Electronic Supporting Information

Conditional generation of free radicals by selective activation of alkoxyamines: towards more effective and less toxic targeting of brain tumors

1.	Preparation and characterization of alkoxyamines	1
	1.1 General information	1
	1.2 Synthetic procedures	2
	1.3 ¹ H and ¹³ C NMR spectra	8
	1.4 HPLC traces	22
2.	Kinetic measurements	29
3.	pK _a measurements	29
4.	Supplementary figures	30

1. Preparation and characterization of alkoxyamines

1.1. General information

All corresponding glassware was oven-dried (100 °C) and/or carefully dried in line with a flameless heat gun. Solvents were used as received if not otherwise stated. THF was distilled from a blue solution of sodium-benzophenone ketyl radical prior to use. Routine monitoring of reactions was performed using Silica gel 60 F₂₅₄, aluminum supported TLC plates; spots were visualized using UV light, ethanolic acidic para-anisaldehyde solution, aqueous basic KMnO4 solution, aqueous ninhydrin solution or ethanolic phosphomolybdic solution, followed by heating. Purifications by means of column chromatography were performed with Silica gel 60 (230-400 mesh) or with automatic flash chromatography system, and using gradients of Et₂O/petroleum ether, AcOEt/petroleum ether, acetone/petroleum ether or MeOH/CH₂Cl₂. ¹H, ¹³C and ³¹P NMR spectra were recorded in CDCl₃ solutions on 300 or 400 MHz spectrometers. Chemical shifts (δ) in ppm are reported using residual non-deuterated solvent peaks as internal reference for ¹H and ¹³C NMR spectra, or by using internal reference of 85% H₃PO₄ for ³¹P NMR spectra. High-resolution mass spectra (HRMS) have been performed using a mass spectrometer equipped with pneumatically-assisted atmospheric pressure ionization. The sample was ionized in positive mode electrospray in the following conditions: electrospray voltage (ISV): 5500 V; orifice voltage (OR): 80 V; nebulizing gas flow pressure (air): 20 psi. The mass spectrum was obtained using a time-of-flight analyzer (ToF). The measure was realized in triplicate, with double internal standardization. The sample was dissolved in CH₂Cl₂ (400 µL) then diluted (dilution factor $1/10^4$) in a methanolic solution of ammonium acetate (3 mM). The sample solution was infused in the ionization source at a 10 μ L/min flow rate. HPLC have been performed in isocratic mode on a 4,6x50 mm (2,7 μM) column using CH₃CN/H₂O (+0,1% TFA) at 1.0 mL/min, followed by low-resolution mass spectroscopy (LRMS) in ESI+ mode (electrospray voltage: 4000 V; orifice voltage 70V; nebulizing gas flow pressure (air): 20 psi.

1.2. Synthetic procedures

ALK1-3, ALK7-16 and ALK20-26 were synthesized following procedures published elsewhere.

ALK4-1 and ALK17-1 – (*RS/SR*)- and (*RR/SS*)-diethyl 1-(*tert*-butyl(1-phenyl-2-(2,2,2-trifluoroacetamido)ethoxy)amino)-2,2-dimethylpropylphosphonate

To a suspension of CuBr (2.37 g, 16.5 mmol, 0.55 equiv.) and Cu powder (2.10 g, 33.0 mmol, 1.10 equiv.) in degassed benzene (35 mL) under argon was added N,N,N',N',N''pentamethyldiethylenetriamine (3.45 mL, 16.5 mmol, 0.55 equiv.). After stirring for 10 min, a solution of SG1 nitroxide (8.83 g, 30.0 mmol) and N-(bromo(phenyl)methyl)-2,2,2trifluoroacetamide (11.55 g, 39.0 mmol, 1.30 equiv.) in degassed benzene (35 mL) was cannulated into the first solution. The mixture was allowed to stir for 24 h. The solution was quenched and washed with aq. sat. NH₄Cl solution, water and dried over MgSO₄. The solvents were evaporated under reduced pressure. The crude product (3:2 mixture of diastereoisomers by ¹H NMR) was purified by flash-chromatography with a gradient of ethyl acetate in petroleum ether to give white crystals of (RS/SR)-ALK4-1 (5.5 g, 36%) and (RR/SS)-ALK17-1 (8.7 g, 57%). (*RS/SR*)-**ALK4-1**: M.p. = 127-130 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.01 (bs, 1H), 7.27 (m, 5H), 5.04 (t, J = 3.5 Hz, 1H), 4.19 (m, 2H), 4.07 (m, 1H), 3.85 (m, 2H), 3.42 (d, J = 27.9 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.25 (s, 9H), 0.96 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 157.32 (q, J = 36.8 Hz), 139.73, 128.14, 127.68, 126.78, 116.22 (q, J = 863.3 Hz), 86.92, 68.18 (d, J = 139.8 Hz), 62.35, 61.65 (d, J = 7.1 Hz), 60.28 (d, J = 7.6 Hz), 44.30, 35.60 (d, J = 5.0 Hz), 30.81 (d, J = 5.9 Hz), 28.06, 16.44 (d, J = 5.8 Hz), 16.12 (d, J = 7.0 Hz) ppm; ¹⁹F NMR (377 MHz, CDCl₃): δ = -75.54 ppm; ³¹P NMR (162 MHz, CDCl₃): δ = 26.17 ppm. HRMS (ESI) *m*/z calcd for C₂₃H₃₈F₃N₂O₅P 511.2543 ([M+H]), found 511.2545 ([M+H]). (*RR/SS*)-ALK17-1: M.p. = 90-93 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.25 (m, 5H), 5.27 (t, J = 6.6 Hz, 1H), 4.25 (m, 1H), 3.96 (m, 1H), 3.88 (m, 1H), 3.64 (m, 1H), 3.44 (d, J = 26.3 Hz, 1H), 3.34 (m, 2H), 1.62 (bs, 1H), 1.26 (t, J = 7.1 Hz, 3 H), 1.24 (s, 9H), 1. 23 (s, 9H), 0.94 (t, J = 7.1 Hz, 3 H) ppm; ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 156.74 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.00, 115.71 \text{ (q, } J = 36.8 \text{ Hz}), 138.38, 128.44, 128.24, 128.$ J = 287.9 Hz), 80.10, 69.98 (d, J = 142.1 Hz), 62.13, 61.52 (d, J = 6.7 Hz), 59.11 (d, J = 7.4 Hz), 43.89, 35.12 (d, J = 4.6 Hz), 30.69 (d, J = 6.1 Hz), 27.92, 16.13 (d, J = 5.8 Hz), 15.97 (d, J = 6.9 Hz) ppm; ¹⁹F NMR (377 MHz, CDCl₃): δ = -75.72 ppm; ³¹P NMR (400 MHz, CDCl₃): δ = 23.96 ppm; HRMS (ESI) *m*/*z* calcd for C₂₃H₃₈F₃N₂O₅P 511.2543 ([M+H]), found 511.2543 ([M+H]).

