Supporting Information for

Super Silyl-Based Stable Protecting Groups for Both the C- and N-Terminals of
\section*{Peptides: Applied as Effective Hydrophobic Tags in Liquid-Phase Peptide Synthesis}
An Wu* and Hisashi Yamamoto*
*Corresponding authors. Email: awuad@isc.chubu.ac.jp (A. W.)
hyamamoto@isc.chubu.ac.jp (H. Y.)
Peptide Research Center, Chubu University,
1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan

This PDF file includes:

Materials and Method
References
HPLC Spectra
NMR Spectra

Table of Contents

I. General information S2
II. Preparation of building blocks for peptide elongation S3
III. Test of TAG1 S7
IV. Synthesis of TAG2 and test S10
V. Synthesis of TAG3 and test S15
VI. Synthesis of TAG4 and test S20
VII. Comparison of short alanine chains with TAG4 and \boldsymbol{t}-Bu as protecting groups S25
VIII. Installing TAG2 at the C-terminal starting from dipeptide S28
IX. Solubility comparison of the of the tagged peptides in CPME S30
X. Super silyl tags at the N-terminal S32
XI. Convergent synthesis of a pentapeptide S43
XII. Convergent synthesis of Nelipepimut-S with Fmoc-chemistry. S47
XIII. Synthesis of TAG8 S54
XIV. Synthesis of TAG9 and test S55
XV. Development of TAG10 and test S58
XVI. Synthesis of protected Nelipepimut-S with TAG10 in Boc-chemistry S67
XVII. References S70HPLC and NMR data

I. General information

NMR spectra were recorded on a JEOL 400SS spectrometer operating at 400 MHz and 100 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ acquisitions, respectively. Chemical shifts are reported in ppm with a solvent resonance as an internal standard (${ }^{1} \mathrm{H}$ NMR: tetramethylsilane, CDCl_{3} and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ as internal standards, indicating $0,7.26$ and 11.50 ppm , respectively. ${ }^{13} \mathrm{C} \mathrm{NMR:} \mathrm{CDCl}_{3}$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ as internal standards, indicating 77.0 and 116.6 ppm , respectively). Data is reported as follows: $\mathrm{s}=$ singlet, $\mathrm{br}=$ broad, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{sep}=$ septet, $\mathrm{m}=$ multiplet; coupling constants in Hz ; integration. FT-IR spectra were recorded with a Bruker ALPHA (Eco-ATR) spectrometer. MS spectra were recorded with a JEOL JMST100CS "AccuTOF CS" mass spectrometer with electrospray ionization time-of flight (ESITOF) for HRMS measurements. Peptide purity was determined by reversed-phase high performance liquid chromatography (RP-HPLC) using an Agilent Technologies 1220 Infinity LC and ODS-HL column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) from GL Siences Inc., XSelect CSH C18 column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 50 \mathrm{~mm}$) from Waters. TLC analysis was performed on commercial glass plates bearing a 0.25 mm layer of Merck KGaA TLC silica gel 60 F254. Silica gel chromatography was carried out Merck KGaA silica gel 60 (230-400 mesh ASTM). Dry solvents, DCM, THF and CHCl_{3}, were purchased from FUJIFILM Wako Pure Chemical Co. and Sigma-Aldrich Co. LLC. These solvents were used without further treatment. Amino acids and their derivatives were purchased from Sigma-Aldrich Co. LLC., Watanabe Chemical Ind., Ltd., Tokyo Chemical Industry Co., Ltd., Combi-Blocks, Inc., Chem-Impex Int'l Inc., and Fluorochem Ltd. Triethyl amine were purchased from FUJIFILM Wako Pure Chemical Co. Tris(triethylsilyl)silane, trichloro(phenyl)silane and Li were purchased from Sigma-Aldrich Co LLC.. Chlorotrihexylsilane, pentafluorophenol, triflic acid, 5-oxohexanoic acid and 1methylimidazole were purchased from Tokyo Chemical Industry Co., Ltd. Amberlyst ${ }^{\mathrm{TM}}$ A21 was purchased from Sigma-Aldrich Co. LLC.

II. Preparation of building blocks for peptide elongation

The following active amino acid esters and neutralized amino acids were used in this project.

Synthesis of active amino acid esters.

Cbz-Ala-ONp
4-Nitrophenyl ((benzyloxy)carbonyl)-L-alaninate (Fmoc-Ala-ONp) was purchased from Chem-Impex Int' 1 Inc.

Perfluorophenyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-alaninate (Fmoc-Ala-OPfp) was prepared according to the procedure in the literatures. ${ }^{[1,2]}$.

Perfluorophenyl (($\mathbf{9 H}$-fluoren-9-yl)methoxy)carbonyl)-L-phenylalaninate (Fmoc-PheOPfp) At room temperature, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and Fmoc-Phe-OH ($1.94 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (25 mL). The thionyl chloride ($2.9 \mathrm{~mL}, 40.0 \mathrm{mmol}, 8.0$ equiv) was added. The resulting mixture was stirred under room temperature for 3 days. After completion, the reaction mixture was concentrated. The residue was dissolved in dichloromethane and the solvent was remove in vасиo. This step was repeated for another three times to remove the excess thionyl chloride. The product Fmoc-Phe-Cl was obtained in 98% yield (1.99 g).
At $0^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and Fmoc-Phe-CI ($4.06 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) was added pentafluorophenol ($3.68 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ equiv) and dichloromethane (60 mL). The N-methylmorpholine ($1.31 \mathrm{~mL}, 12.0 \mathrm{mmol}, 1.2$ equiv) was added dropwise. The resulting mixture was stirred overnight. After completion, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (50 mL) was added. The layers were separated. The aqueous layer was extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/ $\mathrm{EtOAc} / \mathrm{CHCl}_{3}=4: 1: 0$ to 1:1:0 to $1: 3: 1$) to afford the product Fmoc-Phe-OPfp as a white solid in 70% yield (3.9 g). It is a known compound. The characterization data match the reported data. ${ }^{[3]}$

Perfluorophenyl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-leucinate (Fmoc-Leu-OPfp) At room temperature, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Fmoc-Leu-OH ($1.06 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (30 mL). The Ghosez's reagent ($436.6 \mu \mathrm{~L}, 3.3 \mathrm{mmol}$, 1.1 equiv) was added. The resulting mixture was stirred under room temperature. After 2 h , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. The pentafluorophenol ($828.3 \mathrm{mg}, 4.5 \mathrm{mmol}, 1.5$ equiv) was added, followed by adding N -
methylmorpholine ($494.8 \mu \mathrm{~L}, 4.5 \mathrm{mmol}, 1.5$ equiv). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 17 h . After completion, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(30 \mathrm{~mL})$ was added, and the layers were separated. The aqueous layer was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were added 100 mL saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to wash again. The layers were separated, and the aqueous layer was extracted with dichloromethane ($3 \times 70 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc/DCM $=5: 1: 1$) to afford the product Fmoc-Leu-OPfp as a white solid in 88% yield (1.37 g). It is a known compound. ${ }^{[4]}$

Fmoc-Ser(t-Bu)-OH

Perfluorophenyl N -(((9H-fluoren-9-yl)methoxy)carbonyl)-O-(tert-butyl)-L-serinate

 (Fmoc-Ser $\left(\boldsymbol{t}\right.$-Bu)-OPfp) At room temperature, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and $\mathbf{F m o c - S e r}(\boldsymbol{t}-\mathbf{B u})-\mathbf{O H}(1.92 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (50 mL). The Ghosez's reagent ($727.6 \mu \mathrm{~L}, 5.5 \mathrm{mmol}, 1.1$ equiv) was added. The resulting mixture was stirred under room temperature. After 2 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. The pentafluorophenol ($1.38 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.5$ equiv) was added, followed by adding N-methylmorpholine ($824.6 \mu \mathrm{~L}, 7.5 \mathrm{mmol}, 1.5$ equiv). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 h . After completion, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (30 mL) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were added 100 mL saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to wash again. The layers were separated, and the aqueous layer was extracted with dichloromethane $(3 \times 70 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc/DCM = 5:1:1) to afford the product Fmoc-Ser $(\boldsymbol{t}$-Bu)-OPfp as a white solid in 94% yield (2.58 g). It is a known compound. The characterization data match the reported data. ${ }^{[3]}$

Perfluorophenyl (($\mathbf{9 H}$-fluoren-9-yl)methoxy)carbonyl)glycinate (Fmoc-Gly-OPfp) At room temperature, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and Fmoc-Gly-OH ($1.49 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv, made into powder) was added dichloromethane (25 mL). The thionyl chloride ($2.9 \mathrm{~mL}, 40.0 \mathrm{mmol}, 8.0$ equiv) was added. The resulting mixture was stirred under room temperature for 35 h . After completion, the reaction mixture was concentrated. The residue was dissolved in dichloromethane and the solvent was remove in vacuo. This step was repeated for another three times to remove the excess thionyl chloride. The product Fmoc-Gly-Cl was obtained in 97% yield (1.53 g). At $0^{\circ} \mathrm{C}$, under N 2 , to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and Fmoc-Gly-Cl ($3.16 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) was added pentafluorophenol ($3.68 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ equiv) and dichloromethane (60 mL). The N-methylmorpholine ($1.31 \mathrm{~mL}, 12.0 \mathrm{mmol}, 1.2$ equiv) was added dropwise. The resulting mixture was stirred overnight. After completion, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (50 mL) was added. The layers were separated. The aqueous layer was extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/ $\mathrm{EtOAc} / \mathrm{CHCl}_{3}=4: 1: 0$ to 1:1:0 to 1:3:1) to afford the product Fmoc-Gly-OPfp as a white solid in 60% yield (2.78 g). [Note: The purification by chromatography should be separated for 2~3 times because of easily solidification on the column.] It is a known compound. The characterization data match the reported data. ${ }^{[5]}$

Neutralization of amino acid $\mathbf{H C l}$ salts.

H-Ala-Ot-Bu, H-Phe-OMe, H-Phe-OBn, H-Lys(Boc)-OBn and H-Leu-Ot-Bu were neutralized from the HCl salts with Amberlyst ${ }^{\mathrm{TM}} \mathrm{A} 21$ according to the procedure in the literatures. ${ }^{[6,7]}$

Boc-Lys-OBn was neutralized from the TsOH salts with Amberlyst ${ }^{\mathrm{TM}} \mathrm{A} 21$ according to the procedure in the literatures. ${ }^{[6,7]}$

III. Test of TAG1

Esterification test.

1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl (tert-butoxycarbonyl)-L-alaninate (Boc-Ala-OTAG1) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (15 mL) was added triflic acid $(442.4 \mu \mathrm{~L}, 5.0 \mathrm{mmol}, 1.0$ equiv). The tris(triethylsilyl)silane ($1.87 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred for 1 h . Then, mixed Boc-Ala-OH ($946.05 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) and 1methylimidazole ($592.1 \mu \mathrm{~L}, 7.5 \mathrm{mmol}$, 1.5 equiv) in dichloromethane (3 mL) in a flame-dried vial. The mixture in the vial was added into the reaction flask slowly. After stirring under room temperature for 3 h , the reaction mixture was diluted with hexanes, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=30: 1$) to afford the product Boc-Ala-OTAG1 as a colorless oil in 82% yield (2.31 g).
$\mathrm{Rf}=0.16$ (hexanes/EtOAc $=20: 1$).
$[\alpha] \mathrm{D}^{25}=-0.94\left(c 1.06, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.13(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.32$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 27 \mathrm{H}), 0.84-0.74(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.6,154.9,79.4,50.3,28.3,18.8,8.5,5.0$.
IR (neat) 2952, 2908, 2875, 1702, 1496, 1454, 1366, 1345, 1214, $1163 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{59} \mathrm{NO}_{4} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 584.3419$, Found: 584.3382.

1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl ((9 H -fluoren-9-yl)methoxy)carbonyl)-L-alaninate (Fmoc-Ala-OTAG1) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (3 mL) was added triflic acid ($88.5 \mu \mathrm{~L}, 1.0$ mmol, 1.0 equiv). The tris(triethylsilyl)silane ($422.7 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred for 1 h . Then, mixed Fmoc-Ala-OH ($311.3 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and

1-methylimidazole ($118.4 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 1.5$ equiv) in dichloromethane (1 mL) in a flamedried vial. The mixture in the vial was added into the reaction flask slowly. After stirring under room temperature for 16 h , the reaction mixture was diluted with hexanes, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=40: 1$ to $25: 1$) to afford the product Fmoc-Ala-OTAG1 as a colorless oil in 73% yield (502.0 mg).
$\mathrm{Rf}=0.11$ (hexanes/EtOAc $=20: 1$).
$[\alpha]_{\mathrm{D}}{ }^{22}=-2.91\left(c 1.03, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.19(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-0.99(\mathrm{~m}, 27 \mathrm{H}), 0.87-0.78(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,155.4,144.0,143.8,141.3,127.6,127.0,125.2,125.1$, 119.9, 66.9, 50.8, 47.1, 18.9, 8.5, 5.0.

IR (neat) 2951, 2907, 2874, 1700, 1503, 1450, 1415, 1377, 1339, 1311, 1209, $1072 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{61} \mathrm{NO}_{4} \mathrm{Si4Na}[\mathrm{M}+\mathrm{Na}]^{+}: 706.3575$, Found: 706.3613.

Tolerance test.

1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl L-alaninate (H-Ala-OTAG1) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Boc-Ala-OTAG1 ($561.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added hydrochloric acid solution (4.0 M in dioxane, $2.0 \mathrm{~mL}, 8.0 \mathrm{mmol}, 8.0$ equiv). The reaction was stirred at room temperature for 20 h . Then, 5 mL EtOAc and 10 mL saturated NaHCO_{3} solution were added, and the layers were separated. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. No product H-AlaOTAG1 was detected from the crude ${ }^{1} \mathrm{H}$ NMR of the residue.

1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl L-alaninate (H-Ala-OTAG1) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Fmoc-Ala-OTAG1 ($718.4 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (1.0 mL). The diethylamine ($517.3 \mu \mathrm{~L}, 5.0 \mathrm{mmol}, 4.8$ equiv) was added. The reaction was stirred at room temperature for 3 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=10: 1$ to $4: 1$) to afford the product H-Ala-OTAG1 as a white solid in 33% yield (158.0 mg).
$R f=0.16$ (hexanes $/ E t O A c=5: 1$).
M.p. $88-90^{\circ} \mathrm{C}$.
$[\alpha] \mathrm{D}^{27}=+5.50\left(c 1.09, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-0.96$ (m, 27H), $0.86-0.74(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.1,51.3,20.5,8.5,5.0$.
IR (neat) 2951, 2908, 2874, 1702, 1458, 1415, 1376, 1234, 1198, $1142 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{51} \mathrm{NO}_{2} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 484.2895$, Found: 484.2922.

IV. Synthesis of TAG2 and test

Synthesis of TAG2.

1,1,1,3,3,3-Hexahexyl-2-phenyl-2-(trihexylsilyl)trisilane (PhTAG2) At room temperature, under N_{2}, to a flame-dried flask charged with Li (granular, $388.6 \mathrm{mg}, 56.0 \mathrm{mmol}, 8.0$ equiv) was added tetrahydrofuran (50 mL). The trichloro(phenyl)silane ($1.12 \mathrm{~mL}, 7.0 \mathrm{mmol}, 1.0$ equiv) and chlorotrihexylsilane ($8.2 \mathrm{~mL}, 22.4 \mathrm{mmol}, 3.2$ equiv) were added together. The reaction was stirred at room temperature for 2~4 days. [Note: the mixture should turn dark brown within 24 h like the above figure. If not, more Li (1~2 equiv) should be added and ultrasonication (3~5 min, then stirred under r.t.) could also give an assistance. In a few cases, the colour did not change to dark brown, but the reaction still proceeded just with lower yields. The reaction was monitored by ${ }^{1} H N M R$.] Then, the reaction mixture was poured into a separation funnel charged with 100 mL hexanes and 50 mL water. The layers were separated. The aqueous layer was extracted with hexanes ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product PhTAG2 as a colorless oil in 87% yield with impurities (5.84 g , ca. $60 \% \sim 70 \%$ purity). [Note: The purification by chromatography should be repeated for several times to make the peaks of impurities in ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ $0.70-0.45$) as low as possible.] The product was put into next steps without further purification. Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data and structure of installed compounds support it.
$R f=0.88$ (100% hexanes).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 72 \mathrm{H})$, $0.93-0.83(\mathrm{~m}, 27 \mathrm{H}), 0.80-0.71(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.2, 137.1, 127.1, 126.8, 33.9, 31.6, 25.1, 22.7, 15.2, 14.1. IR (neat) 2956, 2919, 2871, 2853, 1465, 1377, $1182 \mathrm{~cm}^{-1}$.

