Supporting Information for

Selective Multifunctionalization of *N*-Heterocyclic Carbene Boranes via the Intermediacy of Boron-Centered Radical

Feng-Xing Li,[†] Xinmou Wang,[†] Jiaxin Lin,[†] Xiangyu Lou,[‡] Jing Ouyang,[†] Guanwen Hu,[†] Yangjian Quan^{†,}*

Dr. F.-X. Li, Dr. X. Wang, J. Lin, J. Ouyang, G. Hu, Prof. Dr. Y. Quan
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong SAR (China)
Email: chyjquan@ust.hk.

‡ X. Lou

Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR (China)

1. Materials and Methods	S2
2. Preparation of Starting Materials	S3
3. Complementary Reaction Optimization	S5
4. Analytical Data of the Products	S7
5. Transformations of the Products	S40
6. Preliminary Mechanistic Study	S44
7. NMR Spectra	S53
8. Reference	S185

1. Materials and Methods

Reactions were performed by using flame-dried glassware in a glove box, unless otherwise indicated. Organic solvents were dried and distilled by standard methods prior to use, extra dry DMA was purchased from Energy[®]. Analytical TLC were performed on Yantai Chemical Industry Research Institute silica gel 60 F254 plates. Flash column chromatography was performed on Qingdao-Haiyang[®] silica gel (200–300 mesh) or Macklin[®] neutral aluminum oxide (200–300 mesh). ¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded on Bruker 400 or JEOL 600 spectrometer at 400/600, 100/150, 128/192 and 376/564 MHz, respectively. Peaks recorded are relative to the internal standards: TMS ($\delta = 0.00$) for ¹H NMR and CDCl₃ ($\delta = 77.00$) for ¹³C NMR spectra, and to external BF₃·OEt₂ ($\delta = 0.00$) for ¹¹B NMR spectra. For the ¹H & ¹³C NMR spectral data, the protons and carbons on boron are not listed due to quadrupole broadening and spin-spin coupling with boron. High resolution mass spectra (HRMS) were obtained on a Waters Xevo G2-XS Tof mass spectrometer. Kessil PR160-390 (370-420 nm) LED was used. Commercially available reagents were used without further purification.

2. Preparation of Starting Materials

NHC-boranes used in this research were prepared according to the literature method.¹ Electrondeficient vinylpyridines SI-2~SI-8 were prepared according to the reported procedure.² SI-12~SI-13,³ SI-24~SI-26,⁴ SI-34,⁵ SI-35,⁶ SI-36~SI-37⁷ were known compounds and prepared according to the literature procedures. Substrates SI-1, SI-9~SI-11, SI-14~SI-23, SI-27~SI-33 were purchased and used directly without additional purification.

Methyl 4-vinylpicolinate (SI-7)

Following the reported procedure,² SI-7 was obtained as a colorless oil (132 mg, 54%) from the reaction of methyl 4-bromopyridine-2-carboxylate (324 mg, 1.5 mmol) and DVDS (350 µL, 1.5 mmol). ¹H NMR (600 MHz, CDCl3) δ 8.67 (d, *J* = 5.0 Hz, 1H), 8.13 (s, 1H), 7.42 (dd, *J* = 5.0 Hz, 1.6 Hz, 1H), 6.71 (dd, *J* = 17.6 Hz, 10.9 Hz, 1H), 6.06 (d, *J* = 17.6 Hz, 1H), 5.57 (d, *J* = 10.9 Hz, 1H), 4.01 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.7, 150.1, 148.3, 146.1, 133.9, 123.8, 122.1, 120.0, 52.9; HRMS (ESI): *m/z* calcd for C₉H₉NNaO₂ [M+Na]⁺ 186.0531, found 186.0521.

2,6-Dimethyl-4-vinylpyridine (SI-8)

Following the reported procedure,² **SI-8** was obtained as a colorless oil (146 mg, 73%) from the reaction of 4-bromo-2,6-dimethylpyridine (279 mg, 1.5 mmol) and DVDS (350 µL, 1.5 mmol). ¹H NMR (600 MHz, CDCl₃) δ 6.92 (s, 2H), 6.59–6.54 (m, 1H), 5.89 (d, *J* = 17.6 Hz, 1H), 5.39 (d, *J* = 10.9 Hz, 1H), 2.49 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 157.9, 145.2, 135.0, 117.8, 117.3, 24.2; HRMS (ESI): *m/z* calcd for C₉H₁₂N [M+H]⁺ 134.0970, found 134.0967.

3. Complementary Reaction Optimization

Table S1. Optimization of the reaction conditions.^a

entry	Variation from the standard conditions A	Yield [%] (3/4) ^b
1	none	0/61
2	DMF instead of DMA	27/34
3	MeCN instead of DMA	20/28
4	20 mol% of Ph ₃ CSH	18/27
5	without Ph ₃ CSH	NR
6	without TBADT	0/trace
7	without N ₂	ND
8	no light irradiation	NR
9	Wang's reaction conditions ^c	NR
10	An's reaction conditions ^d	trace/0
11	Dai's reaction conditions ^e	11/48
12	Zhu's reaction conditions ^f	trace/0
13	standard conditions B ^g instead of A	52/trace
	Variation from the standard conditions B	
14	1 eq 1 was used	42/trace ^h
15	2 eq 1 was used	45/trace

^aStandard conditions A: **1** (0.1 mmol), **2** (0.3 mmol), TBADT (1 mol%), Ph₃CSH (50 mmol%), DMA (1 mL), N₂, rt, 390 nm, 48 h.

^bThe resultant mixture was first subjected to ¹¹B NMR analysis, then flash column chromatography was carried out to give the isolated yields of the corresponding products.

^cWang's reaction conditions: AIBN (20 mol%), PhSH (20 mol%), MeCN (1 mL), 80 °C, 24 h.⁸

^dAn's reaction conditions: PhSSPh (10 mol%), MeCN (1 mL), blue LEDs, 24 h, rt.⁹

^eDai's reaction conditions: 4-DPAIPN (10 mol%), MeCN (1 mL), blue LEDs, 48 h, rt.¹⁰

^fZhu's reaction conditions: Ir(ppy)₂(dtbbpy)PF₆ (1 mol%), ^tBuSH (20 mol%), NaH (20 mol%), MeCN

(1 mL), 12 W CFL bulb, 48 h, rt. 11

^gStandard conditions B: 1 (0.15 mmol), 2 (0.1 mmol), TBADT (1 mol%), Ph₃CSH (20 mol%), DMA

(1 mL), N₂, rt, 390 nm, 48 h.

^{*h*}About 40% of **1** remained unreacted.

4. Analytical Data of the Products

General Procedure A

In a glovebox, a 10 mL seal tube equipped with a magnetic stir bar was added NHC borane (11.0 mg, 0.1 mmol), 4-vinylpyridine (32 μ L, 0.3 mmol), TBADT (3.3 mg, 0.001 mmol), Ph₃CSH (13.8 mg, 0.05 mmol) and extra dry DMA (1 mL). The resulting mixture was then taken out of the glove box and stirred under irradiation of 390 nm LED (75 W) for 48 h at room temperature. The reaction was first subjected to ¹¹B NMR analysis, then quenched with water, and extracted with ethyl acetate. The combined organic layer was washed with water and brine, dried over MgSO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to give the desired disubstituted product **4** (19.6 mg, 61%).

General Procedure B

In a glovebox, a 10 mL seal tube equipped with a magnetic stir bar was added NHC borane (16.5 mg, 0.15 mmol), 4-vinylpyridine (11 μ L, 0.1 mmol), TBADT (3.3 mg, 0.001 mmol), Ph₃CSH (5.5 mg, 0.02 mmol) and extra dry DMA (1 mL). The resulting mixture was then taken out of the glove box and stirred under irradiation of 390 nm LED (75 W) for 48 h at room temperature. The reaction was first subjected to ¹¹B NMR analysis, then quenched with water, and extracted with ethyl acetate. The combined organic layer was washed with water and brine, dried over MgSO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to give the desired mono-substituted product **3** (11.0 mg, 52%).

General Procedure C

In a glovebox, a 10 mL seal tube equipped with a magnetic stir bar was added mono/di-substituted NHC borane (0.1 mmol), electron-deficient alkene (0.2 mmol), TBADT (3.3 mg, 0.001 mmol), Ph₃CSH (13.8 mg, 0.05 mmol) and extra dry DMA (1 mL). The resulting mixture was then taken out of the glove box and stirred under irradiation of 390 nm LED (75 W) for 48 h at room temperature. The reaction was first subjected to ¹¹B NMR analysis, then quenched with water, and extracted with ethyl acetate. The combined organic layer was washed with water and brine, dried over MgSO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to give the desired

di/tri-substituted product.

Note: Most of the products were purified by flash column chromatography using 200–300 mesh silica gel basified with triethylamine. In some examples (such as **18**~**19**, **45**, **49**~**50**, **55**), 200–300 mesh neutral aluminum oxide was used for purification.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(pyridin-4-yl)ethyl)dihydroborate (3)

Following the **General Procedure B**, **3** was obtained as a colorless oil (11.0 mg, 52%). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, J = 5.9 Hz, 2H), 7.13 (d, J = 5.8 Hz, 2H), 6.79 (s, 2H), 3.76 (s, 6H), 2.55 (t, J = 8.2 Hz, 2H), 0.72 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.5, 148.7, 123.7, 120.1, 38.1, 35.9; ¹¹B NMR (192 MHz, CDCl₃) δ -28.2 (t, J = 84.5 Hz); HRMS (ESI): m/z calcd for C₁₂H₁₉BN₃ [M+H]⁺ 216.1672, found 216.1673.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(pyridin-4-yl)ethyl)hydroborate (4)

Following the **General Procedure A**, **4** was afforded as a white solid (19.6 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 8.39–8.37 (m, 4H), 7.11 (d, *J* = 6.0 Hz, 4H), 6.74 (s, 2H), 3.71 (s, 6H), 2.65–2.57 (m, 2H), 2.34–2.26 (m, 2H), 0.93–0.84 (m, 2H), 0.78–0.69 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.2, 148.2, 123.8, 120.7, 37.0, 36.3; ¹¹B NMR (192 MHz, CDCl₃) δ -19.8 (d, *J* = 81.8 Hz); HRMS (ESI): *m/z* calcd for C₁₉H₂₆BN₄ [M+H]⁺ 321.2251, found 321.2250.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(2-methylpyridin-4-yl)ethyl)hydroborate (5)

Following the **General Procedure A**, **5** was afforded as a colorless oil (19.5 mg, 56%) by using 4 equiv of vinylpyridine. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, J = 5.3 Hz, 2H), 6.97 (s, 2H), 6.92 (d, J = 5.2 Hz, 2H), 6.74 (s, 2H), 3.71 (s, 6H), 2.60–2.54 (m, 2H), 2.51 (s, 6H), 2.28–2.22 (m, 2H), 0.88–0.82 (m, 2H), 0.74–0.68 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.5, 156.9, 147.4, 123.3, 121.0, 120.6, 36.9, 36.2, 23.7; ¹¹B NMR (192 MHz, CDCl₃) δ -19.7 (d, J = 79.0 Hz); HRMS (ESI): m/z calcd for C₂₁H₃₀BN₄ [M+H]⁺ 349.2564, found 349.2567.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(2-methoxypyridin-4-yl)ethyl)hydroborate (6)

Following the **General Procedure A**, **6** was afforded as a colorless oil (20.5 mg, 54%) by using 4 equiv of vinylpyridine. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 5.3 Hz, 2H), 6.70 (s, 2H), 6.68 (d, J = 5.3 Hz, 2H), 6.49 (s, 2H), 3.88 (s, 6H), 3.71 (s, 6H), 2.57–2.50 (m, 2H), 2.25–2.18 (m, 2H), 0.89–0.82 (m, 2H), 0.75–0.67 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 164.3, 160.1, 145.8, 120.6, 117.6, 109.4, 53.2, 36.8, 36.2; ¹¹B NMR (192 MHz, CDCl₃) δ -19.7 (d, J = 82.2 Hz); HRMS (ESI): m/z calcd for C₂₁H₂₉BN₄NaO₂ [M+Na]⁺ 403.2281, found 403.2283.