ALK4 – (*RS/SR*)-diethyl 1-((2-amino-1-phenylethoxy)(tert-butyl)amino)-2,2dimethylpropylphosphonate

Alkoxyamine (*RS/SR*)-**ALK4-1** (6.8 g, 13.4 mmol) was dissolved in methanol (100 mL) and then $LiOH \bullet H_2O$ (4.5 g, 107 mmol, 8.0 equiv.) was added. The solution was allowed to stir

for under argon atmosphere. After 24 h the reaction was quenched with aq. sat. NaHCO₃ solution, extracted with CH₂Cl₂ and dried over MgSO₄. The solvents were evaporated *in vacuo*. The crude product was purified by column chromatography to give (*RS/SR*)-**ALK4** (5.5 g, 99%) as an oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.26 (m, 5H), 4.83 (dd, *J* = 7.6, 4.1 Hz, 1H), 4.36 (m, 1H), 4.13 (m, 2H), 4.0 (m, 1H), 3.44 (dd, *J* = 13.1, 4.2 Hz, 1H), 3.36 (d, *J* = 26.6 Hz, 1H), 3.10 (dd, *J* = 13.0, 7.8 Hz, 1H), 1.52 (bs, 2H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.24 (s, 9H), 0.89 (s, 9H) ppm; ¹³C NMR (75 Hz, CDCl₃): δ = 141.73, 128.04, 127.77, 127.30, 90.64, 69.24 (d, *J* = 139.0 Hz), 61.45 (d, *J* = 6.3 Hz), 59.09 (d, *J* = 7.4Hz), 46.87, 35.68, 35.60, 30.16 (d, *J* = 5.7 Hz), 28.48, 16.65 (d, *J* = 5.7 Hz), 16.19 (d, J = 6.7 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃): δ = 25.85 ppm; HRMS (ESI) *m/z* calcd for C₂₁H₃₉N₂O₄P 415.2720 ([M+H]), found 415.2714 ([M+H]).

ALK17 – (*RR/SS*)-diethyl 1-((2-amino-1-phenylethoxy)(tert-butyl)amino)-2,2dimethylpropylphosphonate

Alkoxyamine (*RR/SS*)-**ALK17-1** (4.6 g, 8.9 mmol) was dissolved in methanol (100 mL) and then LiOH•H₂O (3.0 g, 72 mmol, 8.0 equiv.) was added. The solution was allowed to stir for under argon atmosphere. After 24 h the reaction was quenched with aq. sat. NaHCO₃ solution, extracted with CH₂Cl₂ and dried over MgSO₄. The solvents were evaporated *in vacuo*. The crude product was purified by column chromatography to give (*RS/SR*)-**ALK17** (3.7 g, 99%) as an oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.26 (m, 5H), 4.83 (dd, *J* = 7.6, 4.1 Hz, 1H), 4.36 (m, 1H), 4.13 (m, 2H), 4.0 (m, 1H), 3.44 (dd, *J* = 13.1, 4.2 Hz, 1H), 3.36 (d, *J* = 26.6 Hz, 1H), 3.10 (dd, *J* = 13.0, 7.8 Hz, 1H), 1.52 (bs, 2H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.24 (s, 9H), 0.89 (s, 9H) ppm; ¹³C NMR (75 Hz, CDCl₃): δ = 139.81, 128.81, 127.87, 127.79, 84.50, 69.82 (d, *J* = 139.4 Hz), 61.33 (d, *J* = 5.7 Hz) 15.99 (d, *J* = 6.9 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃): δ = 24.40 ppm; HRMS (ESI) *m/z* calcd for C₂₁H₃₉N₂O₄P 415.2720 ([M+H]), found 415.2715 ([M+H]).