Esterification test.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl
(tert-butoxycarbonyl)-L-alaninate
(Boc-Ala-OTAG2) At $0^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (1.0 mL) was added PhTAG2 ($392.0 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.36$ equiv). The triflic acid ($36.3 \mu \mathrm{~L}, 0.41 \mathrm{mmol}, 1.36$ equiv) was added. The reaction was stirred under room temperature for 17 h . Then, mixed Boc-Ala-OH ($56.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) and 1-methylimidazole ($40.3 \mu \mathrm{~L}, 0.51 \mathrm{mmol}, 1.7$ equiv) in dichloromethane (0.5 mL) in a flame-dried vial. The mixture in the vial was added into the reaction flask slowly. After 28 h , the reaction mixture was diluted with hexanes, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=80: 1$) to afford the product Boc-Ala-OTAG2 as a pale yellow oil in 63% yield (202.0 mg).
$\mathrm{Rf}=0.43$ (hexanes/EtOAc $=20: 1$).
$[\alpha] \mathrm{D}^{26}=-5.00\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.09(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.37$

- $1.24(\mathrm{~m}, 75 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 27 \mathrm{H}), 0.78-0.48(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,154.8,79.3,50.4,33.9,31.6,28.3,25.0,22.7,19.0$, 14.11, 14.05.

IR (neat) 2956, 2919, 2871, 2854, 1724, 1703, 1495, 1456, 1377, 1367, 1344, 1216, $1167 \mathrm{~cm}^{-}$ 1

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl (((9H-fluoren-9-yl)methoxy)carbonyl)-L-alaninate (Fmoc-Ala-OTAG2) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (1.0 mL) was added PhTAG2 (392.0 mg , $0.41 \mathrm{mmol}, 1.36$ equiv). The triflic acid ($36.3 \mu \mathrm{~L}, 0.41 \mathrm{mmol}, 1.36$ equiv) was added. The reaction was stirred under room temperature for 17 h . Then, mixed Fmoc-Ala-OH (93.4 mg , $0.30 \mathrm{mmol}, 1.0$ equiv) and 1 -methylimidazole ($40.3 \mu \mathrm{~L}, 0.51 \mathrm{mmol}, 1.7$ equiv) in dichloromethane $(0.5 \mathrm{~mL})$ in a flame-dried vial. The mixture in the vial was added into the
reaction flask slowly. After 28 h , the reaction mixture was diluted with hexanes, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes $/ E t O A c=80: 1$) to afford the product Fmoc-Ala-OTAG2 as a pale yellow oil in 64% yield (229.0 mg).
$\mathrm{Rf}=0.37$ (hexanes/EtOAc $=20: 1$).
$[\alpha]_{\mathrm{D}}{ }^{24}=+0.97\left(c 1.03, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}$, 2 H), $7.35-7.28$ (m, 2H), 5.57 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.46-4.17$ (m, 4H), 1.41 (d, $J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.39-1.21(\mathrm{~m}, 72 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 27 \mathrm{H}), 0.83-0.53(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0,155.3,144.1,143.9,141.30,141.26,127.6,127.0,125.2$, 125.1, 119.9, 66.9, 50.8, 47.2, 33.9, 31.6, 25.0, 22.7, 19.0, 14.11, 14.07.

IR (neat) 2956, 2920, 2854, 1732, 1704, 1503, 1451, 1378, 1339, 1209, $1185 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{72} \mathrm{H}_{133} \mathrm{NO}_{4} \mathrm{Si} \mathrm{S}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1210.9209$, Found: 1210.9189.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsily)trisilan-2-yl
((benzyloxy)carbonyl)-L-alaninate (Cbz-Ala-OTAG2) At $0^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (3.0 mL) was added PhTAG2 $(669.2 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.4$ equiv). The triflic acid ($61.9 \mu \mathrm{~L}, 0.70 \mathrm{mmol}, 1.4$ equiv) was added. The reaction was stirred under room temperature for 15 h . Then, mixed Cbz-Ala-OH ($111.6 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 1-methylimidazole ($67.1 \mu \mathrm{~L}, 0.85 \mathrm{mmol}, 1.7$ equiv) in dichloromethane (1.0 mL) in a flame-dried vial. The mixture in the vial was added into the reaction flask slowly. After 24 h , the reaction mixture was diluted with hexanes, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes $/ \mathrm{EtOAc}=80: 1$) to afford the product Cbz-Ala-OTAG2 as a colorless oil in 87% yield (476.3 mg).
$\mathrm{Rf}=0.39$ (hexanes/EtOAc $=20: 1$).
$[\alpha]_{\mathrm{D}}{ }^{24}=+6.55\left(c 1.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-4.96(\mathrm{~m}$, $2 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 72 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 27 \mathrm{H})$, $0.78-0.53(\mathrm{~m}, 18 \mathrm{H})$.

```
\mp@subsup{}{}{13}\mathbf{C NMR (100 MHz, CDCl}3) \delta 173.8, 155.2, 136.5, 128.5, 128.02, 127.96, 66.6, 50.8, 33.9,
31.6, 25.0, 22.7, 19.0, 14.1, 14.0.
IR (neat) 2956, 2920, 2871, 2854, 1733, 1704, 1500, 1455, 1378, 1340, 1311, 1208, 1184 cm- 1.
```

HRMS (ESI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{129} \mathrm{NO}_{4} \mathrm{Si} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1122.8896$, Found: 1122.8908.

Tolerance test.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl L-alaninate (H-Ala-OTAG2) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Boc-Ala-OTAG2 ($53.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (0.3 mL). The hydrochloric acid solution (4.0 M in dioxane, $0.10 \mathrm{~mL}, 0.40 \mathrm{mmol}, 8.0$ equiv) was added. The reaction was stirred at room temperature for 6 h . Then, 5 mL dichloromethane and 5 mL saturated NaHCO_{3} solution were added, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. No product H-Ala-OTAG2 was detected from the crude ${ }^{1} \mathrm{H}$ NMR of the residue.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl L-alaninate (H-Ala-OTAG2) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and Fmoc-Ala-OTAG2 ($163.3 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (0.3 mL). The diethylamine ($141.7 \mu \mathrm{~L}, 1.4 \mathrm{mmol}, 10.0$ equiv) was added. The reaction was stirred at room temperature for 15.5 h . After completion, 5 mL dichloromethane and 5 mL water were added, and the layers were separated. The aqueous layer was extracted with dichloromethane (3×5 mL). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=50: 1$ to 25:1) to afford the product H-Ala-OTAG2 as a colorless oil in 75% yield (100.2 mg).
$\mathrm{Rf}=0.19$ (hexanes/EtOAc $=20: 1$).
$[\alpha]{ }_{\mathrm{D}}{ }^{27}=+10.78\left(c 1.02, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 75 \mathrm{H}), 0.93-0.84(\mathrm{~m}$, $27 \mathrm{H}), 0.79-0.52(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.0,51.4,33.9,31.6,25.0,22.7,20.4,14.1(2 \mathrm{C})$.
IR (neat) 2956, 2919, 2871, 2853, 1703, 1457, 1411, 1377, 1186, $1100 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{57} \mathrm{H}_{123} \mathrm{NO}_{2} \mathrm{Si}_{14} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 988.8529$, Found: 988.8535.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl L-alaninate (H-Ala-OTAG2) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and Cbz-AlaOTAG2 ($194.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (2.0 mL). The $10 \% \mathrm{Pd} / \mathrm{C}(18.7$ $\mathrm{mg}, 0.018 \mathrm{mmol}, 0.1$ equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated in total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50^{\circ} \mathrm{C}$ for 19 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes $/ \mathrm{EtOAc}=40: 1$ to $25: 1$) to afford the product \mathbf{H}-Ala-OTAG2 as a colorless oil in 77% yield (131.5 mg).

V. Synthesis of TAG3 and test

Synthesis of TAG3.

3-((1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl)oxy)propan-1-ol (HOTAG3) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (3 mL) was added triflic acid ($88.5 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv). The tris(triethylsilyl)silane ($422.7 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred for 1 h . Then, mixed 1,3-propanediol ($144.9 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and triethylamine ($418.1 \mu \mathrm{~L}$, $3.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (2 mL) in a flame-dried vial. The mixture in the vial was added into the reaction flask slowly. After stirring under room temperature for $18 \mathrm{~h}, 5 \mathrm{~mL}$ dichloromethane and 10 mL saturated NaHCO_{3} solution were added, and the layers were separated. The aqueous layer was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes $/ \mathrm{EtOAc}=30: 1$) to afford the product HOTAG3 as a white solid in 78% yield (350.8 mg).
$\mathrm{Rf}=0.50($ hexanes $/ \mathrm{EtOAc}=5: 1)$.
M.p. $84-90^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.79-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 27 \mathrm{H}), 0.84-0.72(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 68.7,62.8,34.3,8.6,5.3$.
IR (neat) 2950, 2907, 2873, 1460, 1416, 1376, $1234 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 471.2942$, Found: 471.2922.

Esterification test.

3-((1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl)oxy)propyl (tert-butoxycarbonyl)-

 L-alaninate (Boc-Ala-OTAG3) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and HOTAG3 ($134.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (3 mL). The Boc-Ala-OH ($170.3 \mathrm{mg}, 0.90 \mathrm{mmol}, 3.0$ equiv) was added, followed by adding DMAP ($44.0 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv) and DCC ($185.7 \mathrm{mg}, 0.90 \mathrm{mmol}$, 3.0 equiv). The reaction was stirred at room temperature overnight. Then, filtered, washed with dichloromethane (5 mL) and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=30: 1$) to afford the product Boc-Ala-OTAG3 as a light green oil in $>99 \%$ yield (188.8 mg).$R f=0.49($ hexanes $/ E t O A c=5: 1)$.
$[\alpha] D^{27}=+1.02\left(c 0.98, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}$, $2 \mathrm{H}), 3.46(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07$ $-0.98(\mathrm{~m}, 27 \mathrm{H}), 0.81-0.70(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,155.0,79.7,64.1,62.4,49.2,32.0,28.3,18.8,8.6,5.3$.
IR (neat) 2952, 2908, 2874, 1719, 1498, 1456, 1366, 1237, $1164 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{65} \mathrm{NO}_{5} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 642.3838$, Found: 642.3794.

3-((1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl)oxy)propyl
(($(\mathbf{9 H}$-fluoren-9-
yl)methoxy)carbonyl)-L-alaninate (Fmoc-Ala-OTAG3) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and HOTAG3 ($154.8 \mathrm{mg}, 0.35$ mmol, 1.0 equiv) was added dichloromethane (3 mL). The Fmoc-Ala-OH ($268.5 \mathrm{mg}, 0.86$ mmol, 2.5 equiv) was added, followed by adding DMAP ($50.6 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.2$ equiv) and DCC ($178.0 \mathrm{mg}, 0.86 \mathrm{mmol}, 2.5$ equiv). The reaction was stirred at room temperature overnight Then, filtered, washed with dichloromethane $(5 \mathrm{~mL})$ and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes $/ \mathrm{EtOAc}=40: 1$ to $20: 1$ to $15: 1$) to afford the product Fmoc-Ala-OTAG3 as a colorless oil in 83% yield $(203.7 \mathrm{mg})$.
$R f=0.47($ hexanes $/ E t O A c=5: 1)$.
$[\alpha]{ }_{\mathrm{D}}{ }^{27}=+14.95\left(c 1.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.37(\mathrm{~m}$, 2H), $7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~d}, ~ J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.33(\mathrm{~m}, 3 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 3 \mathrm{H})$, $3.48(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-0.98(\mathrm{~m}, 27 \mathrm{H})$, $0.84-0.71$ ($\mathrm{m}, 18 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.0,155.5,143.9,143.8,141.3,127.7,127.0,125.1,119.9$, 66.9, 64.0, 62.6, 49.6, 47.1, 31.9, 18.8, 8.6, 5.3.

IR (neat) $3019,2953,2874,1719,1508,1451,1337,1214 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{6} \mathrm{NO}_{5} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 764.3994$, Found: 764.4006.

3-((1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl)oxy)propyl ((benzyloxy)carbonyl)-
L-alaninate (Cbz-Ala-OTAG3) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and HOTAG3 ($157.1 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (3 mL). The Cbz-Ala-OH ($195.3 \mathrm{mg}, 0.88 \mathrm{mmol}, 2.5$ equiv) was added, followed by adding DMAP ($51.3 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.2$ equiv) and DCC ($180.5 \mathrm{mg}, 0.88 \mathrm{mmol}$, 2.5 equiv). The reaction was stirred at room temperature overnight. Then, filtered, washed with dichloromethane (5 mL) and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=30: 1$ to $15: 1$) to afford the product Cbz-AlaOTAG3 as a colorless oil in 90% yield (197.9 mg).
$R f=0.47$ (hexanes $/ E t O A c=5: 1$).
$[\alpha] \mathrm{D}^{27}=+8.41\left(c 1.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}$, $2 \mathrm{H}), 4.40-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-0.97(\mathrm{~m}, 27 \mathrm{H}), 0.83-0.70(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.9,155.5,136.3,128.5,128.11,128.07,66.8,64.0,62.6$, 49.6, 31.9, 18.8, 8.6, 5.3.

IR (neat) 2951, 2907, 2874, 1726, 1505, 1455, 1338, 1308, 1203, $1177 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{63} \mathrm{NO}_{5} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 676.3681$, Found: 676.3661 .

Tolerance test.

3-((1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl)oxy)propyl L-alaninate (H-AlaOTAG3) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Boc-Ala-OTAG3 ($12.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (0.1 mL). The hydrochloric acid solution (4.0 M in dioxane, $0.04 \mathrm{~mL}, 0.16 \mathrm{mmol}, 8.0$ equiv) was added. The reaction was stirred at room temperature for 3 h . After completion, the reaction mixture was concentrated. No product H-Ala-OTAG3 was detected from the crude ${ }^{1} \mathrm{H}$ NMR of the residue.

3-((1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl)oxy)propyl
 L-alaninate (H-Ala-

 OTAG3) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and Fmoc-Ala-OTAG3 ($142.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (2.0 mL). The diethylamine ($206.9 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 10.0$ equiv) was added. The reaction was stirred at room temperature for 19 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=2.5: 1$ to 2:1) to afford the product H-Ala-OTAG3 as a colorless oil in 94% yield (92.5 mg). $\mathrm{Rf}=0.20($ hexanes $/ \mathrm{EtOAc}=1: 1)$.$[\alpha] \mathrm{D}^{27}=+22.45\left(c 0.98, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.15(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.71(\mathrm{~m}$, $2 \mathrm{H}), 1.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-0.97(\mathrm{~m}, 27 \mathrm{H}), 0.76(\mathrm{qd}, J=7.8,0.9 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,64.1,61.9,50.0,32.0,20.5,8.6,5.3$.
IR (neat) 2951, 2908, 2874, 1738, 1459, 1416, 1376, 1234, 1182, $1141 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{57} \mathrm{NO}_{3} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 542.3313$, Found: 542.3283.

3-((1,1,1,3,3,3-Hexaethyl-2-(triethylsilyl)trisilan-2-yl)oxy)propyl L-alaninate (H-Ala-

OTAG3) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm Co) and Cbz-Ala-OTAG3 ($125.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (2.0 mL). The $10 \% \mathrm{Pd} / \mathrm{C}(21.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated in total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50^{\circ} \mathrm{C}$ for 18 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=2.5: 1$) to afford the product H-Ala-OTAG3 as a colorless oil in 95% yield $(93.8 \mathrm{mg})$.

VI. Synthesis of TAG4 and test

Synthesis of TAG4.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl 5-hydroxyhexanoate (HOTAG4) At 0 ${ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and PhTAG2 $(2.87 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.5$ equiv) was added dichloromethane $(9 \mathrm{~mL})$. The triflic acid ($265.5 \mu \mathrm{~L}$, $3.0 \mathrm{mmol}, 1.5$ equiv) was added. The reaction was stirred at room temperature for 15 h . Then, mixed 5-oxohexanoic acid ($238.8 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 1.0$ equiv) and 1 -methylimidazole ($268.4 \mu \mathrm{~L}$, $3.4 \mathrm{mmol}, 1.7$ equiv) in dichloromethane (4 mL) in a flame-dried vial. The mixture in the vial was added into the reaction flask slowly. After stirring under room temperature for 24 h , the reaction mixture was diluted with hexanes, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=80: 1$) to afford the product $\mathbf{S 1}$ as a colorless oil in 58% yield $(1.16 \mathrm{~g})$ with little impurity.

At room temperature, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm$\mathbf{C o}$) and $\mathbf{S 1}(1.16 \mathrm{~g}, 1.16 \mathrm{mmol}, 1.0$ equiv) was added methanol (5 mL) and tetrahydrofuran (5 mL). Cool the mixture to $0^{\circ} \mathrm{C}$, followed by adding sodium borohydride ($87.6 \mathrm{mg}, 2.3 \mathrm{mmol}$, 2.0 equiv). The reaction was stirred at room temperature for 20 h . Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added, and the layers were separated. The aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=50: 1$ to $25: 1$) to afford the product HOTAG4 as a colorless oil in 64% yield (744.9 mg).
$\mathrm{Rf}=0.38$ (hexanes/EtOAc $=10: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.84-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H})$, $1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 72 \mathrm{H}), 1.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.81(\mathrm{~m}, 27 \mathrm{H}), 0.78$ $-0.53(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,67.5,38.9,35.8,33.9,31.7,25.0,23.4,22.7,21.3$, 14.1(2C).