Bis(2-(2-chloropyridin-4-yl)ethyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)hydroborate (7)

Following the **General Procedure A**, 7 was afforded as a colorless oil (20.6 mg, 53%). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 5.0 Hz, 2H), 7.06 (s, 2H), 6.98 (d, *J* = 5.0 Hz, 2H), 6.74 (s, 2H), 3.71 (s, 6H), 2.61–2.55 (m, 2H), 2.30–2.24 (m, 2H), 0.87–0.82 (m, 2H), 0.74–0.67 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 160.5, 151.0, 148.8, 123.6, 122.5, 120.8, 36.6, 36.2; ¹¹B NMR (192 MHz, CDCl₃) δ - 19.9 (d, *J* = 82.6 Hz); HRMS (ESI): *m/z* calcd for C₁₉H₂₄BCl₂N₄ [M+H]⁺ 389.1471, found 389.1467.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(2-fluoropyridin-4-yl)ethyl)hydroborate (8)

Following the **General Procedure A**, **8** was afforded as a colorless oil (22.1 mg, 62%) by using 4 equiv of vinylpyridine. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 5.2 Hz, 2H), 6.95–6.91 (m, 2H), 6.75 (s, 2H), 6.66 (s, 2H), 3.72 (s, 6H), 2.64–2.55 (m, 2H), 2.35–2.25 (m, 2H), 0.89–0.81 (m, 2H), 0.76–0.66 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 164.0 (d, J = 225.1 Hz), 163.2 (d, J = 4.3 Hz), 146.4 (d, J = 15.3 Hz), 121.4 (d, J = 3.3 Hz), 120.8, 108.2 (d, J = 36.0 Hz), 36.8 (d, J = 2.2 Hz), 36.2; ¹¹B NMR (192 MHz, CDCl₃) δ -19.9 (d, J = 81.1 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -70.5 (s, 1F); HRMS (ESI): m/z calcd for C₁₉H₂₃BF₂N₄Na [M+Na]⁺ 379.1882, found 379.1884.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(2-(trifluoromethyl)pyridin-4-

yl)ethyl)hydroborate (9)

Following the **General Procedure A**, **9** was afforded as a colorless oil (22.8 mg, 50%) by using 4 equiv of vinylpyridine. ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, *J* = 5.0 Hz, 2H), 7.41 (s, 2H), 7.25 (d, *J* = 4.9 Hz, 2H), 6.72 (s, 2H), 3.70 (s, 6H), 2.70–2.64 (m, 2H), 2.41–2.35 (m, 2H), 0.91–0.85 (m, 2H), 0.78–0.70 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 149.2, 147.5 (q, *J* = 33.7 Hz), 126.1, 121.9 (q, *J* = 274.2 Hz), 120.8, 120.2 (d, *J* = 2.4 Hz), 36.9, 36.2; ¹¹B NMR (192 MHz, CDCl₃) δ -19.9 (d, *J* = 81.6 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -67.7 (s, 1F); HRMS (ESI): *m/z* calcd for C₂₁H₂₃BF₆N₄Na [M+Na]⁺ 479.1818, found 479.1819.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(2-(methoxycarbonyl)pyridin-4yl)ethyl)hydroborate (10)

Following the **General Procedure A**, **10** was afforded as a colorless oil (25.3 mg, 58%) by using 4 equiv of vinylpyridine. ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, *J* = 4.9 Hz, 2H), 7.85 (s, 2H), 7.23 (d, *J* = 4.9 Hz, 2H), 6.67 (s, 2H), 3.95 (s, 6H), 3.68 (s, 6H), 2.68–2.62 (m, 2H), 2.37–2.31 (m, 2H), 0.90–0.84 (m, 2H), 0.77–0.70 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 158.3, 149.1, 147.1, 126.8, 125.0, 120.7, 52.6, 36.8, 36.2; ¹¹B NMR (192 MHz, CDCl₃) δ -19.9 (d, *J* = 79.1 Hz); HRMS (ESI): *m/z* calcd for C₂₃H₂₉BN₄NaO₄ [M+Na]⁺ 459.2180, found 459.2187.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(pyridin-2-yl)ethyl)hydroborate (11)

Following the **General Procedure A**, **11** was afforded as a colorless oil (10.9 mg, 34%) by using 4 equiv of vinylpyridine. ¹H NMR (400 MHz, CDCl₃) δ 8.46–8.43 (m, 2H), 7.67 (td, J = 7.7 Hz, 1.7 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 7.13–7.10 (m, 2H), 6.74 (s, 2H), 3.79 (s, 6H), 2.84–2.77 (m, 2H), 2.60–2.54 (m, 2H), 0.97–0.88 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 146.5, 137.8, 123.0, 120.7, 120.4, 38.9, 36.4; ¹¹B NMR (192 MHz, CDCl₃) δ -19.4 (d, J = 88.5 Hz); HRMS (ESI): m/z calcd C₁₉H₂₅BN₄Na [M+Na]⁺ 343.2070, found 343.2074.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-phenyl-2-(pyridin-4-yl)ethyl)hydroborate (12)

Following the **General Procedure A**, **12** was afforded as colorless oil in the form of one pair of diastereomers (8.5 mg, 18%) and two pairs of diastereomers (18.9 mg, 40%).

One pair of diastereomers: ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 4.7 Hz, 4H), 7.23–7.15 (m, 8H), 7.13–7.09 (m, 2H), 6.98 (d, *J* = 5.6 Hz, 4H), 6.46 (s, 2H), 3.65 (t, *J* = 7.6 Hz, 2H), 3.28 (br s, 6H), 2.08–1.94 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 158.2, 148.8, 147.5, 128.1, 127.7, 125.6, 123.1, 120.3, 53.1, 35.7; ¹¹B NMR (192 MHz, CDCl₃) δ -21.8 (d, *J* = 83.2 Hz); HRMS (ESI): *m/z* calcd for C₃₁H₃₄BN₄ [M+H]⁺ 473.2877, found 473.2886.

Two pairs of diastereomers: ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 5.5 Hz, 2H), 8.24 (d, J = 5.2 Hz, 2H), 7.22–7.19 (m, 2H), 7.17–7.14 (m, 2H), 7.12–7.08 (m, 3H), 7.06–7.03 (m, 2H), 7.01–6.96 (m, 5H), 6.40 (s, 2H), 3.67–3.62 (m, 2H), 3.26 (br s, 6H), 1.91 (br s, 4H); ¹³C NMR (150 MHz, CDCl₃)

δ 158.63/158.14, 149.04/148.83, 147.46/146.78, 128.09/127.86, 127.71/127.46, 125.63/125.41, 123.24/123.06, 120.24, 53.23/53.10, 35.69; ¹¹B NMR (192 MHz, CDCl₃) δ -21.5 (d, J = 81.4 Hz); HRMS (ESI): *m/z* calcd for C₃₁H₃₄BN₄ [M+H]⁺ 473.2877, found 473.2885.

Scheme S1. Three pairs of diastereomers A, B, C in the product 12

Note: The hydroboration constructed two chiral carbon centers (highlighted in red). When their stereo-configurations were different, a chiral boron center was formed. In this way, three pairs of diastereomers A, B, C were produced with a ratio of 2:1:1 as shown in Scheme S1. The following cases such as 13–14, 20–37, had the same situation as 12.

Bis(2-(4-chlorophenyl)-2-(pyridin-4-yl)ethyl)(1,3-dimethyl-1H-imidazol-3-ium-2yl)hydroborate (13)

Following the **General Procedure A**, **13** was afforded as colorless oil in the form of one pair of diastereomers (11.9 mg, 22%) and two pairs of diastereomers (16.7 mg, 31%).

One pair of diastereomers: ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 3.9 Hz, 4H), 7.20–7.16 (m, 4H), 7.10–7.06 (m, 4H), 6.93 (d, *J* = 5.9 Hz, 4H), 6.49 (s, 2H), 3.59 (t, *J* = 7.7 Hz, 2H), 3.30 (br s, 6H), 2.08–1.84 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 157.7, 148.8, 145.8, 131.3, 129.1, 128.2, 122.9, 120.5, 52.3, 35.8; ¹¹B NMR (192 MHz, CDCl₃) δ -21.9 (d, *J* = 82.6 Hz); HRMS (ESI): *m/z* calcd for C₃₁H₃₂BCl₂N₄ [M+H]⁺ 541.2097, found 541.2103.

Two pairs of diastereomers: ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, J = 6.1 Hz, 2H), 8.27 (d, J = 5.9 Hz, 2H), 7.19–7.17 (m, 2H), 7.09–7.05 (m, 4H), 7.04–7.02 (m, 2H), 6.95–6.92 (m, 4H), 6.47 (s, 2H), 3.66–3.57 (m, 4H), 3.35–3.22 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 157.99/157.65, 149.20/148.98, 145.80/145.29, 131.35/131.06, 129.10/128.84, 128.18/127.90, 123.09/122.92, 120.38, 52.42/52.37, 35.78; ¹¹B NMR (192 MHz, CDCl₃) δ -21.6 (d, J = 78.3 Hz); HRMS (ESI): m/z calcd for C₃₁H₃₂BCl₂N₄ [M+H]⁺ 541.2097, found 541.2101.

Bis(1,2-di(pyridin-4-yl)ethyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)hydroborate (14)

Following the General Procedure A, 14 was afforded as a colorless oil (21.3 mg, 45%) including

three pairs of of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 8.51–8.48 (m, 1H), 8.38–8.32 (m, 3H), 8.30–8.28 (m, 1H), 8.23–8.20 (m, 1H), 8.15–8.09 (m, 2H), 7.08–7.05 (m, 1H), 6.95–6.89 (m, 2H), 6.80–6.78 (m, 1H), 6.73–6.61 (m, 4H), 6.58–6.41 (m, 2H), 3.63–3.46 (m, 6H), 3.03–2.86 (m, 3H), 2.64–2.49 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 160.74/160.53, 152.34/152.26/151.85, 149.84/149.26/149.24, 148.93/148.71/148.54/148.42, 124.02/123.90/123.79/123.66, 123.18/123.08/122.74, 121.73/121.44/120.97/120.66, 43.01/42.70/40.88, 36.92/36.80/36.38/35.90/35.65; ¹¹B NMR (192 MHz, CDCl₃) δ -13.8 (d, *J* = 81.1 Hz); HRMS (ESI): *m/z* calcd for C₂₉H₃₂BN₆ [M+H]⁺ 475.2782, found 475.2787.

(1,3-Diisopropyl-1H-imidazol-3-ium-2-yl)bis(2-(pyridin-4-yl)ethyl)hydroborate (15)

Following the **General Procedure A**, **15** was afforded as a colorless oil (19.6 mg, 52%). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, J = 4.4 Hz, 4H), 7.08 (d, J = 4.4 Hz, 4H), 6.98 (s, 2H), 5.23 (br s, 2H), 2.62–2.54 (m, 2H), 2.25–2.18 (m, 2H), 1.39 (d, J = 6.6 Hz, 12H), 0.88–0.83 (m, 2H), 0.70–0.63 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.5, 149.0, 123.6, 115.8, 48.9, 37.4, 23.5; ¹¹B NMR (192 MHz, CDCl₃) δ -19.2 (d, J = 82.4 Hz); HRMS (ESI): m/z calcd for C₂₃H₃₄BN₄ [M+H]⁺ 377.2877, found 377.2874.