ALK5-1 and ALK18-1 – Diethyl 1-(*tert*-butyl(1-phenyl-2-(2,2,2-trifluoro-*N*-methylacetamido)ethoxy)amino)-2,2-dimethylpropylphosphonate

To a suspension of CuBr (790 mg, 5.51 mmol, 0,55 equiv.) and Cu (701 mg, 11.0 mmol, 1.1 equiv.) in degassed benzene (12 mL) under argon was added *N*,*N*,*N'*,*N'*,*N''*-pentamethyldiethylenetriamine (1.2 mL, 5.75 mmol, 0.55 equiv.). After stirring for 10 min a solution of SG1 nitroxide (2.95 g, 10.0 mmol) and *N*-(2-bromo-2-phenylethyl)-2,2,2-trifluoro-*N*-methylacetamide (3.11 g, 10.0 mmol, 1 equiv.) in degassed benzene (12 mL) was cannulated into the first solution. The mixture was allowed to stir for 12 h. The solution was quenched with aq. sat. NH₄Cl solution, washed with water and brine and dried over MgSO₄. The solvents were evaporated under reduced pressure. The crude product with a 3:2 (*RR/SS*):(*RS/RS*) diastereomeric ratio (¹H NMR ratio) was purified by automatic flash-chromatography with a gradient of ethyl acetate in petroleum ether in order to separate the diastereomers to give (*RS/SR*)-**ALK5-1** (460 mg) and (*RR/SS*)-**ALK18-1** (712 mg) corresponding to a total yield of 1.17 g (22 %). (*RS/SR*)-**ALK5-1**: M.p. = 116-120 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.27 (m, 5H), 5.19 (dd, *J* = 11.07, 5.04 Hz, 1H), 4.59 (dd, *J* = 13.0, 5.3 Hz, 1H), 4.14 (m, 2H),

3.99 (m, 1H), 3.53 (t, *J* = 12.6 Hz, 1H), 3.35 (d, *J* = 26.6 Hz, 1H), 2.55 (s, 3H), 1.36 (t, *J* = 7.4 Hz, 3H), 1.32 (t, *J* = 6.9 Hz, 3H), 1.27 (s, 9H), 0.90 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 154.83 (q, *J* = 34.2 Hz), 139.92, 128.04, 127.66, 114.88 (q, *J* = 290.5 Hz), 84.66, 69.06 (d, *J* = 139.7 Hz), 61.65, 61.37 (d, *J* = 6.7 Hz), 59.18 (d, *J* = 7.5 Hz), 54.21, 35.84 (q, *J* = 10.8 Hz), 35.56 (d, *J* = 5.2 Hz), 30.18 (d, *J* = 5.9 Hz), 28.32, 16.65 (d, *J* = 5.6 Hz), 16.19 (d, *J* = 6.8 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃): δ = 25.46 ppm; HRMS (ESI) *m/z* calcd for C₂₄H₄OF₃N₂O₅P 525.2700 ([M+H]), found 525.2698 ([M+H]). (*RR/SS*)-**ALK18-1**: M.p. = 74-77 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.38 (m, 2H), 7.26 (m, 3H), 5.28 (dd, *J* = 11.2, 4.4 Hz, 1H), 4.50 (dd, *J* = 12.4, 4.4 Hz, 1H), 3.91 (m, 2H), 3.68 (dd, *J* = 12.4, 11.4 Hz, 1H), 3.42 (d, *J* = 27.0 Hz,1H), 3.35 (m, 2H), 2.66 (m, 3H), 1.22 (m, 21H), 0.93 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 156.97 (q, *J* = 35.6 Hz), 138.95, 128.55, 128.44, 128.08, 116.42 (q, *J* = 289.7 Hz), 79.00, 69.96 (d, *J* = 40.3 Hz), 62.01, 61.64 (d, *J* = 6.5 Hz), 59.07 (d, *J* = 7.6 Hz), 53.08, 35.90 (q, *J* = 3.9 Hz), 35.40 (d, *J* = 4.3 Hz), 30.85 (d, *J* = 6.0 Hz), 28.25, 16.44 (d, *J* = 5.5 Hz), 16.28 (d, *J* = 6.8 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃): δ = 24.30 ppm; HRMS (ESI) *m/z* calcd for C₂₄H₄OF₃N₂O₅P 525.2700 ([M+H]), found 525.2700 ([M+H]).

