Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Photoredox Radical/Polar Crossover Enables C-H

gem-Difunctionalization of 1,3-Benzodioxoles for the Synthesis of

Monofluorocyclohexenes

Jiabao Tian,^a and Lei Zhou*^a

^a School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China.

E-mail: zhoul39@mail.sysu.edu.cn

1. General	2
2. Experimental procedures	3
3. Emission Quenching Experiments (Stern-Volmer Studies)	8
4. Cyclic voltammograms	10
5. Radical trapping experiments	11
6 Light source and apparatus	12
0. Light source and apparatus	1 2
7. Characterization data	13
8. Reference	30
9. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	31

1. General

Unless otherwise noted, all reactions were performed in a 10 mL test tube at room temperature. Photo-irradiation was carried out with a 5 W blue LED. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were measured in CDCl₃ and recorded on Brucker ARX 400 MHz or 600 MHz spectrometer. Chemical shifts (δ) were given in ppm, referenced to the residual proton resonance of CDCl₃ (7.26), to the carbon resonance of CDCl₃ (77.16). Coupling constants (J) were given in Hertz (Hz). The term m, q, t, d, s referred to multiplet, quartet, triplet, doublet, singlet. High resolution mass spectra (HRMS) were obtained on a Thermo MAT95XP GC-HRMS with an EI source or Thermofisher LTQ Orbitrap LC-HRMS mass spectrometer with an ESI source. α -CF₃ alkenes were prepared via the palladium catalyzed Suzuki coupling of commercially available 2-bromo3,3,3-trifluoropropene with various boric acids or α -(trifluoromethyl)ethenyl boronic acid with a series of aryl halides according to the previous reports.¹ Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. Experimental procedures

2.1 Typical procedure for the synthesis of gem-difluoroalkene 3a

To a dry test tube, α -trifluomethyl (*p*-phenyl)styrene **2a** (0.2 mmol, 49.6 mg), 4CzIPN (3 mol%, 4.7 mg) and 2,4,6-collidine (0.6 mmol, 72.6 mg) were added. The test tube was sealed with a septum and charged with nitrogen. Then 1,3-benzodioxole **1a** (0.4 mmol, 48.4 mg) was dissolved in 1mL of MeCN and added *via* a syringe. The reaction was irradiated with a 5 W blue LED at room temperature for 13 h. After consumption of the starting material, 10 mL of water was added and the mixture was extracted with ethyl acetate (3 × 10 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (100: 1) as the eluent to give *gem*-difluoroalkene **3a** as colorless oil (54.6 mg, 78% yield).

Unless other note, *gem*-difluoroalkenes **3b-30** were prepared according to the same procedure as described above. The reaction time for each reaction was indicated in the Scheme 3 in the manuscript. If the reaction time is longer than the given point, mono-fluorinated alkene **3''** will be formed by the reaction of resultant *gem*-difluoroalkene **3** with 1,3-benzodioxole **1**.

Under standard conditions, prolonging the reaction time of **1a** and **2a** from 13 h to 24 h (Table 1, entry 11) provided desired product **3a** only in 29% yield, while mono-fluorinated alkene **3a''** was obtained in 43% yield (Scheme S1).

Scheme S1. The photocatalytic reaction of 1a and 2a for 24 h

2.2 Synthesis of 3a in gram-scale

To a dry 25 mL Schlenk flask charged with a magnetic stirring bar, **2a** (5 mmol, 1.24 g), 4CzIPN (3 mol%, 117.5 mg) and 2,4,6-collidine (15 mmol, 1.82 g) were added. Then 1,3-benzodioxole **1a** (10 mmol, 1.21 g) was dissolved in 10 mL of MeCN and added *via* a syringe

added under nitrogen atmosphere. The reaction was irradiated with a 5 W blue LED at room temperature for 13 h. After consumption of the starting material, 30 mL of dilute hydrochloric acid was added and the mixture was extracted with ethyl acetate (3×30 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (100: 1) as the eluent to give *gem*-difluoroalkene **3a** as colorless oil (1.14 g, 65% yield).

2.3 Typical procedure for the synthesis of monofluorinated cyclohexene 5a

To a dry test tube, **3a** (0.2 mmol, 70.0 mg) $Ir(dFCF_3ppy)_2(dCF_3bbpy)PF_6$ (2.5 mol%, 5.7 mg), and 2,4,6-collidine (0.6 mmol, 72.6 mg) were added. The test tube was sealed with a septum and charged with nitrogen. Then ethyl acrylate **4a** (0.4 mmol, 40.0 mg) and MeCN (1mL) were added *via* a syringe. The resultant solution was irradiated with a 5 W blue LED at room temperature for 48 h. After consumption of **3a**, 10 mL of water was added. The reaction mixture was extracted with ethyl acetate (3 × 10 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (20: 1) as the eluent to give **5a** as white solid (74.0 mg, 86% yield).

Unless other note, mono-fluorinated cyclohexenes **3b-3t** were prepared according to the same procedure as described above. All the reactions were irradiated for 48 h.

2.4 Synthesis of 5a in gram-scale

To a dry 25 mL Schlenk flask charged with a magnetic stirring bar, **3a** (3 mmol, 1.05 g) $Ir(dFCF_3ppy)_2(dCF_3bbpy)PF_6$ (2.5 mol%, 86 mg), and 2,4,6-collidine (9 mmol, 1.09 g) were added. Then ethyl methacrylate (6 mmol, 684 mg) and MeCN (10 mL) were added *via* a syringe under nitrogen atmosphere. The resultant solution was irradiated with a 5 W blue LED at room temperature for 48 h. After consumption of **3a**, 30 mL of dilute hydrochloric acid was added. The reaction mixture was extracted with ethyl acetate (3 × 30 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (20: 1) as the eluent to give **5a** as white solid (0.88g, 68% yield).

2.5 Conversion of *gem*-difluoroalkene 3a to amide 6^2

To a solution of **3a** (0.1 mmol, 35 mg) in MeCN (4 mL) was added pyrrolidine (1 mmol, 83 uL). The solution was stirred at room temperature for 8 h. Then 10 mL of water was added and the mixture was extracted with ethyl acetate (3×10 mL), washed with brine, dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (20: 1) as the eluent to give amide **6** as white solid (67.8 mg, 85% yield).

2.6 Deprotection of 5a for the synthesis of 1,4-diphenol 7^3

To a 10 mL test tube charged with **5a** (0.1 mmol, 43 mg), 90% aqueous trifluoroacetic acid solution (0.5 mL) was slowly added. The resultant mixture was stirred at room temperature for 8 h. Then 10 mL of saturated sodium bicarbonate solution was added. The organic layer was extracted with ethyl acetate (3 \times 10 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (20: 1) as the eluent to give 1,4-diphenol **7** as white solid (17.3 mg, 51% yield).

2.7 Synthesis of mono-acetyl substituted 1,4-diphenol 8 with the removal of the ester group⁴

In a round bottom flask equipped with condenser, **5a** (0.1 mmol, 43 mg) was dissolved in AcOH (1.5 mL), H₂O (0.5 mL) and 6 M HCl (0.2 mL). The reaction mixture was heated at 120 $^{\circ}$ C for 8 h. After consumption of **5a**, 10 mL of saturated sodium bicarbonate solution was added. The

organic layer was extracted with ethyl acetate (3 \times 10 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (20: 1) as the eluent to give **8** as white solid (17.0 mg, 57% yield).

2.8 Reduction of 5a using triethylsilane⁵

Titanium tetrachloride (0.4 mmol, 43.8 μ L) was added dropwise to a stirred solution of **5a** (43.0 mg, 0.1 mmol) and triethylsilane (1 mmol, 159.3 μ L) in dry CH₂Cl₂ (2 mL) at 0 °C. After stirring at room temperature for 24 h, the reaction mixture was quenched with saturated aqueous Na₂CO₃ (3 mL) followed by extraction with CH₂Cl₂ (3 × 10 mL). The combined organic extracts were dried over Na₂SO₄, The crude product was purified by column chromatography using petroleum ether/ethyl acetate (20: 1) as the eluent to **9** as white solid with >20:1 *dr* (69.9 mg, 81% yield).

2.9 Deprotection of 5j³

To a 10 mL test tube charged with **5j** (0.1 mmol, 44.4 mg), 90% aqueous trifluoroacetic acid solution (0.5 mL) was slowly added. The resultant solution was stirred at room temperature for 8 h. Then 10 mL of saturated sodium bicarbonate solution was added. The organic layer was extracted with ethyl acetate (3 × 10 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (20: 1) as the eluent to give mono-fluorinated 3-cyclohex-1-one **10** as white solid (14.4 mg, 41% yield).

2.10 Synthesis of 5a by two steps in one-pot

To a dry test tube, α -trifluomethyl (p-phenyl)styrene **2a** (0.2 mmol, 49.6 mg), 2,4,6-collidine (0.6

mmol, 72.6 mg) and Ir(dFCF₃ppy)₂(dCF₃bbpy)PF₆ (2.5 mol%, 5.7 mg) were added. The test tube was sealed with a septum and charged with nitrogen. Then 1,3-benzodioxole **1a** (0.2 mmol, 24.2 mg) was dissolved in 1mL of MeCN and added *via* a syringe. After the irradiation of a 5w blue LED at room temperature for 24 h, ethyl acrylate **4a** (0.4mmol, 40.0 mg) was added via a syringe. The reaction mixture continues to be irradiated for 48 h. Then, 10 mL of water was added. The organic layer was extracted with ethyl acetate (3×10 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (20: 1) as the eluent to give **5a** as white solid (37.8 mg, 44 % yield).

