Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Experimental and computational insights into the mechanism of the copper(I)-catalysed sulfonylative Suzuki-Miyaura reaction

Callum G. J. Hall,^{a,b} Helen F. Sneddon,^{*a,†} Peter Pogány,^a David M. Lindsay,^b and William J. Kerr^{*b}

^a Medicines Design, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, England, UK

^b Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, UK [†] Present address: Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, England, UK

Computational Supporting Information

Contents

1.	General cor	mputational methods	2
2.	Key compu	tational findings for the copper(I)-catalysed sulfonylative Suzuki-Miyaura reaction	2
	2.1. Ener	gy profile construction: transmetalation	2
	2.2. Migr	atory insertion: Natural population analysis (NPA) & bond length analysis of ligated arylcopper(I) su	Jlfur
	dic	xide complexes	3
	2.2.1.	Ligand: 2,2'-Bipyridine, variation of aryl R group	4
	2.2.2.	Aryl: phenyl, variation of 4,4'-disubstituted-2,2'-bipyridine ligands	4
	2.3. Migr	atory insertion energy profile construction: Variation of ΔE_{MI}^{\dagger} with aryl R group	5
	2.4. Migr	atory insertion energy profile construction: variation of ΔE_{MI}^{\dagger} with complex ligand	5
	2.5. Calci	ulation of ¹⁹ F NMR shielding constants for copper-bound fluorinated sulfinate species	6
	2.6. Oxid	ative addition: natural population analysis (NPA) of resting state copper(I) complexes	7
	2.7. Oxid	ative addition energy profile construction: Variation of ΔE_{OA}^{\dagger} with ligand	7
	2.8. Oxid	ative addition energy profile construction: Variation of ΔE_{OA}^{\dagger} with aryl iodide R group	9
	2.9. Redu	uctive elimination energy profile construction: O- versus S-bound sulfinate reductive elimination	10
	2.10. Redu	uctive elimination energy profile construction: Variation of ΔE_{RE}^{\dagger} with ligand	11
	2.11. Redu	uctive elimination energy profile construction: Variation of ΔE_{RE}^{\dagger} with aryl R group	11
	2.12. Tabu	lated activation energies for key mechanistic steps in the copper(I)-catalysed sulfonylative Suzuki-Miy	aura
	rea	action of phenylboronic acid, sulfur dioxide, and 4-iodotoluene, using L=bpy	13
z	Computed	atomic coordinates energies and vibrational frequencies for ontimised ground state and transition	•
э.	state species		
	3.1. Tran	smetalation of phenylboronic acid onto copper(I)	15
	3.1.1.	Ground state geometry optimisations	15
	3.1.2.	Transition state optimisations	18
	2.2 Inco	rtion of SQ into the conner, carbon hand	10
	3.2. Inser	1001 OI SO_2 into the copper-carbon bond variation of AF $\frac{1}{2}$ with and P group	19
	3.2.1.	SO_2 insertion into the copper-carbon bond, variation of ΔE_{MI} , with any R group	19
	3.2.2.	SO_2 insertion into the copper–carbon bond: variation of ΔE_{MI}^{\dagger} with complex ligand	26
	3.3. Oxid	ative addition of copper(I) into the copper-carbon bond	33
	3.3.1.	Oxidative addition of 4-iodotoluene to (L)Cu(SO ₂ Ph): Variation of ΔE_{OA}^{\dagger} with complex ligand	33
	3.4. Oxid	ative addition to (bpy)Cu(SO ₂ Ph): Variation of ΔE_{OA}^{\dagger} aryl iodide 4-position substituent	59
	3.4.1.	Geometry optimisations of common species to all pathways	59
	35 Redu	Ictive elimination from conner(III)	73
	3 5 1	Reductive elimination nothways via an O-bound or S-bound copper(III) sulfinate	73
	2 5 2	Reductive elimination particles of a tobul contrast from $(1)Cu/(Tob)/(2)$ below the static of Γ	
	3.3.Z.	Reductive elimination of (p-toly)suboryidenzene from (L)Cu(10)(SO ₂ Ph)(I): variation of $\Delta E_{RE'}$ with	70
	complex I	igano	78
	3.5.3.	Reductive elimination of biaryl sulfones from (bpy)Cu(Ar)(SO ₂ Ph)(I): variation of ΔE_{RE}^{\dagger} with aryl R gr 89	oup
	Defensers		07
4.	References		

1. General computational methods

All computational Density Functional Theory (DFT) calculations were performed using a combination of Schrödinger (Maestro)¹ and the Gaussian 16² series of programs, built into a linux-based supercomputing system. GaussView 5.0.9 was used for visualisation of structures, vibrational frequencies, predicted NMR spectra, NPA atomic charges, and energies.