ALK5 and ALK18 – Diethyl 1-(*tert*-butyl(2-(methylamino)-1-phenylethoxy)amino)-2,2dimethylpropylphosphonate 2

Diastereomerically pure alkoxyamine (RS/SR)-ALK5-1 (355 mg, 0.677 mmol) was dissolved in MeOH (10 mL) and LiOH·H₂O (426 mg, 10.2 mmol, 15.1 equiv.) was added. The mixture was allowed to stir for 12 h under argon atmosphere. Then the reaction was quenched with water. The aqueous phase was extracted with CH₂Cl₂, the combined organic layers were dried over MgSO₄ and concentrated in vacuo. Compound ALK5 (284 mg, 97 %) was obtained as colorless oil, which crystallized in the refrigerator. The reaction was likewise performed for (RR/SS)-ALK18-1 (395 mg, 0.753 mmol) and LiOH·H₂O (284 mg, 6.77 mmol, 8.99 equiv.), yielding 297 mg (92 %) of (RR/SS)-ALK18 as a colourless oil which also crystallized in the refrigerator. (*RS/SR*)-**ALK5**: M.p. = 79-80 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.32 (m, 5H), 5.00 (dd, J = 7.0, 5.1 Hz, 1 H), 4.36 (m, 1H), 4.13 (m, 2H), 3.98 (m, 1H), 3.55 (dd, J = 12.1, 5.1 Hz, 1 H), 3.36 (d, J = 26.5 Hz, 1H), 2.85 (dd, J = 11.8, 8.7 Hz, 1 H), 2.35 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.25 (s, 9H), 0.84 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 142.09$, 127.90, 127.70, 127.31, 88.00, 69.42 (d, J = 138.1 Hz), 61.28 (d, J = 6.4 Hz), 61.11, 58.63 (d, J = 7.5 Hz), 56.16, 36.18, 35.47 (d, J = 5.9 Hz), 29.85 (d, J = 5.7 Hz), 28.40, 16.50 (d, J = 5.5 Hz), 16.00 (d, J = 6.8 Hz) ppm; ³¹P NMR (126 MHz, CDCl₃): δ = 26.17 ppm; HRMS (ESI) *m/z* calcd for C₂₂H₄₂N₂O₄P 429.2877 ([M+H]), found 429.2879 ([M+H]). (*RR/SS*)-**ALK18**: M.p. = 75-76 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (m, 2H), 7.27 (m, 3H), 5.20 (dd, J = 10.2, 4.0 Hz, 1H), 3.96 (m, 1H), 3.84 (m, 1H), 3.54 (dd, J = 11.1, 3.9 Hz, 1H), 3.39 (d, J = 26.3 Hz, 1H), 3.32 (m, 1H), 3.21 (m, 1H), 2.88 (t, J = 10.8 Hz, 1H), 2.38 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H), 1.22 (s, 9H), 1.21 (s, 9H), 0.88 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 140.12, 128.42, 127.73, 127.62, 81.45, 69.73 (d, J = 139.6 Hz), 61.16, 61.15 (d, J = 6.2 Hz), 58.23 (d, J = 7.4 Hz), 54.51, 36.56, 35.05 (d, J = 5.0 Hz), 27.79, 16.04 (d, J = 5.7 Hz), 15.87 (d, J = 6.9 Hz) ppm.; ³¹P NMR (162 MHz, CDCl₃): δ = 24.49 ppm; HRMS (ESI) *m*/*z* calcd for C₂₂H₄₂N₂O₄P 429.2877 ([M+H]), found 429.2878 ([M+H]).

ALK6 – (*RS/SR*)-diethyl (1-(*tert*-butyl(2-(dimethylamino)-1-phenylethoxy)amino)-2,2dimethylpropyl)phosphonate

Alkoxyamine (*RS/SR*)-**ALK4** (415 mg, 1.0 mmol) was dissolved in CH₂Cl₂ (10 mL) and then K₂CO₃ (415 mg. 3.0 mmol) was added. To this solution, MeI (125 μ L, 2.0 mmol) was added under argon atmosphere at 0°C. After 1 h, the mixture was filtrated and the solvent was evaporated *in vacuo*. The crude product was purified by flash-chromatography with a gradient of MeOH in CH₂Cl₂ to give (*RS/SR*)-**ALK6** (22 mg, 5%) as pale yellow solid. M.p. = 80-82 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.22-7.36 (m, 5H), 4.91 (dd, *J* = 11.3, 3.6 Hz, 1H), 4.27-4.41 (m, 1H), 4.04-4.19 (m, 2H), 3.98 (dquin, *J* = 10.1, 7.1, 7.1, 7.1, 7.1 Hz, 1H), 3.46 (dd, *J* = 12.2, 3.8 Hz, 1H), 3.34 (d, *J* = 27.1 Hz, 1H), 2.65 (t, *J* = 11.9 Hz, 1H), 2.10 (s, 6H), 1.35 (t, *J* = 7.0 Hz, 3H), 1.32 (t, *J* = 7.5 Hz, 3H), 1.27 (s, 9H), 0.84 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 142.86, 128.15, 127.75, 127.27, 87.70, 69.62 (d, *J* = 139.2 Hz), 63.40, 61.37 (d, *J* = 6.1 Hz), 61.23, 58.69 (d, *J* = 7.7 Hz), 46.11, 35.52 (d, *J* = 5.5 Hz), 30.06 (d, *J* = 6.1 Hz), 28.45, 16.56 (d, *J* = 5.5 Hz), 16.11 (d, *J* = 6.6 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 25.51 ppm; HRMS (ESI) *m/z* calcd for C₂₃H₄₄N₂O₄P 443.3033 ([M+H]), found 443.3037 ([M+H]).