3. Emission Quenching Experiments (Stern-Volmer Studies)

Fluorescence quenching experiments were recorded on a Fluorescence Spectrophotometer F4500. In each experiment, a solution of 0.01 mM Ir[dFCF₃ppy]₂(dCF₃bpy)PF₆ (**Ir-1**) in MeCN was mixed with a MeCN solution of a quencher of various concentration in a screw-top 1.0 cm quartz cuvette. After degassing by sparging with argon for ten minutes, the resulting solution was irradiated at 465 nm, and fluorescence was measured at 580 nm. I⁰ and I represent the intensities of the emission in the absence and presence of the quencher at 465 nm.

Figure S1. Emission quenching of excited photocatalyst [**Ir-1**]* by: (a) 2,4,6-collidine; (b) ethyl acrylate; (c) α -CF₃ (*p*-phenyl)styrene **2a**; (d) 1,3-benzodioxole **1a**; (e) *gem*-difluoroalkene **3a**.

It was found that the excited photocatalyst Ir* could be quenched by 1,3-benzodioxole (1a), mono-*gem*-difluoroallylated 1,3-benzodioxole (3a) respectively, while 2a, ethyl acrylate and 2,4,6-collidine were ineffective for the quenching. According to the rate of slope (Figure S2), the reductive quenching of Ir* by 1a was the most efficient.

Figure S2. Combined Stern-Volmer plots

4. Cyclic voltammograms

Cyclic voltammetry data were recorded on a CHI750E Electrochemical Analyzer using a three-electrode cell at room temperature. A glassy carbon electrode was used as the working electrode and a platinum wire as the auxiliary electrode. The reference electrode was a saturated AgCl/Ag. t-Bu₄NPF₆ (0.1 M in MeCN) was used as the supporting electrolyte. Voltammograms were taken in N₂-sparged MeCN and the sweep rate was 100 mV/s. The concentration of measured compound was 1 mM. Considering the possible effects of base, one equivalent of 2,4,6-collidine was added.

Figure S3 Cyclic voltammogram of (a) 1,3-benzodioxole 1a; (b) gem-difluoalkene 3a

The peak potential for the irreversible oxidation of 1a was measured as +1.21 V and the irreversible reduction of 3a was measured as +1.58 V, which were referenced to saturated salomel slectrode (vs SCE) by reducing 0.042 V to the measured potential.

5. Radical trapping experiments

To a dry test tube, **2a** (0.2 mmol, 49.6 mg), 4CzIPN (3 mol%, 4.7mg), TEMPO (0.6 mmol, 93.7 mg) and 2,4,6-collidine (0.6 mmol, 72.6 mg) were added. The test tube was sealed with a septum and charged with nitrogen. Then 1,3-denzodioxole **1a** (0.4 mmol, 48.4 mg) and 1mL of MeCN were added. The reaction was irradiated with a 5 W blue LED at room temperature for 2 h and quenched by 10 mL of water. The mixture was extracted with ethyl acetate (3×10 mL), washed with brine and dried with anhydrous Na₂SO₄. The crude product was measured by ¹⁹F-NMR and found that the formation of **3a** was completely suppressed. However, a **1a**-TEMPO adduct was found as detected by HRMS, whose spectra were shown below.

Figure S5. The HRMS of 1a-TEMPO adduct

6. Light source and apparatus

The reactions were performed using RLH-18 8-position Photo Reaction System, which manufactured by Beijing Rogertech Co. ltd based in Beijing, China (<u>http://www.rogertech.cn/</u>). This Photo reactor are equipped with eight 10 W blue light LEDs, and their power can be tuned by connecting a controller.

The emission spectrum of blue LEDs is about 416 to 510 nm, and its λ max is 453.6 nm. The strength of irradiation @5 W is about 246 mW/cm². The emission spectrum of the light source is shown in the Figure S6.

Figure S6 The emission spectrum and the picture of the light source

Irradiation vessel is borosilicate glass test tube. The reaction was irradiated through a high-reflection channel from blue LED to the test tube, which length is 2 cm without any filters. Figure S7 is the picture of the apparatus.

Figure S7. The picture of apparatus.

7. Characterization data

2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)benzo[d][1,3]dioxole (3a)

Colorless oil (54.6 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.61 (m, 4H), 7.49 – 7.40 (m, 5H), 6.86 – 6.77 (m, 4H), 6.21 (t, *J* = 4.9 Hz, 1H), 3.08 – 3.07 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -87.58 (d, *J* = 34.4 Hz), -87.72 (d, *J* = 34.4 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 155.0 (t,

J = 289.5 Hz), 147.2, 140.5 (d, J = 4.9 Hz), 131.8, 128.9, 128.7 (t, J = 3.3 Hz), 127.5, 127.3, 127.1, 109.2 (t, J = 3.6 Hz), 108.6, 86.5 (dd, J = 21.2, 17.2 Hz), 33.7. HRMS (EI) calcd for C₂₂H₁₆F₂O₂ [M]⁺: 350.1112; found: 350.1113.

2,2-bis(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)benzo[d][1,3]dioxole (3a')

White solid (104.1 mg, 90% yield). M.p. 123.8-124.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.49 (m, 4H), 7.41 – 7.33 (m, 8H), 7.28 – 7.24 (m, 2H), 7.06 (d, *J* = 8.0 Hz, 4H), 6.61 – 6.58 (m, 2H), 6.35 – 6.32 (m, 2H), 2.93 (s, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -87.17 (d, *J* = 32.2 Hz), -88.25 (d, *J* = 32.4 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 155.2 (t, *J* =

291.3 Hz), 147.5, 140.8, 140.2, 132.9 (t, J = 3.6 Hz), 129.0, 128.9, 127.6, 127.2, 127.0, 121.3, 117.9 (d, J = 3.5 Hz), 108.2, 87.0 (dd, J = 20.7, 17.5 Hz), 37.4. HRMS (ESI) calcd for $C_{37}H_{26}F_4O_2Na [M+Na]^+$: 601.1761; found: 601.1749.

2,2'-(2-([1,1'-biphenyl]-4-yl)-1-fluoroprop-1-ene-1,3-diyl)bis(benzo[d][1,3]dioxole) (3a'')

Colorless oil (38.9 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 4H), 7.45 (dd, J = 8.5, 6.8 Hz, 2H), 7.40 – 7.34 (m, 3H), 6.81 (s, 4H), 6.79 – 6.72 (m, 4H), 6.51 (d, J = 21.0 Hz, 1H), 6.22 – 6.20 (m, 1H), 3.20 (dd, J = 5.2, 2.9 Hz, 2H). ¹⁹F NMR (376 MHz,

CDCl₃) δ -132.04. ¹³C NMR (150 MHz, CDCl₃) δ 151.1 (d, *J* = 264.6 Hz), 147.4 (d, *J* = 26.1 Hz), 141.7, 140.4, 133.6 (d, *J* = 6.5 Hz), 129.7 (d, *J* = 2.8 Hz), 129.0, 127.9, 127.6, 127.2, 121.8 (d, *J* = 25.1 Hz), 121.2 (d, *J* = 14.2 Hz), 109.0 (d, *J* = 3.2 Hz), 108.6 (d, *J* = 39.9 Hz), 103.5 (d, *J* = 26.1 Hz), 36.5 (d, *J* = 2.8 Hz). HRMS (ESI) calcd for C₂₉H₂₁FO₄Na [M+Na]⁺ : 475.1316; found: 475.1311.

2-(3,3-difluoro-2-(p-tolyl)allyl)benzo[d][1,3]dioxole (3b)

Colorless oil (36.9 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 4H), 6.81 – 6.74 (m, 4H), 6.12 – 6.10 (m, 1H), 2.98 (dt, *J* = 4.8, 2.3 Hz, 2H), 2.35 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.61 (d, *J* = 36.7 Hz), -88.74 (d, *J* = 36.4 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 154.8 (t,

J = 288.0 Hz), 147.2, 137.5, 129.8, 129.3, 128.1 (t, J = 3.1 Hz), 121.5, 109.2 (t, J = 3.7 Hz), 108.6, 86.5 (dd, J = 20.9, 17.8 Hz), 33.8 (d, J = 2.1 Hz), 21.1. HRMS (EI) calcd for $C_{17}H_{14}F_2O_2$ [M]⁺: 288.0960; found: 288.0956.

2-(2-(4-(tert-butyl)phenyl)-3,3-difluoroallyl)benzo[d][1,3]dioxole (3c)

Colorless oil (42.9 mg, 65% yield). δ 7.40 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.86 – 6.73 (m, 4H), 6.15 (t, J = 5.0 Hz, 1H), 3.02 (dt, J = 4.8, 2.3 Hz, 2H), 1.35 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.43 (d, J = 37.6 Hz), -87.53 (d, J = 37.6 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 155.0 (t, J = 290.4

Hz), 150.7, 129.8, 128.0 (t, J = 3.2 Hz), 125.6, 121.6, 109.3 (t, J = 3.6 Hz), 108.7, 86.6 (dd, J = 20.0, 19.1 Hz), 34.7, 33.8, 31.4. HRMS (EI) calcd for $C_{20}H_{20}F_2O_2$ [M]⁺ : 330.1426; found: 330.1426.

