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Hyperparameters and Training Procedure. All models are implemented with the SchnetPack library. For
the SchNet representation, a 128 dimensional embedding is processed by 6 interaction modules using a 5 Ångstrom
cutoff. 64 evenly spaced Gaussian functions are used as the radial basis. For the SOAP representation, universal
hyperparameters as defined in the ASAP package are used. Fully connected multilayer perceptrons (MLPs) with four
hidden layers of 128, 64, 32 and 16 neurons, respectively, are used to generate the atomic outputs εi defined in the main
manuscript from the SchNet and SOAP representations. Shifted Softplus activation functions are used throughout.
For the SOAP models separate networks are trained for each chemical elements, using the TiledMultiLayerNNmodule
in SchnetPack. The same MLP architecture is used for weight prediction in the WA and OWA models. Here, the
atomic outputs are additionally normalized via a softmax layer. For training, the Adam optimizer is used with
a learning-rate decay from 10−3 to 10−6. Additionally, the learning rate is reduced by factor 0.8 after 10 epochs
without improvement of the validation loss. A batch size of 50 is used for the LocalOrb dataset. This was reduced to
32 for OE62, due to the larger number of elements it contains, which leads to larger memory demands for the SOAP
representation.
Loss function for training. As a loss function, we compute the mean squared error between the ML and DFT
HOMO energies for the Sum/Avg/Max/Soft/WA pooling functions.
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where Ntrain is the number of training samples, NA is the number of atoms in molecule A. For OWA the loss function
is a combination of the HOMO energy error and the deviation between predicted atomic weights and DFT-based
orbital localization fractions:
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FIG. S1: Grid search for the loss hyperparameters α, β of the OWA method. Finally α = 0.1,β = 1 were selected.

where the coefficients α and β are optimized via grid search (see Fig. S1), lA,i is the orbital localization fraction and
wA,i is the predicted atomic weight for atom i in molecule A.
Dataset split. For the LocalOrb learning curves, training subsets (and corresponding validation sets of 2000
molecules) are randomly drawn from the overall training set. We tested the performance for particularly delocal-
ized and localized orbitals in the test set. These are chosen from the overall test set based on the L criteria. Training
was repeated five times for each pooling function with a maximum number of 200 epochs for SchNet NNs (and 100
epoch for SOAP NNs). The final results are the average performance of these five models. We note that for the two
molecular representations, SchNet and SOAP, identical training, validation and test sets were used.

For the OE62 dataset, we also carried out single point calculations by ORCA 5.0.2 for the equilibrium structures
optimized at the hybrid PBE functional. As for LocalOrb, the wB97X-D3 functional and def2-TZVP basis set were
employed to perform the DFT single-point calculations to obtain the orbital information. For the general performance
comparison as described in the main text, in order to make direct comparison with the results reported by Stucke et
al, 32000/5000/10000 training/validation/test set were randomly selected for each model. To analyze the predictive
performance for delocalized and localized orbitals, the localized/delocalzied test sets were choosen from the rest of the
OE62 dataset according to the L ⩾ 0.8 and L < 0.4 criteria, leading to 713/5310 systems in the localized/delocalized
test sets, respectively.
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Backbone Sidegroups
CC(R) F,Cl,Br
CC(R)CC CF3

C(R)CCC CN
CCC(R)CCC NO2

C(R)CCCCC CHO
C(R)CCCC(R)C COOH
C(R)CCCCC(R) COCH3

C(R)CCCCCCC CONH2

CC(R)CCCCCC C=-CH
CCC(R)CCCCC SOOCH3

CCCC(R)CCCC CH=NH
CC(R)CCCC(R)CC OH
C(R)CCCCC(R)CC OCH3

C(R)CCCC(R)CCC NH2

C(R)CCCCCC(R)C NCCH3

C(R)CCCCCCC(R) CH3

C=C(R) NCOCH3

C=C(R)C=C SCH3

C(R)=CC=C c1ccc(F)cc1
C=CC(R)=CC=C c1ccc(Cl)cc1
C(R)=CC=CC=C c1ccc(Br)cc1
C(R)=CC=CC(R)=C c1ccc([C](F)(F)F)cc1)
C(R)=CC=CC=C(R) c1ccc([C]=N)cc1
C(R)=CC=CC=CC=C c1ccc(N(=O)(=O))cc1
C=C(R)C=CC=CC=C c1ccc([CH]=O)cc1
C=CC(R)=CC=CC=C c1ccc([C](=O)O)cc1
C=CC=C(R)C=CC=C c1ccc(C(=O)C)cc1
C=C(R)C=CC=C(R)C=C c1ccc(C(=O)N)cc1
C(R)=CC=CC=C(R)C=C c1ccc(C=C)cc1
C(R)=CC=CC(R)=CC=C c1ccc(S(=O)(=O)C)cc1
C(R)=CC=CC=CC(R)=C c1ccc(C=N)cc1
C(R)=CC=CC=CC=C(R) c1ccc([OH])cc1

