<Electronic Supporting Information>

Accurate Binding of Porous Aluminum Molecular Ring

Catalyst with the Substrate

Dan Luo ${ }^{+}$, Han Xiao ${ }^{+}$, Min-Yi Zhang, Shang-Da Li, Liang He, Hong Lv, Chun-Sen Li, QiPu Lin, Wei-Hui Fang* and Jian Zhang

[^0]
Content

1.Experimental S3
2.Synthesis S5
3.The structure information for AlOCs S6
4.PXRD spectra of AIOCs S14
5. Stability of AIOCs S15
6. TGA test for AIOCs S16
7. The solid-state absorption spectra of AIOCs S17
8. EDS spectra of AIOCs S17
9. FT-IR spectra of AIOCs S18
10. Heterogeneous catalysis activity of AIOCs S19
11.Supplementary tables S27
Table S1 Hydrogen bond parameters for AIOC-58BC S27
Table S2 Hydrogen bond parameters for AIOC-59NT S27
Table S3 BVS analysis for AIOC-58NC S27
Table S4 BVS analysis for AIOC-59NT S27
Table S5 catalytic activity of several heterogeneous catalysts used in thecyanosilylation of aldehydeS28
Table S6 Substrate scope for cyanosilylation of aldehyde compound with TMSCN catalyzed by AIOCs S29
Table S7. Experimental single-crystal X-ray data for AIOC-58NC and AIOC-58NC-1. S30
Table S8. Experimental single-crystal X-ray data for AIOC-59NT and 4Bz@AIOC- 59NT S31
12. Reference S32

1.Experimental

Materials and Methods.

All the reagents and solvents were purchased commercially and were used without further purification. 3-aminoisonicotinic acid $\left(\mathrm{NH}_{2}-\mathrm{HIN}\right)(\geq 97 \%)$ was acquired from Adamas-beat. Aluminum isopropoxide ($\geq 98 \%$) is bought from Aladdin Chemical Reagent Shanghai. N, N-dimethylformamide (DMF, $\geq 99.5 \%$), n-BuOH ($\geq 99.5 \%$), and toluene ($\geq 99.5 \%$) were acquired from Sinopharm Chemical Reagent Beijing.

Synthesis of the AIOCs.

Pale yellow cubic crystals of compound $\left[\mathrm{Al}_{8}(\mathrm{OH})_{4}\left(\mathrm{OBu}^{\mathrm{n}}\right)_{8}\left(\mathrm{NH}_{2}-\mathrm{IN}\right)_{12}\right]$ (AIOC-58NC) were synthesized via a solvothermal reaction of aluminum isopropoxide ($204 \mathrm{mg}, 1$ mmol), 3-aminoisonicotinic acid ($210 \mathrm{mg}, 1.52 \mathrm{mmol}$) in a mixed solvent containing n butanol (2.5 mL) and DMF (2.5 mL) at $100{ }^{\circ} \mathrm{C}$ for 4 days. Light yellow strip-like crystals of compound $\left[\mathrm{Al}_{8}(\mathrm{OH})_{8}\left(\mathrm{NH}_{2}-\mathrm{IN}\right)_{16}\right]$ (AIOC-59NT) were obtained by removing alcohol from the reaction system and replacing it with toluene with the help of an auxiliary solvent (methylamine ethanol solution, 40\%).

X-ray Crystallography.

Single crystal X-ray diffraction data of AIOCs and aromatic aldehydes-loaded AIOC59NT were collected on Hybrid Pixel Array detector equipped with Ga-Ka radiation ($\lambda=1.3405 \AA$) at about 100 K . The structures were solved with the dual-direct methods using ShelxT and refined with the full-matrix least-squares technique based on F^{2} using the SHELXL. ${ }^{1}$ Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically, riding on the concerned atoms and refined with fixed thermal factors. All absorption corrections were performed using the multi-scan program. And nbutyl alcohol molecules are severely disordered and the related hydrogen atoms were not included in AIOC-58NC. The oxygen atoms of aromatic aldehydes are disordered in aromatic aldehydes-loaded AIOC-59NT. The obtained crystallographic data are summarized in Tables S7-S8.

Thermogravimetric Analysis (TGA).

TGA was performed on a Mettler Toledo TGA/SDTA 851^{e} analyzer in N_{2} with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}-1$ from 20 to $800^{\circ} \mathrm{C}$.

Fourier Transform Infrared (FT-IR) Spectroscopy.

IR spectra (KBr pellets) were recorded on an ABB Bomem MB102 spectrometer over a range $400-4000 \mathrm{~cm}^{-1}$.

UV-vis spectroscopy.

The UV-vis diffuse reflection data were recorded at room temperature using a powder sample with BaSO_{4} as a standard (100 \% reflectance) on a Perkin Elmer Lamda-950 UV spectrophotometer and scanned at 200-800 nm.

Element Analysis.

The energy dispersive spectroscopy (EDS) analyses were performed on a JEOL JSM6700F field-emission scanning electron microscope equipped with an Oxford INCA system. Elemental analysis (C, N, H) was carried out on a Vario Micro E III analyzer.