(1-Isopropyl-3-methyl-1H-imidazol-3-ium-2-yl)bis(2-(pyridin-4-yl)ethyl)hydroborate (16)

Following the General Procedure A, 16 was afforded as a colorless oil (16.0 mg, 46%). ¹H NMR

(600 MHz, CDCl₃) δ 8.38 (d, J = 4.9 Hz, 4H), 7.08 (d, J = 5.3 Hz, 4H), 6.93 (d, J = 1.9 Hz, 1H), 6.82 (d, J = 1.7 Hz, 1H), 5.23–5.14 (m, 1H), 3.74 (s, 3H), 2.62–2.55 (m, 2H), 2.29–2.22 (m, 2H), 1.40 (s, 3H), 1.39 (s, 3H), 0.90–0.85 (m, 2H), 0.74–0.67 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.3, 149.0, 123.6, 121.4, 115.0, 49.1, 37.1, 36.3, 23.4; ¹¹B NMR (192 MHz, CDCl₃) δ -19.5 (d, J = 81.1 Hz); HRMS (ESI): m/z calcd for C₂₁H₃₀BN₄ [M+H]⁺ 349.2564, found 349.2574.

(1-Butyl-3-methyl-1H-imidazol-3-ium-2-yl)bis(2-(pyridin-4-yl)ethyl)hydroborate (17)

Following the **General Procedure A**, **17** was afforded as a colorless oil (15.9 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 5.9 Hz, 4H), 7.09 (d, J = 5.8 Hz, 4H), 6.81 (d, J = 1.8 Hz, 1H), 6.76 (d, J = 1.7 Hz, 1H), 4.10 (t, J = 7.7 Hz, 2H), 3.72 (s, 3H), 2.65–2.56 (m, 2H), 2.32–2.23 (m, 2H), 1.77–1.68 (m, 2H), 1.40–1.32 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.91–0.85 (m, 2H), 0.75–0.65 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.7, 148.6, 123.7, 120.8, 119.2, 48.4, 37.0, 36.2, 33.0, 19.7, 13.7; ¹¹B NMR (192 MHz, CDCl₃) δ -19.7 (d, J = 78.9 Hz); HRMS (ESI): *m/z* calcd for C₂₂H₃₂BN₄ [M+H]⁺ 363.2720, found 363.2719.

(1-Benzyl-3-methyl-1H-imidazol-3-ium-2-yl)bis(2-(pyridin-4-yl)ethyl)hydroborate (18)

Following the **General Procedure A**, **18** was afforded as a colorless oil (13.5 mg, 34%). ¹H NMR (600 MHz, CDCl₃) δ 8.39–8.37 (m, 4H), 7.38–7.33 (m, 3H), 7.19–7.16 (m, 2H), 7.06 (d, *J* = 5.7 Hz, 4H), 6.78 (d, *J* = 1.8 Hz, 1H), 6.72 (d, *J* = 1.9 Hz, 1H), 5.35 (s, 2H), 3.77 (s, 3H), 2.63–2.57 (m, 2H),

2.33–2.27 (m, 2H), 0.92–0.87 (m, 2H), 0.77–0.70 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.8, 148.5, 136.0, 129.0, 128.3, 127.7, 123.8, 121.2, 119.6, 52.0, 37.0, 36.3; ¹¹B NMR (192 MHz, CDCl₃) δ -19.5 (d, *J* = 85.1 Hz); HRMS (ESI): *m/z* calcd for C₂₅H₃₀BN₄ [M+H]⁺ 397.2564, found 397.2568.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(phenylsulfonyl)ethyl)hydroborate (19)

Following the **General Procedure A**, **19** was afforded as a colorless oil (31.2 mg, 70%) by using 2.6 equiv of phenyl vinyl sulfone. ¹H NMR (600 MHz, CDCl₃) δ 7.85–7.82 (m, 4H), 7.61–7.58 (m, 2H), 7.53–7.50 (m, 4H), 6.79 (s, 2H), 3.64 (s, 6H), 2.97 (td, *J* = 13.7 Hz, 4.6 Hz, 2H), 2.62 (td, *J* = 13.8 Hz, 3.6 Hz, 2H), 0.77–0.69 (m, 2H), 0.68–0.61 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 139.5, 133.0, 128.8, 128.0, 121.3, 58.8, 36.3; ¹¹B NMR (192 MHz, CDCl₃) δ -19.8 (d, *J* = 84.5 Hz); HRMS (ESI): *m/z* calcd for C₂₁H₂₇BN₂NaO₄S₂ [M+Na]⁺ 469.1403, found 469.1406.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(1-methoxy-1-oxo-3-phenylpropan-2-yl)hydroborate (20)

Following the **General Procedure A**, **20** was afforded as a colorless oil (31.7 mg, 73%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.22–7.20 (m, 4H), 7.18–7.14 (m, 2H), 7.12–7.04 (m, 4H), 6.83–6.74 (m, 2H), 3.85–3.73 (m, 6H), 3.54 (d, *J* = 15.7 Hz, 3H), 3.29 (s, 2H), 3.08 (s, 1H), 3.04–2.99 (m, 1H), 2.98–2.93 (m, 1H), 2.89–2.71 (m, 1H), 2.58–2.33 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.86/180.75/180.65, 144.41/143.91/143.52, 128.34/128.29/128.21/128.12, 128.01/127.99/127.97, 125.27/125.22/125.11, 121.38/121.28, 50.63/50.51/50.14/49.97, 38.81/38.60/38.52, 37.66/37.15/37.02; ¹¹B NMR (192 MHz, CDCl₃) δ -16.1–-17.0 (m); HRMS (ESI): *m/z* calcd for C₂₅H₃₁BN₂NaO₄ [M+Na]⁺ 457.2275, found 457.2279.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(1-ethoxy-1-oxo-3-phenylpropan-2-yl)hydroborate (21)

Following the **General Procedure A**, **21** was afforded as a colorless oil (34.7 mg, 75%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.23–7.14 (m, 7H), 7.11–7.06 (m, 3H), 6.82–6.74 (m, 2H), 4.07–3.99 (m, 1H), 3.95–3.90 (m, 1H), 3.89–3.73 (m, 6H), 3.72–3.69 (m, 1H), 3.60–3.48 (m, 1H), 3.06–2.92 (m, 3H), 2.81–2.36 (m, 3H), 1.09 (t, *J* = 7.1 Hz, 2H), 0.92 (t, *J* = 7.1 Hz, 2H), 0.84 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 180.63/180.50/180.37, 144.66/144.48/143.98/143.70, 128.44/128.40/128.28/128.22, 127.94/127.90, 125.24/125.20/125.17/125.04, 121.26, 59.07/58.93/58.54/58.38, 38.65/38.40, 37.62/37.44/37.31/37.10, 14.43/14.33/14.24/14.14; ¹¹B NMR (192 MHz, CDCl₃) δ -16.1–-17.1 (m); HRMS (ESI): *m/z* calcd for C₂₇H₃₅BN₂NaO₄ [M+Na]⁺ 485.2588, found 485.2590.

Bis(1-(benzyloxy)-1-oxo-3-phenylpropan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2yl)hydroborate (22)

Following the **General Procedure A**, **22** was afforded as a colorless oil (33.4 mg, 57%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.24–7.22 (m, 6H), 7.21–7.18 (m, 6H), 7.14–7.11 (m, 3H), 7.08–7.02 (m, 5H), 6.60–6.49 (m, 2H), 5.09–4.85 (m, 1H), 4.77–4.49 (m, 3H), 3.74–3.48 (m, 6H), 3.07–2.97 (m, 3H), 2.90–2.79 (m, 1H), 2.56–2.38 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 180.21/180.14/180.00, 144.42/144.25/143.50, 136.96/136.82, 128.43/128.29, 128.24/128.20/128.18, 127.98/127.95, 127.60/127.45, 125.28/125.19/125.13, 121.12/120.99,

64.97/64.66/64.51, 38.76/38.70/38.18, 37.14/37.07; ¹¹B NMR (192 MHz, CDCl₃) δ -15.9–-16.7 (m); HRMS (ESI): *m/z* calcd for C₃₇H₃₉BN₂NaO₄ [M+Na]⁺ 609.2901, found 609.2903.

Bis(1-(allyloxy)-1-oxo-3-phenylpropan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)hydroborate (23)

Following the **General Procedure A**, **23** was afforded as a colorless oil (28.2 mg, 58%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.23–7.14 (m, 7H), 7.12–7.06 (m, 3H), 6.82–6.72 (m, 2H), 5.82–5.46 (m, 2H), 5.13–4.99 (m, 4H), 4.54–4.34 (m, 1H), 4.23–4.03 (m, 2H), 3.93–3.87 (m, 1H), 3.86–3.68 (m, 6H), 3.08–2.94 (m, 3H), 2.82–2.38 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.02/179.88, 144.46/144.31/143.53, 133.13/133.06/133.04, 128.47/128.43/128.23, 127.99/127.94, 125.30/125.24/125.12, 121.28, 117.36/117.19, 64.12/63.83/63.76, 38.78/38.65/38.39, 37.49/37.39/37.06; ¹¹B NMR (192 MHz, CDCl₃) δ -16.1–-16.9 (m); HRMS (ESI): *m/z* calcd for C₂₉H₃₅BN₂NaO₄ [M+Na]⁺ 509.2588, found 509.2594.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(1-methoxy-1-oxo-3-(p-tolyl)propan-2-yl)hydroborate (24)

Following the **General Procedure A**, **24** was afforded as a colorless oil (37.9 mg, 82%) including three pairs of of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.11–7.00 (m, 5H), 6.99–6.94 (m, 3H),

6.82–6.75 (m, 2H), 3.85–3.74 (m, 6H), 3.54 (d, J = 7.2 Hz, 2H), 3.28 (s, 2H), 3.09 (s, 2H), 3.04–2.81 (m, 3H), 2.70–2.40 (m, 3H), 2.28–2.25 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 180.95/180.82/180.74, 141.51/141.36/140.86/140.48, 134.56/134.48/134.36, 128.72/128.68, 128.17/128.13/128.04/127.95, 121.24, 50.64/50.51/50.15/49.99, 38.33/38.08/38.04, 37.18/37.06, 20.97/20.93/20.92; ¹¹B NMR (192 MHz, CDCl₃) δ -16.2–-16.8 (m); HRMS (ESI): *m/z* calcd for C₂₇H₃₅BN₂NaO₄ [M+Na]⁺ 485.2588, found 485.2591.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(1-methoxy-3-(4-methoxyphenyl)-1-oxopropan-2-yl)hydroborate (25)

Following the **General Procedure A**, **25** was afforded as a colorless oil (41.0 mg, 83%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.13–7.10 (m, 2H), 7.02–6.96 (m, 2H), 6.82–6.70 (m, 6H), 3.87–3.77 (m, 6H), 3.76–3.73 (m, 6H), 3.55–3.08 (m, 6H), 2.98–2.88 (m, 2H), 2.83–2.63 (m, 1H), 2.47–2.35 (m, 2H), 2.31–2.61 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 180.94/180.80/180.74, 157.30/157.22, 136.81/136.63/136.12/135.72, 129.18/129.12/129.05/128.97, 121.34/121.24, 113.42/113.39, 55.15/55.12, 50.59/50.48/50.12/49.96, 37.89/37.63/37.41, 37.12/37.01/36.70; ¹¹B NMR (192 MHz, CDCl₃) δ -16.3–16.8 (m); HRMS (ESI): *m/z* calcd for C₂₇H₃₅BN₂NaO₆ [M+Na]⁺ 517.2486, found 517.2492.