2-(2-(4-chlorophenyl)-3,3-difluoroallyl)benzo[d][1,3]dioxole (3d)

Colorless oil (36.3 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.81 – 6.79 (m, 2H), 6.73 (dd, J = 5.7, 3.3 Hz, 2H), 6.14 (t, J = 4.7 Hz, 1H), 2.99 – 2.97 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -87.24 (d, J = 33.4 Hz), -87.48 (d, J = 33.7 Hz). ¹³C

NMR (150 MHz, CDCl₃) δ 154.9 (t, J = 289.5 Hz), 147.1, 133.5, 131.5 (t, J = 3.8 Hz), 129.6 (t, J = 3.5 Hz), 128.7, 121.6, 109.0 (t, J = 3.6 Hz), 108.6, 86.0 (dd, J = 21.8, 17.4 Hz), 33.7. HRMS (EI) calcd for C₁₆H₁₁ClF₂O₂ [M]⁺: 308.0411; found: 308.0410.

methyl4-(3-(benzo[d][1,3]dioxol-2-yl)-1,1-difluoroprop-1-en-2-yl)benzoate (3e)

Colorless oil (30.0 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 - 8.00 (m, 2H), 7.40 - 7.38 (m, 2H), 6.80 - 6.77 (m, 2H), 6.72 - 6.70 (m, 2H), 6.16 (t, *J* = 4.7 Hz, 1H), 3.93 (s, 3H), 3.04 (dt, *J* = 4.7, 2.3 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -85.72 (d, J = 30.3 Hz), -86.12 (d, J =

30.2 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 166.7, 155.1 (t, *J* = 289.5 Hz), 147.1, 137.9, 129.7, 129.2, 128.2 (t, J = 3.4 Hz), 121.6, 108.9 (t, J = 3.5 Hz), 108.6, 86.4 (dd, J = 21.0, 16.5 Hz), 52.2, 33.5. HRMS (EI) calcd for $C_{18}H_{14}F_2O_4$ [M]⁺: 332.0854; found: 332.0855.

2-(3,3-difluoro-2-phenylallyl)benzo[d][1,3]dioxole (3f)

Colorless oil (34.0 mg, 62% yield). ¹H NMR (400 MHz, $CDCl_3 \delta 7.39 - 7.27$ (m, 5H), 6.81 - 6.73 (m, 4H), 6.12 (t, J = 5.0 Hz, 1H), 3.01 (dt, J = 4.8, 2.3Hz, 2H).¹⁹F NMR (376 MHz, CDCl₃) δ -88.21 (d, J = 37.6Hz), -88.31 (d, J= 33.8 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 155.0 (t, J = 290.9 Hz), 147.3, 133.0, 128.7, 128.5 – 128.3 (m), 127.8, 121.7, 109.2 (d, J = 3.9 Hz), 108.7 (d, J = 7.4 Hz), 86.9 (dd, J = 38.6 Hz), 34.0.

HRMS (EI) calcd for $C_{16}H_{12}F_2O_2[M]^+$: 274.0801; found: 274.0800.

2-(3,3-difluoro-2-(m-tolyl)allyl)benzo[d][1,3]dioxole (3g)

Colorless oil (42.0 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 7.4, 1.8 Hz, 1H), 7.14 - 7.09 (m, 3H), 6.81 - 6.73 (m, 4H), 6.13 - 6.10(m, 1H), 2.98 (dt, J = 4.7, 2.3 Hz, 2H), 2.35 (s, 3H). ¹⁹F NMR (376 MHz,

CDCl₃) δ -88.33 (d, J = 36.0 Hz), -88.58 (d, J = 35.9 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 154.8 (t, J = 289.5 Hz), 147.2, 138.2, 132.8 (t, J = 3.6 Hz), 129.0 (t, J = 3.0 Hz), 128.4, 125.4 (t, J = 3.0 Hz), 121.5, 109.1 (t, J = 3.7 Hz), 108.6, 86.7 (dd, J = 20.9, 17.8 Hz), 33.9 (d, J = 2.2 Hz), 21.4. HRMS (EI) calcd for C₁₇H₁₄F₂O₂ [M]⁺: 288.0959; found: 288.0956.

2-(3,3-difluoro-2-(3-methoxyphenyl)allyl)benzo[d][1,3]dioxole (3h)

Colorless oil (38.3 mg, 63% yield). ¹Η NMR (400 MHz, CDCl₃) δ 7.32 (t, J = 8.0 Hz, 1H), 6.97 (d, J = 7.8 Hz, 1H), 6.92 – 6.89 (m, 2H), 6.85 – 6.83 (m, 2H), 6.80 – 6.78 (m, 2H), 6.17 (t, J = 4.9 Hz, 1H), 3.83 (s, 3H), 3.04 – 3.02 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -87.60 (d, J = 34.9 Hz), -88.08 (d, J = 35.0 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 159.6, 154.9 (dd, J = 292.0, 289.8 Hz), 147.2, 134.3 (t, J = 3.7 Hz), 129.6, 121.6, 120.7 (t, J = 3.2 Hz), 114.2 (t, J = 3.3 Hz), 113.2, 109.1 (t, J = 3.6 Hz), 108.6, 86.7 (dd, J = 21.4, 17.2 Hz), 55.2, 33.9 (d, J = 2.1 Hz). HRMS (EI) calcd for C₁₇H₁₄F₂O₃ [M]⁺ : 304.0905; found: 304.0906.

2-(2-(3-bromophenyl)-3,3-difluoroallyl)benzo[d][1,3]dioxole (3i)

Colorless oil (42.8 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.44 (m, 2H), 7.25 (d, J = 6.9 Hz, 2H), 6.84 – 6.82 (m, 2H), 6.77 – 6.75 (m, 2H), 6.17 (t, J = 4.7 Hz, 1H), 3.00 (dt, J = 4.6, 2.3 Hz, 2H). ¹⁹F NMR (376

MHz, CDCl₃) δ -86.75 (d, J = 30.1Hz), -86.85 (d, J = 33.8Hz). ¹³C NMR (150 MHz, CDCl₃) δ 155.0 (t, J = 291.9 Hz), 147.1, 135.2, 131.4, 130.7, 130.0, 127.0, 122.5, 121.7, 108.9 (d, J = 3.8 Hz), 108.6, 85.9 (dd, J = 21.0, 19.5 Hz), 33.7. HRMS (EI) calcd for C₁₆H₁₁BrF₂O₂ [M]⁺: 351.9906; found: 351.9905.

6-(3-(benzo[d][1,3]dioxol-2-yl)-1,1-difluoroprop-1-en-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine (3j)

Colorless oil (43.2 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.87 – 6.84 (m, 2H), 6.82 (dd, J = 2.0, 1.0 Hz, 1H), 6.80 – 6.78 (m, 2H), 6.78 – 6.75 (m, 2H), 6.12 – 6.10 (m, 1H), 4.26 (s, 4H), 2.93 (dt, J = 4.8, 2.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.50 (d, J = 36.8 Hz), -88.90 (d, J =

36.8 Hz). ¹³C NMR (150MHz, CDCl₃) δ 154.9 (t, *J* = 288.0 Hz), 147.3, 143.6, 143.2, 126.0 (d, *J* = 3.7 Hz), 121.6 (d, *J* = 8.9 Hz), 117.9 – 116.2 (m), 109.2 (t, *J* = 3.6 Hz), 108.7, 86.3 (dd, *J* = 21.6, 17.4 Hz), 64.5 (d, *J* = 12.5 Hz), 34.0. HRMS (EI) calcd for C₁₈H₁₄F₂O₄ [M]⁺: 332.0854; found: 332.0855.

2-(3,3-difluoro-2-(naphthalen-2-yl)allyl)benzo[d][1,3]dioxole (3k)

Colorless oil (45.4 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.77 (m, 4H), 7.50 – 7.44 (m, 3H), 6.81 – 6.75 (m, 4H), 6.17 (t, *J* = 4.9 Hz, 1H), 3.10 (dt, *J* = 4.8, 2.3 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ

-87.64 (d, J = 34.7 Hz), -87.92 (d, J = 34.6 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 155.2 (t, J = 297.0 Hz), 147.2, 133.2, 132.6, 130.3 (d, J = 3.7 Hz), 128.2, 128.0, 127.8 – 127.5 (m), 126.4 (d, J = 7.3 Hz), 126.0 (t, J = 3.3 Hz), 121.6, 108.6, 86.9 (dd, J = 21.0, 17.0 Hz), 34.0 (d, J = 2.1 Hz). HRMS (EI) calcd for C₂₀H₁₄F₂O₂ [M]⁺: 324.0957; found: 324.0956.

3-(2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)benzo[d][1,3]dioxol-5-yl)-2-methylpropanal (3l)

Colorless oil (52.1 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.72 – 9.71 (m, 1H), 7.64 – 7.6 (m, 4H), 7.50 – 7.46 (m, 2H), 7.44 – 7.42 (m, 2H), 7.40 – 7.39 (m, 1H), 6.69 – 6.67 (m, 1H), 6.62 – 6.59 (m, 2H), 6.20 – 6.18 (m, 1H), 3.07 (dt, J = 4.8, 2.3 Hz, 2H),

3.00 (dd, J = 13.5, 5.8 Hz, 1H), 2.65 – 2.59 (m, 1H), 2.56 – 2.51 (m, 1H), 1.10 (dd, J = 6.9, 1.0 Hz, 3H).¹⁹F NMR (376 MHz, CDCl₃) δ -87.66 (dd, J = 18.6, 3.8 Hz).¹⁹F NMR (376 MHz, CDCl₃) δ -87.64 (d, J = 3.5 Hz), -87.69 (d, 5j

= 4.1 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 204.4, 157.4 – 152.8 (m), 147.5, 145.9, 140.4, 132.4, 131.8, 128.9, 128.6 (t, *J* = 3.3 Hz), 127.5, 127.2, 127.0, 121.8 (d, *J* = 2.8 Hz), 109.5 (t, *J* = 3.7 Hz), 109.2 (d, *J* = 2.8 Hz), 108.2, 86.5 (dd, *J* = 21.1, 17.3 Hz), 48.2, 36.4, 33.7 (d, *J* = 1.9 Hz), 13.2. HRMS (ESI) calcd for C₂₆H₂₂F₂O₃Na [M+Na]⁺: 443.1329; found: 443.1327.