Within Maestro, molecular structures were imported through the two-dimensional sketch tool, and from this a conformational search in three-dimensional space was carried out using the 'conformational search' macromodel keyword³ (default settings). The computed three-dimensional conformers were then exported as .xyz files containing atomic coordinates for input into Gaussian .gjf files.

Within Gaussian, computations were carried out using the B3LYP density functional,^{4,5} and the 6-31G+(d,p)^{6,7} basis set level of theory for lighter atoms. Alternatively, the SDD (ECP46MWB pseudopotential)⁸ basis set was used to model heavier atoms in order to account for the relativistic effects of electrons (e.g. iodine); when this was used, the 'B3LYP/gen pseudo=read' keyword was used instead of the usual 'B3LYP/6-31+G(d,p)' keyword. The 'EmpiricalDispersion=GD3' keyword was used to account for dispersion and non-bonding interactions between neighbouring atoms.⁹ The 'Integral(Grid=Ultrafine)' keyword was used for improved computational accuracy when modelling diffuse functions. Additionally, all species were modelled using the 'SCRF=(solvent=*N*,*N*-Dimethylformamide)' keyword,¹⁰ applying similar solvation conditions to those expected when using *N*,*N*'-dimethylpropylene urea (DMPU) as the solvent under experimental conditions; currently a SCRF model for DMPU is not available. Natural population analyses (NPA atomic charges and molecular orbital populations) were performed using the 'pop=nbo' keyword.¹¹ Energies in atomic units (a.u.) were converted into kJ mol⁻¹ by multiplication by the conversion factor of 2625.499.

For geometry optimisations and ground state energy calculations, the keywords 'opt' and 'freq' were used for geometry optimisations and frequency calculations, respectively. The lowest energy conformers containing only positive vibrational frequencies were used as the ground state structure.

For calculation of NMR shielding constants, the keyword 'nmr=gaio' was used, with a higher basis set of augcc-PVTZ used in place of 6-31+G(d,p) to ensure a higher accuracy of calculations. These calculations were carried out as a single-point-energy calculation.

For transition state searches, each energy maxima was found on the potential energy surface through use of the scan function within the 'opt=modredundant' keyword. The selected atoms were moved towards or away from each other sequentially in a number of steps by a set distance. Within each scan step, a geometry optimisation was carried out. A frequency calculation of the energy-maxima structures generated from the transition state search was subsequently carried out using the 'opt(TS,calcfc,noeigentest)' keyword, and the presence of a single intense negative vibrational frequency confirmed the structure was a valid transition state.

2. Key computational findings for the copper(I)-catalysed sulfonylative Suzuki-Miyaura reaction

2.1. Energy profile construction: transmetalation

Using the above calculated energies for geometry-optimised starting materials and the optimised transition state found from the transition state search, it is possible to construct an energy profile for the transmetalation step between phenylboronic acid and (2,2'-bipyridyl)copper(I), *via* the intermediate phenylfluoroboronate. An energy profile for the transmetalation step, including tabulated energy values, are shown in Table S1.

Table S1. Energy values, in atomic units (a.u., Hartrees) and kJ mol⁻¹ for individual species and energy barriers involved in the transmetalation of phenylboronic acid onto a copper(I) bipyridyl species.

2.2. Migratory insertion: Natural population analysis (NPA) & bond length analysis of ligated arylcopper(I) sulfur dioxide complexes

Following previous reports suggesting the preference for SO₂-insertion into electron-rich metal–carbon bonds,¹² and the poor performance of electron-deficient groups, the R group on the *para*-position of the aryl ring was modified. The geometry-optimised species were then used in the calculation of atomic charges based on NPA, in particular the *ipso*-carbon (migrating carbon). Calculated bond lengths and computed NPA charges are shown for variation of 4,4'-disubstituted-2,2'-bipyridine ligands (Table S3) and variation of aryl R group (Table S2).

