Supporting Information

An anomalous ferroelastic phase transition arising from an unusual

cis-/anti-conformational reversal of polar organic cations

Bing-Qing Zhao, Xiao-Xian Chen, Hui Ye, Ya-Ping Gong, Jun Wang, Le Ye and Wei-Xiong Zhang*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

E-mail: zhangwx6@mail.sysu.edu.cn

Fig. S1 Experimental (red) and simulated (black) PXRD patterns for 1 (a) and 2 (b).

Fig. S2 Thermogravimetric analyses for 1 (a) and 2 (b).

Fig. S3 DSC curves of melting and solidification for 1 (a) and 2 (b).

Fig. S4 DSC curves of 1 (a) and 2 (b) at a temperature as low as 120 K.

Fig. S5 The variable-temperature experimental PXRD patterns of 1 and the simulated patterns based on single-crystal structures for 1_LTP and 1_HTP phases.

Fig. S6 The variable-temperature experimental PXRD patterns of 2 and the simulated patterns based on single-crystal structures for 2_LTP and 2_HTP phases.

Fig. S7 The real part of dielectric permittivity of 1 (a) and 2 (b) during a cooling–heating cycle measured under an ac electric field with a frequency of 2 MHz.

Fig. S8 (a) Oscilloscope traces of SHG signals of **1** and the referential KDP. (b) The Temperature-dependence of SHG signal in the cooling process after melting for **1**.

Fig. S9 (a) Oscilloscope traces of SHG signals of **2** and the referential KDP. (b) The Temperature-dependence of SHG signal in the cooling process after melting for **2**.

Fig. S10 The morphology of the single crystal of **1** (left) and X-ray diffraction patterns (right) measured on the largest plane of single crystal for observation of ferroelastic domains.

Fig. S11 The morphology of the single crystal of **2** (left) and X-ray diffraction patterns (right) measured on the largest plane of single crystal for observation of ferroelastic domains.

Fig. S12 The asymmetric units of 1_LTP (a), 1_HTP (b), 2_LTP (c), and 2_HTP (d).

Fig. S13 The organic cations show 2-fold disorder about the crystallographic mirror plane (shown in the light blue plane) perpendicular to the *a* axis in **1_HTP** phase.

Fig. S14 Hirshfeld surfaces for the Br…Br contacts and distances between the organic cation inorganic anions in **1_LTP** (a), **2_LTP** (b), and **2_HTP** (c).

	<i>T</i> / K	<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å	β/ °	V/ Å ³	<i>R_P</i> / %	<i>R_{WP}</i> / %
	273	8.602(1)	9.7260(1)	14.038(1)	95.043(2)	1169.92	2.74	3.61
	283	8.621(1)	9.739(1)	14.056(2)	94.982(2)	1175.79	2.77	3.67
1_LTP	293	8.639(1)	9.752(1)	14.068(1)	94.874(2)	1180.92	2.74	3.62
	303	8.659(1)	9.766(1)	14.080(1)	94.722(3)	1186.63	2.76	3.62
	308	8.671(1)	9.776(1)	14.086(1)	94.594(2)	1190.32	2.87	3.80
	318	8.765(3)	9.858(3)	13.895(4)	90	1200.60	2.87	3.81
	323	8.774(1)	9.869(1)	13.900(1)	90	1203.66	2.86	3.91
1_HTP	328	8.782(1)	9.876(1)	13.904(1)	90	1205.91	2.72	3.74
	333	8.789(1)	9.881(1)	13.908(1)	90	1207.88	2.77	3.81
	338	8.796(1)	9.888(1)	13.915(1)	90	1210.29	2.81	3.72

 Table S1. Pawley refinement results on the variable-temperature PXRD patterns of 1.

 Table S2. Pawley refinement results on the variable-temperature PXRD patterns of 2.

