-amine (3am): isolated yield (40%). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 5.1 Hz, 1H), 7.01 – 6.82 (m, 2H), 6.52 (d, *J* = 15.7 Hz, 1H), 5.96 (dd, *J* = 15.8, 8.6 Hz, 1H), 3.14 – 3.09 (m, 1H), 2.56 – 2.49 (m, 2H), 2.43 – 2.28 (m, 2H), 1.64 – 1.55 (m, 1H), 1.50 – 1.23 (m, 11H), 0.91 (t, *J* = 7.1 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.87, 130.44, 127.41, 124.91, 124.80, 123.59, 62.82, 50.47, 35.06, 31.16, 20.79, 20.14, 14.30. HRMS (ESI) calculated for C₁₈H₃₂NS⁺ (M+H)⁺: 294.2250; found: 294.2245.

(E)-N, N-dibutyl-1-(furan-2-yl)hex-1-en-3-amine (3an): isolated yield (54%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 1.8 Hz, 1H), 6.36 (dd, J = 3.3, 1.8 Hz, 1H), 6.28 – 6.14 (m, 2H), 6.07 (dd, J = 15.9, 8.6 Hz, 1H), 3.11 (td, J = 8.3, 5.8 Hz, 1H), 2.56 – 2.49 (m, 2H), 2.36 – 2.30 (m, 2H), 1.66 – 1.53 (m, 1H), 1.48 – 1.22 (m, 11H), 0.90 (t, J = 7.2 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.07, 141.54, 129.25, 120.19, 111.29, 106.82, 62.68, 50.49, 35.17, 31.27, 20.79, 20.14, 14.29. HRMS (ESI) calculated for C₁₈H₃₂NO⁺ (M+H)⁺: 278.2478; found: 278.2472.

(E)-2-(4-bromostyryl)-1-methylpyrrolidine (3ao): isolated yield (62%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 6.43 (d, J = 15.8 Hz, 1H), 6.09 (dd, J = 15.8, 8.3 Hz, 1H), 3.17 - 3.12 (m, 1H), 2.67 (q, J = 8.2 Hz, 1H), 2.29 (s, 3H), 2.22 (q, J = 9.0 Hz, 1H), 2.08 - 1.97 (m, 1H), 1.96 - 1.84 (m, 1H), 1.84 - 1.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ

136.07, 132.97, 131.73, 130.62, 127.95, 121.18, 69.63, 56.85, 40.49, 32.21, 22.48. HRMS (ESI) calculated for $C_{13}H_{17}BrN^+$ (M+H)⁺: 266.0539; found: 266.0539.

(*E*)-2-(4-methoxystyryl)-1-methylpyrrolidine (3ap): isolated yield (52%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 2H), 6.91 – 6.78 (m, 2H), 6.45 (d, *J* = 15.7 Hz, 1H), 5.96 (dd, *J* = 15.8, 8.5 Hz, 1H), 3.80 (s, 3H), 3.19 – 3.15 (m, 1H), 2.71 – 2.65 (m, 1H), 2.31 (s, 3H), 2.24 (q, *J* = 9.0 Hz, 1H), 2.08 – 1.98 (m, 1H), 1.95 – 1.83 (m, 1H), 1.82 – 1.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.23, 131.59, 129.88, 129.41, 127.62, 114.10, 70.00, 56.74, 55.43, 40.33, 32.26, 22.37. HRMS (ESI) calculated for C₁₄H₂₀NO⁺ (M+H)⁺: 218.1539; found: 218.1533.

(*E*)-1-methyl-2-(4-(trifluoromethyl)styryl)pyrrolidine (3aq): isolated yield (32%). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 6.53 (d, J = 15.8 Hz, 1H), 6.21 (dd, J = 15.9, 8.3 Hz, 1H), 3.18 – 3.13 (m, 1H), 2.71 (q, J = 8.2 Hz, 1H), 2.31 (s, 3H), 2.28 – 2.20 (m, 1H), 2.10 – 2.01 (m, 1H), 1.96 – 1.85 (m, 1H), 1.85 – 1.66 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.67, 135.14, 130.36, 129.29 (q, J = 32.3 Hz), 126.56, 125.64 (q, J = 4.0 Hz), 124.35 (d, J = 271.7 Hz), 69.52, 56.94, 40.57, 32.29, 22.58. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.47. HRMS (ESI) calculated for C₁₄H₁₇F₃N⁺ (M+H)⁺: 256.1308; found: 256.1300.