2.2.1. Ligand: 2,2'-Bipyridine, variation of aryl R group

Table S2. Calculated values for the length of the Cu–C bond length, r(Cu–C)/Å, and the electron density on the *ipso*- carbon to copper, NPA(*ipso*- C) upon variation of the R group at the 4-position on the aryl ring of (bipy)Cu¹(Ar)(SO₂).

2.2.2. Aryl: phenyl, variation of 4,4'-disubstituted-2,2'-bipyridine ligands

12c	Вру	1.928(9)	-0.332
13b	4,4'-diMeObpy	1.928(6)	-0.327
13c	4,4'-diNO2bpy	1.929(4)	-0.334

Table S3. Calculated values for the length of the Cu–C bond length, r(Cu–C)/Å, and the electron density on the ipso- carbon to copper, NPA(ipso- C) upon variation of the ligand in (L)Cu¹(Ph)(SO₂).

2.3. Migratory insertion energy profile construction: Variation of ΔE_{MI}^{\dagger} with aryl R group

From the computed energy values for the corresponding arylcopper(I) sulfur dioxide complexes $(E_{bipyCu(Ar)(SO2)})$ and the related transition state energy (E_{MI}^{\dagger}) , the activation barrier for the migratory insertion step $(\Delta E_{MI}^{\dagger})$ can be calculated. A graphical representation of these energies, in addition to energy values for individual species (a.u.) and energy changes (a.u. and kJ mol⁻¹), are tabulated in Table S4.

complex (bpy)Cu(SO₂)(Ar). Energy change values represent the following: ΔE_{MI}^{\dagger} , the migratory insertion activation energy.

2.4. Migratory insertion energy profile construction: variation of ΔE_{MI}^{\dagger} with complex ligand

From the computed energy values for the corresponding phenylcopper(I) sulfur dioxide complexes and the related transition state energy, the activation barrier for the migratory insertion step can be calculated. values for the migratory insertion activation energy, ΔE_{MI}^{\dagger} , are tabulated in Table S5.

Table S5. Calculated energy profile for the migratory insertion of the copper(I)-bound phenyl group into sulfur dioxide, varying dependent on ligand present in the complex. Energy change values (ΔE) represent the following: ΔE_{MI}^{\dagger} , the migratory insertion activation energy.

2.5. Calculation of ¹⁹F NMR shielding constants for copper-bound fluorinated sulfinate species

Calculation of ¹⁹F NMR shielding constants for *O*- and *S*-bound (4,4'-diMeObpy)Cu^I sulfinate species was carried out for prediction of relative chemical shifts to identify species observed experimentally. Relative energies of the two species were also calculated, as different quantitative ratios of each species were observed experimentally by NMR.

 Table S6. Calculation of relative energies and ¹⁹F NMR shielding constants for copper(I) sulfinate species present within the reaction mixture when using L=4,4'-diMeObpy and 4-fluorobenzenesulfinate.

Calculations predict that for the fluorinated sulfinate species, the *S*-bound sulfinate is more stable by 8.3 kJ mol⁻¹. The *S*-bound sulfinate is also predicted to have a smaller shielding value, which would result in a less negative ¹⁹F NMR shift. These predictions are in agreement with experimental results, with the less shielded resonance (δ -113.9 ppm) in the ¹⁹F spectrum shown in experimental supporting information section 4.4.3. is the most abundant in the mixture. Likewise, the more shielded resonance (δ -115.5 ppm) is less abundant, and can be assigned as *O*-bound sulfinate species.

2.6. Oxidative addition: natural population analysis (NPA) of resting state copper(I) complexes

It is widely known within the literature that, due to the high activation barriers for oxidative addition of copper(I) into a metal-halide bond, an electron-rich metal centre is required.¹³ This often involves employing electron-donating ligands. The resting state copper(I) species which is thought to undergo oxidative addition, LCu, was analysed using NPA (Natural Population Analysis) to determine i) the donor abilities of the nitrogen-containing ligands (relative values on the nitrogen atoms, $N^1 = \text{left}$, $N^2 = \text{right}$) and ii) the relative electron density present on the copper atom in the corresponding complexes. The resulting values for the copper(I) ion and complexes thereof with the ligands bpy, 4,4'-diMeObpy, 4,4'-diNO₂bpy, DMEDA, L-prolinate, and DMPHPC, are shown below and tabulated for comparison in Table S7. Less positive (more negative) values imply increased electron density.