2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-9-hydroxy-5-(3,4,5-trimethoxyphenyl)-5,8,8a,9-te trahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-6(5aH)-one (3m)

White solid (80.9 mg, 63% yield). M.p. 91.0-92.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.45 – 7.34 (m, 5H), 7.04 (s, 1H), 6.42 – 6.34 (m, 3H), 6.19 (t, *J* = 4.6 Hz, 1H), 4.72 (t, *J* = 5.2 Hz, 1H), 4.56 – 4.55 (m, 2H), 4.03 (t, *J* = 8.2 Hz, 1H), 3.80

(d, J = 6.4 Hz, 3H), 3.76 (s, 4H), 3.72 (s, 2H), 3.04 (dt, J = 4.5, 2.2 Hz, 2H), 2.80 – 2.78 (m, 2H), 2.50 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -87.53 (d, J = 7.5 Hz), -87.57 (d, J = 3.7 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 174.6 (d, J = 2.3 Hz), 157.0 – 152.9 (m), 152.6 (d, J = 10.4 Hz), 147.5 (d, J = 4.2 Hz), 147.4, 140.5, 140.3 (d, J = 10.2 Hz), 137.3, 137.2, 135.5 (d, J = 4.5 Hz), 133.2 (d, J =

6.0 Hz), 131.7 (d, J = 14.9 Hz), 131.0 (d, J = 2.3 Hz), 128.9 (d, J = 3.6 Hz), 128.7 (t, J = 3.2 Hz), 128.6 (t, J = 3.3 Hz), 127.6 (d, J = 3.4 Hz), 127.2 (d, J = 5.1 Hz), 127.0 (d, J = 3.8 Hz), 110.1 (dd, J = 8.3, 4.9 Hz), 109.7 (d, J = 3.0 Hz), 108.5 (d, J = 19.8 Hz), 106.3, 88.0 – 84.4 (m), 72.7 (d, J =2.6 Hz), 71.4, 60.8 (d, J = 3.8 Hz), 56.3 (d, J = 7.7 Hz), 45.3 (d, J = 4.4 Hz), 44.1, 40.7, 33.7. HRMS (ESI) calcd for $C_{37}H_{32}F_2O_8Na$ [M+Na]⁺ : 665.1957; found: 665.1939.

2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-5-(4-(benzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H -furo[3,4-c]furan-1-yl)benzo[d][1,3]dioxole (3n)

Yellow oil (83.8 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.60 (m, 4H), 7.47 – 7.42 (m, 4H), 7.40 – 7.38 (m, 1H), 6.88 – 6.86 (m, 1H), 6.82 – 6.77 (m, 4H), 6.74 – 6.71 (m, 1H), 6.22 (t, *J* = 4.9 Hz, 1H), 5.98 (s, 2H), 4.75 – 4.71 (m, 2H), 4.26 – 4.22 (m, 2H), 3.89 – 3.86 (m, 2H), 3.07 – 3.05 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ

-87.47 – -87.74 (m). ¹³C NMR (150 MHz, CDCl₃) δ 154.8 (t, J = 280.95 Hz), 148.0, 147.7, 147.1, 146.9, 140.4 (dd, J = 4.8, 2.2 Hz), 135.1, 135.0, 128.9, 128.6 (t, J = 3.4 Hz), 127.5, 127.2 (d, J = 3.9 Hz), 127.0 (d, J = 2.4 Hz), 119.4, 109.7 (d, J = 3.6 Hz), 108.2, 108.1, 106.5, 106.4, 101.1, 86.4 (dd, J = 21.0, 18.0 Hz), 85.8 (d, J = 1.8 Hz), 71.7 (d, J = 3.3 Hz), 54.3 (d, J = 3.6 Hz), 33.7. HRMS (ESI) calcd for C₃₅H₂₈F₂O₆Na [M+Na]⁺: 605.1731; found: 605.1746.

2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-2-cyclohexylbenzo[d][1,3]dioxole (30)

Colorless oil (57.1 mg, 66% yield).¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.62 (m, 2H), 7.53 – 7.46 (m, 4H), 7.41 – 7.39 (m, 1H), 7.17 – 7.14 (m, 2H), 6.74 – 6.72 (m, 2H), 6.57 – 6.54 (m, 2H), 3.05 (s, 2H), 1.93 – 1.87 (m, 3H), 1.81 – 1.79 (m, 2H), 1.69 (t, *J* = 4.4 Hz, 1H), 1.24 – 1.13 (m, 5H). ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -87.88 (d, J = 34.0 Hz), -88.69 (d, J = 33.4 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 154.8 (t, J = 290.9 Hz), 147.9, 140.7, 139.8, 133.1 (t, J = 3.8 Hz), 128.8, 128.6 (t, J = 2.8 Hz), 127.3, 127.0, 126.6, 120.8, 120.5 (t, J = 3.0 Hz), 107.6, 87.0 (dd, J = 20.9, 16.8 Hz), 46.0, 34.5 (d, J = 2.0 Hz), 26.2, 26.1, 25.9. HRMS (ESI) calcd for C₂₈H₂₆F₂O₂ [M+H]⁺: 433.1974; found:

433.1964.

ethyl4'-fluoro-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5'-carboxyl ate (5a)

White solid (74.0 mg, 86% yield). M.p. 113.2-114.5 °C.¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 8.3, 1.7 Hz, 4H), 7.52 (d, J = 8.2 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.33 (dd, J = 8.3, 6.4 Hz, 1H), 6.84 – 6.76 (m, 4H), 4.26 (qd, J = 7.2, 2.4 Hz, 2H), 3.81 – 3.80 (m, 1H), 3.09 – 3.05 (m, 2H), 2.66 (dd, J = 1.2

13.2, 7.5 Hz, 1H), 2.53 – 2.51 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.30. ¹³C NMR (150 MHz, CDCl₃) 170.6, 150.7 (d, J = 261.0 Hz), 146.7 (d, J = 5.7 Hz), 140.5 (d, J = 12.0 Hz), 134.0, 128.8, 128.2 (d, J = 4.8 Hz), 127.5, 127.0 (d, J = 13.6 Hz), 121.7 (d, J = 2.7 Hz), 114.7, 113.0 (d, J = 10.3 Hz), 109.0, 61.7, 43.0 (d, J = 26.1 Hz), 37.8 (d, J = 4.3 Hz), 34.7 (d, J = 6.8 Hz), 14.2. HRMS (ESI) calcd for C₂₇H₂₄FO₄ [M+H]⁺: 431.1653; found: 431.1646.

benzyl4'-fluoro-5'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5'-carbox ylate (5b)

White solid (77.7 mg, 79% yield). M.p. 118.7-119.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.0 Hz, 4H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.35 – 7.33 (m, 6H), 6.80 (d, *J* = 4.4 Hz, 3H), 6.67 (d, *J* = 6.8 Hz, 1H), 5.27 – 5.19 (m, 2H), 3.88 – 3.84 (m, 1H), 3.12 –

3.01 (m, 2H), 2.68 (dd, J = 13.4, 7.3 Hz, 1H), 2.50 (dd, J = 13.4, 7.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.10. ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 150.5 (d, J = 261.0 Hz), 146.7, 140.6 (d, J = 3.5 Hz), 135.6, 134.1, 128.9, 128.7, 128.4 (d, J = 19.2 Hz), 127.6, 127.1 (d, J = 11.9 Hz), 114.6, 113.3 (d, J = 10.9 Hz), 109.1 (d, J = 8.9 Hz). HRMS (ESI) calcd for C₃₂H₂₆FO₄ [M+H]⁺: 493.1810; found: 493.1799.

3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl4'-fluoro-3'-(4-phenylphenyl)spiro[1,3-benzodioxole -2,1'-cyclohexan]-3'-ene-5'-carboxylate (5c)

White solid (110.7 mg, 74% yield). M.p. 124.9-126.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.59 (m, 4H), 7.52 (d, J = 8.3 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 – 7.35 (m, 1H), 6.85 – 6.82 (m, 3H), 6.76 -6.73 (m, 1H), 4.51 (t, *J* = 6.6 Hz, 2H), 3.83 -3.82 (m, 1H), 3.08 (dt, *J* = 4.6, 2.1 Hz, 2H), 2.67 -2.66 (m, 1H), 2.55 -2.49 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.75, -110.34, -113.52 (td, *J* = 13.2, 12.4, 5.5 Hz), -121.85 (p, *J* = 13.6 Hz), -122.85 (dp, *J* = 13.7, 4.7 Hz), -122.93 -124.84 (m), -125.46 -126.86 (m). ¹³C NMR (150 MHz, CDCl₃) δ 170.3 (d, *J* = 2.3 Hz), 149.9 (d, *J* = 260.8 Hz), 146.5 (d, *J* = 4.9 Hz), 140.6 (d, *J* = 17.0 Hz), 133.8, 128.8, 128.2 (d, *J* = 4.8 Hz), 127.5, 127.0 (d, *J* = 8.4 Hz), 121.8, 114.4 (d, *J* = 2.0 Hz), 113.4 (d, *J* = 10.7 Hz), 108.9 (d, *J* = 18.0 Hz), 57.4, 42.7 (d, *J* = 26.1 Hz), 37.8 (d, *J* = 3.9 Hz), 34.5 (d, *J* = 6.6 Hz), 30.5 (t, *J* = 21.7 Hz). HRMS (ESI) calcd for C₃₃H₂₃F₁₄O₄ [M+H]⁺: 749.1367; found: 749.1332.

4'-fluoro-N,N-dimethyl-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5' -carboxamide (5d)

White solid (50.6 mg, 59% yield). M.p. 137.1-138.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 4H), 7.48 (d, J = 8.2 Hz, 2H), 7.44 – 7.40 (m, 2H), 7.35 – 7.30 (m, 1H), 6.83 – 6.82 (m, 4H), 4.32 – 4.30 (m, 1H), 3.17 (s, 3H), 3.13 (dd, J = 6.0, 3.5 Hz, 1H), 3.03 (s, 3H), 3.00 – 2.99 (m,

1H), 2.76 (dd, J = 13.2, 11.1 Hz, 1H), 2.40 – 2.38 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.83. ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 152.0 (d, J = 259.7 Hz), 146.9 (d, J = 32.6 Hz), 140.6 (d, J = 28.8 Hz), 134.3, 129.3 – 128.4 (m), 127.5, 127.1 (d, J = 16.3 Hz), 121.7 (d, J = 10.3 Hz), 115.6 (d, J = 2.3 Hz), 113.0 (d, J = 11.6 Hz), 109.0 (d, J = 6.2 Hz), 39.6, 39.3, 37.9 (dd, J = 10.9, 3.3 Hz), 36.4, 35.1 (d, J = 6.8 Hz). HRMS (ESI) calcd for C₂₇H₂₅NFO₃ [M+H]⁺ : 430.1813; found: 430.1803.