	<i>T</i> / K	<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å	β/ °	V/ Å ³	<i>R</i> _P / %	<i>R_{WP}</i> / %
	303	17.229(1)	9.687(1)	14.066(1)	90	2347.66	2.90	3.85
	308	17.240(1)	9.690(1)	14.072(1)	90	2350.89	2.88	3.85
2_LTP	313	17.255(1)	9.694(1)	14.076(1)	90	2354.71	2.82	3.72
	318	17.264(1)	9.697(1)	14.079(1)	90	2357.00	2.70	3.55
	323	17.276(1)	9.700(1)	14.082(1)	90	2360.05	2.70	3.55
	328	17.289(1)	9.703(1)	14.087(1)	90	2363.35	2.78	3.66
	333	17.302(1)	9.707(1)	14.090(1)	90	2366.54	3.31	4.53
	338	17.317(1)	9.710(1)	14.095(1)	90	2369.89	3.04	4.15
	348	8.743(1)	9.705(1)	14.025(1)	94.767(2)	1185.91	4.26	6.14
	353	8.753(1)	9.718(1)	14.031(1)	94.681(2)	1189.47	3.48	4.80
2_HTP	356	8.762(1)	9.726(1)	14.034(1)	94.626(2)	1192.13	3.63	5.14
	358	8.769(1)	9.729(1)	14.038(1)	94.586(2)	1193.79	3.62	5.17
	361	8.778(1)	9.734(1)	14.041(1)	94.507(2)	1196.02	4.13	6.10
	363	8.786(1)	9.7380(2)	14.043(1)	94.449(3)	1197.94	4.42	6.61

	Fitting equations	R ²	Deduced parameters at T_1
	a/Å = 0.00194T + 8.0707	0.9972	<i>a</i> = 8.6798 Å
	b/Å = 0.00141 T + 9.3400	0.9936	b = 9.7827 Å
1_LTP	c/ Å = 0.00134T + 13.6732	0.9872	c = 14.0939 Å
	β / ° = -0.0126 <i>T</i> + 98.5248	0.9349	$\beta = 94.5652^{\circ}$
	$V/Å^3 = 0.5712T + 1013.9270$	0.9973	$V = 1193.28 \text{ Å}^3$
	a/Å = 0.00156T + 8.2700	0.9969	<i>a</i> = 8.7599 Å
	c/Å = 0.00143 T + 9.4070	0.9722	b = 9.8560 Å
1_HTP	b/Å = 0.00097 T + 13.5876	0.9800	c = 13.8909 Å
			$\beta = 90^{\circ}$
	$V/Å^3 = 0.4720T + 1050.8520$	0.9920	$V = 1199.06 \text{ Å}^3$

Table S3. Linear fitting results of the variable-temperature unit-cell parameters of 1.

Table S4. Linear fitting results of the variable-temperature unit-cell parameters of 2.

	Fitting equations	R ²	Deduced parameters at T ₂
	$a/\text{\AA} = 0.00248T + 16.4776$	0.9977	<i>a</i> = 17.3208 Å
	b/Å = 0.000643 T + 9.4926	0.9975	<i>b</i> = 9.7112 Å
2_LTP	c/ Å = 0.000779T + 13.8311	0.9941	c = 14.0961 Å
			$\beta = 90^{\circ}$
	$V/Å^3 = 0.6258T + 2158.1969$	0.9983	$V = 2370.96 \text{ Å}^3$
	a/ Å = 0.00293T + 7.7218	0.9835	a = 8.7180 Å
	b/Å = 0.00216 T + 8.9564	0.9868	<i>b</i> = 9.6908 Å
2_HTP	c/ Å = 0.00123T + 13.5958	0.9956	c = 14.0140 Å
	β /° = -0.02097T + 102.0780	0.9834	$\beta = 94.9482^{\circ}$
	$V/\text{ Å}^3 = 0.8023T + 906.5326$	0.9980	$V = 1179.3044 \text{ Å}^3$