Nuclear magnetic spectrum.

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AVANCE III spectrometer (400 MHz) or a JEOL ECZ600S spectrometer (600 MHz).

Powder X-ray diffraction (PXRD) and temperature-dependent PXRD.

Single crystal samples of compounds AIOC-58NC and AIOC-59NT were grinded in a mortar and sieved with a 200 molybdenum sieve and then used for testing. PXRD data were collected on a Rigaku SmartLab X-ray thin-film diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54 \AA$). Molecular modeling was carried out using Reflex Plus, a module implemented in Materials Studio (version 4.4) by Accelrys Inc. The initial structures were constructed piecewise starting with a cubic cell with space group 1432 for AIOC-58NC and a tetragonal cell with space group 1422 for AIOC-59NT. For AIOC-58NC, the Tomandl Pseudo-Voigt function was used for whole profile fitting and Berrar-Baldinozzi function was used for asymmetry correction during the refinement processes. For AIOC59NT, the Gaussian function was used for whole profile fitting and Berrar-Baldinozzi function was used for asymmetry correction during the refinement processes. The PXRD patterns of AIOC-59NT were verified by the Rietveld and Pawley refinement methods, respectively. Temperatures-dependent PXRD data were collected on a Rigaku Ultima-IV diffractometer using Cu-K α radiation ($\lambda=1.54056 \AA$) under $25^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$.

General procedure and catalytic recycling of AIOCs-catalyzed cyanosilylation.

The mixture of aldehyde, trimethylsilyl cyanide (TMSCN) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the schlenk tube (0.5 mmol aldehyde, 1 mmol of TMSCN and $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$), where the activated AIOCs had been introduced in advance. The mixture was stirred (260 rpm) at room temperature for 2 h , under N_{2} atmosphere. For comparison, all tested substrates were tested under the same standard conditions. Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. After the reaction, AIOCs were separated from the reaction mixture by suction filtration. The filtrate containing the reaction product was removed and the AIOCs were washed by repeated additions of ethyl acetate $(3 \times 1 \mathrm{~mL})$ and then centrifuged. After the purification operation, the AIOCs were dried and used in the next reaction.

Computational details

Molecular dynamics simulation with GFN-Force-Field, ${ }^{2}$ and geometry optimization at GFN0-xTB ${ }^{3}$ level are performed using the xTB package. ${ }^{4}$ Four- and six-monomers clusters (Fig. S45) are abstracted from the nanotube AIOC-59NT and nanocage AIOC58NC crystal structures, respectively, for modeling to determine adsorption sites and calculate adsorption energies. In order to conserve the crystal structures during geometry optimization, $\mathrm{N}, \mathrm{O}, \mathrm{Al}$ in AIOC-58NC and N, Al in AIOC-59NT are constrained by a force constant of 25.0 Hartree/Bohr². Adsorption energy $E_{\text {ads }}$ are performed using eq. 1, where C and S denote cluster and substrate respectively, and the energy is derived from a single point calculation at GFN2-xTB ${ }^{5}$ level. To determine the Lewis acid/base character of AIOC-58NC and AIOC-59NT, monomers are isolated from the
crystal structure and geometric optimization at GFN2-xTB level is performed. Then, single-point calculations at TPSSh ${ }^{6} /$ def2-SVP ${ }^{7}$ level for individual molecules in AIOC58NC and AIOC-59NT are performed using ORCA package. ${ }^{8}$ Multiwfn ${ }^{9}$ is used to analyze the wave function produced by single point energy calculations, and investigate weak interaction by the interaction region indicator (IRI) ${ }^{10}$ method.

$$
E_{a d s}=E_{C+S}-E_{C}-E_{S}
$$

2.Synthesis

Synthesis of AIOC-58NC

A mixture of aluminum isopropoxide ($204 \mathrm{mg}, 1 \mathrm{mmol}$), 3-aminoisonicotinic acid (210 mg , $1.52 \mathrm{mmol})$; n-butanol (2.5 mL) and DMF (2.5 mL) was sealed in a 20 mL vial and transferred to a preheated oven at $100{ }^{\circ} \mathrm{C}$ for 4 days. When cooled to room temperature, pale yellow cubic crystals were obtained. The crystals are rinsed with DMF and preserved under a sealed and dry environment. (yield: 75\% based on $\left.\mathrm{Al}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}\right)$. $\mathrm{FT}-\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3456(s), 3345(s), 3212(m), 2953(m), 2865(m), 1665(s), 1606(s), 1575(s), 1533(s), 1461(s), 1401s). Elemental analysis calcd. (\%) for $\mathrm{Al}_{8} \mathrm{C}_{104} \mathrm{~N}_{24} \mathrm{O}_{38} \mathrm{H}_{140}$ (MW 2550.21): C 48.98, N 13.25 , H 5.53; found C 48.96, N 12.62, H 5.46 .