4'-fluoro-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5'-carbaldehyde (5e)

White solid (29.3 mg, 38% yield). M.p. 140.8-141.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 7.62 – 7.58 (m, 4H), 7.46 – 7.43 (m, 2H), 7.37 – 7.34 (m, 3H), 6.85 – 6.77 (m, 4H), 4.32 – 4.27 (m, 1H), 3.13 – 3.07 (m, 1H), 2.82 – 2.75 (m, 1H), 2.68 – 2.62 (m, 1H), 2.35 (dd, *J* = 13.6, 11.0 Hz, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -102.80. ¹³C NMR (100 MHz, CDCl₃) δ 188.0 (d, J = 12.8 Hz),

147.1, 146.8, 141.4, 140.8, 136.7, 129.3, 128.9, 128.2, 128.0, 127.5, 122.1 (d, J = 4.4 Hz), 116.8, 114.8, 109.4, 43.4 (d, J = 22.6 Hz), 40.9 (d, J = 6.1 Hz), 31.5. HRMS (ESI) calcd for $C_{25}H_{19}FO_3Na [M+Na]^+$: 409.1210; found: 409.1201.

2-(2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)benzo[d][1,3]dioxol-2-yl)acetaldehyde (5e')

White solid (31.4 mg, 40% yield). M.p. 138.8-139.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.60 – 7.58 (m, 2H), 7.52 – 7.50 (m, 2H), 7.46 – 7.42 (m, 2H), 7.37 – 7.35 (m, 1H), 7.20 – 7.17 (m, 2H), 6.74 (dd, *J* = 5.7, 3.3 Hz,

2H), 6.57 (dd, J = 5.7, 3.3 Hz, 2H), 3.02 (t, J = 2.2 Hz, 2H), 2.56 (td, J = 7.3, 1.3 Hz, 2H), 2.30 (t, J = 7.3 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -87.18 (d, J = 32.8 Hz), -88.16 (d, J = 32.7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 156.5 (d, J = 291.5 Hz), 147.3, 140.5, 140.1, 132.5, 128.8, 128.6 (t, J = 3.0 Hz), 127.4, 127.0, 126.8, 121.5, 118.0 (t, J = 3.2 Hz), 108.3, 86.9 (dd, J = 20.0, 17.0 Hz),37.0 (d, J = 8.0 Hz), 30.3. HRMS (APCI) calcd for C₂₅H₂₁F₂O₃ [M+H]⁺: 407.1449; found: 407.1453.

5'-(benzenesulfonyl)-4'-fluoro-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3' -ene (5f)

White solid (84.7 mg, 85% yield). M.p. 178.0-179.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.7 Hz, 2H), 7.69 (t, J = 7.4 Hz, 1H), 7.61 – 7.56 (m, 6H), 7.45 – 7.33 (m, 5H), 6.86 – 6.77 (m, 4H), 4.58 – 4.57 (m, 1H), 3.03 – 2.98 (m, 2H), 2.80 – 2.79 (m, 1H), 2.69 (dd, J = 13.8, 10.1 Hz, 1H). ¹⁹F

NMR (376 MHz, CDCl₃) δ -112.46. ¹³C NMR (150 MHz, CDCl₃) δ 147.9, 146.4 (d, *J* = 38.0 Hz), 141.1, 140.4, 138.6, 134.2, 133.4, 129.2, 129.1, 128.9, 128.3 (d, *J* = 4.4 Hz), 127.6, 127.1, 121.9 (d, *J* = 3.6 Hz), 117.7 (d, *J* = 11.1 Hz), 114.4, 109.1 (d, *J* = 3.9 Hz), 62.5 (d, *J* = 24.0 Hz), 38.0 (d, *J* = 3.1 Hz), 32.3 (d, *J* = 5.0 Hz). HRMS (ESI) calcd for C₃₀H₂₃FO₄SNa [M+Na]⁺: 521.1193; found: 521.1187.

diethyl [4'-fluoro-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-en-5'-yl] phosphonate (5g)

White solid (77.4 mg, 83% yield). M.p. 181.1-182.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 8.0, 1.9 Hz, 4H), 7.53 (d, J = 8.2 Hz, 2H), 7.47 (t, J = 7.7 Hz, 2H), 7.40 – 7.36 (m, 1H), 6.87 – 6.86 (m, 4H), 3.87 (dd, J = 18.6, 10.9 Hz, 6H), 3.63 – 3.56 (m, 1H), 3.19 – 3.13 (m, 1H), 3.02 (ddd, J = 16.8,

5.1, 2.5 Hz, 1H), 2.64 – 2.47 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.99 (d, J = 2.5 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 149.5 (dd, J = 258.5, 14.5 Hz), 146.8, 146.6, 140.5 (d, J = 4.6 Hz), 134.1, 128.8, 128.3 (d, J = 5.0 Hz), 127.5, 127.1, 127.0, 121.7 (d, J = 2.4 Hz), 114.5 (dd, J = 14.3, 1.9 Hz), 113.6 (d, J = 11.2 Hz), 109.0 (d, J = 12.2 Hz), 53.5 (dd, J = 6.6, 2.6 Hz), 52.9 (d, J = 6.9 Hz), 37.8 (t, J = 3.3 Hz), 35.7 (d, J = 25.9 Hz), 34.7 (d, J = 25.7 Hz), 32.6 (t, J = 6.0 Hz). HRMS (ESI) calcd for C₂₆H₂₅FO₅P [M+H]⁺: 467.1418; found: 467.1410.

4-[4'-fluoro-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-en-5'-yl]pyridine (5h)

White solid (64.4 mg, 74% yield). M.p. 154.9-156.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 5.1 Hz, 2H), 7.62 – 7.56 (m, 6H), 7.44 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 5.1 Hz, 2H), 6.85 – 6.80 (m, 3H), 6.75 – 6.73 (m, 1H), 4.23 (t, J = 8.3 Hz, 1H), 3.22 – 3.13 (m, 2H), 2.65 – 2.61 (m, 1H), 2.31 (dd, J = 13.4, 9.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃)

δ -110.91. ¹³C NMR (150 MHz, CDCl₃) δ 153.0 (d, *J* = 261.5 Hz), 150.2, 149.1, 146.7 (d, *J* = 15.1 Hz), 140.6 (d, *J* = 16.1 Hz), 134.1, 128.8, 128.2 (d, *J* = 4.9 Hz), 127.5, 127.1, 123.3, 121.7, 114.6, 113.4 (d, *J* = 11.0 Hz), 108.9 (d, *J* = 17.9 Hz), 42.3, 42.1, 40.2 (d, *J* = 6.3 Hz), 38.2 (d, *J* = 4.2 Hz). HRMS (ESI) calcd for C₂₉H₂₃FNO₂ [M+H]⁺: 436.1707; found: 436.1699.

4'-fluoro-5'-phenyl-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene (5i)

White solid (35.6 mg, 41% yield). M.p. 120.7-122.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, *J* = 9.4, 7.1 Hz, 6H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.39 – 7.32 (m, 5H), 7.31 – 7.28 (m, 1H), 6.86 – 6.76 (m, 4H), 4.27 (s, 1H), 3.26 – 3.20 (m, 1H), 3.13 – 3.08 (m, 1H), 2.66 – 2.60 (m, 1H), 2.34 (dd, *J* = 13.4, 10.7

Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.33. ¹³C NMR (150 MHz, CDCl₃) δ 154.8 (d, J = 261.6 Hz), 147.0 (d, J = 15.3 Hz), 140.8, 140.4, 140.1, 134.8, 128.9 (d, J = 2.4 Hz), 128.4 (d, J = 5.1 Hz), 128.1, 127.5, 127.4, 127.2, 127.1, 121.7 (d, J = 4.6 Hz), 115.3 (d, J = 2.0 Hz), 112.1 (d, J = 11.5 Hz), 109.0 (d, J = 28.0 Hz), 43.0 (d, J = 26.1 Hz), 41.3 (d, J = 6.3 Hz), 38.4 (d, J = 4.2 Hz). HRMS (APCI) calcd for C₃₀H₂₄FO₂ [M+H]⁺: 435.1755; found: 435.1757.

ethyl 4'-fluoro-5'-methyl-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5'-carboxylate (5j)

White solid (74.6 mg, 84% yield). M.p. 111.6-113.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 4H), 7.53 (d, *J* = 8.1 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 6.83 – 6.78 (m, 3H), 6.72 – 6.70 (m, 1H), 4.26 (p, *J* = 7.3 Hz, 2H), 3.17 – 3.00 (m, 2H), 2.91 (dd, *J* = 13.6, 4.1 Hz,

1H), 2.16 (d, J = 13.6 Hz, 1H), 1.58 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -117.18. ¹³C NMR (150 MHz, CDCl₃) δ 173.7 (d, J = 4.1 Hz), 154.2 (d, J = 263.6 Hz), 146.8 (d, J = 14.8 Hz), 140.6 (d, J = 38.7 Hz), 134.5, 128.9, 128.5 (d, J = 4.7 Hz), 127.5, 127.2, 127.0, 121.7 (d, J = 14.9 Hz), 114.5 (d, J = 2.0 Hz), 111.9 (d, J = 12.2 Hz), 109.0 (d, J = 21.1 Hz), 61.7, 46.7 (d, J = 24.4 Hz), 42.7 (d, J = 4.8 Hz), 38.7 (d, J = 3.8 Hz), 22.6 (d, J = 4.4 Hz), 14.3. HRMS (ESI) calcd for C₂₈H₂₆FO₄ [M+H]⁺: 445.1810; found: 445.1795.