ALK19 – (*RR/SS*)-diethyl (1-(*tert*-butyl(2-(dimethylamino)-1-phenylethoxy)amino)-2,2dimethylpropyl)phosphonate

(*RR/SS*)-**ALK17** (344 mg,0.83 mmol) was dissolved in CH₂Cl₂ (10 mL) and then 1,8bis(dimethylamino)naphthalene (533 mg, 2.49 mmol) was added. To this solution, trimethyloxonium tetrafluoroborate (614 mg, 4.15 mmol) was added at 0°C. After stirring for 1 h under argon atmosphere, the mixture was quenched with 1 M HCl. The aqueous phase was separated and basified with sat. NaHCO₃ and extracted with CH₂Cl₂. The combined organic phase were dried with MgSO₄ and the solvent was evaporated *in vacuo*. The crude product was purified by flash-chromatography with a gradient of MeOH in CH₂Cl₂ to give (*RR/SS*)-**ALK19** (15 mg, 4%) as pale yellow solid. M.p. = 85-86 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.49 (m, 2H), 7.25 (m, 3H), 5.23 (dd, *J* = 11.2, 3.0 Hz, 1H), 3.98 (m, 1H), 3.84 (m, 1H), 3.44 (d, *J* = 11.9 Hz, 1H), 3.38 (d, *J* = 26.3 Hz, 1H), 3.26 (m, 1H), 3.10 (m, 1H), 2.72 (t, *J* = 11.5 Hz, 1H), 2.13 (s, 6H), 1.24 (m, 6H), 1.22 (s, 9H), 1.19 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 141.29, 129.04, 127.86, 127.76, 81.21, 70.03 (d, *J* = 139.6 Hz), 61.98, 61.51, 61.46 (d, *J* = 7.0 Hz), 58.53 (d, *J* = 7.3 Hz), 46.88, 35.39 (d, *J* = 5.0 Hz), 30.82 (d, *J* = 6.0 Hz), 28.12, 16.35 (d, *J* = 5.8 Hz), 16.19 (d, *J* = 6.9 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 24.50 ppm; HRMS (ESI) *m/z* calcd for C₂₃H₄₄N₂O₄P 443.3033 ([M+H]), found 443.3035 ([M+H]).

ALK4-MMPp (Ac-PLG-ALK4)

To a stirred solution of ALK4 (0.60 g, 1.45 mmol) and Fmoc-Pro-Leu-Gly-OH (0.74 g, 1.45 mmol) in CH₂Cl₂ (10 mL) was added HOBt (0.24 g, 1.74 mmol) and DIC (272 μ L, 1.74

mmol). The reaction was stirred overnight at rt under Ar, then quenched with water and extracted with CH₂Cl₂. The combined organic phase was washed with brine and dried with MgSO₄, and solvents were removed by evaporation. The resulting crude was purified by flash column chromatography (CH₂Cl₂: MeOH = 97: 3) to afford Fmoc-PLG-ALK4 as white foam (1.22 g, 92%). To a stirred solution of Fmoc-PLG-ALK4 (1.16 g, 1.28 mmol) in CH₂Cl₂ (15 mL) cooled at 0 °C was added DBU (230 µL, 1.54 mmol). After stirring overnight under Ar, the reaction mixture was quenched with water, basified with 1 M NaOH and extracted with CH₂Cl₂. The combined organic phase was dried with MgSO₄, and solvent was removed by evaporation. The resulting crude material was purified by flash column chromatography ($CH_2Cl_2/MeOH = 19: 1$) to afford PLG-ALK4 as a white foam (0.61 g, 70%). To a stirred solution of PLG-ALK4 (0.53 g, 0.78 mmol) in pyridine (6 mL), acetic anhydride (111 μ L, 1.17 mmol) was added. The solution was stirred at rt for 4 h under Ar, the reaction mixture was diluted with CH₂Cl₂ and quenched with water. The mixture was extracted with CH_2Cl_2 and washed with 1 M HCl. The organic phase was dried with MgSO₄ and the solvent was removed by evaporation. The crude material was purified with flash column chromatography ($CH_2Cl_2/MeOH = 93:7$) to afford **ALK4-MMPp** (Ac-PLG-ALK4) as white foam (0.52 g, 92%). ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 75 MHz): complex spectra, as ALK4-MMPp exists as a mixture of diastereoisomers and rotamers (see copies of spectra); ³¹P NMR (CDCl₃, 162 MHz): δ 26.96, 26,89 ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₆₃N₅O₈P₁ 724.4409; Found 724.4413

ALK4-CHYMOp (Suc-AAPF-ALK4)