Synthesis of AIOC-59NT

A mixture of aluminum isopropoxide (204 mg, 1 mmol), 3-aminoisonicotinic acid (210 mg , $1.52 \mathrm{mmol})$; methylamine ethanol solution $(40 \%, 120 \mu \mathrm{~L})$, toluene $(3 \mathrm{~mL})$ and DMF $(3 \mathrm{~mL})$ was sealed in a 20 mL vial and transferred to a preheated oven at $100{ }^{\circ} \mathrm{C}$ for 5 days. When cooled to room temperature, pale yellow strip crystals were obtained. (yield: 70% based on $\left.\mathrm{Al}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}\right)$. The crystals are rinsed with DMF and preserved under a sealed and dry environment. FT-IR (KBr, cm¹-1): 3754(w), 3442(w), 3323(w), 3184(w), 3110(w), 2945(w), 1654(m), 1615(m), 1578(s), 1527(m), 1456(s), 1402(s), 1234.52(s). Elemental analysis calcd. (\%) for $\mathrm{Al}_{8} \mathrm{C}_{96} \mathrm{~N}_{32} \mathrm{O}_{40} \mathrm{H}_{88}$ (MW 2545.76): C 45.29, N 17.61, H 3.48; found $\mathrm{C} 44.35, \mathrm{~N} 15.12, \mathrm{H}$ 4.60.

3.The structure information for AIOCs

Figure S1. Synthetic regulation. (a) Preparation of nanocage structure AIOC-58NC from coordination alcohol. (b) Preparation of nanotubes AIOC-59NT from uncoordinated toluene. The massive production of (c) AIOC-58NC and (d) AIOC-59NT. Color code: AI, green; C, black; O, red; N , blue.

Figure S2. (a) Molecular ring, nanocage and packing view of AIOC-58NC. (b) Molecular ring, nanotube and packing view of AIOC-59NT.

Figure S3. The role of α, β and γ in the nanocages of AIOC-58NC. (a) The interaction force between α, β and γ on the nanocage and the adjacent nanocage. (b) The nanocage formed between α position ligands through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. (c) Hydrogen bond interactions between β, γ and adjacent nanocages. (d) The micropores formed between γ position ligands through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. (e) The interaction forces between β, y and adjacent nanocages. (f) Spatially staggered stacking diagram between nanocages (yellow and blue represent nanocages located in the equator and axial planes, respectively). Some carbon and hydrogen atoms have been omitted for clarity. Color code: Al, green; C, black; O, red; N, blue.

Figure S4. The comparison between nanocages of AIOC-58NC and AIOC-26-NC. (a) Octahedral cage structure of compound AIOC-58NC linked by N-H $\cdots \mathrm{N}$ hydrogen bonds ($3.00 \AA$). (b) Stacked diagram of nanocages, cages are arranged in -ABAB- alternation. (c) Micropores are composed of four staggered molecular rings (size: $6.65 \AA$). (d) Cubic cage structure of compound AIOC-26-NC linked by $\pi \cdots \pi(4.05 \AA$). (e) Stacked diagram of nanocages, cages arranged in -AAA- alternation. (f) Micropores are composed of aromatic ligands on molecular rings (size: $7.80 \AA$). Color code: Al, green; C, black; O, red; N, blue.

The comparison between nanocages of AIOC-58NC and AIOC-26-NC ${ }^{11}$

The supramolecular nanocages structure of AIOC-58NC is similar to previously reported AIOC-26-NC, but differs in the following three points. First is the ring type, AIOC-58NC belongs to type II while AIOC-26-NC belongs to type III. Secondly, the way of assembly between the rings is different. In AIOC-58NC, six eight-membered rings are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding interactions ($3.00 \AA$) to form nanocage, while those in AIOC-26-NC are considerably weak $\pi \cdots \pi$ interactions ($4.01 \AA$) and C-H \cdots C hydrogen bonding interactions ($4.00 \AA$). Finally, their supramolecular packing is also unlike. Compared with the reported -AA- stacking, compound AIOC-58NC adopts -ABABalternation. Therefore, the distance between adjacent cages ($36.69 \AA$ vs $21.20 \AA$) and the shape of the microporous formed are also disparate. In addition, the size of the micropores in AIOC-58NC is slightly smaller ($6.65 \AA$ vs $7.80 \AA$) and is composed of four staggered Al_{8} rings compared to the aromatic ligands on the ring.

Figure S5. The comparison of interactions between molecular rings in AIOC-58 and AIOC-26-NC: (a) The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond interactions in AIOC-58NC; (b) The $\mathrm{C}-\mathrm{H} \cdots \mathrm{m}$ and $\pi \cdots \pi$ interactions in AIOC-26-NC.

Figure S6. The comparison of the cage-to-cage distance between AIOC-58NC and AIOC-26-NC.

Figure S7. The comparison of micropore aperture composition between AIOC-58NC and AIOC-26-NC.

Figure S8. The hydrogen bond interactions in AIOC-58NC. Color code: AI, green; O, red; C, gray; N , blue.

Figure S9. Perspective view of the void spaces in AIOC-58NC with unit cell (left) and $2 \times 2 \times 2$ stacking (right).