Bis(3-(4-chlorophenyl)-1-methoxy-1-oxopropan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2yl)hydroborate (26)

Following the **General Procedure A**, **26** was afforded as a colorless oil (32.1 mg, 64%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.19–7.16 (m, 2H), 7.15–7.11 (m, 4H), 7.03–6.96 (m, 2H), 6.87–6.78 (m, 2H), 3.90–3.72 (m, 6H), 3.54–3.39 (m, 3H), 3.28–3.08 (m, 3H), 2.96–2.87 (m, 2H), 2.82–2.63 (m, 1H), 2.53–2.25 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.53/180.36, 142.95/142.77/142.31/141.91, 130.97/130.90/130.78, 130.08/130.01, 129.72/129.65/129.58/129.50, 128.12/128.10/128.06, 121.40, 50.69/50.60/50.24/50.08, 38.17/38.02/37.83, 37.05/36.93; ¹¹B NMR (192 MHz, CDCl₃) δ -16.2–-17.2 (m); HRMS (ESI): *m/z* calcd for C₂₅H₂₉BCl₂N₂NaO₄ [M+Na]⁺ 525.1495, found 525.1498.

Bis(3-(4-bromophenyl)-1-methoxy-1-oxopropan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)hydroborate (27)

Following the **General Procedure A**, **27** was afforded as a colorless oil (40.1 mg, 68%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) *δ* 7.35–7.32 (m, 2H), 7.31–7.26 (m, 2H), 7.09–7.05 (m, 2H), 6.99–6.91 (m, 2H), 6.88–6.78 (m, 2H), 3.85–3.72 (m, 6H), 3.54 (s, 1H), 3.52 (s, 2H), 3.29 (s, 2H), 3.08 (s, 1H), 3.01–2.79 (m, 3H), 2.65–2.48 (m, 1H), 2.45–2.33 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) *δ* 180.52/180.34, 143.28/142.82, 131.05/131.03, 130.17/130.09/130.01/129.92,

121.52/121.41, 119.05/118.99, 50.71/50.62/50.26/50.10, 38.22/38.08/37.87, 37.48/37.17/37.06/36.98; ¹¹B NMR (192 MHz, CDCl₃) δ -16.2–-17.2 (m); HRMS (ESI): *m/z* calcd for C₂₅H₂₉BBr₂N₂NaO₄ [M+Na]⁺ 613.0485, found 613.0493.

Bis(3-([1,1'-biphenyl]-4-yl)-1-methoxy-1-oxopropan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)hydroborate (28)

Following the **General Procedure A**, **28** was afforded as a colorless oil (38.1 mg, 65%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.59–7.52 (m, 5H), 7.48–7.44 (m, 2H), 7.43–7.39 (m, 6H), 7.32–7.27 (m, 4H), 7.18–7.12 (m, 1H), 6.85–6.74 (m, 2H), 3.88–3.75 (m, 6H), 3.62–3.56 (m, 3H), 3.32 (s, 2H), 3.11 (s, 1H), 3.07–2.93 (m, 3H), 2.58–2.44 (m, 2H), 2.43–2.25 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 180.88/180.74/180.67, 143.80/143.61, 143.09/142.68, 141.38/141.33/141.19, 138.11/137.98, 128.77/128.70//128.68, 128.64/128.61/128.55, 126.92/126.87/126.84, 126.81/126.75/126.72, 121.44/121.33, 50.75/50.62/50.24/50.06, 38.48/38.27/38.17, 37.31/37.21/37.09; ¹¹B NMR (192 MHz, CDCl₃) δ -16.0–-16.7 (m); HRMS (ESI): *m/z* calcd for C₃₇H₃₉BN₂NaO4 [M+Na]⁺ 609.2901, found 609.2903.

(1, 3-Dimethyl-1H-imidazol-3-ium-2-yl) bis (1-methoxy-1-oxo-3-(m-tolyl) propan-2-ium-2-yl) bis (1-methoxy-1-oxo-3-(m-tolyl)) propan-2-ium-2-iu

yl)hydroborate (29)

Following the General Procedure A, 29 was afforded as a colorless oil (28.2 mg, 61%) including

three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.13–7.05 (m, 2H), 7.04–6.99 (m, 2H), 6.94-6.85 (m, 4H), 6.83-6.72 (m, 2H), 3.84-3.72 (m, 6H), 3.56 (d, J = 14.9 Hz, 3H), 3.29 (s, 2H), 3.09 (s, 1H), 3.04–2.84 (m, 3H), 2.70–2.52 (m, 1H), 2.50–2.38 (m, 2H), 2.30–2.25 (m, 6H); ¹³C NMR (150)MHz, CDCl₃) δ 180.96/180.92/180.84/180.70, 144.53/144.37/143.84/143.42, 137.37/137.34/137.30, 129.21/129.18/129.06/128.92, 127.89/127.87//127.84, 126.05/126.03/125.98/125.88, 125.29/125.25/125.18/125.13, 121.35/121.24/121.05, 50.63/50.48/50.12/49.95, 38.72/38.45, 37.59/37.41/37.16/37.01, 21.41/21.36; ¹¹B NMR (192 MHz, CDCl₃) δ -16.3–-16.8 (m); HRMS (ESI): m/z calcd for C₂₇H₃₅BN₂NaO₄ [M+Na]⁺ 485.2588, found 485.2596.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(1-methoxy-3-(2-methoxyphenyl)-1-oxopropan-2yl)hydroborate (30)

Following the **General Procedure A**, **30** was afforded as a colorless oil (38.0 mg, 77%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.21–7.18 (m, 1H), 7.13–7.05 (m, 3H), 6.86–6.78 (m, 4H), 6.77–6.72 (m, 2H), 3.95–3.84 (m, 4H), 3.80–3.69 (m, 8H), 3.48–3.43 (m, 3H), 3.25–3.10 (m, 3H), 3.00–2.70 (m, 3H), 2.65–2.43 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 181.32/181.23/181.06/180.99, 157.50/157.09, 132.88/132.75/131.88/131.83, 130.02/129.83/129.75/129.27, 126.42/126.35//126.24/126.06, 121.04, 120.17/120.14/120.01/119.96, 109.87/109.79/109.76/109.72, 55.00/54.85, 50.33/50.30/50.00/49.92, 37.24/36.86, 33.17/32.56/32.45/32.22; ¹¹B NMR (192 MHz, CDCl₃) δ -16.0–-16.6 (m); HRMS (ESI): *m/z* calcd for C₂₇H₃₅BN₂NaO₆ [M+Na]⁺ 517.2486, found 517.2488.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(1-methoxy-1-oxo-3-(3,4,5-trimethoxyphenyl)propan-2-yl)hydroborate (31)

Following the **General Procedure A**, **31** was afforded as a colorless oil (31.9 mg, 52%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 6.88–6.76 (m, 2H), 6.46–6.29 (m, 4H), 3.83–3.77 (m, 24H), 3.63 (s, 2H), 3.34 (s, 2H), 3.12 (s, 2H), 3.02–2.83 (m, 3H), 2.70–2.52 (m, 1H), 2.50–2.32 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 180.88/180.72/180.67, 152.78/152.75/152.72, 140.54/140.27/139.27, 135.71/135.56, 121.51/121.34, 105.18/105.09/105.00, 60.76/60.74, 55.94/55.92/55.85, 50.69/50.24/50.07, 39.34/38.99, 37.98/37.48/37.22/37.07; ¹¹B NMR (192 MHz, CDCl₃) δ -16.1–-17.0 (m); HRMS (ESI): *m/z* calcd for C₃₁H₄₃BN₂NaO₁₀ [M+Na]⁺ 637.2908, found 637.2907.

Bis(1,4-dimethoxy-1,4-dioxobutan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)hydroborate (32)

Following the **General Procedure A**, **32** was afforded as a colorless oil (29.9 mg, 75%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 6.83 (s, 2H), 3.63 (s, 3H), 3.612 (s, 3H), 3.607 (s, 3H), 3.54 (s, 3H), 3.37 (s, 3H), 3.21 (s, 3H), 2.80–2.70 (m, 2H), 2.67–2.61 (m, 1H), 2.55–2.50 (m, 1H), 2.35–2.28 (m, 1H), 1.95–1.90 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 180.66/180.50/180.25, 175.35/175.12/174.60, 121.53/121.46, 51.37/51.26, 50.79/50.57/50.43, 37.07/36.97/36.80/36.57; ¹¹B NMR (192 MHz, CDCl₃) δ -17.4 (d, *J* = 93.9 Hz); HRMS (ESI): *m/z* calcd for C₁₇H₂₇BN₂NaO₈ [M+Na]⁺ 421.1758, found 421.1759.

Bis(1,4-diethoxy-1,4-dioxobutan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)hydroborate (33)

Following the **General Procedure A**, **33** was afforded as a colorless oil (30.4 mg, 67%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 6.82 (s, 2H), 4.11–3.97 (m, 6H), 3.90–3.68 (m, 7H), 3.63–3.56 (m, 1H), 2.78–2.56 (m, 2H), 2.54–2.32 (m, 3H), 1.96–1.89 (m, 1H), 1.25–1.16 (m, 9H), 1.02–0.91 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.37/180.21/180.01, 174.97/174.72/174.26, 121.36, 60.05/59.96/59.81, 59.38/58.85/58.73, 37.22/37.18/37.08/36.82, 14.28/14.21/14.14/14.12; ¹¹B NMR (192 MHz, CDCl₃) δ -17.5 (d, *J* = 92.5 Hz); HRMS (ESI): *m/z* calcd for C₂₁H₃₅BN₂NaO₈ [M+Na]⁺ 477.2384, found 477.2386.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-oxochroman-3-yl)hydroborate (34)

Following the **General Procedure A**, **34** was afforded as colorless oil in the form of one pair of diastereomers (12.0 mg, 30%) and two pairs of diastereomers (12.1 mg, 30%).

One pair of diastereomers: ¹H NMR (400 MHz, CDCl₃) δ 7.07–7.00 (m, 4H), 6.96–6.92 (m, 2H), 6.76 (d, *J* = 8.1 Hz, 2H), 6.61 (d, *J* = 1.6 Hz, 1H), 6.43 (d, *J* = 1.7 Hz, 1H), 3.91 (s, 3H), 3.31–3.22 (m, 2H), 3.05 (s, 3H), 2.82–2.76 (m, 2H), 2.61 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 176.7, 152.2, 128.0, 127.0, 123.9, 123.4, 121.8, 121.5, 115.2, 37.5, 36.7, 29.3; ¹¹B NMR (192 MHz, CDCl₃) δ -19.8 (d, *J* = 93.6 Hz); HRMS (ESI): *m/z* calcd for C₂₃H₂₃BN₂NaO₄ [M+Na]⁺ 425.1649, found 425.1655.