IR (neat) 2956, 2920, 2871, 2854, 1704, 1465, 1412, 1377, 1251, $1182 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{60} \mathrm{H}_{128} \mathrm{O}_{3} \mathrm{Si} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1031.8838$, Found: 1031.8876 .

Esterification test.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl
5-(()((9H-fluoren-9-
yl)methoxy)carbonyl)-L-alanyl)oxy)hexanoate (Fmoc-Ala-OTAG4) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and HOTAG4 (151.5 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (1.5 mL). The Fmoc-Ala-OH (140.1 $\mathrm{mg}, 0.45 \mathrm{mmol}, 3.0$ equiv $)$ was added, followed by adding DMAP ($22.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv) and DCC ($92.9 \mathrm{mg}, 0.45 \mathrm{mmol}, 3.0$ equiv). The reaction was stirred at room temperature overnight. Then, filtered, washed with dichloromethane (5 mL) and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes $/ \mathrm{EtOAc}=40: 1$ to $20: 1$) to afford the product Fmoc-Ala-OTAG4 as a colorless oil in 78% yield (153.4 mg).
$\mathrm{Rf}=0.57$ (hexanes/EtOAc $=5: 1$).
$[\alpha]_{\mathrm{D}}^{21}=-9.43\left(c \quad 1.06, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.31(\mathrm{~m}, 3 \mathrm{H}), 4.29$ $-4.18(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.21(\mathrm{~m}, 78 \mathrm{H}), 0.99-0.84$ $(\mathrm{m}, 27 \mathrm{H}), 0.83-0.52(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two isomers) $\delta 174.5,174.4,172.6,172.5,155.55,155.49,143.9$, $143.8,141.3(2 \mathrm{C}), 127.7(2 \mathrm{C}), 127.0(2 \mathrm{C}), 125.1(2 \mathrm{C}), 119.9(2 \mathrm{C}), 72.1(2 \mathrm{C}), 67.0(2 \mathrm{C}), 49.74$, $49.69,47.2(2 \mathrm{C}), 35.6(2 \mathrm{C}), 35.4,35.3,33.9(2 \mathrm{C}), 31.6(2 \mathrm{C}), 25.0(2 \mathrm{C}), 23.1(2 \mathrm{C}), 22.7(2 \mathrm{C}), 21.04$, $20.99,18.92,18.87,14.1(4 \mathrm{C})$.
IR (neat) 2955, 2920, 2871, 2854, 1727, 1704, 1451, 1378, 1334, 1252, 1205, 1182, 1132, 1100, $1071 \mathrm{~cm}^{-1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{78} \mathrm{H}_{143} \mathrm{NO}_{6} \mathrm{Si} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1324.9890$, Found: 1324.9890 .

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl
5-((()benzyloxy)carbonyl)-Lalanyl)oxy)hexanoate (Cbz-Ala-OTAG4) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and HOTAG4 ($394.5 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (4 mL). The Cbz-Ala-OH ($217.7 \mathrm{mg}, 0.98 \mathrm{mmol}, 2.5$ equiv) was added, followed by adding DMAP ($57.2 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.2$ equiv) and DCC ($201.2 \mathrm{mg}, 0.98$ mmol, 2.5 equiv). The reaction was stirred at room temperature overnight. Then, filtered, washed with dichloromethane $(5 \mathrm{~mL})$ and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=40: 1$ to 20:1) to afford the product Cbz-AlaOTAG4 as a colorless oil in 94% yield (445.5 mg).
$\mathrm{Rf}=0.57($ hexanes $/ \mathrm{EtOAc}=5: 1$).
$[\alpha] \mathrm{D}^{20}=-7.45\left(c 0.94, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.43-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.06(\mathrm{~m}, 2 \mathrm{H})$, $5.00-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.24(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.17$ $(\mathrm{m}, 78 \mathrm{H}), 0.98-0.82(\mathrm{~m}, 27 \mathrm{H}), 0.82-0.49(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two isomers) $\delta 174.5,174.4,172.5,172.4,155.5(2 \mathrm{C}), 136.3(2 \mathrm{C})$, $128.5(2 \mathrm{C}), 128.11(2 \mathrm{C}), 128.08(2 \mathrm{C}), 72.1,72.0,66.8(2 \mathrm{C}), 49.8(2 \mathrm{C}), 35.6(2 \mathrm{C}), 35.4,35.3$, 33.9(2C), 31.6(2C), 25.0(2C), 23.1(2C), 22.7(2C), 21.02, 20.97, 18.91, 18.85, 14.1(4C).

IR (neat) 2955, 2920, 2872, 2854, 1727, 1706, 1456, 1378, 1335, 1308, 1254, 1205, 1181, 1132, 1098, $1066 \mathrm{~cm}^{-1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{71} \mathrm{H}_{139} \mathrm{NO}_{6} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1236.9577, Found: 1236.9547.

Tolerance test.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl 5-((L-alanyl)oxy)hexanoate (H-AlaOTAG4) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Fmoc-Ala-OTAG4 ($124.9 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) was added
dichloromethane (1 mL). The diethylamine ($99.1 \mu \mathrm{~L}, 0.96 \mathrm{mmol}, 10.0$ equiv) was added. The resulting mixture was stirred under room temperature for 24 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=20: 1$ to $5: 1$) to afford the product H-Ala-OTAG4 as a pale yellow oil in 91% yield (94.5 mg).
$R f=0.52($ hexanes $/ E t O A c=1: 1)$.
$[\alpha] \mathrm{D}^{24}=+4.76\left(c 1.05, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.99-4.85(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 2 \mathrm{H})$, $1.66-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.18(\mathrm{~m}, 78 \mathrm{H}), 1.00-0.81(\mathrm{~m}, 27 \mathrm{H}), 0.78-0.50(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two isomers) $\delta 176.2,176.1,174.55,174.51,71.2,71.1,50.2$, $50.1,35.8,35.7,35.4(2 \mathrm{C}), 33.9(2 \mathrm{C}), 31.6(2 \mathrm{C}), 25.0(2 \mathrm{C}), 22.7(2 \mathrm{C}), 21.09,21.06,20.7,20.6$, 19.8, 19.7, 14.1(4C).

IR (neat) 2956, 2920, 2871, 2854, 1735, 1703, 1458, 1377, 1255, 1183, $1100 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{63} \mathrm{H}_{133} \mathrm{NO}_{4} \mathrm{Si} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1102.9209$, Found: 1102.9225.

1,1,1,3,3,3-Hexahexyl-2-(trihexylsilyl)trisilan-2-yl 5-((L-alanyl)oxy)hexanoate (H-AlaOTAG4) At room temperature, to a flame-dried flask charged with magnetic stirring bar (SmCo) and Cbz-Ala-OTAG4 ($442.5 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (4 mL). The $10 \% \mathrm{Pd} / \mathrm{C}(38.7 \mathrm{mg}, 0.036 \mathrm{mmol}, 0.1$ equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50^{\circ} \mathrm{C}$ for 17 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with $\operatorname{EtOAc}(5 \mathrm{~mL})$ and the filtrate was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes $/ \mathrm{EtOAc}=3: 1$) to afford the product H-Ala-TAG4 as a pale yellow oil in 97% yield (380.6 mg).

Elongation test (dipeptide synthesis).

Cbz-Ala-Ala-OTAG4 (1) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and H-Ala-OTAG4 ($97.3 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0$ equiv) was added chloroform (0.2 mL). The Cbz-Ala-ONp ($62.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 2.0$ equiv) was added. The resulting mixture was stirred under room temperature for 26 h . After completion, the mixture was diluted with dichloromethane (5 mL). Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (5 mL) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined organic layers were added 15 mL saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to wash again. The layers were separated, and the aqueous layer was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=12.5: 1$ to 7:1) to afford the product 1 as a pale yellow oil in 87% yield (101.0 mg).
$\mathrm{Rf}=0.27($ hexanes $/ E t O A c=5: 1)$.
$[\alpha]_{\mathrm{D}}{ }^{24}=+1.04\left(c 0.96, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.58-6.43(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.30(\mathrm{~m}, 1 \mathrm{H})$, $5.19-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.17(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.15$ $(\mathrm{m}, 2 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 81 \mathrm{H}), 0.93-0.84(\mathrm{~m}, 27 \mathrm{H}), 0.78-0.52(\mathrm{~m}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two isomers) $\delta 174.5,174.4,172.23,172.16,171.6,171.5$, $155.8(2 \mathrm{C}), 136.2(2 \mathrm{C}), 128.5(2 \mathrm{C}), 128.2(2 \mathrm{C}), 128.0(2 \mathrm{C}), 72.3,72.2,67.0(2 \mathrm{C}), 50.4(2 \mathrm{C}), 48.32$, $48.28,35.6(2 \mathrm{C}), 35.4,35.3,33.9(2 \mathrm{C}), 31.6(2 \mathrm{C}), 25.0(2 \mathrm{C}), 23.1(2 \mathrm{C}), 22.7(2 \mathrm{C}), 21.01,20.96$, 18.7(2C), 18.42, 18.35, 14.1(4C).

IR (neat) $3302,2956,2920,2871,2854,1735,1703,1665,1532,1455,1254,1184 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{74} \mathrm{H}_{144} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1307.9948$, Found: 1307.9936.

VII. Comparison of short alanine chains with TAG4 and t-Bu as protecting groups

Short alanine chain with TAG4.

Cbz-Ala-Ala-Ala-OTAG4 (2) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and $\mathbf{1}(135.1 \mathrm{mg}, 0.105 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (1 mL). The $10 \% \mathrm{Pd} / \mathrm{C}\left(11.2 \mathrm{mg}, 0.0105 \mathrm{mmol}, 0.1\right.$ equiv) and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(5.6 \mathrm{mg}, 0.0105$ mmol, 0.1 equiv) was added together. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50^{\circ} \mathrm{C}$ for 6 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was put into next step without further purification.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added chloroform (0.2 mL). The Cbz-Ala-ONp ($72.3 \mathrm{mg}, 0.21 \mathrm{mmol}, 2.0$ equiv) was added. The reaction was stirred under room temperature for 19 h . After completion, the mixture was diluted with dichloromethane (4 mL), followed by adding 2-aminoethanol (55 $\mu \mathrm{L}$) and stirring under room temperature for 30 min to remove the excess Cbz-Ala-ONp. Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (5 mL) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined organic layers were added 15 mL saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to wash again. The layers were separated, and the aqueous layer was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=5: 1$ to $2: 1$) to afford the product $\mathbf{2}$ as a pale yellow wax in 80% total yield (113.7 mg).
$\mathrm{Rf}=0.62($ hexanes $/ \mathrm{EtOAc}=1: 1)$.
$[\alpha] D^{23}=-9.26\left(c 1.08, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.21(\mathrm{~m}, 1 \mathrm{H}), 2.35$ $-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.16(\mathrm{~m}, 84 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 27 \mathrm{H}), 0.78-0.51$ ($\mathrm{m}, 18 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two isomers) $\delta 174.5,174.4,172.2,172.1(3 \mathrm{C}), 171.4,171.3$, $155.9(2 \mathrm{C}), 136.2(2 \mathrm{C}), 128.5(2 \mathrm{C}), 128.1(2 \mathrm{C}), 128.0(2 \mathrm{C}), 72.2,72.1,67.0(2 \mathrm{C}), 50.5(2 \mathrm{C})$, $48.8(2 \mathrm{C}), 48.33,48.26,35.6(2 \mathrm{C}), 35.4,35.3,33.9(2 \mathrm{C}), 31.6(2 \mathrm{C}), 24.9(2 \mathrm{C}), 23.1(2 \mathrm{C}), 22.7(2 \mathrm{C})$, $21.0,20.9,18.9(2 \mathrm{C}), 18.5(2 \mathrm{C}), 18.3,18.2,14.1(4 \mathrm{C})$.

IR (neat) $3289,2956,2920,2871,2854,1736,1704,1682,1637,1530,1455,1377,1254$, 1212, 1182, 1099, $1052 \mathrm{~cm}^{-1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{77} \mathrm{H}_{149} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1379.0319$, Found: 1379.0330.

Cbz-Ala-Ala-Ala-Ala-OTAG4 (3) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and 2 ($101.5 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (1 mL). The $10 \% \mathrm{Pd} / \mathrm{C}\left(8.0 \mathrm{mg}, 0.0075 \mathrm{mmol}, 0.1\right.$ equiv) and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(4.0 \mathrm{mg}, 0.0075$ mmol, 0.1 equiv) was added together. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50{ }^{\circ} \mathrm{C}$ for 6.5 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was put into next step without further purification.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added chloroform (0.2 mL). The Cbz-Ala-ONp ($51.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 2.0$ equiv) was added. The reaction was stirred under room temperature for 18 h . After completion, the mixture was transferred onto SiO_{2} column by a pipette. The reaction mixture was purified by silica gel chromatography (eluent: hexanes/EtOAc $=3: 1$ to $1: 1$ to $\mathrm{DCM} / \mathrm{EtOAc}=1: 1$) to afford the product $\mathbf{3}$ as a light grey solid in 85% total yield (91.1 mg).
$R f=0.16($ hexanes $/ E t O A c=1: 1)$.
M.p. $178-180^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{24}=-10.64\left(c \quad 0.94, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 5 \mathrm{H})$, $6.29-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.95-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.81-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.57$ $(\mathrm{m}, 1 \mathrm{H}), 4.56-4.45(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.09(\mathrm{~m}, 87 \mathrm{H})$, $0.95-0.82(\mathrm{~m}, 27 \mathrm{H}), 0.81-0.52(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two isomers) $\delta 174.5,174.4,172.2(4 \mathrm{C}), 171.8(4 \mathrm{C}), 156.0(2 \mathrm{C})$, $136.4(2 \mathrm{C}), 128.5(2 \mathrm{C}), 128.0(2 \mathrm{C}), 127.8(2 \mathrm{C}), 72.0,71.9,66.7(2 \mathrm{C}), 50.4(2 \mathrm{C}), 49.0(2 \mathrm{C})$, $48.8(2 \mathrm{C}), 48.24,48.18,35.6(2 \mathrm{C}), 35.4,35.3,33.9(2 \mathrm{C}), 31.6(2 \mathrm{C}), 25.0(2 \mathrm{C}), 23.1(2 \mathrm{C}), 22.7(2 \mathrm{C})$, 21.01, 20.97, 20.1(2C), 19.9(2C), 19.7(2C), 18.2(2C), 14.1(4C).

IR (neat) 3273, 2958, 2920, 2871, 2854, 1736, 1707, 1674, 1631, 1528, 1454, 1376, 1259, 1216, 1181, 1095, 1047, $1027 \mathrm{~cm}^{-1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{80} \mathrm{H}_{154} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1450.0691$, Found: 1450.0681.

Short alanine chain with \boldsymbol{t}-Bu.

Cbz-Ala-Ala-Ot-Bu (4), H-Ala-Ala-Ot-Bu (5), Cbz-Ala-Ala-Ala-Ot-Bu (6) and Cbz-Ala-Ala-Ala-Ala-Ot-Bu (7) were prepared according to the procedure in the literatures. ${ }^{[2]}$

VIII. Installing TAG2 at the C-terminal starting from dipeptide

Cbz-Ala-Ala-OTAG2 (8) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar $(\mathrm{Sm}-\mathrm{Co})$ and dichloromethane $(2 \mathrm{~mL})$ was added triflic acid $(60.7 \mu \mathrm{~L}, 0.69 \mathrm{mmol}$, 1.96 equiv). The PhTAG2 ($468.4 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.4$ equiv) was added. The reaction was stirred for 2 h . Then, mixed Cbz-Ala-Ala-OH ($103.0 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0$ equiv) and $1-$ methylimidazole ($55.3 \mu \mathrm{~L}, 0.7 \mathrm{mmol}, 2.0$ equiv) in dichloromethane (3 mL) in a flame-dried vial. The mixture in the vial was added into the reaction flask slowly. After stirring under room temperature for 4 h , the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes $/ E t O A c=20: 1$ to $10: 1$) to afford the product $\mathbf{8}$ as a colorless oil in 68% yield (227.4 mg).
$R f=0.41$ (hexanes $/ E t O A c=5: 1$).
$[\alpha]_{\mathrm{D}}{ }^{22}=-11.70\left(c 0.94, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.18-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.16(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 78 \mathrm{H})$, $0.93-0.84(\mathrm{~m}, 27 \mathrm{H}), 0.78-0.69(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,171.1,155.6,136.3,128.5,128.1,128.0,66.8,50.4$, 49.5, 33.9, 31.6, 25.0, 22.7, 19.3, 18.6, 14.1, 14.0 .

IR (neat) 2956, 2920, 2871, 2854, 1713, 1669, 1502, 1455, 1377, 1352, 1306, 1209, 1185, 1147 cm^{-1}.