Figure S10. (a) Stacking diagram of a nanotube array; (b) The side view of the ring structure. (c) The dimensions of the half-open cavity; (d) The dimension of the hollow tubular cavity in AIOC59NT.

Figure S11. The hydrogen bond interactions in AIOC-59NT. Color code: AI, green; O, red; C, gray; N , blue.

Figure S12. Perspective view of the void spaces in AIOC-59NT with unit cell (left) and $2 \times 2 \times 2$ stacking (right).

Figure S13. The interaction force between aromatic ligands on the same nanotubes in AIOC-59NT.

Figure S14. The interaction force between adjacent molecular rings on the same nanotube in AIOC-59NT. Color code: Al, green; O, red; C, gray; N, blue.

porosity
(b)
(c)

Figure S15. The summary of square nanotube arrays. (a) AIOC-15; (b) AIOC-1; (c) AIOC-59NT.

Figure S16. The side view of the peanut-shaped cavity in AIOC-59NT (dimension: 10.95*7.0 \AA^{2}).

Figure S17. Side perspective view of the peanut-shaped cavity along b axis in AIOC-59NT.

$7.73 * 3.25 \AA^{2}$

Figure S18. The ball-and-stick diagram of AIOC-59NT viewed along [-1 100$]$.

Figure S19. The interaction force between aromatic ligands on adjacent nanotubes in AIOC-59NT.

Figure S20. The supramolecular forces ($\pi \cdots \pi$ and hydrogen bond) between molecular rings on the adjacent nanotube. Color code: AI, green; O, red; C, gray; N, blue.

4.PXRD spectra of AIOCs

Figure S21. Pawley refinement based on PXRD of AIOC-58NC.

Figure S22. Pawley refinement based on PXRD of AIOC-59NT.

A further Rietveld refinement was performed in AIOC-59NT for the problem that individual experimental diffraction peaks did not appear but appeared in the simulation. As shown in Fig. S23, it was found that this problem has no major effect on the difference between experiment and simulation and agreement factors ($R_{\mathrm{p}}=5.36 \%, R_{\mathrm{wp}}=7.47 \%$).

Figure S23. Rietveld refinement of AIOC-59NT.

5. Stability of AIOCs

Figure S24. PXRD patterns of AIOC-58NC in organic solvents at room temperature for 24 h .

Figure S25. PXRD patterns of AIOC-59NT in different organic solvents at room temperature for 24 h. Although the purity of the compound is ensured by hand picking each single crystal, there are also small impurity peaks in the pattern (marked with an asterisk), which may be due to the presence of some solvent peaks.

Figure S26. The Temperature-dependent PXRD patterns of AIOC-58NC.

Figure S27. The Temperature-dependent PXRD patterns of AIOC-59NT.

6. TGA test for AIOCs

Figure S28. The TGA curve of AIOC-58NC.

Figure S29. The TGA curve of AIOC-59NT.

7. The solid-state absorption spectra of AIOCs.

Figure S30. The solid-state absorption spectra of AIOC-58NC

Figure S31. The solid-state absorption spectra of AIOC-59NT.

8. EDS spectra of AIOCs

Figure S32. The EDS spectrum of compound AIOC-58NC.

Figure S33. The EDS spectrum of compound AIOC-59NT.

9. FT-IR spectra of AIOCs

Figure S34. IR spectrum of AIOC-58NC.

Figure S35. IR spectrum of AIOC-59NT.
The IR spectra of compound AIOCs have been recorded in the range of 4000-400 cm^{-1} from solid samples palletized with KBr , which are presented in Figures S34-S35. The incorporation of 3-aminoisonicotinic acid in AIOCs is supported by the $\mathrm{C}=\mathrm{O}$ vibrations at $1666.47 \mathrm{~cm}^{-1}$ and $1449.75 \mathrm{~cm}^{-1}$. The type band for the uncoordinated NH_{2} group can be seen at $3453 \mathrm{~cm}^{-1}$ and $3349 \mathrm{~cm}^{-1}$. And the aliphatic C-H stretching vibrations of the n -butoxy groups occur at about $2955 \mathrm{~cm}^{-1}$ and $2871 \mathrm{~cm}^{-1}$.

10. Heterogeneous catalysis activity of AIOCs.

Figure 36. The abundant active sites in the porous ring structure. 4 hydroxyl groups (-OH), 12 pyridine nitrogen atoms (-Npy) and 12 amino groups $\left(-\mathrm{NH}_{2}\right)$ in AIOC-58NC (left). 8 hydroxyl groups $(-\mathrm{OH}), 16$ pyridine nitrogen atoms (-Npy) and 16 amino groups (-NH2) in AIOC-59NT (right)

Figure S37. the reaction rate curves by using AIOCs as catalysts for the cyanosilylation reactions of benzaldehyde with TMSCN.

Figure S38. Recycling experiments with catalyst AIOCs for cyanosilylation reactions.

Figure S39. X-ray powder diffraction pattern of AIOC-58NC; simulated (black), after catalysis (red), respectively.