ethyl 3-(2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)benzo[d][1,3]dioxol-2-yl)-2-methylpropanoate (5j')

This compound can be obtained as a side product in 7% yield during the gram scale synthesis of **5j**. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 8.3, 1.3 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.48 (dd, J = 8.3, 6.9 Hz, 1H),

7.43 – 7.36 (m, 1H), 7.21 (dd, J = 8.3, 1.6 Hz, 1H), 6.81 – 6.72 (m, 1H), 6.63 – 6.52 (m, 1H), 4.16 – 3.96 (m, 1H), 3.02 (t, J = 2.1 Hz, 1H), 2.69 (ddt, J = 13.1, 7.0, 3.5 Hz, 0H), 2.59 (dd, J = 14.7, 9.3 Hz, 1H), 1.97 (dd, J = 14.7, 3.5 Hz, 1H), 1.16 (d, J = 4.5 Hz, 1H), 1.15 – 1.12 (m, 2H). ¹⁹F NMR (377 MHz, CDCl₃) δ -87.19 (d, J = 32.4 Hz), -88.30 (d, J = 32.3 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 155.0 (t, J = 291.5 Hz), 147.4 (d, J = 9.0 Hz), 140.6, 139.9, 132.6 (t, J = 3.6 Hz),

128.8, 128.6 (t, J = 3.0 Hz), 127.4, 127.0, 126.8, 121.3, 118.0 (t, J = 3.3 Hz), 108.2 (d, J = 6.1 Hz), 86.9 (dd, J = 20.8, 16.8 Hz), 60.5, 41.4, 37.1 (d, J = 1.9 Hz), 34.3, 18.7, 14.0.HRMS (ESI) calcd for C₂₈H_{26F}O₄ [M+Na]⁺: 487.1691; found: 487.1689.

(oxiran-2-yl)methyl4'-fluoro-5'-methyl-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclo hexan]-3'-ene-5'-carboxylate (5k)

White solid (73.6 mg, 78% yield, *dr* = 1.4:1). M.p. 129.3-131.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 8.0 Hz, 4H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 6.82 – 6.80 (m, 4H), 6.73 – 6.72 (m, 1H), 4.54 (dd, *J* = 12.2, 3.1 Hz, 0.56 H, major),

4.47 (dd, J = 12.3, 3.1 Hz, 0.42 H, minor), 4.14 (dd, J = 12.2, 5.7 Hz, 0.42 H, minor), 4.07 (dd, J = 12.2, 5.8 Hz, 0.56 H, major), 3.28 – 3.22 (m, 1H), 3.07 – 2.82 (m, 1H), 2.71 – 2.67 (m, 1H), 2.19 (dd, J = 13.6, 4.1 Hz, 1H), 1.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) major diastereoisomer: δ 173.5 (d, J = 4.3 Hz), 154.9 (d, J = 3.4 Hz), 153.6 (d, J = 263.1 Hz), 146.7, 140.5 (d, J = 11.8 Hz), 134.3, 128.8, 128.3 (d, J = 4.8 Hz), 127.5, 127.1, 121.8, 121.7, 114.2, 112.3 (d, J = 12.7 Hz), 112.2 (d, J = 12.0 Hz), 108.9 (d, J = 15.7 Hz), 65.7, 49.3, 46.8, 46.5, 44.6, 42.7, 42.6, 38.5 (d, J = 3.8 Hz), 22.5 (d, J = 4.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -117.32 (minor), -117.41 (major). ¹³C NMR (100 MHz, CDCl₃) minor diastereoisomer: 173.4 (d, J = 4.4 Hz), 154.9 (d, J = 3.4 Hz), 153.7 (d, J = 263.2 Hz), 146.5, 140.5 (d, J = 11.8 Hz), 134.2, 128.8, 128.3 (d, J = 4.8 Hz), 127.5, 127.0, 121.8, 121.7, 114.2, 112.3 (d, J = 12.7 Hz), 108.9 (d, J = 1.8 Hz), 134.2, 128.8, 128.3 (d, J = 4.8 Hz), 153.7 (d, J = 263.2 Hz), 146.5, 140.5 (d, J = 11.8 Hz), 134.2, 128.8, 128.3 (d, J = 4.8 Hz), 127.5, 127.0, 121.8, 121.7, 114.2, 112.3 (d, J = 12.7 Hz), 108.9 (d, J = 8.4 Hz), 65.6, 49.3, 46.8, 46.5, 44.5, 42.7, 42.6, 38.5 (d, J = 3.8 Hz), 22.5 (d, J = 12.7 Hz), 108.9 (d, J = 8.4 Hz), 65.6, 49.3, 46.8, 46.5, 44.5, 42.7, 42.6, 38.5 (d, J = 3.8 Hz), 22.5 (d, J = 12.7 Hz), 108.9 (d, J = 8.4 Hz), 65.6, 49.3, 46.8, 46.5, 44.5, 42.7, 42.6, 38.5 (d, J = 3.8 Hz), 22.5 (d, J = 4.4 Hz). HRMS (ESI) calcd for C₂₉H₂₆FO₅ [M+H]⁺: 473.1759; found: 473.1738.

4'-fluoro-5'-(4-phenylphenyl)dispiro[1,3-benzodioxole-2,1'-cyclohexane-3',3''-oxolan]-4'-en-2''-one (5l)

White solid (53.9 mg, 63% yield). M.p. 198.4-199.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.8 Hz, 4H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 1H), 6.86 – 6.80 (m, 4H), 4.48 (q, *J* = 7.9 Hz, 1H), 4.36 (q, *J* = 8.6, 6.3 Hz, 1H), 3.19 (dd, *J* = 16.9, 6.1 Hz, 1H), 3.11 –

3.09 (m, 1H), 2.91 – 2.88 (m, 1H), 2.78 (d, J = 13.6 Hz, 1H), 2.79 – 2.76 (m, 1H), 2.38 (ddd, J = 13.7, 5.9, 2.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.96. ¹³C NMR (100 MHz, CDCl₃) δ

176.5, 152.2 (d, J = 258.9 Hz), 146.6, 146.4, 140.8, 133.3, 128.8, 128.4, 128.3, 127.6, 127.1 (d, J = 4.7 Hz), 122.0, 121.8, 114.5 (d, J = 2.3 Hz), 113.7, 113.6, 109.1, 108.9, 66.4, 48.0 (d, J = 25.9 Hz), 39.5 (d, J = 6.6 Hz), 38.1 (d, J = 4.0 Hz), 34.2 (d, J = 1.9 Hz). HRMS (ESI) calcd for $C_{27}H_{22}FO_4$ [M+H]⁺: 429.1497; found: 429.1490.

trans-5',6'-diethyl 4'-fluoro-3'-(4-phenylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan] -3'-ene-5', 6'-dicarboxylate (5m)

White solid (from maleate, 88.4 mg, 88% yield; from fumarate 83.3 mg, 83% yield). M.p. 119.4-121.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.58 (m, 4H), 7.53 – 7.51 (m, 2H), 7.45 – 7.42 (m, 2H), 7.36 – 7.34 (m, 1H), 6.83 – 6.77 (m, 4H), 4.30 – 4.27 (m, 2H), 4.18 (dd, *J* = 7.4, 2.0 Hz, 1H), 4.07 (q, *J*

= 7.1 Hz, 2H), 3.79 (d, J = 7.4 Hz, 1H), 3.23 – 3.22 (m, 1H), 3.14 – 3.08 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.79. ¹³C NMR (150 MHz, CDCl₃) δ 169.4, 168.1, 149.1 (d, J = 261.0 Hz), 146.8, 146.4, 140.6 (d, J = 13.5 Hz), 133.6, 128.2 (d, J = 4.8 Hz), 127.5, 127.0 (d, J = 10.0 Hz), 121.9 (d, J = 17.5 Hz), 113.9 (d, J = 2.1 Hz), 112.7 (d, J = 10.8 Hz), 108.9 (d, J = 44.0 Hz), 62.1, 61.7, 49.7 (d, J = 7.0 Hz), 46.1 (d, J = 27.4 Hz), 37.8 (d, J = 3.9 Hz), 14.1, 13.8. HRMS (ESI) calcd for C₃₀H₂₇FO₆Na [M+Na]⁺: 525.1684; found: 525.1675.

cis-4'-fluoro-3'-(4-phenylphenyl)-2',4'a,9',9'a-tetrahydrospiro[1,3-benzodioxole-2,1'-fluorene] (5n)

White solid (54.4 mg, 61% yield). M.p. 193.3-194.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 4H), 7.51 – 7.46 (m, 3H), 7.43 – 7.40 (m, 2H), 7.35 – 7.32 (m, 1H), 7.26 – 7.24 (m, 3H), 6.84 – 6.79 (m, 4H), 4.38 (d, *J* = 8.1 Hz, 1H), 3.38 (dd, *J* = 9.9, 7.8 Hz, 1H), 3.29– 3.18 (m, 3H), 3.06 – 2.99 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.08. ¹³C NMR (100 MHz,

CDCl₃) δ 154.3 (d, J = 261.3 Hz), 147.1 (d, J = 14.8 Hz), 141.4, 140.7, 140.0, 134.6, 128.8, 128.1 (d, J = 5.2 Hz), 127.9, 127.4, 127.0, 126.8 (d, J = 4.4 Hz), 126.0 (d, J = 2.4 Hz), 124.8, 121.5 (d, J = 12.5 Hz), 117.6 (d, J = 2.3 Hz), 108.9 (d, J = 16.1 Hz), 46.9, 46.7 – 46.4 (m), 35.0 (d, J = 4.8 Hz), 34.2. HRMS (EI) calcd for C₃₁H₂₃FO₂ [M]⁺: 446.1680; found: 446.1677.