To a stirred solution of ALK4 (0.50 g, 1.21 mmol) and Fmoc-Ala-Ala-Pro-Phe-OH (0.91 g, 1.45 mmol) in CH₂Cl₂ (10 mL) was added HOBt (0.20 g, 1.45 mmol) and N,Ndiisopropylcarbodiimide (DIC) (227 µL, 1.45 mmol). The reaction was stirred for 3 h at rt under Ar, then quenched with water and extracted with CH₂Cl₂. The combined organic phase was washed with brine and dried with MgSO₄, and solvents were removed by evaporation. The resulting crude was purified by flash column chromatography (CH₂Cl₂: MeOH = 49: 1) to afford Fmoc-AAPF-ALK4 as white solid (1.19 g, 90%). To a stirred solution of Fmoc-AAPF-ALK4 (1.05 g, 1.02 mmol) in CH₂Cl₂ (15 mL) cooled at 0 °C was added DBU (183 µL, 1.23 mmol). After stirring overnight under Ar, the reaction mixture was quenched with water and extracted with CH₂Cl₂. The combined organic phase was washed with water and dried with MgSO₄, and solvent was removed by evaporation. The resulting crude material was purified by flash column chromatography (CH₂Cl₂/MeOH = 9: 1) to afford AAPF-ALK4 as a white powder (0.51 g, 62%). To a stirred solution of AAPF-ALK4 (0.40 g, 0.50 mmol) and NaHCO₃ (0.17 g, 2.0 mmol) in CH₂Cl₂ (10 mL), succinic anhydride (75 mg, 0.75 mmol) was added. The solution was stirred at rt for 3 h under Ar, the reaction mixture was quenched with water and acidified with 1 M HCl and extracted with CH₂Cl₂/MeOH (5:1). The combined organic phase was dried with MgSO4 and the solvent was removed by evaporation. The crude material was purified with flash column chromatography (CH₂Cl₂/MeOH = 4: 1) to afford Suc-AAPF-ALK4 as white foam (0.43 g, 97%). ¹H NMR (CD₃OD, 400 MHz) and ¹³C NMR (CD₃OD, 75 MHz): complex spectra, as ALK4-CHYMOp exists as a mixture of diastereoisomers and rotamers (see copies of spectra); ³¹P NMR (CD₃OD, 162 MHz): δ 26.86, 26.79 ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₄₅H₇₀N₆O₁₁P₁ 901.4835; Found 901.4842

ALK4-FITC

To a stirred solution of **ALK4** (100 mg, 0.24 mmol) in THF (5 mL), FITC (103 mg, 0.26 mmol) was added. The solution was stirred at rt for 12 h under Ar, and the solvent was removed by evaporation. The crude material was purified with flash column chromatography to afford **ALK4-FITC** as red foam (149 mg, 77%). ¹H NMR (CD₃OD, 400 MHz): δ 7.91 (br. s, 1H), 7.52-7.26 (m, 7H), 7.04 (d, *J* = 8.3 Hz, 1H), 6.70-6.63 (m, 4H), 6.56-6.53 (m, 2H), 5.35-5.20 (m, 1H), 4.41-3.90 (m, 4H), 3.51 (d, *J* = 27.0 Hz, 1H), 1.42-1.24 (m, 15H), 0.92 (br.s, 9H) ppm; ¹³C NMR (CD₃OD, 75 MHz): δ 182.6, 171.0, 162.1, 154.3, 148.2, 142.3, 142.0, 139.4, 131.3, 130.3, 129.8, 129.4, 129.1, 128.7, 125.6, 120.1, 114.0, 111.7, 103.6, 87.7, 85.0, 70.5 (d, *J* = 138.1 Hz), 69.5 (d, *J* = 138.7 Hz), 63.6-63.4 (m), 63.0, 62.3 (d, *J* = 7.9 Hz), 61.5 (d, *J* = 7.5 Hz), 50.1, 45.0, 40.4, 36.6 (d, *J* = 5.5 Hz), 36.5, 31.2 (d, *J* = 5.9 Hz), 31.1 (d, *J* = 5.4 Hz), 29.2, 28.8, 25.3, 16.9 (d, *J* = 6.0 Hz), 16.8 (d, J = 6.3 Hz), 16.6 (d, *J* = 6.7 Hz), 16.5 ppm ;³¹P NMR (CD₃OD, 162 MHz): δ 27.2, 27.1 ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₄₂H₅₁N₃O₉P₁S₁ 804.3078; Found 804.3082.