HRMS (ESI) Calcd for $\mathrm{C}_{68} \mathrm{H}_{134} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1193.9268$, Found: 1193.9241.

Fmoc-Ala-Ala-Ala-OTAG2 (9) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and $\mathbf{8}$ ($117.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (2
mL). The $10 \% \mathrm{Pd} / \mathrm{C}(10.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50{ }^{\circ} \mathrm{C}$ for 5 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was put into next step without further purification.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added chloroform (0.2 mL). The Fmoc-Ala-OPfp ($57.3 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv) was added. The reaction was stirred under room temperature for 16.5 h . After completion, the mixture was diluted with dichloromethane $(4 \mathrm{~mL})$. Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (5 mL) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined organic layers were added 15 mL saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to wash again. The layers were separated, and the aqueous layer was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=5: 1$ to $3: 1$ to $2: 1$) to afford the product 9 as a pale white oil in 83% total yield $(110.5 \mathrm{mg})$.
$\mathrm{Rf}=0.62($ hexanes $/ \mathrm{EtOAc}=2: 1)$.
$[\alpha]_{\mathrm{D}}{ }^{22}=-10.38\left(c 1.06, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}$, 2H), 7.36 - 7.26 (m, 2H), 6.59 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.49 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49-4.32(\mathrm{~m}, 4 \mathrm{H}), 4.32-4.17(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.24(\mathrm{~m}, 81 \mathrm{H}), 0.96-0.85(\mathrm{~m}, 27 \mathrm{H})$, $0.84-0.67$ (m, 18H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.8,171.6,170.8,155.7,143.84,143.76,141.3,127.7,127.0$, $125.1,120.0,67.0,50.4,49.5,48.9,47.1,33.9,31.6,25.0,22.7,19.1,18.9,18.5,14.1,14.0$.

IR (neat) 3302, 2956, 2920, 2871, 2854, 1707, 1644, 1521, 1451, 1411, 1377, 1335, 1306, 1210, 1167, 1100, 1076, $1043 \mathrm{~cm}^{-1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{78} \mathrm{H}_{143} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1352.9952$, Found: 1352.9982 .

IX. Solubility comparison of the of the tagged peptides in CPME

Compounds preparation.

Cbz-A4-OTAG2 At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and $9(43.5 \mathrm{mg}, 0.033 \mathrm{mmol})$ was added dichloromethane $(0.33 \mathrm{~mL})$ and diethylamine $(0.34 \mathrm{~mL})$. The reaction was stirred at room temperature for 1 h . After completion, the reaction mixture was concentrated to remove the solvent and the excess diethylamine to afford the crude product 12. It was put into the following coupling step without further purification.

At room temperature, to a flame-dried 6 mL vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added chloroform (0.065 mL). The Cbz-Ala-ONp ($22.5 \mathrm{mg}, 0.065 \mathrm{mmol}$, 2.0 equiv) was added. The reaction was stirred under room temperature for 19 h . After completion, the mixture was diluted with dichloromethane (4 mL). Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(5 \mathrm{~mL})$ was added, and the layers were separated. The aqueous layer was extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=10: 1$ to $2: 1$ to $1: 1$) to afford the product Cbz-A4-OTAG2 as a pale white semi-oil in 67% total yield (28.9 mg).
$R f=0.58($ hexanes $/ E t O A c=1: 1)$.
$[\alpha] D^{24}=-22.88\left(c 1.18, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.41$ $(\mathrm{m}, 2 \mathrm{H}), 4.42-4.26(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.20(\mathrm{~m}, 84 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 27 \mathrm{H}), 0.77-0.62(\mathrm{~m}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.7,171.9,171.3,170.8,155.9,136.2,128.5,128.2,128.1$, $67.0,50.5,49.5,48.91,48.87,33.9,31.6,25.0,22.7,19.02,18.9618 .7,18.5,14.1,14.0$.

IR (neat) 3293, 2956, 2921, 2871, 2854, 1709, 1677, 1635, 1525, 1454, 1411, 1377, 1340, 1307, 1211, 1168, 1099, $1048 \mathrm{~cm}^{-1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{74} \mathrm{H}_{144} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1336.0010$, Found: 1336.0040.

Cbz-A4-OTAGSimple was prepared according to the procedure in the literatures. ${ }^{[2]}$

Solubility test.

At room temperature, to a 6 mL vial charged with Cbz-A4-OTAG2 ($19.5 \mathrm{mg}, 0.015 \mathrm{mmol}$) was added cyclopentyl methyl ether (CPME) $5 \mu \mathrm{~L}$ every time. When the total amount of added CMPE was $20 \mu \mathrm{~L}$, the pale white semi-oil Cbz-A4-OTAG2 still could be seen. After adding another more $5 \mu \mathrm{~L}$ CMPE ($\operatorname{total} 25 \mu \mathrm{~L}$), all the pale white semi-oil was disappear to form a colorless clean mixture. From these results, the solubility range of the Cbz-A4-OTAG2 in CPME under room temperature could be calculated as $780 \sim 975 \mathrm{mg} / \mathrm{mL}(0.593 \sim 0.742 \mathrm{M})$.

At room temperature, to a 6 mL vial charged with Cbz-A4-OTAGSimple ($31.4 \mathrm{mg}, 0.024$ mmol) was added cyclopentyl methyl ether (CPME) $10 \mu \mathrm{~L}$ every time. When the total amount of added CMPE was $60 \mu \mathrm{~L}$, the pale yellow wax $\mathbf{C b z}-\mathbf{A}_{4}$-OTAGSimple still could be seen. After adding another more $10 \mu \mathrm{~L}$ CMPE (total $70 \mu \mathrm{~L}$), all the pale yellow wax was disappear to form a clean mixture. From these results, the solubility range of the Cbz-A4-OTAGSimple in CPME under room temperature could be calculated as $449 \sim 523 \mathrm{mg} / \mathrm{mL}(0.338 \sim 0.394 \mathrm{M})$.

X. Super silyl tags at the \mathbf{N}-terminal

Synthesis of TAG5, TAG6, TAG7.

1,1,1,3,3,3-Hexaisopropyl-2,2-diphenyltrisilane (PhTAG5) At room temperature, under N_{2}, to a flame-dried flask charged with Li (granular, $555.2 \mathrm{mg}, 80.0 \mathrm{mmol}, 8.0$ equiv) was added tetrahydrofuran $(50 \mathrm{~mL})$. The dichlorodiphenylsilane ($2.08 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) and triisopropylsilyl chloride ($6.42 \mathrm{~mL}, 30.0 \mathrm{mmol}, 3.0$ equiv) were added together. The reaction was stirred at room temperature for 24 h . Then, another 1.0 equivalent triisopropylsilyl chloride ($2.14 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was added and stirred for another 23 h . Then, the reaction mixture was poured into a separation funnel charged with 100 mL hexanes and 50 mL water. The layers were separated. The aqueous layer was extracted with hexanes ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product PhTAG5 as a white solid in 35% yield $(1.72 \mathrm{~g})$. [Note: The purification by chromatography should be repeated if the product is not pure enough.] Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data support it.
$R f=0.58$ (100% hexanes).
M.p. $110-115{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.66$ (m, 4H), 7.32 - 7.26 (m, 6H), 1.38 (hept, $J=7.5$ $\mathrm{Hz}, 6 \mathrm{H}), 1.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 36 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8,137.1,127.9,127.3,20.1,13.5$.
IR (neat) 2945, 2864, 1463, 1427, 1381, 1364, 1236, $1215 \mathrm{~cm}^{-1}$.

1,1,1,3,3,3-Hexaisobutyl-2,2-diphenyltrisilane (PhTAG6) At room temperature, under N 2 , to a flame-dried flask charged with Li (granular, $222.1 \mathrm{mg}, 32.0 \mathrm{mmol}, 8.0$ equiv) was added tetrahydrofuran (20 mL). The dichlorodiphenylsilane ($0.83 \mathrm{~mL}, 4.0 \mathrm{mmol}, 1.0$ equiv) and
chlorotriisobutylsilane ($2.15 \mathrm{~mL}, 8.0 \mathrm{mmol}, 2.0$ equiv) were added together. The reaction was stirred at room temperature for 23 h . Then, another 0.8 equivalent chlorotriisobutylsilane (0.86 $\mathrm{mL}, 3.2 \mathrm{mmol}$) was added and stirred for another 4 h . Then, the reaction mixture was poured into a separation funnel charged with 50 mL hexanes and 30 mL water. The layers were separated. The aqueous layer was extracted with hexanes $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100\% hexanes) to afford the product PhTAG6 as a white solid in 42% yield (985.8 mg). [Note: The purification by chromatography should be repeated if the product is not pure enough.] Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data and structure of installed compounds support it.
$R f=0.53$ (100% hexanes).
M.p. $58-61^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 6 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 6 \mathrm{H})$, $0.93-0.78$ (m, 48H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,136.4,127.9,127.5,26.8,25.6,25.5$.
IR (neat) 2950, 2924, 2900, 2866, 1462, 1427, 1400, 1380, 1363, 1325, 1218, $1161 \mathrm{~cm}^{-1}$.

1,1,3,3-Tetraisopropyl-1,3-dioctyl-2,2-diphenyltrisilane (PhTAG7) At room temperature, under N_{2}, to a flame-dried flask charged with Li (granular, $555.2 \mathrm{mg}, 80.0 \mathrm{mmol}, 8.0$ equiv) was added tetrahydrofuran $(50 \mathrm{~mL})$. The dichlorodiphenylsilane ($2.08 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) and chlorodiisopropyloctylsilane ($6.61 \mathrm{~mL}, 22.0 \mathrm{mmol}, 2.2$ equiv) were added together. The reaction was stirred at room temperature for 24 h . Then, another 1.0 equivalent chlorodiisopropyloctylsilane ($3.00 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was added and stirred for another 24 h . Then, the reaction mixture was poured into a separation funnel charged with 100 mL hexanes and 50 mL water. The layers were separated. The aqueous layer was extracted with hexanes $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product PhTAG7 as a colorless oil in 32% yield (2.05 g). [Note: The purification by chromatography should be repeated if the product is not pure enough.] Although molecular
ion peak was not located in the mass spectrum in ESI equipment, NMR data and structure of installed compounds support it.
$R f=0.62$ (100% hexanes).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 6 \mathrm{H}), 1.34-1.18(\mathrm{~m}, 28 \mathrm{H})$, $1.06-0.81(\mathrm{~m}, 34 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.5,136.8,127.9,127.4,34.4,31.9,29.3,29.2,25.1,22.7$, 19.9, 19.7, 14.1, 13.4, 12.3.

IR (neat) 2922, 2862, 1461, 1427, 1380, 1364, 1300, 1238, $1175 \mathrm{~cm}^{-1}$.

Synthesis of stable super silyl carbamates (TAG1', TAG2', TAG6', TAG7').

Methyl
(($(1,1,1,3,3,3-h e x a e t h y l-2-(t r i e t h y l s i l y l) t r i s i l a n-2-y l) o x y) c a r b o n y l)-L-$ phenylalaninate (TAG1'-Phe-OMe) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (3 mL) was added triflic acid ($88.5 \mu \mathrm{~L}, 1.0$ $\mathrm{mmol}, 1.0$ equiv). The tris(triethylsilyl)silane ($422.7 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred at room temperature for 1 h to make TAG1OTf solution. To another flamedried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (7 mL) was added H-Phe-OMe ($179.2 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($167.3 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 1.2$ equiv). The mixture was cooled to $-78^{\circ} \mathrm{C}$. With a steam of N_{2} over the solution, dry ice (1.54 $\mathrm{g}, 35.0 \mathrm{mmol}, 35.0$ equiv) was added. After stirring at this temperature for 45 min , TAG1OTf solution was transferred into the mixture. The mixture was allowed to warm to the room temperature slowly and stir for 3 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=80: 1$ to $50: 1$ to 20:1) to afford the product TAG1'-Phe-OMe as a white solid in 85% yield (505.5 mg). Two rotamers of the carbamate were observed in a ratio of $4: 1$.
$R f=0.15$ (hexanes/EtOAc $=20: 1$).
M.p. $52-54{ }^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{19}=+26.73\left(c 1.01, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major rotamer) $\delta 7.30-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.95$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dt}, J=8.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.14-2.97(\mathrm{~m}, 2 \mathrm{H}), 1.07-$ $0.95(\mathrm{~m}, 27 \mathrm{H}), 0.84-0.72(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,155.7,136.0,129.2,128.4,126.9,54.9,52.1,38.3,8.5$, 5.0.

IR (neat) 2951, 2907, 2874, 1751, 1685, 1496, 1456, 1435, 1414, 1369, 1204, 1177, $1141 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{57} \mathrm{NO}_{4} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 618.3262$, Found: 618.3244.

Benzyl (((1,1,1,3,3,3-hexaethyl-2-(triethylsilyl)trisilan-2-yl)oxy)carbonyl)-L-

phenylalaninate (TAG1'-Phe-OBn) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (3 mL) was added triflic acid ($88.5 \mu \mathrm{~L}, 1.0$ $\mathrm{mmol}, 1.0$ equiv). The tris(triethylsilyl)silane ($422.7 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred at room temperature for 1 h to make TAG1OTf solution. To another flamedried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (7 mL) was added H-Phe-OBn ($255.3 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($167.3 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 1.2$ equiv). The mixture was cooled to $-78^{\circ} \mathrm{C}$. With a steam of N_{2} over the solution, dry ice (1.54 $\mathrm{g}, 35.0 \mathrm{mmol}, 35.0$ equiv) was added. After stirring at this temperature for 45 min , TAG1OTf solution was transferred into the mixture. The mixture was allowed to warm to the room temperature slowly and stir for 15 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=80: 1$ to $50: 1$ to 20:1) to afford the product TAG1'-Phe-OBn as a colorless oil in 84% yield (565.7 mg). Two rotamers of the carbamate were observed in a ratio of 4:1.
$\mathrm{Rf}=0.16$ (hexanes/EtOAc $=20: 1$).
$[\alpha] \mathrm{D}^{22}=+40.74\left(c 0.81, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major rotamer) $\delta 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.23$
$-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dt}, J$
$=8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-2.92(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.95(\mathrm{~m}, 27 \mathrm{H}), 0.85-0.71(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,155.6,135.8,135.2,129.3,129.2,128.5,128.42,128.37$, 126.9, 67.0, 54.9, 38.4, 8.5, 5.0.

IR (neat) 2951, 2907, 2874, 1745, 1686, 1496, 1456, 1415, 1379, 1234, $1172 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{35} \mathrm{H}_{61} \mathrm{NO}_{4} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 694.3575$, Found: 694.3569.

Benzyl

(((1,1,1,3,3,3-hexahexyl-2-(trihexylsilyl)trisilan-2-yl)oxy)carbonyl)-Lphenylalaninate (TAG2'-Phe-OBn) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (2 mL) was added triflic acid ($86.7 \mu \mathrm{~L}$, $0.98 \mathrm{mmol}, 1.96$ equiv). The PhTAG2 ($669.2 \mathrm{mg}, 0.7 \mathrm{mmol}, 1.4$ equiv) was added. The reaction was stirred at room temperature for 2 h to make TAG2OTf solution. To another flamedried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (4 mL) was added H-Phe-OBn ($127.7 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($153.3 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 2.2$ equiv). The mixture was cooled to $-78^{\circ} \mathrm{C}$. With a steam of N_{2} over the solution, dry ice (0.77 $\mathrm{g}, 17.5 \mathrm{mmol}, 35.0$ equiv) was added. After stirring at this temperature for 45 min , TAG2OTf solution was transferred into the mixture. The mixture was allowed to warm to the room temperature slowly and stir for 3 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=80: 1$) to afford the product TAG2'-Phe-OBn as a pale white oil in 60% yield $(354.4 \mathrm{mg})$. Two rotamers of the carbamate were observed in a ratio of 3.2:1.
$\mathrm{Rf}=0.29$ (hexanes/EtOAc $=20: 1$).
$[\alpha] \mathrm{D}^{23}=+37.38\left(c 1.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major rotamer) $\delta 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22$ - $7.12(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.16-4.92(\mathrm{~m}, 3 \mathrm{H}), 4.75-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.19-2.90(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 72 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 27 \mathrm{H}), 0.82-0.66(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,155.5,135.8,135.2,129.4,128.52,128.48,128.4,128.3$, $126.9,66.9,54.8,38.7,33.9,31.6,25.0,22.7,14.1,14.0$.

IR (neat) 2955, 2920, 2871, 2854, 1746, 1692, 1493, 1456, 1378, 1347, 1251, 1233, $1179 \mathrm{~cm}^{-}$

HRMS (ESI) Calcd for $\mathrm{C}_{71} \mathrm{H}_{133} \mathrm{NO}_{4} \mathrm{Si} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1198.9209$, Found: 1198.9162.