cis-methyl4'-fluoro-3'-(4-phenylphenyl)-4'a,5',6',7',8',8'a-hexahydro-2'H-spiro[1,3-benzodio xole-2,1'-naphthalene]-4'a-carboxylate (50)

White solid (59.2 mg, 63% yield). M.p. 136.8-137.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (q, *J* = 7.9 Hz, 6H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.37 – 7.33 (m, 1H), 6.83 – 6.77 (m, 3H), 6.68 – 6.66 (m, 1H), 3.80 (s, 3H), 3.19 (dd, *J* = 17.5, 6.2 Hz, 1H), 2.96 (dd, *J* = 17.5, 5.5 Hz, 1H), 2.82 (dt, *J* = 11.5, 5.6 Hz,

1H), 2.41 (d, J = 13.8 Hz, 1H), 2.11 (d, J = 8.7 Hz, 1H), 1.84 (s, 1H), 1.70 (d, J = 11.5 Hz, 2H), 1.34 (d, J = 10.5 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -118.61. ¹³C NMR (150 MHz, CDCl₃) δ 175.1, 152.1 (d, J = 266.2 Hz), 146.6 (d, J = 46.7 Hz), 140.5 (d, J = 38.7 Hz), 134.4, 128.8, 128.3 (d, J = 5.1 Hz), 127.4, 127.0, 121.6 (d, J = 23.9 Hz), 116.9 (d, J = 2.5 Hz), 108.9 (d, J = 44.7 Hz), 52.6, 51.1 (d, J = 22.5 Hz), 44.3 (d, J = 4.3 Hz), 36.0 (d, J = 4.0 Hz), 31.1 (d, J = 6.4 Hz), 26.9, 24.2 (d, J = 15.1 Hz), 22.3. HRMS (ESI) calcd for C₃₀H₂₇FO₄Na [M+Na]⁺ : 493.1786; found: 493.1779.

ethyl 4'-fluoro-3'-phenylspiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5'-carboxylate (5p)

Colorless oil (55.2 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.43 (m, 2H), 7.38 – 7.34 (m, 2H), 7.29 – 7.28 (m, 1H), 6.84 – 6.76 (m, 4H), 4.26 – 4.24 (m, 2H), 3.79 – 3.78 (m, 1H), 3.05 – 3.02 (m, 2H), 2.67 – 2.62 (m, 1H), 2.53 – 2.47 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376MHz,

CDCl₃) δ -111.13.¹³C NMR (100 MHz, CDCl₃) δ 170.7 (d, J = 2.3 Hz), 151.8, 149.2, 146.8 (d, J = 3.8 Hz), 135.2, 128.4, 128.1 – 127.6 (m), 121.8 (d, J = 2.0 Hz), 114.8 (d, J = 2.3 Hz), 113.5 (d, J = 11.1 Hz), 109.1, 61.8, 43.0 (d, J = 26.1 Hz), 38.1 (d, J = 4.1 Hz), 34.8 (d, J = 7.0 Hz), 14.3. HRMS (ESI) calcd for C₂₁H₂₀FO₄ [M+H]⁺: 355.1340; found: 355.1335.

ethyl 4'-fluoro-3'-(4-methylphenyl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5'carboxylate (5q)

Colorless oil (59.6 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.32 (m, 2H), 7.17 – 7.15 (m, 2H), 6.83 – 6.75 (m, 4H), 4.26 – 4.22 (m, 2H), 3.78 – 3.77 (m, 1H), 3.04 – 3.00 (m, 2H), 2.66 – 2.60 (m, 1H), 2.51 – 2.45 (m, 1H), 2.34 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz,

CDCl₃) δ -111.54.¹³C NMR (100 MHz, CDCl₃) δ 170.8 (d, J = 2.2 Hz), 151.5, 148.9, 146.8 (d, J = 3.6 Hz), 137.7, 132.2, 129.1, 127.8 (d, J = 4.6 Hz), 121.8 (d, J = 1.5 Hz), 114.8 (d, J = 2.4 Hz), 113.3 (d, J = 11.0 Hz), 109.0, 61.7, 43.0 (d, J = 26.3 Hz), 38.0 (d, J = 4.3 Hz), 34.8 (d, J = 7.0 Hz), 21.3, 14.3. HRMS (ESI) calcd for C₂₂H₂₁FO₄Na [M+Na]⁺: 391.1316; found: 391.1309.

ethyl 3'-(4-tert-butylphenyl)-4'-fluorospiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5'carboxylate (5r)

Colorless oil (64.8 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 4H), 6.83 – 6.75 (m, 4H), 4.27 – 4.21 (m, 2H), 3.79 – 3.78 (m, 1H), 3.06 – 3.01 (m, 2H), 2.66 – 2.60 (m, 1H), 2.51 – 2.45 (m, 1H), 1.31 (s, 9H), 1.28 (d, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.37. ¹³C NMR (100 MHz, CDCl₃) δ 170.8 (d, J = 2.1 Hz), 151.6, 150.9, 149.0,

146.8 (d, J = 3.4 Hz), 132.3, 127.6 (d, J = 5.0 Hz), 125.3, 121.8, 114.8 (d, J = 2.3 Hz), 113.1 (d, J = 10.8 Hz), 109.0, 61.7, 43.1 (d, J = 26.3 Hz), 37.9 (d, J = 4.3 Hz), 35.3 – 34.2 (m), 31.4, 14.3. HRMS (ESI) calcd for C₂₅H₂₇FO₄Na [M+Na]⁺: 433.1786; found: 433.1779.

$ethyl 3'-(4-chlorophenyl)-4'-fluorospiro \cite{1,3-benzodioxole-2,1'-cyclohexan\cite{3-cyclohexan\ci$

carboxylate (5s)

Colorless oil (58.2 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 4H), 6.87 – 6.78 (m, 4H), 4.30 – 4.25 (m, 2H), 3.83 – 3.77 (m, 1H), 3.09 – 2.97 (m, 2H), 2.69 – 2.64 (m, 1H), 2.55 – 2.49 (m, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (CDCl₃) δ -109.90. ¹³C NMR (100 MHz, CDCl₃) δ

170.4 (d, J = 2.2 Hz), 152.2, 149.6, 146.6 (d, J = 4.3 Hz), 133.5 (d, J = 8.4 Hz), 129.2 (d, J = 4.9 Hz), 128.5, 121.7 (d, J = 2.5 Hz), 114.4 (d, J = 2.2 Hz), 112.4 (d, J = 10.7 Hz), 109.0, 61.7, 42.9 (d, J = 25.9 Hz), 37.8 (d, J = 4.2 Hz), 34.6 (d, J = 7.0 Hz), 14.2. HRMS (ESI) calcd for $C_{21}H_{18}CIFO_4Na [M+Na]^+$: 411.0770; found: 411.0763.

Ethyl 4'-fluoro-3'-(naphthalen-2-yl)spiro[1,3-benzodioxole-2,1'-cyclohexan]-3'-ene-5'carboxylate (5t)

White solid (57.3 mg, 71% yield). M.p. 120.9-122.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 4H), 7.65 – 7.62 (m, 1H), 7.52 –7.49 (m, 2H), 6.88 – 6.80 (m, 4H), 4.33 – 4.28 (m, 2H), 3.89 – 3.85 (m, 1H), 3.20 – 3.17 (m, 2H), 2.75 – 2.69 (m, 1H), 2.60 – 2.54 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.55. ¹³C NMR (150 MHz, CDCl₃) δ

170.6, 151.6, 149.9, 146.7 (d, J = 6.0 Hz), 133.1, 132.6 (d, J = 21.1 Hz), 128.2, 127.8, 127.5, 126.8 (d, J = 3.8 Hz), 126.2 (d, J = 6.6 Hz), 125.9 (d, J = 5.4 Hz), 121.7 (d, J = 3.1 Hz), 114.7 (d, J = 2.2 Hz), 113.4 (d, J = 10.8 Hz), 109.0, 61.7, 43.1, 38.1 (d, J = 4.0 Hz), 34.7 (d, J = 7.0 Hz), 14.2. HRMS (ESI) calcd for C₂₅H₂₂FO₄ [M+H]⁺: 405.1497; found: 405.1491.

2-([1,1'-biphenyl]-4-yl)-3-(benzo[d][1,3]dioxol-2-yl)-1-(pyrrolidin-1-yl)propan-1-one (6)

White solid (67.8 mg, 85% yield). M.p. 83.5-85.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 4H), 7.43 (t, J = 8.2 Hz, 4H), 7.33 (t, J = 7.3 Hz, 1H), 6.78 (d, J = 1.9 Hz, 4H), 6.10 (t, J = 4.8 Hz, 1H), 4.02 (dd, J = 8.6, 6.1 Hz, 1H), 3.53 – 3.51 (m, 1H), 3.45 – 3.39 (m, 2H),

3.25 - 3.23 (m, 1H), 2.89 - 2.84 (m, 1H), 2.33 (dt, J = 14.2, 5.5 Hz, 1H), 1.85 - 1.74 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 147.6 (d, J = 2.8 Hz), 140.6, 140.2, 137.8, 128.8, 128.5, 127.6, 127.4, 127.0, 121.4, 110.1, 108.5 (d, J = 5.8 Hz), 46.2 (d, J = 12.1 Hz), 44.6, 39.2, 26.0, 24.2. HRMS (ESI) calcd for C₂₆H₂₆NO₃ [M+H]⁺: 400.1907; found: 400.1903

ethyl 2,5-dihydroxy-[1,1':4',1''-terphenyl]-3-carboxylate (7)

White solid (17.04 mg, 51% yield). M.p. 151.7-152.8 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 11.02 (s, 1H), 7.69 (s, 4H), 7.66 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.42 – 7.36 (m, 2H), 7.16 (d, *J* = 3.2 Hz, 1H), 4.70 (d, *J* = 2.2 Hz, 1H), 4.46 (q, *J* = 7.1 Hz, 2H), 1.46 (t, *J* = 7.1 Hz, 3H).¹³C NMR (100 MHz,

Chloroform-*d*) δ 170.2, 153.5, 147.3, 140.6 (d, *J* = 42.6 Hz), 135.9, 131.0, 129.7, 128.8, 127.3, 127.1 (d, *J* = 16.8 Hz), 124.5, 114.3, 112.8, 61.7, 14.2. HRMS (ESI) calcd for C₂₁H₁₈O₄ [M+Na]⁺ : 357.1097; found: 357.1092.