Figure S40. X-ray powder diffraction pattern of AIOC-59NT; simulated (black), after catalysis (red), respectively. The powder XRD pattern of the sample after catalysis has an impurity peak (marked with an asterisk) at about 6 to 7 degrees, which may be due to some solvent remaining in the structure after the catalytic reaction.

Figure S41. (a) The interaction force between the unit cell of 4Bz@AIOC-59NT and benzaldehyde guest. (b) The interaction force between the molecular ring of 4Bz@AIOC-59NT and eight benzaldehyde guests.

Figure S42. Distribution of benzaldehyde in (a) semi-open cavity, (b) peanut-shaped cavity, (c) the one-dimensional aromatic walls and ladders.

Figure S43. (a) The interaction force between benzaldehyde and the molecular ring sharing it in 4Bz@AIOC-59NT. (b) The interaction force between adjacent benzaldehydes.

Figure S44. Perspective view of the void spaces in 4Bz@AIOC-59NT with unit cell (left) and $2 \times 2 \times 2$ stacking (right).

Figure S45. Hirshfeld surface analysis mapped over $d_{\text {norm }}$ for 4Bz@AIOC-59NT. In the color scale, negative values of $d_{\text {norm }}$ are distinguished by contacts in red that are smaller than the van der Garde sum Walls radius. While the blue area corresponds to longer contacts with positive $d_{\text {norm }}$ values, the white area indicates intermolecular distances close to van der Waals contacts with zero $d_{\text {norm }}$ values.

$$
d_{\mathrm{norm}}=\frac{d_{i}-r i^{v d w}}{r_{i}^{v d w}}+\frac{d_{e}-r e^{v d w}}{r_{e}^{v d w}}
$$

d_{e} is the distance to the nearest atom external to the surface, d_{i} is the distance to the nearest atom internal to the surface. Both 'de' and 'di' and the vdW radii of the atom which are utile for the
normalized contact distance ($d_{\text {norm }}$) enables identification of the regions of particular importance to intermolecular interactions.

Figure S46. Fingerprint plots of major contacts in 4Bz@AIOC-59NT.

Figure S47. Changes of the torsion angle of 3-Aminoisonicotinic acid before (left) and after (right) catalytic substrate adsorption.

Figure S48. Change of semi-open quadrangular-conical cavity size before (left) and after (right) catalytic substrate adsorption.

Figure S49. Change of hat-shaped cavity size before (left) and after (right) catalytic substrate adsorption.

Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum of 4Bz@AIOC-59NT in Methanol-d ${ }^{4}$. (Identified the absorption peak)

Figure S51. IR spectrum of 4Bz@AIOC-59NT, benzaldehyde and benzoic acid.

Figure S52. (a) Adsorption sites and adsorption energy in nanocages AIOC-58NC. (b) Adsorption sites and adsorption energy of benzaldehyde in nanotubes AIOC-59NT. In true crystals, the last two adsorption sites depicted in (a), which consist of only two aromatic rings, do not exist. We calculated the adsorption energies of these two adsorption sites for comparison with the first adsorption site in (a), and we discover that the presence of more aromatic rings at the adsorption sites would decrease the adsorption energy.

Figure S53. Comparison of adsorption energies between the most stable adsorption conformations of AIOC-58NC and AIOC-59NT.

Figure S54. Adsorption site derived from theoretical calculation in AIOC-58NC, as well as H-bond and $\pi-\pi$ interactions between host and guest.

Figure S55. Energy levels of the individual monomer of AIOC-58NC and AIOC-59NT. AIOC-59NT has a slightly higher calculated HOMO energy levels than AIOC-58NC; this may indicate stronger Lewis base character of AIOC-59NT is slightly stronger than that of AIOC-58NC. On the other hand, the energy levels of their LUMOs are similar, but the higher number of LUMOs in AIOC59NT may account for its slightly greater Lewis acid character. Overview, monomer of AIOC-59NT is calculated to have stronger Lewis acid/base characters than that of AIOC-58NC.

11.Supplementary tables

Table S1 Hydrogen bond parameters for AIOC-58BC

D-H $\cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{D}-\mathrm{A})$	$\mathrm{d}(\mathrm{H}-\mathrm{A})$	$<$ (DHA)
NOOL-HOOB $\cdots \mathrm{COOU}$	0.90	3.837	3.377	115
NOOL-HOOB \cdots OOOA	0.90	2.687	1.99	133
NOOM-HOOC \cdots NOON	0.86	2.967	2.12	169
NOOM-H00D \cdots OOO9	0.86	2.673	2.05	128
NOOM-H00D \cdots OOO7	0.86	2.395	2.55	166
NOOR-HOOE \cdots OOOY	0.92	3.000	2.12	161
NOOR-HOOF \cdots OOOC	0.94	2.675	2.08	120

Table S2 Hydrogen bond parameters for AIOC-59NT

D-H \cdots A	$d(D-H)$	$d(D-A)$	$d(H-A)$	$<(D H A)$
NOON-HOOE \cdots O03	0.88	2.575	1.93	130
NOON-H0OE \cdots NOON	0.88	2.870	2.53	104
NOON-H00C \cdots COOO	0.88	3.393	2.53	176
NOOE-H00A \cdots NOOB	0.88	2.882	2.01	172
NOOE-HOOB \cdots OOC	0.88	2.672	2.05	127