Benzyl (($(1,1,1,3,3,3-h e x a i s o b u t y l-2-p h e n y l t r i s i l a n-2-y l) o x y) c a r b o n y l)-L-p h e n y l a l a n i n a t e ~$ (TAG6'-Phe-OBn) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (2 mL) was added triflic acid ($60 \mu \mathrm{~L}, 0.68 \mathrm{mmol}, 1.35$ equiv). The PhTAG6 ($290.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred at room temperature for 1 h to make TAG6OTf solution. To another flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (4 mL) was added $\mathbf{H}-\mathbf{P h e - O B n}(127.7 \mathrm{mg}$, $0.5 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($97.6 \mu \mathrm{~L}, 0.7 \mathrm{mmol}, 1.4$ equiv). The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. With a steam of N_{2} over the solution, dry ice $(0.77 \mathrm{~g}, 17.5 \mathrm{mmol}, 35.0$ equiv) was added. After stirring at this temperature for 45 min , TAG6OTf solution was transferred into the mixture. The mixture was allowed to warm to the room temperature slowly and stir for 17 h. After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes $/ \mathrm{EtOAc}=80: 1$ to $50: 1$ to $20: 1$) to afford the product TAG6'-Phe-OBn as a pale yellow oil in 68% yield $(273.1 \mathrm{mg})$. Two rotamers of the carbamate were observed in a ratio of 4.2:1.
$\mathrm{Rf}=0.17$ (hexanes/EtOAc $=20: 1$).
$[\alpha] \mathrm{D}^{24}=+36.52\left(c 1.15, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major rotamer) $\delta 7.46-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.12$ - 7.02 (m, 2H), 5.26 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{dt}, J=8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-$ 3.07 (m, 2H), $1.91-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.01-0.70(\mathrm{~m}, 48 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,154.5,137.9,135.8,135.2,133.1,129.4,128.6,128.5$, 128.4, 128.1, 127.5, 127.0, 67.1, 54.9, 38.5, 26.8, 26.7, 25.5, 24.61, 24.57.

IR (neat) 2951, 2866, 1744, 1695, 1496, 1461, 1428, 1380, 1362, 1328, 1213, $1162 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{47} \mathrm{H}_{75} \mathrm{NO}_{4} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 824.4902, Found: 824.4941.

Benzyl (($(1,1,3,3-t e t r a i s o p r o p y l-1,3-d i o c t y l-2-p h e n y l t r i s i l a n-2-y l) o x y) c a r b o n y l)-L-~$ phenylalaninate (TAG7'-Phe-OBn) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (2 mL) was added triflic acid ($60 \mu \mathrm{~L}, 0.68$ mmol, 1.35 equiv). The PhTAG7 ($318.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred at room temperature for 1 h to make TAG7OTf solution. To another flame-dried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (4 mL) was added \mathbf{H} -Phe-OBn ($127.7 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($97.6 \mu \mathrm{~L}, 0.7 \mathrm{mmol}, 1.4$ equiv). The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. With a steam of N_{2} over the solution, dry ice $(0.77 \mathrm{~g}, 17.5$ mmol, 35.0 equiv) was added. After stirring at this temperature for 45 min , TAG7OTf solution was transferred into the mixture. The mixture was allowed to warm to the room temperature slowly and stir for 17 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=80: 1$ to $50: 1$ to 20:1) to afford the product TAG7'-Phe-OBn as a pale white oil in 52% yield (222.8 mg). Two rotamers of the carbamate were observed in a ratio of 6:1.
$\mathrm{Rf}=0.17$ (hexanes/EtOAc $=20: 1$).
$[\alpha]_{\mathrm{D}}{ }^{24}=+38.46\left(c 1.04, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major rotamer) $\delta 7.52-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.33$

- 7.18 (m, 8H), $7.13-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.78$ (dt, J
$=8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.12(\mathrm{~m}, 28 \mathrm{H}), 1.09-0.77(\mathrm{~m}, 34 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,154.4,138.7,135.8,135.2,133.2,129.4,128.6,128.5$, $128.4,128.0,127.5,127.0,67.1,54.9,38.5,34.4,31.9,29.3,29.2,25.0,22.7,19.6,19.53$, 19.47, 19.4, 14.1, 12.8, 12.6, 11.41, 11.36.

IR (neat) 2922, 2861, 1744, 1693, 1496, 1456, 1379, 1349, $1175 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{51} \mathrm{H}_{83} \mathrm{NO}_{4} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 880.5528, Found: 880.5541.

Benzyl $\quad N^{6}$-(tert-butoxycarbonyl)- $N^{2}-(((1,1,1,3,3,3-h e x a e t h y l-2$-(triethylsilyl)trisilan-2-yl)oxy)carbonyl)-L-lysinate (TAG1'-Lys(Boc)-OBn) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (2 mL) was added triflic acid ($44.2 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The tris(triethylsilyl)silane ($211.3 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred at room temperature for 1 h to make TAG1OTf solution. To another flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane $(4 \mathrm{~mL})$ was added $\mathbf{H - L y s}(\mathbf{B o c})-\mathbf{O B n}(168.2 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and triethylamine (83.6 $\mu \mathrm{L}, 0.6 \mathrm{mmol}, 1.2$ equiv). The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. With a steam of N_{2} over the solution, dry ice ($770 \mathrm{mg}, 17.5 \mathrm{mmol}, 35.0$ equiv) was added. After stirring at this temperature for 45 min , TAG1OTf solution was transferred into the mixture. The mixture was allowed to warm to the room temperature slowly and stir for 3 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=20: 1$ to $10: 1$ to $5: 1$) to afford the product TAG1'-Lys(Boc)-OBn as a colorless oil in 63% yield (238.5 mg).
$\mathrm{Rf}=0.21($ hexanes $/ \mathrm{EtOAc}=5: 1)$.
$[\alpha]_{\mathrm{D}}{ }^{22}=-14.73\left(c 1.29, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.21-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.50$ $-1.34(\mathrm{~m}, 11 \mathrm{H}), 1.32-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.95(\mathrm{~m}, 27 \mathrm{H}), 0.85-0.73(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,156.0,155.8,135.4,128.6,128.4,128.2,79.0,66.9$, 53.9, 40.3, 32.3, 29.6, 28.4, 22.2, 8.5, 5.0.

IR (neat) 2951, 2908, 2874, 1689, 1499, 1456, 1365, 1244, 1169, $1001 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{37} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Sii}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 775.4365$, Found: 775.4376.

Benzyl $\quad N^{6}$-(tert-butoxycarbonyl)- $N^{2}-(((1,1,1,3,3,3-h e x a i s o b u t y l-2-p h e n y l t r i s i l a n-2-$ yl)oxy)carbonyl)-L-lysinate (TAG6'-Lys(Boc)-OBn) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane $(2 \mathrm{~mL})$ was added triflic acid ($47.8 \mu \mathrm{~L}, 0.54 \mathrm{mmol}, 1.35$ equiv). The PhTAG6 ($232.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred at room temperature for 1 h 20 min to make TAG6OTf solution. To another flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (4 mL) was added $\mathbf{H - L y s}(\mathbf{B o c})-\mathbf{O B n}(\mathrm{mg}, 0.52 \mathrm{mmol}, 1.3$ equiv) and triethylamine ($83.6 \mu \mathrm{~L}$, $0.6 \mathrm{mmol}, 1.5$ equiv). The mixture was cooled to $-78^{\circ} \mathrm{C}$. With a steam of N_{2} over the solution, dry ice $(0.79 \mathrm{~g}, 18.0 \mathrm{mmol}, 45.0$ equiv) was added. After stirring at this temperature for 1 h , TAG6OTf solution was transferred into the mixture. The mixture was allowed to warm to the room temperature slowly and stir for 16 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=20: 1$ to $10: 1$ to $5: 1$) to afford the product TAG6'-Lys(Boc)-OBn as a colorless oil in 52% yield (185.2 mg).
$\mathrm{Rf}=0.36($ hexanes $/ \mathrm{EtOAc}=5: 1)$.
$[\alpha] \mathrm{D}^{24}=+4.92\left(c 0.61, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H})$, $5.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.17-2.92(\mathrm{~m}, 2 \mathrm{H}), 1.90-$ $1.69(\mathrm{~m}, 8 \mathrm{H}), 1.50-1.24(\mathrm{~m}, 13 \mathrm{H}), 0.96-0.73(\mathrm{~m}, 48 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,155.9,154.8,137.9,135.4,133.2,128.6,128.5,128.3$, 128.1, 127.5, 79.1, 67.0, 53.9, 40.3, 32.6, 29.7, 28.4, 26.8, 26.7, 25.5, 24.6, 22.4.

IR (neat) 2952, 2929, 2866, 1698, 1501, 1462, 1428, 1380, 1364, 1327, 1250, 1216, $1171 \mathrm{~cm}^{-}$ 1.

HRMS (ESI) Calcd for $\mathrm{C}_{49} \mathrm{H}_{86} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si} 3 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 905.5691$, Found: 905.5716.

Benzyl $\quad N^{2}$-(tert-butoxycarbonyl)- N^{6}-(((1,1,1,3,3,3-hexaisobutyl-2-phenyltrisilan-2-yl)oxy)carbonyl)-L-lysinate (Boc-Lys(TAG6')-OBn) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and dichloromethane (2 mL) was added triflic acid ($71.7 \mu \mathrm{~L}, 0.81 \mathrm{mmol}, 1.62$ equiv). The PhTAG6 ($348.7 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) was added. The reaction was stirred at room temperature for 1 h 20 min to make TAG6OTf solution. To another flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane $(4 \mathrm{~mL})$ was added Boc-Lys-OBn ($168.2 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($139.4 \mu \mathrm{~L}$, $1.0 \mathrm{mmol}, 2.0$ equiv). The mixture was cooled to $-78^{\circ} \mathrm{C}$. With a steam of N_{2} over the solution, dry ice ($0.77 \mathrm{~g}, 17.5 \mathrm{mmol}, 35.0$ equiv) was added. After stirring at this temperature for 1 h 15 min , TAG6OTf solution was transferred into the mixture. The mixture was allowed to warm to the room temperature slowly and stir for 4 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=20: 1$ to $10: 1$ to $5: 1$) to afford the product Boc-Lys(TAG6')-OBn as a colorless oil in 57% yield (253.4 mg).
$R f=0.42($ hexanes $/ E t O A c=5: 1)$.
$[\alpha]_{\mathrm{D}}{ }^{22}=-13.26\left(c 0.98, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 8 \mathrm{H}), 5.25-5.10(\mathrm{~m}, 2 \mathrm{H})$, $5.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.88-$ $1.73(\mathrm{~m}, 7 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.28(\mathrm{~m}, 13 \mathrm{H}), 0.93-0.71(\mathrm{~m}, 48 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,156.1,155.4,138.3,135.4,133.2,128.6,128.4,128.3$, $128.0,127.4,79.9,67.0,53.3,41.1,32.5,29.7,28.3,26.8,26.7,25.4,24.6,22.6$.

IR (neat) 2951, 2866, 1689, 1500, 1460, 1427, 1392, 1380, 1364, 1326, 1250, 1217, $1160 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{49} \mathrm{H}_{86} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 905.5691$, Found: 905.5675.

Elongation test of TAG1'.

TAG1'-Phe-Phe-OBn (10) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and TAG1'-Phe-OBn ($134.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (2 mL). The $10 \% \mathrm{Pd} / \mathrm{C}(21.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at room temperature for 2 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was put into next step without further purification.

At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added dichloromethane $(0.4 \mathrm{~mL}), \mathrm{HSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}(159.1 \mathrm{mg}, 0.3 \mathrm{~mol}$, 1.5 equiv), H-Phe-OBn ($76.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{PMBNHSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}(1.0 \mathrm{M}$ in dichloromethane, $6.0 \mu \mathrm{~L}, 0.006 \mathrm{mmol}, 0.03$ equiv) in the glove box. [Note: $\mathrm{HSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ and $\mathrm{PMBNHSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ was prepared according to the procedure in the literature. $\left.{ }^{[8]}\right]$ The vial was sealed and taken out of the glove box. The reaction was stirred under $40^{\circ} \mathrm{C}$ for 16 h . After completion, the reaction mixture was transferred onto silica gel column by a pipette and purified by silica gel chromatography (eluent: hexanes/EtOAc $=10: 1$ to $5: 1$) to afford the product $\mathbf{1 0}$ as a pale yellow oil in 81% total yield (133.4 mg).
$\mathrm{Rf}=0.47$ (hexanes $/ \mathrm{EtOAc}=5: 1$).
$[\alpha] \mathrm{D}^{23}=+37.50\left(c 1.04, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 5 \mathrm{H})$, $6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (dt, $J=7.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.88(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.94(\mathrm{~m}, 27 \mathrm{H}), 0.83-$ 0.72 (m, 18H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, lost two signals) $\delta 170.52,170.47,156.0,136.3,135.4,135.0$, 129.3, 129.2, 128.6, 128.5, 128.4, 127.0, 126.9, 67.1, 56.2, 53.2, 38.3, 37.9, 8.6, 5.0.

IR (neat) 2951, 2908, 2873, 1740, 1661, 1495, 1455, 1416, 1379, 1286, 1212, $1182 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{44} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 841.4260$, Found: 841.4214.

XI. Convergent synthesis of a pentapeptide

TAG2'-Phe-Phe-OBn (11) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and TAG2'-Phe-OBn ($117.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was added EtOAc $(1 \mathrm{~mL})$. The $10 \% \mathrm{Pd} / \mathrm{C}(10.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50^{\circ} \mathrm{C}$ for 50 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was put into next step without further purification.
At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added dichloromethane $(0.2 \mathrm{~mL}), \mathrm{HSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}(79.5 \mathrm{mg}, 0.15 \mathrm{~mol}$, 1.5 equiv), H-Phe-OBn ($38.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{PMBNHSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}(1.0 \mathrm{M}$ in dichloromethane, $3.0 \mu \mathrm{~L}, 0.003 \mathrm{mmol}, 0.03$ equiv) in the glove box. [Note: $\mathrm{HSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ and $\mathrm{PMBNHSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ was prepared according to the procedure in the literature. $\left.{ }^{[8]}\right]$ The vial was sealed and taken out of the glove box. The reaction was stirred under $40^{\circ} \mathrm{C}$ for 16 h . After completion, the reaction mixture was transferred onto silica gel column by a pipette and purified by silica gel chromatography (eluent: hexanes/EtOAc $=10: 1$) to afford the product $\mathbf{1 1}$ as a white oil in 85% total yield (113.0 mg).
$\mathrm{Rf}=0.54($ hexanes $/ E t O A c=5: 1)$.
$[\alpha] \mathrm{D}^{23}=+37.38\left(c 1.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 10 \mathrm{H}), 6.95-6.84(\mathrm{~m}, 2 \mathrm{H})$, $5.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.78-4.66(\mathrm{~m}, 1 \mathrm{H})$, $4.31(\mathrm{td}, J=8.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-2.76(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 72 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 27 \mathrm{H})$, $0.81-0.71(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, lost three signals) $\delta 170.4,170.3,155.9,136.4,135.3,135.0$, $129.4,129.2,128.6,128.5,127.0,126.9,67.0,56.4,53.4,39.1,38.1,33.9,31.6,25.0,22.7$, 14.1, 14.0.

IR (neat) 2955, 2920, 2871, 2853, 1743, 1678, 1482, 1466, 1456, 1377, 1350, 1256, $1186 \mathrm{~cm}^{-}$ 1.

HRMS (ESI) Calcd for $\mathrm{C}_{80} \mathrm{H}_{142} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1345.9894$, Found: 1345.9903.

TAG2'-Phe-Phe-Ala-Ala-Ala-OTAG2 (13) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and 9 ($107.8 \mathrm{mg}, 0.081 \mathrm{mmol}$) was added dichloromethane $(0.8 \mathrm{~mL})$ and diethylamine $(0.8 \mathrm{~mL})$. The reaction was stirred at room temperature for 1 h . After completion, the reaction mixture was concentrated to remove the solvent and the excess diethylamine to afford the crude product 12. It was put into the following coupling step without further purification.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and 11 ($71.4 \mathrm{mg}, 0.054 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (1 mL). The $10 \% \mathrm{Pd} / \mathrm{C}(11.5 \mathrm{mg}, 0.011$ mmol, 0.2 equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50^{\circ} \mathrm{C}$ for 15 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was put into next coupling step without further purification.