Two pairs of diastereomers: ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.2 Hz, 2H), 7.01–6.97 (m, 1H), 6.94–6.89 (m, 2H), 6.83–6.79 (m, 2H), 6.69–6.65 (m, 1H), 6.60 (d, J = 1.6 Hz, 1H), 6.52 (d, J = 7.4 Hz, 1H), 3.89 (s, 3H), 3.19–3.08 (m, 2H), 2.99–2.88 (m, 2H), 2.64 (s, 3H), 2.17–2.04 (m, 1H), 1.86–1.79 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 177.08/176.93, 152.90/152.21, 128.76/127.38, 126.68/126.58, 124.66, 123.49/123.45, 122.88, 121.73/121.26, 115.86/114.66, 36.71/36.12,

29.31/28.94; ¹¹B NMR (192 MHz, CDCl₃) δ -20.9 (d, J = 95.9 Hz); HRMS (ESI): m/z calcd for C₂₃H₂₃BN₂NaO₄ [M+Na]⁺ 425.1649, found 425.1650.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(1-((3,7-dimethyloct-6-en-1-yl)oxy)-1-oxo-3-phenylpropan-2-yl)hydroborate (35)

Following the **General Procedure A**, **35** was afforded as a colorless oil (38.2 mg, 56%) including three pairs of of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.24 (m, 1H), 7.23–7.15 (m, 6H), 7.14–7.04 (m, 3H), 6.84–6.70 (m, 2H), 5.11–4.99 (m, 2H), 4.09–3.98 (m, 1H), 3.93–3.70 (m, 6H), 3.66–3.55 (m, 1H), 3.45–3.29 (m, 1H), 3.17–3.04 (m, 1H), 3.02–2.78 (m, 4H), 2.54–2.38 (m, 2H), 2.03–2.01 (m, 1H), 1.96–1.83 (m, 4H), 1.70–1.67 (m, 6H), 1.60–1.58 (m, 6H), 1.35–1.16 (m, 6H), 1.13–1.00 (m, 3H), 0.86–0.73 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 180.6, 144.4, 131.2, 128.72/128.36/128.17/127.93, 126.9/126.4, 125.16/124.79/124.60, 121.2, 61.8/61.2, 38.68/38.38, 37.33/37.01, 35.64/35.26, 29.3, 25.7/25.3, 19.2, 17.6; ¹¹B NMR (128 MHz, CDCl₃) δ -15.2–16.1 (m); HRMS (ESI): *m/z* calcd for C₄₃H₆₄BN₂O₄ [M+H]⁺ 683.4959, found 683.4961.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(1-oxo-3-phenyl-1-(((1*R*,4*S*)-1,7,7trimethylbicyclo[2.2.1]heptan-2-yl)oxy)propan-2-yl)(1-oxo-3-phenyl-1-(((1*S*,4*R*)-1,7,7trimethylbicyclo[2.2.1]heptan-2-yl)oxy)propan-2-yl)hydroborate (36)

Following the General Procedure A, 36 was afforded as a colorless oil (37.3 mg, 55%) including three pairs of of diastereomers. ¹H NMR (600 MHz, CDCl₃) δ 7.25–7.13 (m, 8H), 7.11–7.06 (m, 2H), 6.82-6.78 (m, 2H), 4.73-4.18 (m, 2H), 4.02-3.73 (m, 6H), 3.16-3.05 (m, 1H), 3.03-2.94 (m, 2H), 2.61-2.52 (m, 2H), 2.16-1.84 (m, 4H), 1.79-1.73 (m, 1H), 1.60-1.56 (m, 1H), 1.52-1.45 (m, 2H), 1.27-1.21 (m, 1H), 1.17-0.86 (m, 5H), 0.81-0.73 (m, 12H), 0.66-0.54 (m, 4H), 0.49-0.48 (m, 2H), ^{13}C 0.35–0.15 (m, 1H); NMR (150 MHz, CDCl₃) δ 180.97/180.87/180.81/180.66, 144.52/144.22/144.17/143.68, 128.43/128.36/128.20, 128.00/127.89/127.85/127.82, 125.26/125.16/125.08/124.95, 121.55/121.25/121.18, 78.58/78.39/78.15/77.65/77.62, 48.72/48.57/48.49/48.14, 47.62/47.55/47.52/47.48/47.45, 44.88/44.78/44.72/44.68, 39.58/38.96/38.71/38.42, 37.95/37.50/37.30/36.92, 36.29/36.16/36.11, 27.91/27.89/27.83, 27.26/27.20/27.15/27.09/27.02, 19.68/19.63/18.83/18.77/18.74, 13.42/13.31/13.26/13.04; ¹¹B NMR $(192 \text{ MHz}, \text{CDCl}_3) \delta$ -16.1–-17.2 (m); HRMS (ESI): m/z calcd for C₄₃H₅₉BN₂NaO₄ [M+Na]⁺701.4466, found 701.4474.

Bis(1-(((3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-1oxo-3-phenylpropan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)hydroborate (37)

Following the **General Procedure A**, **37** was afforded as colorless oil in the form of isomers A (19.4 mg, 17%) and isomers B (24.0 mg, 21%).

Isomers A: ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.19 (m, 8H), 7.12–7.08 (m, 2H), 6.84–6.80 (m, 2H), 5.25–5.19 (m, 2H), 4.26–4.16 (m, 2H), 3.90–3.76 (m, 6H), 3.07–2.91 (m, 4H), 2.51–2.43 (m, 2H), 2.01–1.88 (m, 8H), 1.86–1.68 (m, 6H), 1.53–1.47 (m, 4H), 1.44–1.40 (m, 5H), 1.38–1.37 (m, 2H), 1.34–1.31 (m, 5H), 1.28–1.21 (m, 5H), 1.13–1.04 (m, 12H), 1.02–0.96 (m, 7H), 0.93–0.89 (m, 12H), 0.87–0.85 (m, 12H), 0.65 (br s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.9, 144.4, 140.06/139.97, 128.50/128.48, 127.9, 125.1, 122.1, 121.29/121.17, 71.9, 56.6, 56.1, 50.0, 42.2, 39.7, 39.5, 38.21/38.05, 37.6, 36.9, 36.53/36.50, 36.1, 35.8, 31.8, 28.2, 28.0, 27.78/27.62, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8; ¹¹B NMR (128 MHz, CDCl₃) δ -15.2–-15.8 (m); HRMS (ESI): *m/z* calcd for C₇₇H₁₁₅BN₂NaO4 [M+Na]⁺ 1165.8848, found 1165.8854.

Isomers B: ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.15 (m, 6H), 7.12–7.06 (m, 4H), 6.82–6.76 (m, 2H), 5.26–5.15 (m, 2H), 4.47–4.38 (m, 1H), 4.14–4.03 (m, 1H), 3.97–3.69 (m, 6H), 3.06–2.96 (m, 2H), 2.92–2.85 (m, 1H), 2.51–2.39 (m, 3H), 2.08–1.86 (m, 8H), 1.84–1.68 (m, 6H), 1.55–1.47 (m, 5H), 1.46–1.39 (m, 7H), 1.36–1.29 (m, 8H), 1.26–1.19 (m, 3H), 1.15–1.05 (m, 13H), 1.00–0.96 (m, 4H), 0.94–0.93 (br s, 3H), 0.91–0.88 (m, 9H), 0.87–0.84 (m, 12H), 0.65 (br s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.9, 143.8, 140.27/140.19, 128.50/128.26, 127.93/127.82, 125.24/124.99, 122.1, 121.1, 72.5/71.7, 56.64/56.59, 56.1, 49.9, 42.25/42.23, 39.7, 39.5, 38.36/38.17, 37.35/36.91, 36.53/36.49/36.46, 36.1, 36.1, 35.8, 31.8, 28.2, 28.0, 27.7, 24.2, 23.8, 22.8, 22.5, 20.9, 19.3, 18.7, 11.8; ¹¹B NMR (128 MHz, CDCl₃) δ -15.7–-16.4 (m); HRMS (ESI): *m/z* calcd for C₇₇H₁₁₅BN₂NaO₄

S28

[M+Na]⁺1165.8848, found 1165.8848.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2-methylpyridin-4-yl)ethyl)dihydroborate (38)

Following the **General Procedure B**, **38** was afforded as a colorless oil (8.9 mg, 39%). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 5.2 Hz, 1H), 6.99 (s, 1H), 6.93 (d, J = 5.2 Hz, 1H), 6.78 (s, 2H), 3.76 (s, 6H), 2.54–2.50 (m, 2H), 2.49 (s, 3H), 0.71 (br s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 148.2, 123.1, 120.8, 120.0, 38.0, 35.9, 24.2, one carbon signal missing due to signal overlapping; ¹¹B NMR (128 MHz, CDCl₃) δ -27.2 (t, J = 84.2 Hz); HRMS (ESI): m/z calcd for C₁₃H₂₁BN₃ [M+H]⁺ 230.1829, found 230.1830.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2-fluoropyridin-4-yl)ethyl)dihydroborate (39)

Following the **General Procedure B**, **39** was afforded as a colorless oil (8.2 mg, 35%). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 5.2 Hz, 1H), 6.99 (d, J = 4.8 Hz, 1H), 6.80 (s, 2H), 6.73 (s, 1H), 3.77 (s, 6H), 2.58 (t, J = 8.2 Hz, 2H), 0.70 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 164.9, 163.4 (d, J = 22.6 Hz), 146.4 (d, J = 15.3 Hz), 121.5 (d, J = 3.4 Hz), 120.1, 108.3 (d, J = 36.1 Hz), 38.0 (d, J = 2.5 Hz), 35.9; ¹¹B NMR (128 MHz, CDCl₃) δ -29.0 (t, J = 85.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.8 (s, 1F); HRMS (ESI): m/z calcd for C₁₂H₁₈BFN₃ [M+H]⁺ 234.1578, found 234.1582.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2-(methoxycarbonyl)pyridin-4-

yl)ethyl)dihydroborate (40)

Following the **General Procedure B**, **40** was afforded as a colorless oil (9.8 mg, 36%). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 4.9 Hz, 1H), 7.96 (s, 1H), 7.33–7.29 (m, 1H), 6.78 (s, 2H), 3.98 (s, 3H), 3.76 (s, 6H), 2.63 (t, *J* = 8.1 Hz, 2H), 0.74 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 166.4, 158.5, 149.2, 147.2, 127.0, 125.2, 120.1, 52.7, 38.0, 35.9; ¹¹B NMR (192 MHz, CDCl₃) δ -28.3 (t, *J* = 83.9 Hz); HRMS (ESI): *m/z* calcd for C₁₄H₂₁BN₃O₂ [M+H]⁺274.1727, found 274.1733.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(pyridin-2-yl)ethyl)dihydroborate (41)

Following the **General Procedure B**, **41** was afforded as a colorless oil (8.2 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 4.2 Hz, 1H), 7.57 (td, J = 7.6 Hz, 1.6 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.05–7.00 (m, 1H), 6.77 (s, 2H), 3.78 (s, 6H), 2.74–2.68 (m, 2H), 0.85 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 167.1, 148.0, 136.4, 122.4, 120.0, 40.9, 35.9, one carbon signal missing due to signal overlapping; ¹¹B NMR (192 MHz, CDCl₃) δ -28.1 (t, J = 83.0 Hz); HRMS (ESI): m/z calcd for C₁₂H₁₇BN₃ [M–H]⁺ 214.1516, found 214.1515.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2,6-dimethylpyridin-4-yl)ethyl)dihydroborate (42)

Following the **General Procedure A**, **42** was afforded as a colorless oil (11.7 mg, 48%) by using 4 equiv of vinylpyridine. ¹H NMR (600 MHz, CDCl₃) δ 6.79 (s, 2H), 6.77 (s, 2H), 3.76 (s, 6H), 2.45 (s, 6H), 1.84 (br s, 2H), 0.69 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 156.7, 120.2, 120.0, 38.0, 35.9, 24.2; ¹¹B NMR (192 MHz, CDCl₃) δ -28.1 (t, *J* = 84.0 Hz); HRMS (ESI): *m/z* calcd for C₁₄H₂₃BN₃ [M+H]⁺ 244.1985, found 244.1989.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(pyrazin-2-yl)ethyl)dihydroborate (43)

Following the **General Procedure B**, **43** was afforded as a colorless oil (2.8 mg, 13%). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (s, 1H), 8.39–8.37 (m, 1H), 8.28 (d, J = 2.5 Hz, 1H), 6.78 (s, 2H), 3.78 (s, 6H), 2.75 (t, J = 8.2 Hz, 2H), 0.82 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 162.7, 144.7, 143.4, 140.9, 120.1, 38.5, 35.9; ¹¹B NMR (192 MHz, CDCl₃) δ -28.2 (t, J = 84.0 Hz); HRMS (ESI): *m/z* calcd for C₁₁H₁₆BN₄ [M–H]⁺ 215.1468, found 215.1469.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(phenylsulfonyl)ethyl)dihydroborate (44)