Table S3 BVS analysis for AIOC-58NC

BVS Value	Bond distance		BVS Value	Bon	ance
$\begin{gathered} \text { Al01 } \\ 3.2212 \end{gathered}$	Al01-004 ${ }^{1}$	1.841(3)	$\begin{gathered} \text { Al02 } \\ 3.2408 \end{gathered}$	Al02-O03 ${ }^{2}$	1.903(3)
	Al01-O04	1.841(3)		Al02-003	1.903(3)
	Al01-005 ${ }^{1}$	1.907(3)		AI02-004	1.840(3)
	Al01-005	1.907(3)		Al02-004 ${ }^{2}$	1.840(3)
	Al01-007 ${ }^{1}$	1.899(3)		Al02-006 ${ }^{2}$	1.897(3)
	AI01-007	1.899(3)		AI02-006	1.897 (3)

System code: ${ }^{1+X, 1-Y, 1-Z ; ~}{ }^{21-Y, 1-X, ~ 1-Z . ~}$
Table S4 BVS analysis for AIOC-59NT.

BVS Value	Bond distance		BVS Value	Bond distance	
$\begin{gathered} \text { Al01 } \\ 3.0949 \end{gathered}$	Al01-O04	1.873(3)	$\begin{gathered} \mathrm{AlO2} \\ 3.0644 \end{gathered}$	Al02-O04 ${ }^{2}$	1.878(3)
	Al01-O05	1.876(3)		Al02-005 ${ }^{2}$	1.879(3)
	Al01-006	1.847(3)		AI02-O06	1.852(3)
	Al01-0007 ${ }^{1}$	1.976(3)		AI02-0008	1.925(3)
	Al01-O009	1.917(3)		AI02-O00A	1.951(3)
	Al01-O00C	1.900(3)		AI02-O00B	1.922(4)

System code: ${ }^{1+} \mathrm{X},+\mathrm{Z}, 1-\mathrm{Y} ;^{2}+\mathrm{X}, 1-\mathrm{Z},+\mathrm{Y}$.

Table S5 catalytic activity of several heterogeneous catalysts used in the cyanosilylation of aldehyde

Catalyst	Reaction conditions	Time and yield	Reference
Al-ITO-NO2	```Benzaldehyde (5mmol) TMSCN(6mmol) 0.5mol% Al 303K```	5h, 100\%	12
Al-ITO-Br		5h, 88\%	
InPF-16	Benzaldehyde (1mmol) TMSCN(1mmol) 1mol\% for benzaldehyde 298K	0.17h, 99\%	13
InPF-17		18h, 67\%	
1	Benzaldehyde (0.5 mmol) TMSCN(1.5 mmol) $2 \mathrm{~mol} \%$ for benzaldehyde $323 \mathrm{~K}$	4h, 99.2\%	14
NUS-50-Co	Benzaldehyde (1mmol) TMSCN(1.2mmol) $2.5 \mathrm{~mol} \%$ for benzaldehyde 298K	10h, 98\%	15
Y-POM	Benzaldehyde (0.5 mmol) TMSCN(0.75 mmol) $1 \mathrm{~mol} \%$ for benzaldehyde 298K	6h, 75\%	16
$\left[\mathrm{Ag}_{4}(\mathrm{apym})_{4}\left(\mathrm{SiW}_{12} \mathrm{O}_{40}\right)\right]_{\mathrm{n}}$	Benzaldehyde (0.5 mmol) TMSCN(1mmol) $0.1 \mathrm{~mol} \%$ for benzaldehyde 303K	4h, 96.2\%	17
1	```Benzaldehyde (0.5mmol) TMSCN(0.75mmol) 0.1mmol 303K```	4h, 99\%	18
2		4h, 90\%	
Ru-catalyst	```Benzaldehyde (1mmol) TMSCN(1.5mmol) 0.5mol% 303K```	6h, 99\%	19
Co-MOF	```Benzaldehyde (0.5mmol) TMSCN(1mmol) 0.1mmol % 303K```	12h, 98\%	20
1	```Benzaldehyde (1mmol) TMSCN(2mmol) 0.5mol % 303K```	3h, 86\%	21
2		3h, 52\%	
3		3h, 61\%	
[(AT)AI(DMAP) $]^{+}[\mathrm{OTf}]^{-}$	```Benzaldehyde (1 mmol) TMSCN (1.2 mmol) 2 mol% 303K```	$30 \mathrm{~min}, 95 \%$	22
1	Benzaldehyde $(0.5$ mmol $)$ TMSCN $(0.75 \mathrm{mmol})$ $0.1 \mathrm{~mol} \%$ 303 K	$10 \mathrm{~min}, 99 \%$	23

Table S6 Substrate scope for cyanosilylation of aldehyde compound with TMSCN catalyzed by AIOCs. ${ }^{[a]}$