At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and above residue was added dichloromethane $(0.1 \mathrm{~mL}), \mathrm{HSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}(42.9 \mathrm{mg}, 0.081$ mol, 1.5 equiv), all crude product 12 (dissolved in 0.1 mL dichloromethane, ca. 0.081 mmol , 1.5 equiv) and PMBNHSi[$\left.\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}(1.0 \mathrm{M}$ in dichloromethane, $2.7 \mu \mathrm{~L}, 0.0027 \mathrm{mmol}, 0.05$ equiv) in the glove box. [Note: $\mathrm{HSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ and $\mathrm{PMBNHSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ was prepared according to the procedure in the literature. $\left.{ }^{[8]}\right]$ The vial was sealed and taken out of the glove
box. The reaction was stirred under $40^{\circ} \mathrm{C}$ for 63 h . After completion, the reaction mixture was transferred onto silica gel column by a pipette and purified by silica gel chromatography (eluent: 100% hexanes to hexanes $/ E t O A c=10: 1$ to $5: 1$) to afford the product $\mathbf{1 3}$ as a pale yellow oil in 67% total yield (83.7 mg). Two rotamers of the carbamate were observed in a ratio of 4:1.
$\mathrm{Rf}=0.31$ (hexanes/EtOAc $=5: 1$).
$[\alpha]_{\mathrm{D}}{ }^{24}=-15.97\left(c 1.19, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major rotamer) $\delta 7.26-7.04(\mathrm{~m}, 10 \mathrm{H}), 6.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.50-4.20(\mathrm{~m}, 5 \mathrm{H}), 3.05-2.85(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.21(\mathrm{~m}, 153 \mathrm{H}), 0.98-0.83(\mathrm{~m}, 54 \mathrm{H})$, $0.83-0.49$ ($\mathrm{m}, 36 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, lost two signals) $\delta 173.8,170.9,170.8,170.7,169.6,156.1,136.2$, 136.0, 129.1, 128.7, 128.6, 127.1, 56.4, 54.7, 49.5, 48.9, 48.8, 38.7, 38.0, 33.93, 33.88, 31.63, $31.59,25.0(2 \mathrm{C}), 22.73,22.71,18.7,18.5,18.1,14.1(2 \mathrm{C}), 14.0(2 \mathrm{C})$.

IR (neat) 2955, 2920, 2871, 2854, 1697, 1637, 1506, 1455, 1377, 1338, 1212, $1174 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{136} \mathrm{H}_{266} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Sisina}^{2}[\mathrm{M}+\mathrm{Na}]^{+}: 2345.8691$, Found: 2345.8704.

H-Phe-Phe-Ala-Ala-Ala-OH (14) At room temperature, to a flame-dried 6 mL vial charged with magnetic stirring bar (Sm-Co) and 13 ($69.8 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.0$ equiv) was added tetrahydrofuran $(0.3 \mathrm{~mL})$. The hydrogen fluoride pyridine solution (ca. $70 \%, 51.5 \mathrm{mg}$, ca. 1.8 mmol, ca. 60 equiv) was added. The reaction was stirred at room temperature for 0.5 h . After completion, the reaction mixture was concentrated. Dichloromethane $(0.5 \mathrm{~mL})$ was added and then removed which was repeated for three times to help remove most of the HF/Py. The residue was washed by hexanes ($3 \times 1 \mathrm{~mL}$), followed by diethyl ether $(3 \times 1 \mathrm{~mL})$ to remove the silyl fluoride and pyridine. The remaining solid residue was then dissolved in trifluoroacetic acid (TFA) and filtered via PTFE syringe filter $(0.22 \mu \mathrm{~m})$ to remove the insoluble solids. The TFA mixture was concentrated and the solid residue was wash again with diethyl ether (3×1 mL) to make sure all the pyridine was removed to afford the product 14 as a white solid in $>99 \%$ yield (16.1 mg). The purity of the product was 95% which was determined by RP-HPLC using a revised-phase column (XSelect CSH C18, $4.6 \mathrm{~mm} \times 50 \mathrm{~mm}$).
$[\alpha] \mathrm{D}^{25}=-24.21\left(c 1.57, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) \delta 7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.10(\mathrm{~m}$, $2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.52(\mathrm{~m}, 3 \mathrm{H})$, $3.28-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$) $\delta 180.3,176.7,176.0,173.9,170.9,136.0,133.8,131.6,131.2$, $131.03,130.98,130.0,129.9,58.1,57.9,52.2,52.0,51.1,40.2,39.1,18.5(2 \mathrm{C}), 17.7$. IR (neat) 1671, 1633, 1521, 1454, 1372, 1200, 1139, 1057, $1031 \mathrm{~cm}^{-1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O} 6 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 548.2485$, Found: 548.2525.

XII. Convergent synthesis of Nelipepimut-S with Fmoc-chemistry

Install TAG2 at the C-terminal.

Fmoc-Phe-Leu-Ot-Bu (15) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and Fmoc-Phe-OPfp ($830.2 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.0$ equiv) was added chloroform (1.5 mL). The H-Leu-Ot-Bu ($309.0 \mathrm{mg}, 1.65 \mathrm{mmol}$, 1.1 equiv) was added. The resulting mixture was stirred under room temperature for 15 h . After completion, the mixture was diluted with dichloromethane (5 mL). Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=5: 1$ to $4: 1$) to afford the product $\mathbf{1 5}$ as a pale yellow solid in 86% yield (714.0 mg). It is a known compound. The characterization data match the reported data. ${ }^{[9]}$

Fmoc-Phe-Leu-OTAG2 (17) At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and $15(167.0 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) was added trifluoroacetic acid (1.5 mL). After stirring under room temperature for 1 h , the reaction mixture
was concentrated. The residue was co-evaporated several times with diethyl ether to remove all the trifluoroacetic acid to afford the product 16 in $>99 \%$ yield (153.7 mg).

At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and dichloromethane (2 mL) was added triflic acid ($55.7 \mu \mathrm{~L}, 0.63 \mathrm{mmol}, 2.1$ equiv). The PhTAG2 ($430.2 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.5$ equiv) was added. The reaction was stirred for 2 h . Then, mixed 16 ($153.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and 1-methylimidazole ($52.1 \mu \mathrm{~L}, 0.66 \mathrm{mmol}, 2.2$ equiv) in dichloromethane (3 mL) in a flame-dried vial. The mixture in the vial was added into the reaction flask slowly. After stirring under room temperature for 16 h , the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes to hexanes/EtOAc $=20: 1$ to $15: 1$) to afford the product $\mathbf{1 7}$ as a colorless oil in 65% yield (269.7 mg).
$\mathrm{Rf}=0.52($ hexanes $/ \mathrm{EtOAc}=5: 1)$.
$[\alpha]_{\mathrm{D}}{ }^{24}=-10.91\left(c 1.10, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}$, 2H), $7.37-7.17$ (m, 7H), 6.13 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.37(\mathrm{~m}$, $3 \mathrm{H}), 4.34-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.52(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.20(\mathrm{~m}, 73 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 33 \mathrm{H}), 0.82-0.55(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.7,170.0,155.8,143.83,143.75,141.3,136.4,129.5,128.6$, 127.7, 127.0, 126.9, 125.1, 125.0, 119.9, 67.0, 55.7, 51.8, 47.1, 42.4, 38.5, 33.9, 31.6, 25.0, 24.8, 23.2, 22.7, 21.5, 14.11, 14.06.

IR (neat) 2955, 2920, 2871, 2854, 1713, 1683, 1499, 1465, 1452, 1410, 1377, 1337, 1271, $1248,1204,1152 \mathrm{~cm}^{-1}$.

HRMS (ESI) Calcd for $\mathrm{C}_{84} \mathrm{H}_{148} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1400.0363$, Found: 1400.0403.

General procedures for Fmoc-deprotection and coupling reactions.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Fmoc-protected peptide (1.0 equiv) was added diethylamine (50 to 100 equiv) and dichloromethane (same volume with diethylamine). The resulting mixture was stirred under room temperature for 1.25 to 1.75 h . After completion (monitored by TLC), the mixture was
concentrated to remove the diethylamine and then dissolved in dichloromethane, followed by adding water. The layers were separated. The aqueous layer was extracted with dichloromethane for three times. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was put into next Fmoc-coupling step without further purification.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added chloroform $(0.5 \mathrm{M})$. The active pentafluorophenyl amino acid ester (Fmoc-AA-OPfp, 1.2 equiv) was added. The resulting mixture was stirred under room temperature. After completion, the mixture was diluted with dichloromethane, followed by adding 2 -aminoethanol (1.65 equiv, $50 \mu \mathrm{~L}$ per 0.1 mmol unreacted Fmoc-AA-OPfp) and stirring under room temperature for 10 min to remove the excess Fmoc-AA-OPfp. Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added, and the layers were separated. The aqueous layer was extracted with dichloromethane for three times. The combined organic layers were added saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to wash again. The layers were separated, and the aqueous layer was extracted with dichloromethane for three times. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was put into next Fmoc-deprotection step without further purification.

Elongation from the C-terminal.

Fmoc-Phe-Gly-Ser(\boldsymbol{t}-Bu)-Leu-Ala-Phe-Leu-OTAG2 (18) At room temperature, to a flamedried flask charged with magnetic stirring bar (Sm-Co) and Fmoc-protected peptide 17 (202.5 $\mathrm{mg}, 0.147 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (0.75 mL) and diethylamine (0.75
mL). Then, the mixture was followed the General procedures for Fmoc-deprotection and coupling reactions and repeated for four times (five times in total) by changing the coupling active amino acid ester according to the sequence of the target peptide every time. In the final coupling step, after the completion of the coupling reaction, the reaction mixture was concentrated without adding 2 -aminoethanol. The residue was purified by silica gel chromatography (eluent: hexanes/ $\mathrm{EtOAc}=5: 1$ to $2: 1$ to $1: 1$ to $1: 2$) to afford the product 18 as a pale yellow solid in 42% total yield (118.2 mg).
$R f=0.18($ hexanes $/ E t O A c=1: 1)$.
HRMS (ESI) Calcd for $\mathrm{C}_{111} \mathrm{H}_{189} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{Si}_{14} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1931.3420$, Found: 1931.3436.

Elongation from the N-terminal.

TAG6'-Lys(Boc)-Ile-OBn (19) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and TAG6'-Lys(Boc)-OBn ($150.1 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (2 mL). The $10 \% \mathrm{Pd} / \mathrm{C}(18.1 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.1$ equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50^{\circ} \mathrm{C}$ for 4 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was put into next step without further purification. At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added dichloromethane $(0.34 \mathrm{~mL}), \mathrm{HSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}(135.1 \mathrm{mg}, 0.26$ mol, 1.5 equiv), H-Ile-OBn ($56.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{PMBNHSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}(1.0$ M in dichloromethane, $8.5 \mu \mathrm{~L}, 0.0085 \mathrm{mmol}, 0.05$ equiv) in the glove box. [Note: $\mathrm{HSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ and $\mathrm{PMBNHSi}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ was prepared according to the procedure in the literature. $\left.{ }^{[8]}\right]$ The vial was sealed and taken out of the glove box. The reaction was stirred under $40^{\circ} \mathrm{C}$ for 12 h . After completion, the reaction mixture was transferred onto silica gel column by a pipette and purified by silica gel chromatography (eluent: hexanes $/ \mathrm{EtOAc}=10: 1$ to $5: 1$) to afford the product 19 as a colorless oil in 81% total yield (137.9 mg).
$R f=0.67$ (hexanes $/ E t O A c=2: 1$).
$[\alpha]_{\mathrm{D}}{ }^{24}=-0.87\left(c 1.15, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 3 \mathrm{H})$, $6.42(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.69-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.99(\mathrm{~m}, 1 \mathrm{H})$, $2.00-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 8 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.34(\mathrm{~m}, 13 \mathrm{H}), 1.22-$ 1.07 (m, 1H), $0.90-0.73(\mathrm{~m}, 54 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,171.5,156.0,155.1,137.8,135.3,133.1,128.6,128.45$, $128.42,128.1,127.5,79.0,67.1,56.6,54.9,40.0,37.6,32.5,29.5,28.4,26.74,26.68,25.4$, 25.0, 24.6, 24.5, 22.4, 15.6, 11.6.

IR (neat) 2951, 2866, 1676, 1498, 1461, 1428, 1380, 1364, 1326, 1248, 1215, $1163 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{55} \mathrm{H}_{97} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1018.6532$, Found: 1018.6535.

TAG6'-Lys(Boc)-Ile-OH (20) At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and 19 ($94.9 \mathrm{mg}, 0.095 \mathrm{mmol}, 1.0$ equiv) was added EtOAc (2 mL). The $10 \% \mathrm{Pd} / \mathrm{C}(20.3 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv) was added. Then evacuated and backfilled with hydrogen (this process was repeated a total of 5 times). The resulting mixture was stirred under hydrogen atmosphere at $50^{\circ} \mathrm{C}$ for 3 h . After completion, the reaction mixture was filtrated through a short pad of celite, washed with EtOAc (5 mL) and the filtrate was concentrated. The residue was put into next step without further purification.

Convergent connection.

TAG6'-Lys(Boc)-Ile-Phe-Gly-Ser(t-Bu)-Leu-Ala-Phe-Leu-OTAG2 (21) At room

 temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and $\mathbf{1 8}$ $(45.5 \mathrm{mg}, 0.024 \mathrm{mmol})$ was added dichloromethane $(0.24 \mathrm{~mL})$ and diethylamine $(0.25 \mathrm{~mL})$. The reaction was stirred at room temperature for 1 h . After completion, the reaction mixture was concentrated to remove the solvent and the excess diethylamine. The residue was put into the next coupling step without further purification.At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added dichloromethane (0.5 mL). The compound $20(32.6 \mathrm{mg}, 0.036 \mathrm{mmol}$, 1.5 equiv) was added followed by adding $\mathrm{EDC} \cdot \mathrm{HCl}(9.2 \mathrm{mg}, 0.048 \mathrm{mmol}, 2.0$ equiv $)$ and HOBt ($3.2 \mathrm{mg}, 0.024 \mathrm{mmol}, 1.0$ equiv). The resulting mixture was stirred under room temperature for 2 h . After completion, the reaction mixture was concentrated. The residue was purified by preparative thin layer chromatography (eluent: hexanes/EtOAc $=1: 1$) to afford the product 21 as a white solid in 48% total yield (29.4 mg).

Rf $=0.44$ (hexanes/EtOAc $=1: 1$).
HRMS (ESI) Calcd for $\mathrm{C}_{144} \mathrm{H}_{268} \mathrm{~N}_{10} \mathrm{O}_{15} \mathrm{Si}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 2596.8798$, Found: 2596.8757.

Cleavage.

H-Lys-Ile-Phe-Gly-Ser-Leu-Ala-Phe-Leu-OH (Nelipepimut-S, 22) At room temperature, to a flame-dried 6 mL vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and $21(10.1 \mathrm{mg}, 0.0039$ mmol, 1.0 equiv) was added TFA/TIPS/ $\mathrm{H}_{2} \mathrm{O}(95: 2.5: 2.5 \mathrm{v} / \mathrm{v} / \mathrm{v}, 0.078 \mathrm{~mL})$. The reaction was stirred at room temperature for 17 h . After completion, the reaction mixture was concentrated. Diethyl ether (1 mL) was added and then removed which was repeated for three times. The remaining solid residue was then dissolved in trifluoroacetic acid (TFA) and filtered via PTFE syringe filter $(0.22 \mu \mathrm{~m})$ to remove the insoluble solids. The TFA mixture was concentrated and the solid residue was wash again with diethyl ether ($3 \times 1 \mathrm{~mL}$) to afford the product Nelipepimut-S (22) as a white grey solid in $>99 \%$ yield $(4.4 \mathrm{mg})$. The purity of the product was 73% which was determined by RP-HPLC using a revised-phase column (XSelect CSH C18, $4.6 \mathrm{~mm} \times 50 \mathrm{~mm}$).

HRMS (ESI) Calcd for $\mathrm{C}_{50} \mathrm{H}_{78} \mathrm{~N}_{10} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1017.5749$, Found: 1017.5711.

XIII. Synthesis of TAG8

2-(1,1,1,3,3,3-Hexamethyl-2-(trimethylsilyl)trisilan-2-yl)ethan-1-ol (HOTAG8) was prepared according to the procedure in the literatures. ${ }^{[10]}$

XIV. Synthesis of TAG9 and test

Synthesis of TAG9.

3-(1,1,1,3,3,3-Hexamethyl-2-(trimethylsilyl)trisilan-2-yl)prop-2-yn-1-ol (HOTAG9) At $78^{\circ} \mathrm{C}$, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and $23(210.3 \mathrm{mg}$, $1.5 \mathrm{mmol}, 1.5$ equiv) was added tetrahydrofuran (8 mL). The n-butyllithium (1.55 M in hexanes, $0.97 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) was added dropwise. The resulting mixture was stirred under $78^{\circ} \mathrm{C}$ for 1.5 h . Then, tris(trimethylsilyl)silyl chloride ($283.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added. The reaction mixture was warmed to room temperature slowly and stirred for 5.5 h . After completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), and the layers were separated. The aqueous layer was extracted with hexanes $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was put into next step without further purification.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added methanol $(5 \mathrm{~mL})$ and tetrahydrofuran $(5 \mathrm{~mL})$. The p-toluenesulfonic acid monohydrate ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.1$ equiv) was added. The reaction was stirred under room temperature for 2 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=30: 1$ to $20: 1$ to $15: 1$) to afford the product HOTAG9 as a pale yellow oil in 63% total yield (190.5 mg).
$\mathrm{Rf}=0.16$ (hexanes/EtOAc $=20: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.26(\mathrm{~s}, 2 \mathrm{H}), 0.24-0.17(\mathrm{~m}, 27 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 106.8,84.2,52.2,0.3$.
IR (neat) 2951, 2894, 1398, 1244, $1037 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{OSi4Na}[\mathrm{M}+\mathrm{Na}]^{+}: 325.1271$, Found: 325.1248.