Following the **General Procedure A**, **44** was afforded as a colorless oil (14.7 mg, 53%) by using 1.2 equiv of phenyl vinyl sulfone. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 7.6 Hz, 2H), 7.61–7.57 (m, 1H), 7.53–7.50 (m, 2H), 6.80 (s, 2H), 3.71 (s, 6H), 3.08–3.04 (m, 2H), 0.69 (br s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 139.9, 132.8, 128.8, 128.1, 120.4, 60.2, 35.9; ¹¹B NMR (192 MHz, CDCl₃) δ -28.9 (t, *J* = 85.5 Hz); HRMS (ESI): *m/z* calcd for C₁₃H₁₉BN₂NaO₂S [M+Na]⁺ 301.1158, found 301.1161.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl)dihydroborate (45)

Following the **General Procedure A**, **45** was afforded as a colorless oil (15.6 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, J = 7.5 Hz, 2H), 6.80 (s, 2H), 6.61 (d, J = 7.4 Hz, 2H), 5.65 (br s, 1H), 3.73 (s, 6H), 3.41 (s, 3H), 3.05–2.93 (m, 1H), 2.66–2.57 (m, 1H), 2.19 (br s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 182.6, 153.4, 136.5, 129.3, 120.4, 114.8, 50.5, 38.1, 36.0; ¹¹B NMR (192 MHz, CDCl₃) δ - 26.0 (t, J = 91.2 Hz); HRMS (ESI): m/z calcd for C₁₅H₂₁BN₂NaO₃ [M+Na]⁺ 311.1543, found 311.1542.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(3-methoxy-2-(methoxycarbonyl)-3-oxo-1-

phenylpropyl)dihydroborate (46)

Following the **General Procedure A**, **46** was afforded as a colorless oil (23.1 mg, 70%). ¹H NMR (600 MHz, CDCl₃) δ 7.02 (t, J = 7.6 Hz, 2H), 6.91 (t, J = 7.3 Hz, 1H), 6.82 (d, J = 7.5 Hz, 2H), 6.68 (s, 2H), 4.00 (d, J = 12.3 Hz, 1H), 3.79 (s, 3H), 3.42 (s, 3H), 3.33 (s, 6H), 2.66–2.60 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.3, 170.9, 149.6, 127.6, 126.7, 123.4, 120.1, 58.2, 52.0, 51.8, 35.4; ¹¹B NMR (192 MHz, CDCl₃) δ -25.0 (t, J = 87.8 Hz); HRMS (ESI): m/z calcd for C₁₇H₂₃BN₂NaO₄ [M+Na]⁺ 353.1649, found 353.1651.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(3-ethoxy-2-(ethoxycarbonyl)-3-oxo-1-

phenylpropyl)dihydroborate (47)

Following the **General Procedure A**, **47** was afforded as a colorless oil (22.2 mg, 62%). ¹H NMR (600 MHz, CDCl₃) δ 7.01 (t, J = 7.4 Hz, 2H), 6.90 (t, J = 7.2 Hz, 1H), 6.84 (d, J = 7.4 Hz, 2H), 6.68 (s, 2H), 4.29–4.21 (m, 2H), 3.95 (d, J = 12.3 Hz, 1H), 3.92–3.84 (m, 2H), 3.34 (s, 6H), 2.65–2.60 (m, 1H), 1.33 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 170.5, 149.8, 127.5, 127.0, 123.3, 120.1, 60.7, 60.4, 58.5, 35.4, 14.2, 13.8; ¹¹B NMR (192 MHz, CDCl₃) δ - 24.0 (t, J = 87.9 Hz); HRMS (ESI): m/z calcd for C₁₉H₂₇BN₂NaO₄ [M+Na]⁺ 381.1962, found 381.1976.

(E)-(1,2-Di(pyridin-4-yl)vinyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (48)

Following the **General Procedure A**, **48** was afforded as a colorless oil (6.4 mg, 22%). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 6.0 Hz, 2H), 8.40 (d, J = 5.9 Hz, 2H), 7.42 (d, J = 6.0 Hz, 2H), 7.18–7.15 (m, 2H), 6.70 (br s, 1H), 6.62 (s, 2H), 3.55 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 148.3, 131.5, 123.9, 121.6, 120.4, 35.8; ¹¹B NMR (128 MHz, CDCl₃) δ -27.6 (t, J = 88.2 Hz); HRMS (ESI): m/z calcd for C₁₇H₂₀BN₄ [M+H]⁺ 291.1781, found 291.1789.

(*E*)-(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(3-methoxy-3-oxo-1-phenylprop-1-en-2-yl)dihydroborate (49)

Following the **General Procedure A**, **49** (12.7 mg, 47%) and **50** (7.0 mg, 26%) were afforded as colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (s, 1H), 7.61 (d, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 6.72 (s, 2H), 3.65 (s, 6H), 3.59 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.5, 142.1, 139.5, 130.1, 127.3, 126.7, 120.0, 51.3, 35.9; ¹¹B NMR (192 MHz, CDCl₃) δ -30.1 (t, *J* = 87.1 Hz); HRMS (ESI): *m/z* calcd for C₁₅H₁₉BN₂NaO₂ [M+Na]⁺ 293.1437, found 293.1436.

(Z)-(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(3-methoxy-3-oxo-1-phenylprop-1-en-1yl)dihydroborate (50)

¹H NMR (400 MHz, CDCl₃) δ 7.23–7.18 (m, 4H), 7.14–7.10 (m, 1H), 6.86 (s, 2H), 6.36–6.30 (br s, 1H), 3.80 (s, 6H), 3.60 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.6, 138.9, 132.0, 128.1, 127.2, 126.2, 120.5, 51.1, 36.1; ¹¹B NMR (192 MHz, CDCl₃) δ -26.2 (t, *J* = 89.1 Hz); HRMS (ESI): *m/z* calcd for C₁₅H₁₉BN₂NaO₂ [M+Na]⁺ 293.1437, found 293.1439.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2-methylpyridin-4-yl)ethyl)(2-(pyridin-4-yl)ethyl)hydroborate (51)

Following the **General Procedure C**, **51** was afforded as a colorless oil (16.7 mg, 50%). ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, J = 5.6 Hz, 2H), 8.26 (d, J = 5.1 Hz, 1H), 7.05 (d, J = 5.7 Hz, 2H), 6.92

(s, 1H), 6.86 (d, J = 5.0 Hz, 1H), 6.72 (s, 2H), 3.71 (s, 6H), 2.62–2.54 (m, 2H), 2.47 (s, 3H), 2.31–2.21 (m, 2H), 0.91–0.85 (m, 2H), 0.77–0.70 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 157.45, 157.36, 157.1, 149.0, 148.4, 123.6, 123.0, 120.74, 120.61, 36.88, 36.85, 36.3, 24.2; ¹¹B NMR (192 MHz, CDCl₃) δ - 19.7 (d, J = 80.4 Hz); HRMS (ESI): m/z calcd for C₂₀H₂₈BN₄ [M+H]⁺ 335.2407, found 335.2417.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2-methoxypyridin-4-yl)ethyl)(2-(pyridin-4-yl)ethyl)hydroborate (52)

Following the **General Procedure C**, **52** was afforded as a colorless oil (18.2 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 5.9 Hz, 2H), 7.95 (d, J = 5.2 Hz, 1H), 7.06 (d, J = 5.7 Hz, 2H), 6.72 (s, 2H), 6.68 (d, J = 5.5 Hz, 1H), 6.50 (s, 1H), 3.89 (s, 3H), 3.71 (s, 6H), 2.63–2.50 (m, 2H), 2.32–2.18 (m, 2H), 0.93–0.84 (m, 2H), 0.77–0.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 160.0, 157.3, 148.9, 145.8, 123.6, 120.6, 117.5, 109.4, 53.1, 36.89, 36.79, 36.3; ¹¹B NMR (128 MHz, CDCl₃) δ - 18.7 (d, J = 82.4 Hz); HRMS (ESI): m/z calcd for C₂₀H₂₈BN4O [M+H]⁺ 351.2356, found 351.2357.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2-fluoropyridin-4-yl)ethyl)(2-(pyridin-4-yl)ethyl)hydroborate (53)

Following the **General Procedure C**, **53** was afforded as a colorless oil (13.5 mg, 40%). ¹H NMR (600 MHz, CDCl₃) δ 8.39 (br s, 2H), 7.98 (d, J = 5.2 Hz, 1H), 7.06 (d, J = 5.9 Hz, 2H), 6.94 (d, J = 5.0 Hz, 1H), 6.74 (s, 2H), 6.67 (s, 1H), 3.72 (s, 6H), 2.65–2.56 (m, 2H), 2.35–2.25 (m, 2H), 0.90–0.84

(m, 2H), 0.77–0.70 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 164.8, 163.3 (d, J = 16.2 Hz), 157.1, 149.0, 146.5 (d, J = 15.4 Hz), 123.6, 121.4 (d, J = 3.4 Hz), 120.7, 108.2 (d, J = 36.0 Hz), 36.8, 36.3, one carbon signal missing due to signal overlapping; ¹¹B NMR (192 MHz, CDCl₃) δ -19.8 (d, J = 81.1 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -70.5 (s, 1F); HRMS (ESI): m/z calcd for C₁₉H₂₅BFN₄ [M+H]⁺ 339.2156, found 339.2158.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(pyridin-2-yl)ethyl)(2-(pyridin-4-

yl)ethyl)hydroborate (54)

Following the **General Procedure C**, **54** was afforded as a colorless oil (14.7 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 4.4 Hz, 1H), 8.36 (d, J = 5.5 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.9 Hz, 1H), 7.06 (d, J = 5.4 Hz, 2H), 7.00 (t, J = 6.2 Hz, 1H), 6.71 (s, 2H), 3.74 (s, 6H), 2.79–2.71 (m, 1H), 2.66–2.58 (m, 1H), 2.50–2.41 (m, 1H), 2.35–2.26 (m, 1H), 0.96–0.84 (m, 3H), 0.81–0.73 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 167.3, 157.2, 149.0, 148.5, 135.9, 123.6, 122.0, 120.6, 119.9, 40.0, 37.0, 36.3; ¹¹B NMR (128 MHz, CDCl₃) δ -18.5 (d, J = 85.6 Hz); HRMS (ESI): m/z calcd for C₁₉H₂₅BN₄Na [M+Na]⁺ 343.2070, found 343.2072.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(phenylsulfonyl)ethyl)(2-(pyridin-4-yl)ethyl)hydroborate (55)

Following the **General Procedure C**, **55** was afforded as a colorless oil (22.6 mg, 59%). ¹H NMR (600 MHz, CDCl₃) δ 8.35 (s, 2H), 7.91–7.87 (m, 2H), 7.62–7.59 (m, 1H), 7.55–7.51 (m, 2H), 7.00 (d, J = 4.8 Hz, 2H), 6.76 (s, 2H), 3.68 (s, 6H), 3.14–3.08 (m, 1H), 2.76–2.69 (m, 1H), 2.50–2.44 (m, 1H),
2.24–2.17 (m, 1H), 0.83–0.74 (m, 3H), 0.71–0.64 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 156.8, 148.8, 139.8, 132.9, 128.8, 128.1, 123.6, 121.0, 59.3, 36.48, 36.33; ¹¹B NMR (128 MHz, CDCl₃) δ - 19.4 (d, *J* = 83.1 Hz); HRMS (ESI): *m/z* calcd for C₂₀H₂₇BN₃O₂S [M+H]⁺ 384.1917, found 384.1915.