c1ccc(OCH3)cc1
c1ccc(NH2)cc1
c1ccc(NCCH3)cc1
c1ccc(CH3)cc1
c1ccc(NCOCH3)cc1
c1ccc(SCH3)cc1
c1ccccc1

TABLE I: Backbones and sidegroups for LocalOrb dataset.

Method RMSE (eV)
Sum (SchNet) 0.411 ± 0.089
Average(SchNet) 0.176 ± 0.004
Max(SchNet) 0.174 ± 0.003
Softmax(SchNet) 0.168 ± 0.003
Coeff(SchNet) 0.161 ± 0.001
WA 0.164 ± 0.002
OWA 0.155 ± 0.002
Ref KRR-MBTR1 0.239 ± 0.006
Ref GNN2 0.209
Ref GNN-MBTR-MD2 0.180

TABLE II: The RMSE of OE62 with different methods testing on 10k dataset under 32k training data.
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FIG. S2: Rotatable bonds distribution for our own dataset LocalOrb.
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FIG. S3: A kPCA visualization of the LocalOrb dataset colored according to the locality criterion L.
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FIG. S4: The Locality index distribution in the LocalOrb training and test set.
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FIG. S5: The learning curve for the full LocalOrb test set.
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FIG. S6: Effect of the number of highly localized orbitals in training set on predictive accuracy for localized or-
bitals. The training set size kept constant at 15,000 configurations for this experiment.
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FIG. S7: Pearson correlation coefficients R between DFT-based orbital localization fractions li and machine-
learned weights obtained with different pooling functions for SOAP representation.



8

0.00 0.05 0.10 0.15

0.030

0.035

Delocalized molecule
Softmax

0.00 0.25 0.50 0.75

0.030

0.035
Localized molecule

Softmax

0.00 0.05 0.10 0.15
0.00

0.05

WA

0.00 0.25 0.50 0.75
0.00

0.25

0.50 WA

0.00 0.05 0.10 0.15
0.0

0.1

OWA

0.00 0.25 0.50 0.75
0.0

0.5

OWA

DFT orbital fractions

Pr
ed

ict
 a

to
m

ic 
we

ig
ht

s

FIG. S8: Exemplary correlations between DFT-based orbital localization fractions li and machine-learned weights
wi obtained with different pooling functions for a delocalized and a localized molecule using the SchNet representa-
tion. These molecules are depicted in Figure 4b.



9

0 25 50 75 100 125 150 175 200
Number of atoms in molecule

101

103

Nu
m

be
r o

f m
ol

ec
ul

esa

0 10 20 30 40 50
Atomic number

102

104

106

Nu
m

be
r o

f a
to

m
sb

12 10 8 6 4 2
HOMO / eV

0

1000

2000

Nu
m

be
r o

f m
ol

ec
ul

esc

OE62 LocalOrb

FIG. S9: Comparison of the OE62 and LocalOrb datasets with respect to a) the number of atoms per molecule, b)
the elemental distribution, and c) the HOMO energy distribution.
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FIG. S10: Learning curve of OE62 for a) delocalized and b) localized molecules.
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FIG. S11: LocalOrb test set performance for an average pooling model with increasing size of the SchNet embed-
ding vector (blue). The number of trainable parameters in the NN models is shown in orange. Training/validation
set sizes are 5000/2000. For reference, the OWA model with the embedding size (128) used in the main manuscript
is also shown, with the corresponding number of parameters in green.
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FIG. S12: OE62 test set errors binned by molecule size (in terms of the number of atoms N) for average and
OWA pooling. Training/validation set sizes are 32,000/5,000. Note that the training and test sets are not uniform
with respect to molecule size. The bins contribute 26%, 62% and 12% of the molecules to the test set, respectively.