Entry	Catalytic	Substrate	Time (h)	Yield (\%) ${ }^{[b]}$
1	AIOC-58NC	${ }^{\circ}{ }^{\mathrm{H}}$	2	80
2	AIOC-59NT		2	92
3	blank		2	Trace
4	$\mathrm{Al}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}$		2	48
5	3-aminoisonicotinic acid	2	2	Trace
6	AIOC-58NC		2	85
7	AIOC-59NT		2	96
8	AIOC-58NC		2	82
9	AIOC-59NT		2	92
10	AIOC-58NC		2	57
11	AIOC-59NT	$\mathrm{H}_{3} \mathrm{C}_{0}$	2	70
12	AIOC-58NC	H	2	65
13	AIOC-59NT		2	65
14	AIOC-58NC		2	73
15	AIOC-59NT		2	86

${ }^{[a] R e a c t i o n ~ c o n d i t i o n s: ~ c a t a l y s t ~ A I O C-58 N C ~ a n d ~ A I O C-59 N T, ~} 1.5 \mathrm{~mol} \%$, aldehyde 0.5 mmol , TMSCN 1 mmol, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent, temperature $(303 \mathrm{~K})$ under N_{2}. ${ }^{[b]}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard.

Table S7. Experimental single-crystal X-ray data for AIOC-58NC and AIOC-58NC-1.

	AIOC-58NC	AIOC-58NC-1
Empirical formula	$\mathrm{Al}_{8} \mathrm{C}_{104} \mathrm{~N}_{24} \mathrm{O}_{36} \mathrm{H}_{136}$	$\mathrm{Al}_{8} \mathrm{C}_{104} \mathrm{~N}_{24} \mathrm{O}_{36} \mathrm{H}_{136}$
Formula weight	2514.18	2514.18
Temperature / K	100	100
Crystal system	cubic	cubic
Space group	1432	1432
a $[\AA]$	36.6848(4)	36.6170(3)
b [\AA]	36.6848(4)	36.6170(3)
c [\AA]	36.6848(4)	36.6170(3)
α [${ }^{\circ}$]	90	90
β [${ }^{\text {] }}$	90	90
Y [${ }^{\text {] }}$	90	90
$\vee\left[\AA^{3}\right]$	49369.5(16)	49096.2(12)
Z	12	12
pcalcd [$\mathrm{g} \mathrm{cm}^{-3}$]	0.953	0.923
$\mu\left[\mathrm{mm}^{-1}\right]$	0.656	0.998
F (000)	14400.0	14112.0
	$-31 \leq h \leq 33$	$-42 \leq h \leq 45$
Index ranges	$-39 \leq \mathrm{k} \leq 44$	$-41 \leq \mathrm{k} \leq 44$
	$-41 \leq 1 \leq 47$	$-45 \leq 1 \leq 35$
Reflections collected	35811	155022
Independent refs [$\mathrm{R}_{\mathrm{int}}$]	9372 [0.0538]	8511[0.0719]
date/restraints/parameters	9372/20/378	8511/18/370
Goodness-of-fit on F^{2}	1.167	1.009
$\mathrm{R}_{1}{ }^{\mathrm{a}}, \mathrm{wR}_{2}{ }^{\mathrm{b}}$ [1>2 ${ }^{(l)}$]	$0.0852,0.2158$	0.0521, 0.1355
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ [all data]	0.1000, 0.2245	0.0570, 0.1392
CCDC number	2214966	2214968

${ }^{\mathrm{a}} R_{1}=\Sigma \|\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| \cdot{ }^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[w\left(F_{0}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}{ }^{2}\right)^{2}\right]\right\}{ }^{1 / 2}$

Table S8. Experimental single-crystal X-ray data for AIOC-59NT and 4Bz@AIOC-59NT.

	AIOC-59NT	4Bz@AIOC-59NT
Empirical formula	$\mathrm{Al}_{8} \mathrm{C}_{96} \mathrm{~N}_{32} \mathrm{O}_{40} \mathrm{H}_{88}$	$\mathrm{Al}_{8} \mathrm{C}_{124} \mathrm{~N}_{32} \mathrm{O}_{44} \mathrm{H}_{112}$
Formula weight	2537.76	2970.25
Temperature / K	100.00(10)	100.00(10)
Crystal system	tetragonal	tetragonal
Space group	1422	1422
a [\AA]	23.0719(3)	22.8500(3)
$\mathrm{b}[\AA]$	23.0719(3)	22.8500(3)
c [\AA]	14.7983(4)	14.9095(4)
人 [${ }^{\circ}$]	90	90
$\beta\left[{ }^{\circ}\right]$	90	90
Y [${ }^{\circ}$]	90	90
$\vee\left[\AA^{3}\right]$	7877.3(3)	7784.6(3)
Z	2	2
pcalcd [$\mathrm{g} \mathrm{cm}^{-3}$]	1.070	1.262
$\mu\left[\mathrm{mm}^{-1}\right]$	0.720	1.230
F (000)	2608.0	3048.0
	$-30 \leq h \leq 28$	$-28 \leq h \leq 28$
Index ranges	$-29 \leq k \leq 24$	$-21 \leq \mathrm{k} \leq 27$
	$-9 \leq 1 \leq 19$	$-18 \leq 1 \leq 13$
Reflections collected	14401	19245
Independent refs [$\mathrm{in}_{\text {int }}$]	4441 [0.0451]	3983[0.0369]
date/restraints/parameters	4441/37/188	3983/63/230
Goodness-of-fit on F^{2}	0.988	1.210
$\mathrm{R}_{1}{ }^{\mathrm{a}}, \mathrm{wR}_{2}{ }^{\mathrm{b}}$ [1>2 ${ }^{(l)}$]	0.0707, 0.2046	0.0967, 0.2670
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ [all data]	0.0842, 0.2193	$0.1055,0.2804$
CCDC number	2214967	2214969