Esterification test.

3-(1,1,1,3,3,3-Hexamethyl-2-(trimethylsilyl)trisilan-2-yl)prop-2-yn-1-yl
(tert-butoxycarbonyl)-L-alaninate (Boc-Ala-OTAG9) At room temperature, to a 15 mL flamedried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and HOTAG9 ($153.3 \mathrm{mg}, 0.51 \mathrm{mmol}$, 1.0 equiv) was added dichloromethane (2.5 mL). The Boc-Ala-OH ($191.6 \mathrm{mg}, 1.01 \mathrm{mmol}, 2.0$ equiv) was added, followed by adding DMAP ($74.2 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.2$ equiv) and DCC (209.0 $\mathrm{mg}, 1.01 \mathrm{mmol}, 2.0$ equiv). The reaction was stirred at room temperature for 2 h . Then, filtered, washed with dichloromethane $(5 \mathrm{~mL})$ and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=20: 1$ to $15: 1$) to afford the product Boc-AlaOTAG9 as a colorless oil in 96% yield (231.5 mg).
$\mathrm{Rf}=0.58($ hexanes $/ \mathrm{EtOAc}=5: 1)$.
$[\alpha]{ }^{23}=-27.10\left(c 1.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.04(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.23(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.28-0.15(\mathrm{~m}, 27 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,155.0,101.3,86.8,79.8,54.0,49.1,28.3,18.6,0.3$.

IR (neat) 2951, 2894, 1748, 1709, 1502, 1451, 1367, 1340, 1308, 1245, $1159 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 496.2167$, Found: 496.2167.

Tolerance test.

3-(1,1,1,3,3,3-Hexamethyl-2-(trimethylsilyl)trisilan-2-yl)prop-2-yn-1-yl L-alaninate (H-Ala-OTAG9) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and Boc-Ala-OTAG9 ($23.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane $(0.05 \mathrm{~mL})$. The hydrochloric acid solution $(4.0 \mathrm{M}$ in dioxane, $0.125 \mathrm{~mL}, 0.5$ $\mathrm{mmol}, 10.0$ equiv) was added. The reaction was stirred at room temperature for 1 h . After completion, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (5 mL) and dichloromethane (5 mL) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$).

The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the product H-Ala-OTAG9 as a pale yellow oil in quantitative yield (19.1 mg).
$\mathrm{Rf}=0.06$ (hexanes $/ \mathrm{EtOAc}=5: 1$).
$[\alpha] \mathrm{D}^{23}=-47.50\left(c 0.40, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.81-4.63(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.51(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 3H), $0.23-0.16(\mathrm{~m}, 27 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.8,101.7,86.4,53.7,50.0,20.5,0.2$.
IR (neat) 2949, 2894, 1745, 1677, 1398, 1316, 1244, 1172, 1137, $1042 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 396.1643$, Found: 396.1643.

XV.Development of TAG10 and test

Synthesis of 24c-24f.

$$
\begin{aligned}
& \text { 24c, 65\% }
\end{aligned}
$$

1,3-Dibutyl-2-(butyldimethylsilyl)-1,1,3,3-tetramethyl-2-phenyltrisilane (24c) At room temperature, under N_{2}, to a flame-dried flask charged with Li (granular, $222.1 \mathrm{mg}, 32.0 \mathrm{mmol}$, 8.0 equiv) was added tetrahydrofuran (20 mL). The trichloro(phenyl)silane ($0.641 \mathrm{~mL}, 4.0$ mmol, 1.0 equiv) and butylchlorodimethylsilane ($2.15 \mathrm{~mL}, 12.4 \mathrm{mmol}, 3.1$ equiv) were added together. The reaction was stirred at room temperature for 18 hours. Then, the reaction mixture was poured into a separation funnel charged with 50 mL hexanes and 50 mL water. The layers were separated. The aqueous layer was extracted with hexanes ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product $\mathbf{2 4 c}$ as a colorless oil in 65% yield (1.17 g). [Note: The purification by chromatography should be repeated if the product is not pure enough.] Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data and structure of installed compounds support it.
$R f=0.71$ (100% hexanes).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.19(\mathrm{~m}, 12 \mathrm{H})$, $0.89-0.80(\mathrm{~m}, 9 \mathrm{H}), 0.74-0.60(\mathrm{~m}, 6 \mathrm{H}), 0.23-0.11(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7,135.9,127.5,127.2,26.6,26.5,17.0,13.7,-0.9$.
IR (neat) 2955, 2921, 2871, 2857, 1463, 1427, 1243, 1078, $1024 \mathrm{~cm}^{-1}$.

1,1,3,3-Tetrabutyl-2-(dibutyl(methyl)silyl)-1,3-dimethyl-2-phenyltrisilane (24d) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar $(\mathrm{Sm}-\mathrm{Co})$ and
dichloromethylsilane ($1.23 \mathrm{~mL}, 12 \mathrm{mmol}, 1.0$ equiv) was added tetrahydrofuran $(60 \mathrm{~mL})$. The $n-\mathrm{BuMgCl}(2.0 \mathrm{M}$ in THF, $15 \mathrm{~mL}, 30 \mathrm{mmol}, 2.5$ equiv) was added dropwise. The resulting mixture was warmed to room temperature slowly and stirred for 21 h . After completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (60 mL), and the layers were separated. The aqueous layer was extracted with hexanes $(3 \times 60 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the product dibutyl(methyl)silane as a colorless oil in 83% yield (1.58 g).

At room temperature, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm Co) and dibutyl(methyl)silane ($1.58 \mathrm{~g}, 9.95 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (50 mL). The trichloroisocyanuric acid ($786.3 \mathrm{mg}, 3.38 \mathrm{mmol}, 0.34$ equiv) was added. The resulting mixture was stirred for 3 h . After completion, the reaction mixture was concentrated, and anhydrous hexanes (20 mL) were added. The mixture was filtered via Celite pad and washed by hexanes. The organic solution was concentrated to afford the product dibutylchloro(methyl)silane in 95% yield (1.83 g).

At room temperature, under N_{2}, to a flame-dried flask charged with Li (granular, 170.0 mg , $24.5 \mathrm{mmol}, 8.0$ equiv) was added tetrahydrofuran (15 mL). The trichloro(phenyl)silane (0.491 $\mathrm{mL}, 3.1 \mathrm{mmol}, 1.0$ equiv) and dibutylchloro(methyl)silane ($1.83 \mathrm{~g}, 9.5 \mathrm{mmol}, 3.1$ equiv) were added together. The reaction was stirred at room temperature for 6 days. Then, the reaction mixture was poured into a separation funnel charged with 30 mL hexanes and 30 mL water. The layers were separated. The aqueous layer was extracted with hexanes ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product 24d as a colorless oil in 46% yield (818.7 mg). [Note: The purification by chromatography should be repeated if the product is not pure enough.] Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data support it.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.16(\mathrm{~m}, 24 \mathrm{H})$, $0.93-0.78$ (m, 18H), $0.78-0.58(\mathrm{~m}, 12 \mathrm{H}), 0.22-0.16(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,136.5,127.3,127.0,27.0,26.8,16.0,13.7,-2.9$.
IR (neat) 2955, 2920, 2871, 2856, 1463, 1426, 1412, 1376, 1294, 1245, $1177 \mathrm{~cm}^{-1}$.

1,3-Didecyl-2-(decyldimethylsily)-1,1,3,3-tetramethyl-2-phenyltrisilane (24e) At room temperature, under N_{2}, to a flame-dried flask charged with Li (granular, $222.1 \mathrm{mg}, 32.0 \mathrm{mmol}$, 8.0 equiv) was added tetrahydrofuran $(20 \mathrm{~mL})$. The trichloro(phenyl) silane ($0.641 \mathrm{~mL}, 4.0$ mmol, 1.0 equiv) and decyldimethylchlorosilane ($3.35 \mathrm{~mL}, 12.4 \mathrm{mmol}, 3.1$ equiv) were added together. The reaction was stirred at room temperature for 16 hours. Then, the reaction mixture was poured into a separation funnel charged with 50 mL hexanes and 50 mL water. The layers were separated. The aqueous layer was extracted with hexanes $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product 24e as a colorless oil in 74% yield $(2.07 \mathrm{~g})$. [Note: The purification by chromatography should be repeated if the product is not pure enough] Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data and structure of installed compounds support it.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 48 \mathrm{H})$, $0.92-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.74-0.58(\mathrm{~m}, 6 \mathrm{H}), 0.25-0.11(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.7,135.9,127.5,127.2,33.8,31.9,29.7,29.6,29.4(2 \mathrm{C})$, 24.3, 22.7, 17.4, 14.1, -0.8.

IR (neat) 2955, 2920, 2852, 1465, 1427, 1244, 1087, $1027 \mathrm{~cm}^{-1}$.

$$
\begin{align*}
& \text { 24f, } 59 \% \tag{24f}
\end{align*}
$$

2-(Dimethyl(octadecyl)silyl)-1,1,3,3-tetramethyl-1,3-dioctadecyl-2-phenyltrisilane
At $0^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with Li (granular, $222.1 \mathrm{mg}, 32.0 \mathrm{mmol}, 8.0$ equiv) was added tetrahydrofuran (20 mL). The trichloro(phenyl)silane ($0.641 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 1.0 equiv) and chloro(dimethyl)octadecylsilane ($4.30 \mathrm{~g}, 12.4 \mathrm{mmol}, 3.1$ equiv) were added together. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 4 h and then room temperature for 66 hours. Then, the reaction mixture was poured into a separation funnel charged with 50 mL hexanes and 50 mL water. The layers were separated. The aqueous layer was extracted with hexanes (3×50 mL). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product $\mathbf{2 4 f}$ as a white wax in 59% yield $(2.44 \mathrm{~g})$. [Note: The purification by chromatography should be repeated if the product is not pure enough.] Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data support it.
M.p. $25-27^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 96 \mathrm{H})$, $0.92-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.75-0.56(\mathrm{~m}, 6 \mathrm{H}), 0.26-0.11(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7,135.9,127.5,127.2,33.8,31.9,29.74(8 \mathrm{C}), 29.69,29.6$, 29.4(2C), 24.3, 22.7, 17.4, 14.1, -0.8.

IR (neat) 2954, 2914, 2849, 1469, 1427, 1245, $1166 \mathrm{~cm}^{-1}$.

Synthesis of 25a, 25c, 25 e.

2-Ethynyl-1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane (25a) At $0^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and tris(trimethylsilyl)silyl chloride ($141.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) was added tetrahydrofuran (3 mL). The ethynylmagnesium chloride (0.5 M in THF, $1.5 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1.5$ equiv) was added dropwise. The resulting mixture was stirred under room temperature for 20 h . After completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), and the layers were separated. The aqueous layer was extracted with hexanes $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100\% hexanes) to afford the product 25a as a colorless oil in 55% yield (75.4 mg). Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data support it.
$\mathrm{Rf}=0.75$ (100% hexanes).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.30(\mathrm{~s}, 1 \mathrm{H}), 0.22(\mathrm{~s}, 27 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 95.8,84.0,0.2$.
IR (neat) 3299, 2950, 2894, 1398, $1244 \mathrm{~cm}^{-1}$.

1,3-Dibutyl-2-(butyldimethylsilyl)-2-ethynyl-1,1,3,3-tetramethyltrisilane (25c) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and 24c (225.5
$\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (2 mL). The triflic acid ($57.5 \mu \mathrm{~L}, 0.65$ mmol, 1.3 equiv) was added. The reaction was stirred at room temperature for 1 h . Then, cool to $0^{\circ} \mathrm{C}$, and the ethynylmagnesium chloride (0.5 M in $\mathrm{THF}, 2.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 2.0$ equiv) was added dropwise. The resulting mixture was stirred under room temperature for 18 h . After completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), and the layers were separated. The aqueous layer was extracted with hexanes ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product $\mathbf{2 5 c}$ as a colorless oil in 66% yield (132.4 mg).
$R f=0.82$ (100% hexanes).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.31(\mathrm{~s}, 1 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 12 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 9 \mathrm{H}), 0.75-$ $0.66(\mathrm{~m}, 6 \mathrm{H}), 0.22-0.16(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 96.2,84.7,26.6(2 \mathrm{C}), 16.7,13.8,-1.6$.
IR (neat) 3297, 2956, 2922, 2872, 1464, 1410, 1377, 1341, 1244, 1188, 1078, $1022 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{46} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 421.2574$, Found: 421.2556.

1,3-Didecyl-2-(decyldimethylsilyl)-2-ethynyl-1,1,3,3-tetramethyltrisilane (25e) At $0{ }^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and 24e (351.7 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (2 mL). The triflic acid ($57.5 \mu \mathrm{~L}, 0.65$ mmol, 1.3 equiv) was added. The reaction was stirred at room temperature for 1 h . Then, cool to $0^{\circ} \mathrm{C}$, and the ethynylmagnesium chloride (0.5 M in $\mathrm{THF}, 2.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 2.0$ equiv) was added dropwise. The resulting mixture was stirred under room temperature for 16 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: 100% hexanes) to afford the product $\mathbf{2 5}$ e as a colorless oil in 89% yield (289.1 mg). Although molecular ion peak was not located in the mass spectrum in ESI equipment, NMR data support it.
$R f=0.88$ (100% hexanes).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.30(\mathrm{~s}, 1 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 48 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.74-$ $0.65(\mathrm{~m}, 6 \mathrm{H}), 0.25-0.12(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 96.2,84.8,33.8,31.9,29.70,29.65,29.42,29.38,24.5,22.7$, 17.1, 14.1, -1.6.

IR (neat) $3297,2955,2920,2852,1465,1244 \mathrm{~cm}^{-1}$.

Synthesis of TAG10.

3-(1,3-Didecyl-2-(decyldimethylsilyl)-1,1,3,3-tetramethyltrisilan-2-yl)prop-2-yn-1-ol
(HOTAG10) At $0^{\circ} \mathrm{C}$, under N_{2}, to a flame-dried flask charged with magnetic stirring bar (Sm Co) and $\mathbf{2 4 e}(703.5 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (4 mL). The triflic acid ($115.0 \mu \mathrm{~L}, 1.3 \mathrm{mmol}, 1.3$ equiv) was added. The reaction was stirred at room temperature for 1 h to make 24e-OTf solution.

At $-78{ }^{\circ} \mathrm{C}$, under N_{2}, to another flame-dried flask charged with magnetic stirring bar (Sm-Co) and $\mathbf{2 3}(252.3 \mathrm{mg}, 1.8 \mathrm{mmol}, 1.8$ equiv) was added tetrahydrofuran $(10 \mathrm{~mL})$. The n-butyllithium (1.55 M in hexanes, $1.16 \mathrm{~mL}, 1.8 \mathrm{mmol}, 1.8$ equiv) was added dropwise. The resulting mixture was stirred under $-78^{\circ} \mathrm{C}$ for 1.5 h . Then, transfer the above 24e-OTf solution into the reaction mixture slowly. The reaction mixture was warmed to room temperature slowly and stirred for 4 h . After completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), and the layers were separated. The aqueous layer was extracted with hexanes ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was put into next step without further purification.
At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added methanol $(5 \mathrm{~mL})$ and tetrahydrofuran $(5 \mathrm{~mL})$. The p-toluenesulfonic acid monohydrate ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.1$ equiv) was added. The reaction was stirred under room temperature for 4.5 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=50: 1$) to afford the product HOTAG10 as a colorless oil in 59% total yield $(402.9 \mathrm{mg})$.
$\mathrm{Rf}=0.32$ (hexanes/EtOAc $=20: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.24(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 48 \mathrm{H}), 0.92-0.84(\mathrm{~m}$, $9 \mathrm{H}), 0.73-0.64(\mathrm{~m}, 6 \mathrm{H}), 0.21-0.12(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 107.0,85.2,52.3,33.8,31.9,29.69,29.65,29.5,29.4,24.5$, 22.7, 17.2, 14.1, -1.5.

IR (neat) 2955, 2920, 2852, 1465, 1410, 1378, 1243, $1037 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{84} \mathrm{OSi4Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 703.5497, Found: 703.5546.

Esterification test.