	<i>T</i> / K	Principle axis	Directions			α/mk^{-1}	$\beta_{\nu}/\mathrm{mk}^{-1}$
			<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å		
		X_1	0.6112	-0.0000	-0.7914	41(11)	488(8)
1_LTP	273-308	X_2	0.0000	-1.0000	-0.0000	144(4)	
		X_3	0.9496	-0.0000	0.3135	299(12)	
		X_1	0.0000	0.0000	1.0000	69(3)	394(12)
1_HTP	318-338	X_2	0.0000	1.0000	-0.0000	147(7)	
		X ₃	-1.0000	0.0000	0.0000	174(6)	

Table S5. Thermal expansion coefficients of the principal axes in 1.

Table S6. Thermal expansion coefficients of the principal axes in 2.

	<i>T</i> / K	Principle axis	Directions			α/MK^{-1}	$\beta_{\nu}/\mathrm{MK}^{-1}$
			<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å		
		X_1	0.0000	0.0000	1.0000	56(1)	267(2)
2_LTP	303-338	X_2	0.0000	1.0000	-0.0000	66(1)	
		X_3	-1.0000	0.0000	0.0000	144(2)	
		X_1	0.6296	-0.0000	-0.7769	4(3)	678(13)
2_HTP 3	348-363	X_2	0.0000	-1.0000	0.0000	222(9)	
		X_3	0.9433	-0.0000	0.3320	448(23)	

	Te1-Br3	2.721(3)	Te1-Br6	2.689(2)
	Te1-Br4	2.670(2)	Tel-Br7	2.736(2)
	Te1-Br5	2.679(2)	Te1-Br8	2.695(2)
	∠Br3-Te1-Br7	90.49(8)	∠Br5-Te1-Br7	92.22(7)
	∠Br4-Te1-Br3	87.24(8)	∠Br5-Te1-Br8	89.89(7)
1_LTP	∠Br4-Te1-Br5	90.01(7)	∠Br6-Te1-Br3	92.44(9)
	∠Br4-Te1-Br6	91.21(8)	∠Br6-Te1-Br7	90.81(8)
	∠Br4-Te1-Br7	177.02(8)	∠Br6-Te1-Br8	177.25(9)
	∠Br4-Te1-Br8	91.21(7)	∠Br8-Te1-Br3	88.98(8)
	∠Br5-Te1-Br3	177.01(9)	∠Br8-Te1-Br7	86.82(7)
	∠Br5-Te1-Br6	88.80(8)		
	Te1-Br3	2.664(5)	Te1-Br5	2.724(7)
	Te1-Br4	2.734(3)	Te1-Br6	2.647(4)
	∠Br3-Te1-Br4	89.63(10)	∠Br6-Te1-Br4A	90.10(15)
	∠Br3-Te1-Br5	177.7(2)	∠Br6-Te1-Br4	178.84(16)
1_HTP	∠Br4-Te1-Br4A	90.99(15)	∠Br6-Te1-Br5	90.86(19)
	∠Br5-Te1-Br4	88.77(14)	∠Br6-Te1-Br6A	88.8(3)
	∠Br6-Te1-Br3	90.77(16)		
	A) 1–x, +y, +z			

Table S7. Selected bond lengths (Å) and bond angles (°) for 1 at LTP and HTP.