Bis(2-(2-chloropyridin-4-yl)ethyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(pyridin-4-yl)ethyl)borate (56)

Following the **General Procedure C**, **56** was afforded as a colorless oil (19.2 mg, 39%). ¹H NMR (600 MHz, CDCl₃) δ 8.42 (d, J = 5.7 Hz, 2H), 8.19 (d, J = 5.0 Hz, 2H), 7.10 (s, 2H), 7.08 (d, J = 5.6 Hz, 2H), 7.01 (d, J = 4.9 Hz, 2H), 6.67 (s, 2H), 3.78 (s, 6H), 2.39–2.34 (m, 6H), 0.94–0.90 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 160.4, 156.8, 151.2, 149.3, 149.0, 123.56, 123.49, 122.43, 122.32, 38.1, 33.29, 33.18; ¹¹B NMR (192 MHz, CDCl₃) δ -15.3 (s, 1B); HRMS (ESI): m/z calcd for C₂₆H₃₀BCl₂N₅Na [M+Na]⁺ 516.1869, found 516.1860.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-(2-(methoxycarbonyl)pyridin-4-yl)ethyl)(2-

(pyridin-4-yl)ethyl)borate (57)

Following the General Procedure C, 57 was afforded as a colorless oil (11.9 mg, 22%). ¹H NMR

(600 MHz, CDCl₃) δ 8.54 (d, *J* = 4.9 Hz, 2H), 8.42 (d, *J* = 5.3 Hz, 2H), 7.91 (s, 2H), 7.29–7.27 (m, 2H), 7.10 (d, *J* = 5.7 Hz, 2H), 6.62 (s, 2H), 4.00 (s, 6H), 3.76 (s, 6H), 2.50–2.45 (m, 4H), 2.40–2.36 (m, 2H), 0.99–0.94 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 158.3, 156.9, 149.36, 149.23, 147.4, 126.8, 124.9, 123.5, 122.2, 52.8, 38.1, 33.41, 33.30; ¹¹B NMR (192 MHz, CDCl₃) δ -15.2 (s, 1B); HRMS (ESI): *m/z* calcd for C₃₀H₃₇BN₅O₄ [M+H]⁺ 542.2939, found 542.2947.

(2-(2-Chloropyridin-4-yl)ethyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-(phenylsulfonyl)ethyl)(2-(pyridin-4-yl)ethyl)borate (58)

Following the **General Procedure C**, **58** was afforded as a colorless oil (19.8 mg, 38%). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, J = 4.6 Hz, 2H), 8.15 (d, J = 5.0 Hz, 1H), 7.93 (d, J = 7.3 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 2H), 6.98–6.95 (m, 3H), 6.89 (d, J = 5.1 Hz, 1H), 6.69 (s, 2H), 3.74 (s, 6H), 2.84–2.80 (m, 2H), 2.27–2.20 (m, 2H), 2.15–2.10 (m, 2H), 0.97–0.93 (m, 2H), 0.79–0.74 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 156.4, 151.2, 149.05, 149.03, 139.5, 133.2, 129.0, 128.2, 123.46, 123.43, 122.6, 122.3, 56.5, 38.2, 32.93, 32.78; ¹¹B NMR (192 MHz, CDCl₃) δ -15.5 (s, 1B); HRMS (ESI): *m/z* calcd for C₂₇H₃₃BClN₄O₂S [M+H]⁺ 523.2106, found 523.2109.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2-(methoxycarbonyl)pyridin-4-yl)ethyl)(2-(phenylsulfonyl)ethyl)(2-(pyridin-4-yl)ethyl)borate (59)

Following the **General Procedure C**, **59** was afforded as a colorless oil (24.6 mg, 45%). ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, *J* = 4.9 Hz, 1H), 8.38 (s, 1H), 7.93 (d, *J* = 7.7 Hz, 2H), 7.79 (s, 1H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 2H), 7.17–7.14 (m, 2H), 6.98 (s, 2H), 6.66 (s, 2H), 4.00 (s, 3H), 3.73 (s, 6H), 2.88–2.79 (m, 2H), 2.36–2.30 (m, 1H), 2.28–2.19 (m, 2H), 2.15–2.10 (m, 1H), 0.98–0.94 (m, 2H), 0.83–0.77 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 157.7, 156.6, 149.4, 149.0, 147.4, 139.5, 133.2, 129.0, 128.2, 126.7, 124.8, 123.5, 122.5, 56.5, 52.8, 38.2, 33.00, 32.95; ¹¹B NMR (192 MHz, CDCl₃) δ -15.3 (s, 1B); HRMS (ESI): *m/z* calcd for C₂₉H₃₅BN₄NaO₄S [M+Na]⁺ 569.2370, found 569.2371.

5. Transformations of the Products

2-(Pyridin-4-yl)ethan-1-ol (60)

To a solution of **4** (12.8 mg, 0.04 mmol) in MeOH/MeCN (v/v = 1:1, 2 mL) was added H₂O₂ (30% aq, 37 µL) at room temperature. The reaction mixture was stirred for 12 h and then quenched with saturated NH₄Cl (aq). The reaction mixture was extracted three times with ethyl acetate. The combined organic layer was washed with water and brine, dried over MgSO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to give **60** as a colorless oil (8.4 mg, 170% based on boron moiety). ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, *J* = 5.8 Hz, 2H), 7.18 (d, *J* = 5.8 Hz, 2H), 4.98 (s, 1H), 3.92 (t, *J* = 6.4 Hz, 2H), 2.88 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 149.5, 148.4, 124.5, 62.4, 38.4; HRMS (ESI): *m/z* calcd for C₇H₁₀NO [M+H]⁺ 124.0762, found 124.0757. The characterization data matched that reported in the literature.¹²

2-(2-Methoxypyridin-4-yl)ethan-1-ol (61)

61 was obtained from **6** (15.2 mg, 0.04 mmol) using the same experimental procedure as that for **60**. Colorless oil, 10.7 mg, 174% based on boron moiety. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 5.2 Hz, 1H), 6.76 (d, *J* = 5.2 Hz, 1H), 6.62 (s, 1H), 3.92 (s, 3H), 3.88 (t, *J* = 6.4 Hz, 2H), 2.82 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 164.5, 150.6, 146.8, 117.8, 111.0, 62.5, 53.4, 38.3; HRMS (ESI): *m/z* calcd for C₈H₁₂NO₂ [M+H]⁺ 154.0868, found 154.0864. The characterization data matched that reported in the literature.¹³

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)fluorobis(2-(pyridin-4-yl)ethyl)borate (62)

To a solution of **4** (25.6 mg, 0.08 mmol) in MeCN (1 mL) was added Selectfluor (31.9 mg, 0.09 mmol) at room temperature. The reaction mixture was stirred at room temperature for 5 h and then evaporated. The crude residue was purified by flash column chromatography to give **62** as a colorless oil (21.6 mg, 80%). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, *J* = 5.8 Hz, 4H), 7.06 (d, *J* = 5.8 Hz, 4H), 6.73 (s, 2H), 3.79 (s, 6H), 2.70–2.65 (m, 2H), 2.33–2.27 (m, 2H), 0.96–0.88 (m, 2H), 0.84–0.75 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 156.6, 149.1, 123.6, 121.7, 36.8 (d, *J* = 8.9 Hz), 32.1; ¹¹B NMR (192 MHz, CDCl₃) δ -2.5 (s); ¹⁹F NMR (564 MHz, CDCl₃) δ -150.78–-150.84 (m, 1F); HRMS (ESI): *m/z* calcd for C₁₉H₂₅BFN₄ [M+H]⁺ 339.2156, found 339.2157.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)fluorobis(2-(phenylsulfonyl)ethyl)borate (63)

63 was obtained from **19** (35.7 mg, 0.08 mmol) using the same experimental procedure as that for **62**. Colorless oil, 27.5 mg, 74%. ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.82 (m, 4H), 7.63–7.59 (m, 2H), 7.56–7.50 (m, 4H), 6.83 (s, 2H), 3.74 (s, 6H), 3.11–3.03 (m, 2H), 2.69–2.60 (m, 2H), 0.92–0.79 (m, 2H), 0.78–0.66 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 133.1, 129.0, 128.0, 122.4, 55.0, 37.0 (d, *J* = 8.6 Hz); ¹¹B NMR (192 MHz, CDCl₃) δ -1.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -151.89– - 151.95 (m, 1F); HRMS (ESI): *m/z* calcd for C₂₁H₂₆BFN₂NaO₄S₂ [M+Na]⁺ 487.1309, found 487.1309. 4-Phenethylpyridine (64)

A 10 mL Schlenk tube protected under nitrogen was charged with 4 (17.0 mg, 0.053 mmol), bromobenzene (23 µL, 0.21 mmol), PdCl₂(dppf) (3.8 mg, 10 mol%), K₃PO₄ (67.9 mg, 0.32 mmol), dry THF (1 mL) and H₂O (19 µL, 20 eq.). The mixture was stirred at 70 °C for 36 h, then diluted with ethyl acetate, and filtered on silica gel. The solvent was concentrated and purified by column chromatography on silica gel to afford **64** as a colorless oil (13.2 mg, 136% based on boron moiety). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (br s, 2H), 7.31–7.26 (m, 2H), 7.23–7.18 (m, 1H), 7.16–7.12 (m, 2H), 7.08 (d, *J* = 5.6 Hz, 2H), 2.93 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 149.5, 140.6, 128.43, 128.36, 126.2, 124.0, 37.0, 36.5. The characterization data matched that reported in the literature.¹⁴

Di-substituted borane **51** was used as the feedstock for Suzuki-type coupling reaction with bromobenzene using the same experimental procedure as above. Products **64** and **67** were detected with a ratio of 1/1 by GC-MS analysis in 112% yield based on boron. **67** was also observed by its crude ¹H NMR and HRMS (ESI): m/z calcd for C₁₄H₁₆N [M+H]⁺ 198.1283, found 198.1275.

Figure S2. HRMS data of 67

6. Preliminary Mechanistic Study

Radical capture experiment

The radical capture TEMPO could totally inhibit the formation of di-substituted product **4**, and HRMS analysis of the crude reaction mixture obviously showed the peak assigned to the radical adduct **65**, indicating the involvement of boryl radicals in the reaction pathway.

Radical clock experiment

The use of radical clock substrate (1-cyclopropylvinyl)benzene only afforded the ring-opened products **66** in 39% yield, further implying that a radical pathway was involved in this transformation.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)bis(2-phenylpent-2-en-1-yl)hydroborate (66)

The presence of new vinyl protons and their splitting patterns in the ¹H NMR spectrum showed that a mixture of isomers was obtained after flash column chromatography, confirming the formation of ring opening products **66**. The characterization data were given for the mixture of isomers. Colorless oil, 15.5 mg, 39%; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.27 (m, 1H), 7.12–7.05 (m, 5H), 7.04–6.95 (m, 3H), 6.88–6.81 (m, 2H), 6.37–6.29 (m, 1H), 5.16–5.00 (m, 2H), 3.30–3.15 (m, 6H), 2.36–1.86 (m, 6H), 1.82–1.74 (m, 2H), 1.00–0.93 (m, 3H), 0.82–0.75 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 128.05/127.99, 127.23/127.17, 127.0, 126.32/126.15, 125.0, 124.2, 119.8, 35.8, 22.23/21.82/21.78, 15.3/14.7; ¹¹B NMR (128 MHz, CDCl₃) δ -19.0–-20.4 (m); HRMS (ESI): *m/z* calcd for C₂₇H₃₅BKN₂ [M+K]⁺ 437.2530, found 437.2530.

Deuterium labeling experiment

Deuterated NHC-borane **1-d**₃ was used to conduct the disubstitution reaction under the standard conditions A. The desired di-substituted product **4-d**₁ was obtained in 43% yield after flash column chromatography, without deuteration at the β -position of boron atom as shown by ¹H NMR.