4. NMR spectra of products

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7.3385 7.3385 7.3360 7.3360 7.3319 6.417 7.221 7.2222 7.2217

 $\begin{array}{c} 7,331\\ 7,3357\\ 7,357\\ 7,356\\ 7,356\\ 7,356\\ 7,356\\ 7,356\\ 7,356\\ 7,336\\ 7,3309\\ 6,143\\ 7,22816\\ 6,124\\ 6,124\\ 6,12356\\ 6,12356\\ 6,12356\\ 6,12356\\ 6,12356\\ 7,22356\\ 6,12356\\ 7,22356\\ 7,22356\\ 7,22356\\ 7,22356\\ 7,22356\\ 7,22356\\ 7,22356\\ 7,23$

 $\begin{array}{c} 7.382\\ 7.382\\ 7.382\\ 7.283\\ 7.283\\ 7.$

7, 332 7, 338 7, 338 7, 338 7, 338 7, 335 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 7, 228 6, 237 8,

— 18.077

— 50.440 — 45.158

~ 23.198 ~ 20.187

 $\begin{array}{c} 7.335\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.336\\ 7.328\\ 7.228\\ 7.$

3ha, C(a):C(b) = 5:1

 $\begin{array}{c} 7.38\\ 7.335\\ 7.335\\ 7.335\\ 7.355\\ 7.355\\ 7.355\\ 7.355\\ 7.355\\ 7.355\\ 7.352\\ 7.352\\ 7.352\\ 7.256\\ 7.225\\ 8.416\\ 6.455\\ 6.455\\ 6.455\\ 6.455\\ 6.455\\ 6.455\\ 6.455\\ 6.455\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 8.555\\ 7.225\\ 7.255\\ 7.2$

 $\begin{array}{c} 7,337\\ 7,337\\ 7,238\\ 7,238\\ 7,2328\\ 7,2328\\ 7,2238\\ 7,2238\\ 7,2238\\ 7,2228\\ 7,2228\\ 6,6,999\\ 6,6,130\\ 6,6,130\\ 6,6,130\\ 6,6,130\\ 6,6,130\\ 6,6,130\\ 6,6,130\\ 6,6,133\\ 6,6,999\\ 7,1238\\ 7,11,236\\ 7,11,236\\ 7,11,738\\ 7,11,73$

3la

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

90 80

70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

 $\begin{array}{c} 7.381\\ 7.3356\\ 7.3356\\ 7.3356\\ 7.3356\\ 7.2356\\ 7.2356\\ 7.22336\\ 7.22326\\ 7.22336\\ 7.22326\\ 7.222226\\ 7.22226\\ 7.2$

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $\begin{array}{c} 7.332\\ 7.337\\ 7.231\\ 7.237\\ 7.237\\ 7.258\\ 7.27\\ 7.258\\ 7.226\\ 7.226\\ 7.226\\ 7.226\\ 8.268\\ 6.918\\ 7.222\\ 5.928\\ 7.2222\\ 7.2222\\ 7.2222\\ 7.2222\\ 7.2222\\ 7.2222\\ 7.2222\\ 7.2222\\ 7.$

 $\begin{array}{c} 7,338\\ 7,334\\ 7,3334\\ 7,2298\\ 7,2298\\ 7,2298\\ 7,2298\\ 7,2298\\ 7,2298\\ 7,2298\\ 7,2294\\ 7,2294\\ 7,2294\\ 7,2294\\ 7,2294\\ 7,2294\\ 7,217\\ 7,2294\\ 7,23232\\ 7,2323\\ 7,2323\\ 7,2323\\ 7,2323\\ 7,2323\\ 7,2323\\ 7,2323\\ 7$

7.3346 7.7378 7.7378 7.73346 7.7328 7.7328 7.7328 7.7328 7.7259 7

 $\begin{array}{c} 7.27\\ 7.27\\ 7.299\\ 6.326\\ 6.326\\ 6.326\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 6.079\\ 1.1254\\ 1.1253\\ 1.1259\\ 1.1259\\ 1.1259\\ 1.1253\\ 1.1259\\ 1.1253\\ 1.12$

 $\begin{array}{c} 7.19\\ 7.118\\ 7.117\\ 7.173\\ 7.173\\ 7.173\\ 7.173\\ 7.173\\ 7.173\\ 7.173\\ 7.173\\ 7.173\\ 7.023\\ 7.023\\ 7.023\\ 7.023\\ 5.033\\ 5.0$

 $\begin{array}{c} 7.408\\ 6.4410\\ 6.4410\\ 6.4410\\ 6.4410\\ 6.17387\\ 7.3387\\ 7.3387\\ 6.1176\\ 6.1176\\ 6.1176\\ 6.117\\ 6.1176\\ 6.117\\ 6.11$

 $\begin{array}{c} 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.309\\ 7.309\\ 7.333\\ 7.333\\ 7.309\\ 7.309\\ 7.309\\ 7.309\\ 7.309\\ 6.052\\ 6.052\\ 6.052\\ 6.052\\ 6.052\\ 6.052\\ 6.052\\ 7.333\\ 7.102\\ 7.102\\ 7.11\\ 7.11\\ 7.11\\ 7.25\\ 7.225\\ 7.255\\$