${ }^{\mathrm{a}} R_{1}=\Sigma \|\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| \cdot{ }^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[w\left(F_{0}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}{ }^{2}\right)^{2}\right]\right\}{ }^{1 / 2}$

12. Reference

[1]. G. M. Sheldrick, Acta Cryst. C. 2015, 71, 3-8.
[2]. S. Spicher and S. Grimme, Angew. Chem. Int. Ed. 2020, 59, 15665-15673.
[3]. E. C. Philipp Pracht, S. Ehlert, and S. Grimme, chemRxiv 2019, 1-19.
[4]. E. C. Christoph Bannwarth, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, WIREs Comput. Mol. Sci. 2020, 11, 1-49.
[5]. C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652-1671.
[6]. (a) J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; (b) G. E. S. Viktor and N. Staroverova, J. Chem. Phys. 2004, 121, 11507.
[7]. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
[8]. (a) F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys. 2020, 152, 224108; (b) F. Neese, WIREs Comput. Mol. Sci. 2022, 12; (c) F. Neese, WIREs Comput. Mol. Sci. 2011, 2, 73-78.
[9]. T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580-592.
[10]. T. Lu and Q. X. Chen, Chem. Methods 2021, 1, 231-239.
[11]. S. S. Yao, W. H. Fang, Y. Sun, S. T. Wang and J. Zhang, J. Am. Chem. Soc. 2021, 143, 2325-2330.
[12]. J. M. Frost, R. J. Stirling, S. Sanz, N. Vyas, G. S. Nichol, G. Rajaraman and E. K. Brechin, Dalton Trans. 2015, 44, 10177-10187.
[13]. L. M. Aguirre-Diaz, M. Iglesias, N. Snejko, E. Gutierrez-Puebla and M. A. Monge, Chem. Eur. J. 2016, 22, 6654-65.
[14]. H. An, Y. Zhang, Y. Hou, T. Hu, W. Yang, S. Chang and J. Zhang, Dalton Trans. 2018, 47, 9079-9089.
[15]. T. Kundu, J. Wang, Y. Cheng, Y. Du, Y. Qian, G. Liu and D. Zhao, Dalton Trans. 2018, 47, 13824-13829.
[16]. S. Li, Y. Zhou, Q. Peng, R. Wang, X. Feng, S. Liu, X. Ma, N. Ma, J. Zhang, Y. Chang, Z. Zheng and X. Chen, Inorg. Chem. 2018, 57, 6624-6631.
[17]. T. P. Hu, Y. Q. Zhao, K. Mei, S. J. Lin, X. P. Wang and D. Sun, CrystEngComm 2015, 17, 5947-5952.
[18]. T. Rom and A. K. Paul, Dalton Trans. 2020, 49, 13618-13634.
[19]. G. Vinoth, S. Indira, M. Bharathi, L. G. Alves, A. M. Martins and K. Shanmuga Bharathi, Inorganica Chim. Acta 2021, 514, 120006-120013.
[20]. X. Cui, M. C. Xu, L. J. Zhang, R. X. Yao and X. M. Zhang, Dalton Trans. 2015, 44, 12711-12716.
[21]. Y. Jiang, R. Liu, Y. Gong, Y. Fan, L. Wang and J. Xu, Dalton Trans. 2021, 50, 95409546.
[22]. M. K. Sharma, S. Sinhababu, G. Mukherjee, G. Rajaraman and S. Nagendran, Dalton Trans. 2017, 46, 7672-7676.
[23]. W. Wang, M. Luo, J. Li, S. A. Pullarkat and M. Ma, Chem. Commun. 2018, 54, 30423044.

[^0]: [*] Dan Luo ${ }^{+}$, Han Xiao ${ }^{+}$, Min-Yi Zhang, Shang-Da Li, Liang He, Hong Lv, Chun-Sen Li, Qi-Pu Lin, WeiHui Fang* and Jian Zhang
 State Key Laboratory of Structural Chemistry
 Fujian Institute of Research on the Structure of Matter,
 Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
 E-mail: fwh@fjirsm.ac.cn
 Han Xiao ${ }^{+}$
 University of Chinese Academy of Sciences, Beijing 100049, China
 Chun-Sen Li
 Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
 [${ }^{+}$] these authors contributed equally to this work.