3-(1,3-Didecyl-2-(decyldimethylsilyl)-1,1,3,3-tetramethyltrisilan-2-yl)prop-2-yn-1-yl (tert-butoxycarbonyl)-L-alaninate (Boc-Ala-OTAG10) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and HOTAG10 ($136.3 \mathrm{mg}, 0.2$ mmol , 1.0 equiv) was added dichloromethane (1.0 mL). The Boc-Ala-OH ($75.7 \mathrm{mg}, 0.4 \mathrm{mmol}$, 2.0 equiv) was added, followed by adding DMAP ($29.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and DCC ($82.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv). The reaction was stirred at room temperature for 16 h . Then, filtered, washed with dichloromethane $(5 \mathrm{~mL})$ and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=20: 1$) to afford the product Boc-AlaOTAG10 as a colorless oil in 74% yield (126.5 mg).
$\mathrm{Rf}=0.69($ hexanes $/ \mathrm{EtOAc}=5: 1)$.
$[\alpha]_{\mathrm{D}}{ }^{23}=-34.94\left(c 0.83, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.17-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42-4.20(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.19(\mathrm{~m}, 48 \mathrm{H}), 0.96$ $-0.78(\mathrm{~m}, 9 \mathrm{H}), 0.75-0.59(\mathrm{~m}, 6 \mathrm{H}), 0.26-0.08(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,155.0,101.5,87.6,79.8,54.1,49.1,33.8,31.9,29.69$, 29.65, 29.42, 29.37, 28.3, 24.5, 22.7, 18.7, 17.1, 14.1, -1.5.

IR (neat) 2956, 2922, 2853, 1750, 1721, 1498, 1455, 1366, 1339, 1308, 1244, $1160 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{47} \mathrm{H}_{9} 7 \mathrm{NO} 4 \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 874.6392$, Found: 874.6402.

3-(1,3-Didecyl-2-(decyldimethylsilyl)-1,1,3,3-tetramethyltrisilan-2-yl)prop-2-yn-1-yl

 (($\mathbf{9 H}$-fluoren-9-yl)methoxy)carbonyl)-L-alaninate (Fmoc-Ala-OTAG10) At room temperature, to a 15 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and HOTAG10 ($136.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (1.0 mL). The Fmoc-Ala-OH ($124.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) was added, followed by adding DMAP (29.3 mg , $0.24 \mathrm{mmol}, 1.2$ equiv) and DCC ($82.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv). The reaction was stirred at room temperature for 16 h . Then, filtered, washed with dichloromethane (5 mL) and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=20: 1$ to $15: 1$) to afford the product Fmoc-Ala-OTAG10 as a pale yellow oil in 79% yield (153.4 mg).$\mathrm{Rf}=0.60$ (hexanes $/ \mathrm{EtOAc}=5: 1$).
$[\alpha]_{\mathrm{D}}{ }^{23}=-27.35\left(c 1.28, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}$, 2H), $7.37-7.27$ (m, 2H), 5.37 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.85 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (d, $J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49-4.36(\mathrm{~m}, 3 \mathrm{H}), 4.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.18$ (m, $48 \mathrm{H}), 0.93-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.73-0.64(\mathrm{~m}, 6 \mathrm{H}), 0.26-0.11(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.2,155.5,143.9,143.8,141.3,127.7,127.0,125.1,120.0$, $101.4,88.0,67.0,54.3,49.6,47.2,33.8,31.9,29.69,29.66,29.42,29.37,24.5,22.7,18.7,17.1$, 14.1, -1.5.

IR (neat) 2921, 2852, 1726, 1506, 1450, 1379, 1335, 1306, 1243, 1195, $1167 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{57} \mathrm{H}_{99} \mathrm{NO}_{4} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: ~ 996.6549$, Found: 996.6551.

Tolerance test.

3-(1,3-Didecyl-2-(decyldimethylsilyl)-1,1,3,3-tetramethyltrisilan-2-yl)prop-2-yn-1-yl L-

 alaninate (H-Ala-OTAG10) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Boc-Ala-OTAG10 ($77.8 \mathrm{mg}, 0.091 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane $(0.090 \mathrm{~mL})$. The hydrochloric acid solution (4.0 M in dioxane, 0.228 $\mathrm{mL}, 0.91 \mathrm{mmol}, 10.0$ equiv) was added. The reaction was stirred at room temperature for 2 h . After completion, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(5 \mathrm{~mL})$ and dichloromethane $(5 \mathrm{~mL})$ was added, and the layers were separated. The aqueous layer was extracted with dichloromethane (3×5 mL). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the product H-Ala-OTAG10 as a colorless oil in quantitative yield (69.8 mg).$\mathrm{Rf}=0.23$ (hexanes $/ \mathrm{EtOAc}=5: 1$).
$[\alpha]_{\mathrm{D}}{ }^{24}=-18.75\left(c 1.28, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.71$ $(\mathrm{m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 48 \mathrm{H}), 0.94-0.83(\mathrm{~m}, 9 \mathrm{H}), 0.71-0.62(\mathrm{~m}$, $6 \mathrm{H}), 0.16(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.7,101.4,87.9,54.3,49.6,33.7,31.9,29.7,29.6,29.41$, 29.36, 24.5, 22.7, 19.0, 17.1, 14.1, -1.6.

IR (neat) 2922, 2853, 1744, 1459, 1244, 1171, $1037 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{42} \mathrm{H}_{89} \mathrm{NO}_{2} \mathrm{Si}_{14} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 774.5868$, Found: 774.5915.

3-(1,3-Didecyl-2-(decyldimethylsilyl)-1,1,3,3-tetramethyltrisilan-2-yl)prop-2-yn-1-yl Lalaninate (H-Ala-OTAG10) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar (Sm-Co) and Fmoc-Ala-OTAG10 ($107.0 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (1.1 mL). The DBU ($0.0328 \mathrm{~mL}, 0.22 \mathrm{mmol}, 2.0$ equiv) was added. The reaction was stirred at room temperature for 0.5 h . After completion, the reaction mixture was concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=20: 1$ to $4: 1$) to afford the product H-Ala-OTAG10 as a colorless oil in 87% yield (71.6 mg).

XVI. Synthesis of protected Nelipepimut-S with TAG10 in Boc-chemistry

First esterification step.

3-(1,3-Didecyl-2-(decyldimethylsilyl)-1,1,3,3-tetramethyltrisilan-2-yl)prop-2-yn-1-yl (tert-butoxycarbonyl)-L-leucinate (Boc-Leu-OTAG10) At room temperature, to a flamedried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and HOTAG10 $(1.11 \mathrm{~g}, 1.63 \mathrm{mmol}$, 1.0 equiv) was added dichloromethane (8.0 mL). The Boc-Leu-OH ($753.7 \mathrm{mg}, 3.26 \mathrm{mmol}, 2.0$ equiv) was added, followed by adding DMAP ($238.9 \mathrm{mg}, 1.96 \mathrm{mmol}, 1.2$ equiv) and DCC $(672.4 \mathrm{mg}, 3.26 \mathrm{mmol}, 2.0$ equiv). The reaction was stirred at room temperature for 3 h . Then, filtered, washed with dichloromethane $(5 \mathrm{~mL})$ and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/EtOAc $=33: 1$) to afford the product Boc-LeuOTAG10 as a colorless oil in 95% yield $(1.38 \mathrm{~g})$.
$\mathrm{Rf}=0.29$ (hexanes/EtOAc $=20: 1$).
$[\alpha] D^{24}=-33.01\left(c 1.03, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.93-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.27(\mathrm{~m}$, $1 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 10 \mathrm{H}), 1.36-1.17(\mathrm{~m}, 48 \mathrm{H})$, $0.98-0.92(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.71-0.63(\mathrm{~m}, 6 \mathrm{H}), 0.22-0.12(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.6, 155.3, 101.6, 87.4, 79.8, 53.9, 52.0, 42.0, 33.8, 31.9, 29.69, 29.66, 29.43, 29.37, 28.3, 24.8, 24.5, 22.8, 22.7, 21.9, 17.1, 14.1, -1.5.

IR (neat) 2956, 2921, 2853, 1750, 1721, 1500, 1466, 1367, 1333, 1244, 1158, $1121 \mathrm{~cm}^{-1}$.
HRMS (ESI) Calcd for $\mathrm{C}_{50} \mathrm{H}_{103} \mathrm{NO}_{4} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 916.6862, Found: 916.6907.

General procedures for Boc-deprotection and coupling reactions.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and Boc-protected peptide (1.0 equiv) was added dichloromethane (1.0 M). The hydrochloric acid solution (4.0 M in dioxane, 10.0 to 15.0 equiv) was added. The reaction was stirred at room temperature for 1 to 2 h (monitored by TLC). After completion, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and dichloromethane was added, and the layers were separated. The aqueous layer was extracted with dichloromethane for three times. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was put into next Boc-coupling step without further purification.

At room temperature, to a flame-dried flask charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and above residue was added dichloromethane (0.05 to 0.2 M). The Boc-protected amino acid (Boc-$\mathrm{AA}-\mathrm{OH}, 1.1$ to 1.2 equiv) was added followed by adding $\mathrm{EDC} \cdot \mathrm{HCl}$ (1.2 equiv) and $\mathrm{HOBt}(0.3$ equiv). The resulting mixture was stirred under room temperature. After completion, the mixture was diluted with dichloromethane, followed by adding saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The layers were separated. The aqueous layer was extracted with dichloromethane for three times. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was put into next Boc-deprotection step without further purification.

Elongation

27, 62%, sixteen steps

Boc-Lys(Boc)-Ile-Phe-Gly-Ser(Bn)-Leu-Ala-Phe-Leu-OTAG10 (27) At room temperature, to a flame-dried flask charged with magnetic stirring bar (Sm-Co) and Boc-protected peptide Boc-Leu-OTAG10 ($134.2 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (0.15 mL). Then, the mixture was followed the General procedures for Boc-deprotection and coupling reactions and repeated for seven times (eight times in total) by changing the coupling amino acid according to the sequence of the target peptide every time. In the final coupling step, after the completion of the coupling reaction and finishing the work-up procedure, the residue was purified by silica gel chromatography (eluent: $\mathrm{DCM} / \mathrm{MeOH}=10: 1$) to afford the product 27 as a white solid in 62% total yield (181.2 mg).
$\mathrm{Rf}=0.42(\mathrm{DCM} / \mathrm{MeOH}=10: 1)$.
HRMS (ESI) Calcd for $\mathrm{C}_{106} \mathrm{H}_{182} \mathrm{~N}_{10} \mathrm{O}_{15} \mathrm{Si} 14 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1970.2761$, Found: 1970.2796.

Cleavage.

Boc-Lys(Boc)-Ile-Phe-Gly-Ser(Bn)-Leu-Ala-Phe-Leu-OH (28) At room temperature, to a 6 mL flame-dried vial charged with magnetic stirring bar ($\mathrm{Sm}-\mathrm{Co}$) and 27 ($39.0 \mathrm{mg}, 0.02 \mathrm{mmol}$, 1.0 equiv) was added chloroform $(0.2 \mathrm{~mL})$, methanol $(60 \mu \mathrm{~L})$ and water $(20 \mu \mathrm{~L})$. The lithium hydroxide monohydrate ($2.1 \mathrm{mg}, 0.05 \mathrm{mmol}, 2.5$ equiv) was added. The reaction was stirred under room temperature for 24 h . After completion, the reaction mixture was concentrated. Dichloromethane (1.0 mL) was added, followed by adding hydrochloric acid solution (2 N in water, $60 \mu \mathrm{~L}, 0.12 \mathrm{mmol}, 6.0$ equiv). Additional 0.5 mL water was added and the layers was separated. The organic layer was concentrated and washed by hexanes $(3 \times 1 \mathrm{~mL})$. The remaining white solid was the product $\mathbf{2 8}$ in 93% yield (23.9 mg). The purity of the product was 83% which was determined by RP-HPLC using a revised-phase column (ODS-HL, 4.6 $\mathrm{mm} \times 25 \mathrm{~cm}$).
HRMS (ESI) Calcd for $\mathrm{C}_{67} \mathrm{H}_{100} \mathrm{~N}_{10} \mathrm{O}_{15} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1307.7267$, Found: 1307.7280.

XVII. References

[1] J. Fraczyk, Z. J. Kaminski, J. Katarzynska and B. Kolesinska, Helv. Chim. Acta 2018, 101, e1700187.
[2] A. Wu, I. Ramakrishna, T. Hattori, H. Yamamoto, Org. Biomol. Chem. 2022, 20, 8685-8692.
[3] S. J. Tantry, V. V. S. Babu, Lett. Pept. Sci. 2003, 10, 655-662.
[4] E. Atherton, L. R. Cameron, R. C. Sheppard, Tetrahedron 1988, 44, 843-857.
[5] V. V. S. Babu, K. Ananda, R. I. Mathad, Lett. Pept. Sci. 2000, 7, 239-242.
[6] E. L. Baker, M. M. Yamano, Y. Zhou, S. M. Anthony, N. K. Garg, Nat. Commun. 2016, 7, 11554.
[7] W. Muramatsu, T. Hattori, H. Yamamoto, J. Am. Chem. Soc. 2019, 141, 12288-12295.
[8] W. Muramatsu, C. Manthena, E. Nakashima and H. Yamamoto, ACS Catal. 2020, 10, 95949603.
[9] L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang, J. Zhao, J. Am. Chem. Soc. 2016, 138, 13135-13138.
[10] a) B. Kopping, C. Chatgilialoglu, M. Zehnder, B. Giese, J. Org. Chem. 1992, 57, 39944000; b) R. D. Allen, D. C. Hofer, R. Sooriyakumaran, G. M. Wallraff, US005985524A, 1999.

Single Injection Report

Data file:	wuan-1352-1.dx		
Sequence Name:	SingleSample	Project Name:	Yamamoto-Lab
Sample name:	wuan-1352	Operator:	SYSTEM
Instrument:	HPLC2	Injection date:	2022-05-31 13:33:36+09:00
Inj. volume:	0.000	Location:	
Acq. method:	C18_0.1\%TFA-H2O85_0.1\%TFA- MeCN15_0.1\%TFA- H2O57.5_0.1\%TFA- MeCN42.5_0.5ml_40deg_50min_ 210nm.amx	Type:	Sample
Processing method:	New method 1.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

Signal: VWD1A,Wavelength=210 nm

RT [min]	Type	Width [min]	Area	Height	Area\%
4.227	MM m	1.56	1391.90	28.91	1.48
4.890	MB m	0.69	476.79	20.98	0.51
5.729	BV	2.30	89767.48	2015.19	95.17
22.659	BB	2.21	2692.05	79.39	2.85

Name

Sum 94328.21
$5.729 \mathrm{~min}=\mathrm{H}-$ Phe-Phe-Ala-Ala-Ala-OH (14)
Conditions: 0.1% TFA in water $/ 0.1 \%$ TFA in acetonitrile $=85: 15$ to $57.5: 42.5, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$ Column: XSelect CSH C18 column from Waters

Single Injection Report

Agilent

Data file:

Sequence Name:
Sample name:
Instrument:
Inj. volume:
Acq. method:
wuan-1439-1-1.dx
SingleSample
wuan-1439-1
HPLC2
0.000

C18_0.1\%TFA-H2O85_0.1\%TFA-
MeCN15_0.1\%TFA-
H2O57.5_0.1\%TFA-
MeCN42.5_0.5ml_40deg_50min_ 210nm-2.amx

Processing method: New method 1.pmx \quad Sample amount: 0.00

Manual Integration

Project Name:	Yamamoto-Lab
Operator:	SYSTEM
Injection date:	2022-06-23 11:37:58+09:00
Location:	
Type:	Sample
Sample amount:	0.00

Manually modified:

Signal: VWD1A,Wavelength=210 nm

RT [min]	Type	Width [min]	Area	Height	Area\%
17.101	MM m	1.14	1068.42	41.78	2.08
18.224	MM m	0.77	363.23	17.87	0.71
22.074	MM m	1.52	3432.19	124.56	6.70
25.735	BM m	0.58	374.74	21.67	0.73
26.365	MM m	2.03	37333.22	898.71	72.85
29.707	BV	1.22	3942.60	113.67	7.69
30.608	VV	0.86	1560.56	49.64	3.05
31.521	VB	0.99	1327.11	57.53	2.59
32.532	BB	1.31	1038.43	38.86	2.03
35.896	MM m	1.24	804.32	30.36	1.57

Name

Conditions: 0.1% TFA in water $/ 0.1 \%$ TFA in acetonitrile $=85: 15$ to $57.5: 42.5, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$ Column: XSelect CSH C18 column from Waters

Data file:	wuan-1574-2.dx		
Sequence Name:	SingleSample	Project Name:	Yamamoto-Lab
Sample name:	wuan-1574-2-8	Operator:	SYSTEM
Instrument:	HPLC2	Injection date:	2022-11-17 17:35:44+09:00
Inj. volume:	0.000	Location:	
Acq. method:	ODS- HL_H2O85_MeCN15_0.5ml_rt_6 Omin_210nm.amx	Type:	Sample
Processing method:	New method 1.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

Signal: VWD1A, Wavelength $=210 \mathrm{~nm}$

RT [min]	Type	Width [min]	Area	Height	Area\%
5.056	MM m	1.18	52.50	1.38	5.30
12.406	BB	2.14	822.53	23.61	82.98
33.073	MM m	1.78	62.49	1.33	6.30
46.264	MM m	2.03	53.66	0.91	5.41

$12.406 \mathrm{~min}=$ Boc-Lys(Boc)-Ile-Phe-Gly-Ser(Bn)-Leu-Ala-Phe-Leu-OH (28)
Conditions: water/acetonitrile $=85: 15, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$
Column: ODS-HL column from GL Siences Inc.