ALK17-FITC

To a stirred solution of **ALK17** (100 mg, 0.24 mmol) in THF (5 mL), FITC (103 mg, 0.26 mmol) was added. The solution was stirred at rt for 12 h under Ar, and the solvent was removed by evaporation. The crude material was purified with flash column chromatography to afford **ALK17-FITC** as red foam (145 mg, 75%). ¹H NMR (CD₃OD, 400 MHz): δ 8.04 (br. s, 1H), 7.58-7.53 (m, 3H), 7.39-7.30 (m, 3H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.67 (d, *J* = 2.3 Hz, 2H), 6.63 (d, *J* = 8.8 Hz, 2H), 6.54 (dd, *J* = 8.8 and 2.3 Hz, 2H), 5.30 (dd, *J* = 10.1 and 4.2 Hz, 1H), 3.98-3.86 (m, 4H), 3.54 (d, *J* = 26.6 Hz, 1H), 1.30 (s, 9H), 1.26 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H) ppm ; ¹³C NMR (CD₃OD, 75 MHz): δ 183.0, 171.0, 161.3, 154.1, 149.7, 142.3, 140.5, 131.6, 130.2, 130.1, 129.7, 129.5, 128.8, 125.5, 119.5, 113.5, 11.4, 103.5, 82.2, 71.3 (d, *J* = 139.6 Hz), 63.3 (d, *J* = 6.7 Hz), 63.1, 60.8 (d, *J* = 7.5 Hz), 36.4 (d, *J* = 4.8 Hz), 31.4 (d, *J* = 5.9 Hz), 28.7, 16.6 (d, *J* = 5.3 Hz), 16.5 (d, *J* = 6.5 Hz) ppm; ³¹P NMR (CD₃OD, 162 MHz): δ 23.86 ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ C₄₂H₅₁N₃O₉P₁S₁ 804.3078; Found 804.3085.

1.3. ¹H and ¹³C NMR spectra

ALK4-1 (75 MHz, CDCl₃):

ALK17-1 (400 MHz, CDCl₃):

ALK17-1 (75 MHz, CDCl₃):

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

ALK4 (400 MHz, CDCl₃):

ALK4 (75 MHz, CDCl₃):

ALK17 (400 MHz, CDCl₃):

ALK17 (75 MHz, CDCl₃):

11

ALK5-1 (300 MHz, CDCl₃):

ALK18-1 (300 MHz, CDCl₃):

ALK18-1 (75 MHz, CDCl₃):

ALK5 (400 MHz, CDCl₃):

ALK5 (75 MHz, CDCl₃):

ALK18 (400 MHz, CDCl₃):

ALK18 (75 MHz, CDCl₃):

ALK6 (400 MHz, CDCl₃):

ALK19 (400 MHz, CDCl₃):

ALK19 (75 MHz, CDCl₃):

ALK4-MMPp (400 MHz, CDCl₃):

ALK4-MMPp (75 MHz, CDCl₃):

ALK4-CHYMOp (400 MHz, CD₃OD):

ALK4-CHYMOp (75 MHz, CD₃OD):

ALK4-FITC (400 MHz, CD₃OD):

ALK4-FITC (75 MHz, CD₃OD):

ALK17-FITC (400 MHz, CD₃OD):

ALK17-FITC (75 MHz, CD₃OD):

1.4. HPLC traces

Mobile phase: 80% CH₃CN (+0,1% TFA) / 20% H₂O (+0,1% TFA)

LR-MS (ESI): 533.2 [M+Na]

Purity: 99.3%

ALK17-1:

Mobile phase: 70% CH₃CN (+0,1% TFA) / 30% H₂O (+0,1% TFA) LR-MS (ESI): 533.2 [M+Na] Purity: 97.2%

Mobile phase: 50% CH₃CN (+0,1% TFA) / 50% H₂O (+0,1% TFA)

LR-MS (ESI): 415.3 [M+H]

Purity: 99.6%

ALK17:

Mobile phase: 50% CH₃CN (+0,1% TFA) / 50% H₂O (+0,1% TFA) LR-MS (ESI): 415.3 [M+H]

Purity: 97.2%

ALK5-1

Mobile phase: 70% CH₃CN (+0,1% TFA) / 30% H₂O (+0,1% TFA)

LR-MS (ESI): 547.2 [M+Na]

Purity: 98.7%

ALK18-1

Mobile phase: 75% CH₃CN (+0,1% TFA) / 25% H₂O (+0,1% TFA)

LR-MS (ESI): 547.2 [M+Na]

Purity: 98.4%

Mobile phase: 50% CH₃CN (+0,1% TFA) / 50% H₂O (+0,1% TFA)

LR-MS (ESI): 429.3 [M+H]

Purity: 98.6%

ALK18:

Mobile phase: 50% CH₃CN (+0,1% TFA) / 50% H₂O (+0,1% TFA)

LR-MS (ESI): 429.3 [M+H]

Purity: 98.2%

Mobile phase: 50% CH₃CN (+0,1% TFA) / 50% H₂O (+0,1% TFA)

LR-MS (ESI): 443.3 [M+H]

Purity: 98.1%

ALK19:

Mobile phase: 60% CH₃CN (+0,1% TFA) / 40% H₂O (+0,1% TFA) LR-MS (ESI): 443.3 [M+H] Purity: 97.7%

ALK4-MMPp (mixture of two diastereoisomers):

Mobile phase: 60% CH₃CN (+0,1% TFA) / 40% H₂O (+0,1% TFA)

LR-MS (ESI): 724.4 [M+H]

Purity: 99.5%

ALK4-CHYMOp (mixture of two diastereoisomers):

Mobile phase: 60% CH₃CN (+0,1% TFA) / 40% H₂O (+0,1% TFA) LR-MS (ESI): 901.3 [M+H] Purity: 98.7%