	Sn1-Br3	2.617(1)	Sn1-Br6	2.586(1)
	Sn1-Br4	2.600(1)	Sn1-Br7	2.596(1)
	Sn1-Br5	2.581(1)	Sn1-Br8	2.619(1)
	∠Br3-Sn1-Br8	87.79(4)	∠Br5-Sn1-Br8	176.96(5)
	∠Br4-Sn1-Br3	90.35(4)	∠Br6-Sn1-Br3	177.22(5)
2_LTP	∠Br4-Sn1-Br8	90.37(3)	∠Br6-Sn1-Br4	88.76(4)
	∠Br5-Sn1-Br3	89.30(4)	∠Br6-Sn1-Br7	90.44(5)
	∠Br5-Sn1-Br4	90.53(4)	∠Br6-Sn1-Br8	89.58(4)
	∠Br5-Sn1-Br6	93.34(5)	∠Br7-Sn1-Br3	90.38(5)
	∠Br5-Sn1-Br7	90.87(4)	∠Br7-Sn1-Br4	178.43(4)
	∠Br7-Sn1-Br8	88.26(4)		
	Sn1-Br3	2.597(4)	Sn1-Br6	2.613(4)
	Sn1-Br4	2.601(4)	Sn1-Br7	2.604(4)
	Sn1-Br5	2.587(4)	Sn1-Br8	2.604(4)
	∠Br3-Sn1-Br4	89.97(12)	∠Br5-Sn1-Br3	89.65(14)
	∠Br3-Sn1-Br6	178.01(17)	∠Br5-Sn1-Br4	91.13(13)
2_HTP	∠Br3-Sn1-Br7	91.49(14)	∠Br5-Sn1-Br6	91.46(17)
	∠Br3-Sn1-Br8	89.57(13)	∠Br5-Sn1-Br7	89.89(15)
	∠Br4-Sn1-Br6	88.36(15)	∠Br5-Sn1-Br8	177.70(16)
	∠Br4-Sn1-Br7	178.23(17)	∠Br7-Sn1-Br6	90.17(17)
	∠Br4-Sn1-Br8	91.03(13)	∠Br7-Sn1-Br8	87.97(14)
	∠Br8-Sn1-Br6	89.39(16)		

Table S8. Selected bond lengths (Å) and bond angles (°) for 2 at LTP and HTP.

Table S9. Calculated polarization intensity along the b axis for 1 and 2 by point charge model.^{S1, S2}

Compound	Polarization Intensity (C/m ²)
1_LTP	3.17×10 ⁻³
1_HTP	-8.95×10^{-2}
2_LTP	-3.15×10 ⁻²
2_HTP	4.40×10^{-1}

The equations for calculation of the spontaneous strain.

The spontaneous strain tensors can be given as: ^{S3, S4}

For *mm*2F2:

$$\varepsilon_{ij} = \begin{bmatrix} \frac{a_{1_LTP}}{a_{1_HTP}} - 1 & 0 & \frac{1}{2} \begin{pmatrix} c_{1_LTP} \\ c_{1_HTP} \end{pmatrix} \cos \beta \\ 0 & \frac{b_{1_LTP}}{b_{1_HTP}} - 1 & 0 \\ \frac{1}{2} \begin{pmatrix} c_{1_LTP} \\ c_{1_HTP} \end{pmatrix} & 0 & \frac{c_{1_LTP}}{c_{1_HTP}} \sin \beta - 1 \end{bmatrix} = 0.0594$$

For 222F2:

$$\varepsilon_{ij} = \begin{bmatrix} \frac{2a_{2_HTP}}{a_{2_LTP}} - 1 & 0 & \frac{1}{2} \begin{pmatrix} c_{2_HTP} \\ c_{2_LTP} \end{pmatrix} \\ 0 & \frac{b_{2_HTP}}{b_{2_LTP}} - 1 & 0 \\ \frac{1}{2} \begin{pmatrix} c_{2_HTP} \\ c_{2_LTP} \end{pmatrix} & 0 & \frac{c_{2_HTP}}{c_{2_LTP}} \sin \beta - 1 \end{bmatrix} = 0.0618$$

References:

- (S1) F. Jensen, Phys. Chem. Chem. Phys., 2022, 24, 1926-1943.
- (S2) G. G. Hall, Chem. Phys. Lett., 1973, 20, 501-503.
- (S3) K. Aizu, J. Phys. Soc. Jpn., 1970, 28, 706-716.
- (S4) J. Sapriel, Phys. Rev. B, 1975, 12, 5128-5140.