 $\begin{array}{r} 7.239\\ 7.2261\\ 7.2261\\ 7.2263\\ 7.2264\\ 6.315\\ 6.315\\ 6.315\\ 6.315\\ 6.315\\ 6.315\\ 6.315\\ 6.315\\ 6.315\\ 6.325\\ 6.325\\ 7.225\\ 7.225\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.1338\\ 7.1338\\ 7.11338\\ 7.2358\\ 7.2358\\ 7.11338\\ 7.2358\\ 7.11338\\ 7.2358\\ 7.11338\\ 7.2358\\ 7.11338\\ 7.2358\\ 7.11338\\ 7.2358\\ 7.11338\\ 7.2358$

- 77.160 CDCI3

— 62.839

— 50.458

 $\begin{array}{c} -35.048\\ -31.129\\ \hline 20.780\\ \hline 20.116\\ \hline 14.307\\ \hline 14.280\end{array}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $\begin{array}{c} 7.424\\ 7.2404\\ 6.3340\\ 6.3340\\ 6.157\\ 7.2404\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 6.136\\ 7.2496\\ 3.3.156\\ 3.3.156\\ 3.3.156\\ 7.2556\\ 7.2556\\ 7.2556\\ 7.2556\\ 7.2556\\ 7.1.440\\ 1.1.466\\ 1.1.466\\ 1.1.466\\ 1.1.466\\ 1.1.256\\ 1.1.369\\ 7.2556\\ 7.3256\\ 7.2556\\ 7.3256\\ 7.2556\\ 7.3256\\ 7.2556\\ 7.2$

 $\begin{array}{c} 7.336\\ 7.3339\\ 7.3339\\ 7.3339\\ 7.3339\\ 7.3339\\ 7.3326\\ 7.3326\\ 7.3326\\ 7.3326\\ 7.3326\\ 7.3326\\ 7.3326\\ 7.3326\\ 7.3326\\ 6.9946\\ 6.9946\\ 6.9946\\ 6.9946\\ 6.9946\\ 6.3338\\ 6.3338\\ 7.11, 2347\\ 1.1, 2414\\ 1.1, 2426\\ 7.2, 5528\\ 7.2,$

 $\begin{array}{c} 7.560\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.556\\ 7.557\\ 7.556\\ 7.545\\ 7.545\\ 7.453\\ 7.445\\ 7.427\\ 7.427\\ 7.427\\ 7.345\\ 7.427\\ 7.345\\ 7.435\\ 7.427\\ 7.345\\ 7.427\\ 7.345\\ 7.427\\ 7.345\\ 7.427\\ 7.345\\ 7.427\\ 7.345\\ 7.1.356\\ 1.1.458\\ 1.1.458\\ 1.1.356\\ 1.1.458\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.356\\ 1.1.256\\ 1.1.356\\ 1.1.356\\ 1.1.25$

 $\begin{array}{c} 7.7.7\\ 7.774\\ 7.764\\ 7.764\\ 7.766\\ 7.486\\ 7.$

7,354 7,313 7,313 7,313 7,313 7,313 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,215 7,176 7,176 7,176 7,176 7,176 7,175 7,116 1,135 7,117 1,135 1,135

 $\begin{array}{c} 7,115\\ 7,$

7,431 7,525 6,450 6,450 6,450 6,614 6,614 6,614 6,614 6,614 6,614 6,614 6,616 6,607 6,607 7,214 1,133 1,607 1,133 1,133 1,137 1,1397 1,1397 1,137 1,1397 1,1775 1,1384 1,1775 1,1

7 136.066 132.969 131.730 131.730 127.954 121.184

-- 77.160 CDCl3 -- 69.630

--- 56.845

— 40.486 — 32.214

— 22.476

3ao

7,336 7,336 7,339 7,339 7,339 6,8456 6,8456 6,8456 6,8456 6,8456 6,8456 6,8456 6,8456 6,8456 6,8456 2,331457 3,1457 3,1676 2,2003 2,20

90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

5. References

- J. Hu, N. Zhang, P. Zhang, Y. Chen, X. Xia, H. Chen, J. Xu, Angew. Chem. Int. Ed. 2020, 59, 18244-18248.
- 2. A. Noble, D. W. MacMillan, J. Am. Chem. Soc. 2014, 136, 11602-11605.
- 3. A. Sølvhøj, A. Ahlburg, R. Madsen, Chem. Eur. J. 2015, 21, 16272-16279.
- 4. P. Huang, Y. Huang, S. Wang, Org. Chem. Front. 2017, 4, 431-444.
- 5. G. B. Bajracharya, Z. Huo, Y. Yamamoto, J. Org. Chem. 2005, 70, 4883-4886.