ALK4-FITC:

Mobile phase: 70% CH_3CN (+0,1% TFA) / 30% H_2O (+0,1% TFA)

LR-MS (ESI): 804.2 [M+H]

Purity: 98.0%

ALK17-FITC:

Mobile phase: 60% CH₃CN (+0,1% TFA) / 40% H₂O (+0,1% TFA) LR-MS (ESI): 804.2 [M+H] Purity: >99.9%

2. Kinetic measurements

	Conditions	<i>T</i> (°C)	<i>k</i> d (s ⁻¹)	<i>E</i> ₄ (kJ/mol)	t₁/2 (37 ºC)
ALK4	pH = 11	80	1.54 10 ⁻⁴	123.0	17 d
	pH = 7.4	80	1.46 10 ⁻³	116.4	32 h
	pH = 6.0	80	2.11 10 ⁻³	115.3	21 h
ALK5	pH = 11	80	8.83 10-4	117.9	2 d
	pH = 7.4	70	4.82 10 ⁻³	109.7	2 h
	pH = 6.0	70	5.06 10 ⁻³	109.5	2 h
ALK6	pH = 7.4	50	4.68 10 ⁻³	103.4	13 min
ALK17	pH = 11	80	1.22 10-4	123.7	23 d
	pH = 7.4	80	7.61 10 ⁻⁴	118.3	3 d
	pH = 6.0	80	1.00 10 ⁻³	117.5	2 d
ALK18	pH = 11	90	1.48 10 ⁻³	119.6	5 d
	pH = 7.4	70	1.94 10 ⁻³	112.3	7 h
	pH = 6.0	70	1.51 10 ⁻³	113.0	8 h
ALK19	pH = 7.4	50	3.04 10 ⁻³	104.5	19 min

3. pK_a measurements

The dependence of the chemical shifts of alkoxyamines upon protonation was investigated by means of ¹H NMR spectroscopy. 0.02 M samples in a D₂O/CD₃OD (v/v 1:1) mixture of alkoxyamines were used. The values of pH were adjusted with DCl or NaOD and controlled by a pH-meter with a micro-pH electrode (o.d. 3 mm glass, 180 mm stem length). ¹H NMR spectra were recorded on a 400 MHz spectrometer.

All pK_a values were determined using the Henderson-Hasselbach relationship:

$$O'_{\rm pH} = O'_{\rm 1} + \frac{O'_{\rm 1H+} - O'_{\rm 1}}{1 + 10^{\rm pK_a - \rm pH}}$$

4. Supplementary figures

Fig. S1 Evaluation of the cytotoxicity of ALK4, ALK5, ALK9 and ALK13 in U251-MG and U87-MG human glioblastoma spheroids. (A) Evaluation of the cytotoxicity of ALK4 in ONS-76, UW228-2 and HDMB-03 MB cell lines. Monitoring the growth of U251-MG and U87-MG spheroids by fluorescence quantification after treatment with ALK4, ALK5, ALK9 and ALK13 at (B) 1 μ M, (C) 25 μ M and (D) 50 μ M. Values are the average of at least three independent experiments ± SEM. * p<0,05 ; ** p<0,01 ; *** p<0,001

Fig. S2 Study of the mechanism of action of ALK4 in U87-MG cells. (A) Cell survival measured by MTT-assay after 72 hours of treatment with ALK4, its nitroxide SG1 and its alkyl radical on inactive forms PEA and PEA-OH, in 2D-culture of U87-MG cells. (B) Cell survival measured by MTT-assay of ALK4 in presence of alkyl scavenger Troxerutin at 25 μ M in 2D-culture of U87-MG cells after 72 hours of treatment; (C) Superoxide production in 2D culture of U87-MG cells upon treatment with ALK4 only and in combination with alkyl scavenger troxerutin for 6 hours. (D) Measurement of apoptotic induction in 2D-culture of U87-MG cells upon treatment with ALK4 for 48 hours. * p<0,05; ** p<0,001.

Fig. S3 Evaluation of the cytotoxicity of the bioconjugates ALK4-CHYMOp and ALK4-MMPp in U87-MG GBM spheroids and HD-MB03 and ONS-76 MB spheroids. Monitoring of the growth of (A) U87-MG, (C) HD-MB03 and (D) ONS-76 spheroids by fluorescence quantification for 4 days after treatment with ALK4-CHYMOp and with ALK4-MMPp. (B) Representative pictures of U87-MG spheroids before treatment and for 4 days after treatment with 50 μ M of ALK4-CHYMOp and ALK4-MMPp. Scale bar = 250 μ m. Values are the average of at least three independent experiments ± SEM.* p<0,05; ** p<0,01; *** p<0,001.

Fig. S4 (A) Production of MMP enzymes on organotypic brain slices with and without glioblastoma tumor graft. (B) Monitoring of the growth of U87-MG spheroids in brain slices by fluorescence quantification for 14 days after treatment with the bioconjugates ALK4-CHYMOp. Values are the average of at least three independent experiments \pm SEM. * p<0,05; ** p<0,01; *** p<0,001.