Figure S5. ¹¹B NMR spectrum of 4-d₁

Figure S6. HRMS data of 4-d1

KIE determination

In a glovebox, a 10 mL seal tube equipped with a magnetic stir bar was added NHC-BH₃ (8.2 mg, 0.075 mmol), NHC-BD₃ (8.2 mg, 0.075 mmol), 4-vinylpyridine (10.5 mg, 0.1 mmol), TBADT (3.3 mg, 0.001 mmol), Ph₃CSH (5.5 mg, 0.02 mmol) and extra dry DMA (1 mL). The resulting mixture was then taken out of the glove box and stirred under irradiation of 390 nm LED (75 W) for 2 h at room temperature. The reaction was quenched with water and extracted with ethyl acetate. The combined organic layer was washed with water and brine, dried over MgSO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to give a 1.1 mg mixture of **3** and **3-d**₂ with a ratio of 1:1 (determined by ¹¹B-decoupled ¹H NMR) in 5% yield.

Figure S7. ¹¹B-decoupled ¹H NMR spectrum of a mixture of 3/3-d₂

The designed reactions were set up by adding 10 or 50 equiv. of D₂O to the reaction mixture under the standard conditions B. The mono-substituted product **3-d**₁ was analyzed by ¹H NMR, indicating 50% and 80% deuteration of one of the β -hydrogens, respectively.

Figure S9. ¹H NMR spectrum of 3-d₁ when adding 50 equiv. of D₂O

In a glovebox, a 10 mL seal tube equipped with a magnetic stir bar was added extra dry DMA (8.7 mg, 0.1 mmol), TBADT (3.3 mg, 0.001 mmol), Ph₃CSH (5.5 mg, 0.02 mmol), 50 equiv. of D₂O and extra dry MeCN (1 mL). The reaction was then taken out of the glove box and stirred under irradiation of 390 nm LED (75 W) for 48 h at room temperature. The resulting reaction mixture was concentrated and analyzed by crude ¹H NMR, indicating 60% deuteration of two methyl groups bonded with nitrogen in DMA, evidencing the H/D exchange between DMA and D-thiol, originating from the H/D exchange between thiol and D₂O.

Figure S11. Crude ¹H NMR spectrum of DMA-d

Light on/off experiments

Light on/off experiments of monosubstitution reaction were set up parallel on a 0.1 mmol scale according to the standard conditions B. After being irradiated for 1 h, one light-on reaction stopped, and another reaction continued stirring for 1 h in the dark. Both of their yields were analyzed in the identical way (determined by ¹H NMR using CH₂Br₂ as the internal standard). The results suggested the continuation of coupling reaction in the dark, supporting the HAT reaction between thiyl radical and borane as well as the involvement of a radical chain pathway.

Scheme S2. Light on/off experiments

7. NMR Spectra

¹H NMR (CDCl₃, 600 MHz) spectrum of $\mathbf{3}$

¹³C NMR (CDCl₃, 150 MHz) spectrum of **4**

¹H NMR (CDCl₃, 600 MHz) spectrum of **5**

¹¹B NMR (CDCl₃, 192 MHz) spectrum of **5**

^{13}C NMR (CDCl₃, 150 MHz) spectrum of **6**

¹H NMR (CDCl₃, 600 MHz) spectrum of **7**

¹¹B NMR (CDCl₃, 192 MHz) spectrum of 7

^{13}C NMR (CDCl₃, 150 MHz) spectrum of $\boldsymbol{8}$

¹⁹F NMR (CDCl₃, 564 MHz) spectrum of **9**

^{13}C NMR (CDCl₃, 150 MHz) spectrum of 10

¹H NMR (CDCl₃, 600 MHz) spectrum of **11**

¹¹B NMR (CDCl₃, 192 MHz) spectrum of 11

¹H NMR (CDCl₃, 400 MHz) spectrum of **12**

¹¹B NMR (CDCl₃, 192 MHz) spectrum of **12**

one pair of diastereomers

¹³C NMR (CDCl₃, 150 MHz) spectrum of **13**

two pairs of diastereomers

¹¹B NMR (CDCl₃, 192 MHz) spectrum of 13

S77

¹¹B NMR (CDCl₃, 192 MHz) spectrum of **17**

S80

¹¹B NMR (CDCl₃, 192 MHz) spectrum of **22**

three pairs of diastereomers

three pairs of diastereomers

¹H NMR (CDCl₃, 400 MHz) spectrum of **24**

three pairs of diastereomers

S101

7.7.258
7.7.278
7.7.278
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7.271
7.7

¹¹B NMR (CDCl₃, 192 MHz) spectrum of 36

0

¹H NMR (CDCl₃, 400 MHz) spectrum of **37**

¹¹B NMR (CDCl₃, 128 MHz) spectrum of **37**

. ''',

н

¹³C NMR (CDCl₃, 100 MHz) spectrum of **38**

¹H NMR (CDCl₃, 400 MHz) spectrum of **39**

¹H NMR (CDCl₃, 400 MHz) spectrum of 40

¹³C NMR (CDCl₃, 150 MHz) spectrum of **41**

1 H NMR (CDCl₃, 600 MHz) spectrum of 42

¹³C NMR (CDCl₃, 150 MHz) spectrum of **43**

 1 H NMR (CDCl₃, 600 MHz) spectrum of 44

¹H NMR (CDCl₃, 600 MHz) spectrum of 46

2:06

6.02

3.04

 1 H NMR (CDCl₃, 400 MHz) spectrum of **48**

¹¹B NMR (CDCl₃, 192 MHz) spectrum of **50**

MeO₂C

NHC-BH₂

¹³C NMR (CDCl₃, 150 MHz) spectrum of **51**

¹H NMR (CDCl₃, 400 MHz) spectrum of **52**

¹³C NMR (CDCl₃, 150 MHz) spectrum of **53**

¹H NMR (CDCl₃, 600 MHz) spectrum of **55**

^{13}C NMR (CDCl₃, 150 MHz) spectrum of $\mathbf{56}$

¹H NMR (CDCl₃, 600 MHz) spectrum of **57**

¹H NMR (CDCl₃, 600 MHz) spectrum of **59**

¹¹B NMR (CDCl₃, 192 MHz) spectrum of **59**

^{13}C NMR (CDCl₃, 150 MHz) spectrum of **60**

S148

^{13}C NMR (CDCl₃, 150 MHz) spectrum of **62**

~-151.896 ~-151.948

¹³C NMR (CDCl₃, 150 MHz) spectrum of **66**

¹¹B NMR (CDCl₃, 192 MHz) spectrum of 66

/--19.022 ----19.809 /--20.367

¹¹B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for 3

	_
6 6	550
m 0.	0110
8.8	
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
<u>'i 'i</u>	
i j	Ú Í Í
$\langle \rangle$	
11	111

-20

-25

-30

-35

-40

-45

-50

–55 ppm

15

10

5

0

-5

-10

-15

 11 B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for **11**

~-21.114 ~-21.499

 ^{11}B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for 12

~-13.019 ~-13.456

 ^{11}B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for 14

 11 B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for **21**

S167

~-17.382 ~-17.854

-15.072
-15.443

 ^{11}B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for **41**

 ^{11}B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for **47**

 ^{11}B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for **49** and **50**

 11 B NMR (CDCl₃, 192 MHz) spectrum of the crude reaction mixture for **59**

8. References

(1) Gardner, S.; Kawamoto, T.; Curran, D. P. Synthesis of 1,3-Dialkylimidazol-2-ylidene Boranes from 1,3-Dialkylimidazolium Iodides and Sodium Borohydride. *J. Org. Chem.* **2015**, *80*, 9794 – 9797.

(2) (a) Yang, C.-T.; Han, J.; Liu, J.; Li, Y.; Zhang, F.; Yu, H.-Z.; Hu, S.; Wang, X. Pd-Catalyzed Vinylation of Aryl Halides with Inexpensive Organosilicon Reagents Under Mild Conditions. *Chem. Eur. J.* 2018, *24*, 10324–10328. (b) Zhang, Y.; Pavlova, O. A.; Chefer, S. I.; Hall, A. W.; Kurian, V.; Brown, L. L.; Kimes, A. S.; Mukhin, A. G.; Horti, A. G. 5-Substituted Derivatives of 6-Halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-Halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with Low Picomolar Affinity for α4β2 Nicotinic Acetylcholine Receptor and Wide Range of Lipophilicity: Potential Probes for Imaging with Positron Emission Tomography. *J. Med. Chem.* 2004, *47*, 2453–2465.
(3) Liu, J.; Yi, H.; Zhang, X.; Liu, C.; Liu, R.; Zhang, G.; Lei, A. Copper-catalysed Oxidative Csp³–H Methylenation to Terminal Olefins Using DMF. *Chem. Commun.* 2014, *50*, 7636–7638.

(4) Liu, X.; Liu, S.; Wang, Q.; Zhou, G.; Yao, L.; Ouyang, Q.; Jiang, R.; Lan, Y.; Chen, W. Highly Regio- and Enantioselective Hydrogenation of Conjugated α-Substituted Dienoic Acids. *Org. Lett.* **2020**, *22*, 3149–3154.

(5) Smith, A. B.; Liu, Z. Total Synthesis of (-)-Aplaminal. Org. Lett. 2008, 10, 4363-4365.

(6) Liu, X.; Liu, R.; Qiu, J.; Cheng, X.; Li, G. Chemical-Reductant-Free Electrochemical Deuteration Reaction using Deuterium Oxide. *Angew. Chem. Int. Ed.* **2020**, *59*, 13962–13967.

(7) Wang, M.-L.; Xu, H.; Li, H.-Y.; Ma, B.; Wang, Z.-Y.; Wang, X.; Dai, H.-X. Mizoroki–Heck Reaction of Unstrained Aryl Ketones via Ligand-Promoted C–C Bond Olefination. *Org. Lett.* **2021**, *23*, 2147–2152.

(8) Ren, S.-C.; Zhang, F.-L.; Xu, A.-Q.; Yang, Y.; Zheng, M.; Zhou, X.; Fu, Y.; Wang, Y.-F. Regioselective Radical α-Borylation of α, β-Unsaturated Carbonyl CCompounds for Direct Synthesis of α-Borylcarbonyl Molecules. *Nat. Commun.* 2019, *10*, 1934.

(9) Liu, X.; Shen, Y.; Lu, C.; Jian, Y.; Xia, S.; Gao, Z.; Zheng, Y.; An, Y.; Wang, Y. Visible-light-driven PhSSPh-Catalysed Regioselective Hydroborylation of α,β-Unsaturated Carbonyl Compounds with NHC-Boranes. *Chem. Commun.* 2022, *58*, 8380–8383.

(10) Li, G.; Huang, G.; Sun, R.; Curran, D. P.; Dai, W. Regioselective Radical Borylation of α,β-Unsaturated Esters and Related Compounds by Visible Light Irradiation with an Organic Photocatalyst. *Org. Lett.* **2021**, *23*, 4353–4357.

(11) Zhu, C.; Dong, J.; Liu, X.; Gao, L.; Zhao, Y.; Xie, J.; Li, S.; Zhu, C. Photoredox-Controlled β-Regioselective Radical
 Hydroboration of Activated Alkenes with NHC-Boranes. *Angew. Chem. Int. Ed.* 2020, *59*, 12817–12821.

(12) Seath, C. P.; Vogt, D. B.; Xu, Z.; Boyington, A. J.; Jui, N. T. Radical Hydroarylation of Functionalized Olefins and

Mechanistic Investigation of Photocatalytic Pyridyl Radical Reactions. J. Am. Chem. Soc. 2018, 140, 15525-15534.

(13) Wei, Z.-L.; Petukhov, P. A.; Xiao, Y.; Tückmantel, W.; George, C.; Kellar, K. J.; Kozikowski, A. P. Synthesis, Nicotinic Acetylcholine Receptor Binding Affinities, and Molecular Modeling of Constrained Epibatidine Analogues. *J. Med. Chem.* **2003**, *46*, 921–924.

(14) Onoda, M.; Fujita, K. Iridium-Catalyzed C-Alkylation of Methyl Group on N-Heteroaromatic Compounds using Alcohols. *Org. Lett.* **2020**, *22*, 7295–7299.