5-hydroxy-[1,1':4',1''-terphenyl]-2-yl acetate (8)

White solid (17.0 mg, 57% yield). M.p. 153.5-154.4 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.64 (m, 6H), 7.56 – 7.47 (m, 2H), 7.40 (d, *J* = 7.3 Hz, 1H), 7.08 (s, 1H), 6.95 (d, *J* = 2.5 Hz, 1H), 6.70 (d, *J* = 2.5 Hz, 1H), 4.90 (s, 1H), 2.42 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.9, 142.3, 140.7, 140.2 (d, *J* =

10.5 Hz), 139.8, 128.8, 127.9 – 127.2 (m), 127.1, 120.6, 115.1, 111.1, 21.5. HRMS (ESI) calcd for $C_{20}H_{15}O_3 [M-H]^-$: 303.1028; found: 303.1027.

ethyl 2-fluoro-5-(2-hydroxyphenoxy)-3,4,5,6-tetrahydro-[1,1':4',1''-terphenyl]-3-carboxylate (9)

White solid (69.9 mg, 81% yield). M.p. 159.6-161.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.54 (m, 4H), 7.44 – 7.40 (m, 4H), 7.35 – 7.33 (m, 1H), 6.94 – 6.89 (m, 3H), 6.81 – 6.79 (m, 1H), 6.71 (s, 1H), 4.87 – 4.86 (m, 1H), 4.29 – 4.25 (m, 2H), 3.54 (d, *J* = 7.9 Hz, 1H), 2.88 – 2.82 (m, 1H), 2.76 – 2.60 (m, 2H), 2.44 – 2.38 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376

MHz, CDCl₃) δ -106.32.¹³C NMR (150 MHz, CDCl₃) δ 173.6, 148.6, 143.2, 140.5 (d, *J* = 58.3 Hz), 134.7, 128.8, 128.3 (d, *J* = 4.0 Hz), 127.3, 127.0 (d, *J* = 14.3 Hz), 123.2, 119.7, 116.1, 115.4, 71.3, 62.1, 40.7 (d, *J* = 24.7 Hz), 32.1, 31.7 (d, *J* = 6.5 Hz), 14.0. HRMS (ESI) calcd for C₂₇H₂₆FO₄ [M+H]⁺: 433.1810; found: 433.1806.

ethyl 2-fluoro-3-methyl-5-oxo-3,4,5,6-tetrahydro-[1,1':4',1''-terphenyl]-3-carboxylate (10)

White solid (14.4 mg, 41% yield). M.p. 115.3-116.8 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.59 (m, 4H), 7.54 – 7.45 (m, 4H), 7.38 (dd, *J* = 8.4, 6.2 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.52 – 3.29 (m, 2H), 3.04 (dd, *J* = 15.0, 3.9 Hz, 1H), 2.68 (d, *J* = 15.0 Hz, 1H), 1.60 (s, 3H), 1.34 – 1.30 (m, 3H). ¹⁹F NMR

(376 MHz, Chloroform-*d*) δ -116.64. ¹³C NMR (150 MHz, Chloroform-*d*) δ 203.9, 172.0, 155.0, 153.2, 140.8, 140.4, 133.4, 128.8, 128.1 (d, *J* = 5.0 Hz), 127.6, 127.1 (d, *J* = 9.2 Hz), 112.9 (d, *J* = 12.3 Hz), 62.2, 49.6 (d, *J* = 4.3 Hz), 47.8 (d, *J* = 26.0 Hz), 41.3 (d, *J* = 4.4 Hz), 31.4, 30.2, 20.8 (d, *J* = 4.9 Hz), 14.0.HRMS (ESI) calcd for C₂₂H₂₁FO₃ [M+Na]⁺ : 375.1367; found: 375.1366.

8. Reference

- (a) T. Ichitsuka, T. Fujita, T. Arita and J. Ichikawa, *Angew. Chem. Int. Ed.*, 2014, 53, 7564-7568.
 (b) B. M. Trost and L. Debien, *J. Am. Chem. Soc.*, 2015, 137, 11606-11609.
- 2. X. Ariza, O. Pineda, J. Vilarrasa, G. W. Shipps, Y. Ma and X. Dai. *Org. Lett.*, 2001, **3**, 1399-1401.
- A. T. Tran, N. P. West, W. J. Britton and R. J. Payne, Elucidation of Mycobacterium tuberculosis Type II Dehydroquinase Inhibitors using a Fragment Elaboration Strategy. *ChemMedChem* 2012, 7, 1031-1043.
- 4. J. J. Pak, J. L. Mayo and E. Shurdha, *Tetrahedron Lett.* 2006, 47, 233-237.
- 5. T. Akindele, Y. Yamamoto, M. Maekawa, H. Umeki, K. Yamada, and K. Tomioka. Org. Lett., 2006, 8, 5729-5732.

¹⁹F NMR of 3a (376 MHz, CDCl₃)

f1 (ppm)

¹H NMR of 3a' (400 MHz, CDCl₃)

¹³C NMR of 3a' (150 MHz, CDCl₃)

¹⁹F NMR of 3a" (376 MHz, CDCl₃)

¹⁹F NMR of 3b (376 MHz, CDCl₃)

¹³C NMR of 3b (150 MHz, CDCl₃)

¹H NMR of 3d (400 MHz, CDCl₃)

¹³C NMR of 3d (150 MHz, CDCl₃)

¹⁹F NMR of 3e (376 MHz, CDCl₃)

¹³C NMR of 3f (150 MHz, CDCl₃)

¹⁹F NMR of 3g (376 MHz, CDCl₃)

f1 (ppm)

¹³C NMR of 3h (150 MHz, CDCl₃)

¹⁹F NMR of 3i (376 MHz, CDCl₃)

¹H NMR of 3j (400 MHz, CDCl₃)

¹³C NMR of 3j (150 MHz, CDCl₃)

¹⁹F NMR of 3k (376 MHz, CDCl₃)

¹H NMR of 3l (400 MHz, CDCl₃)

¹³C NMR of 3l (150 MHz, CDCl₃)

¹⁹F NMR of 3m (376 MHz, CDCl₃)

¹H NMR of 3n (400 MHz, CDCl₃)

¹³C NMR of 3n (150 MHz, CDCl₃)

¹⁹F NMR of 30 (376 MHz, CDCl₃)

¹³C NMR of 30 (150 MHz, CDCl₃)

¹H NMR of 5a (400 MHz, CDCl₃)

¹³C NMR of 5a (150 MHz, CDCl₃)

¹⁹F NMR of 5b (376 MHz, CDCl₃)

¹H NMR of 5c (400 MHz, CDCl₃)

¹³C NMR of 5c (150 MHz, CDCl₃)

¹⁹F NMR of 5d (376 MHz, CDCl₃)

¹H NMR of 5e (400 MHz, CDCl₃)

¹³C NMR of 5e (100 MHz, CDCl₃)

¹⁹F NMR of 5e' (376 MHz, CDCl₃)

¹³C NMR of 5e' (100 MHz, CDCl₃)

¹H NMR of 5f (400 MHz, CDCl₃)

¹³C NMR of 5f (150 MHz, CDCl₃)

¹⁹F NMR of 5g (376 MHz, CDCl₃)

f1 (ppm)

¹H NMR of 5h (400 MHz, CDCl₃)

¹³C NMR of 5h (150 MHz, CDCl₃)

¹⁹F NMR of 5i (376 MHz, CDCl₃)

f1 (ppm)

¹H NMR of 5j (400 MHz, CDCl₃)

¹³C NMR of 5j (150 MHz, CDCl₃)

¹³C NMR of 5j' (150 MHz, CDCl₃)

¹H NMR of 5k (400 MHz, CDCl₃)

¹³C NMR of 5k (150 MHz, CDCl₃)

¹⁹F NMR of 5l (376 MHz, CDCl₃)

¹H NMR of 5m (400 MHz, CDCl₃)

¹³C NMR of 5m (150 MHz, CDCl₃)

H-H NOESY of 5m

¹⁹F NMR of 5n (376 MHz, CDCl₃)

f1 (ppm)

¹H NMR of 50 (400 MHz, CDCl₃)

¹³C NMR of 50 (150 MHz, CDCl₃)

H-H COSY of 50

¹⁹F NMR of 5p (376 MHz, CDCl₃)

¹³C NMR of 5p (100 MHz, CDCl₃)

¹³C NMR of 5q (100 MHz, CDCl₃)

¹⁹F NMR of 5r (376 MHz, CDCl₃)

¹H NMR of 5s (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of 5s (100 MHz, CDCl₃)

 $\overline{}$

¹⁹F NMR of 5t (376 MHz, CDCl₃)

f1 (ppm)

¹H NMR of 7 (400 MHz, CDCl₃)

¹H NMR of 8 (400 MHz, CDCl₃)

¹H NMR of 9 (400 MHz, CDCl₃)

¹³C NMR of 9 (150 MHz, CDCl₃)