Table S7. Calculated NPA charges for the copper and ligating atoms in complexes of the form LCu^I(SO₂Ph).

2.7. Oxidative addition energy profile construction: Variation of ΔE_{OA}^{\dagger} with ligand

Using the above calculated (geometry-optimised) energy values of each (ligand)copper(I) benzenesulfinate complex, (ligand)copper(I) benzenesulfinate–4-iodotoluene cation– π complex, oxidative addition transition states, and (ligand)tolyl(*S*-sulfinylphenyl)copper(III) iodide species, energy values for the π -complexation energy (ΔE_{π}), oxidative addition activation energy (ΔE_{OA}^{\dagger}) and transition state-copper(III) energy difference

 $(\Delta E_{Cu(III)})$ can be calculated. A graphical representation of these energies, in addition to energy values for individual species (a.u.) and energy changes (a.u. and kJ mol⁻¹), are tabulated in Table S8.

Table S8. Calculated energy values for species of the form LCu^I(SO₂Ph), LCu^I(SO₂Ph)-4-iodotoluene cation- π complex, the oxidative addition transition state, and the resulting species, LCu^{III}(Ph)(SO₂Ph)(I). Energy change values (Δ E) represent the following: Δ E_{π}, the π complexation energy; Δ E_{OA}[‡], the activation energy for oxidative addition; Δ E_{cu(III)}, the energy difference between transition state & copper(III) oxidative addition product.

2.8. Oxidative addition energy profile construction: Variation of ΔE_{OA}^{\dagger} with any iodide R group

Using the above calculated (geometry-optimised) energy values of the (bpy)copper(I) complex, (bpy)copper(I)–aryl iodide cation– π complex, (bpy)copper(I)–aryl iodide oxidative addition transition state, and (bpy)arylcopper(III) iodide species, energy values for the π -complexation energy (ΔE_{π}), oxidative addition activation energy (ΔE_{OA}^{\dagger}) and transition state-copper(III) energy difference ($\Delta E_{Cu(III)}$) can be calculated. A graphical representation of these energies, in addition to energy values for individual species (a.u.) and energy changes (a.u. and kJ mol⁻¹), are tabulated in Table S9.

Table S9. Calculated energy barriers between species of the form LCu¹, LCu¹-aryl iodide cation- π complex, the oxidative addition transition state, and the resulting species, LCu¹(Ar)(I). Energy change values (ΔE) represent the following: ΔE_{π} , the π complexation energy; ΔE_{OA}^{\dagger} , the activation energy for oxidative addition; $\Delta E_{Cu(III)}$, the energy difference between transition state & copper(III) oxidative addition product.

2.9. Reductive elimination energy profile construction: *O*- versus *S*-bound sulfinate reductive elimination

Using the above calculated (geometry-optimised) energy values of each copper(III) sulfinate species, copper(III) sulfinate reductive elimination transition state, and resulting products, energy values for the activation energy (ΔE_{RE}^{\dagger}), the energy difference between transition state and products (ΔE_{prod}), can be calculated. A graphical representation of these energies, in addition to energy values for individual species (a.u.) and energy changes (a.u. and kJ mol⁻¹), are tabulated in Table S10.

Table S10. Calculated energy profile for the competing reductive elimination of sulfinic acid ester and sulfone from *O*-bound and *S*-bound copper(III) sulfinate species, respectively. Energy change values (ΔE) represent the following: ΔE_{O} -[‡], the activation energy for reductive elimination from the *O*-bound copper(III) sulfinate to yield a sulfinic acid ester; ΔE_{S} -[‡], the activation energy for reductive elimination from the *S*-bound copper(III) sulfinate to yield a sulfone; ΔE_{prod} , the energy difference between transition state & resulting (bpy)Cul and respective reductive elimination product.

2.10. Reductive elimination energy profile construction: Variation of ΔE_{RE}^{\dagger} with ligand

Using the above calculated (geometry-optimised) energy values of each (ligand)copper(III) *p*-tolyl(S-sulfinylphenyl) iodide complex, (ligand)copper(III) *p*-tolyl(S-sulfinylphenyl) iodide complex reductive elimination transition state and resulting (ligand)copper(I) iodide and (*p*-tolyl)sulfonylbenzene product, energy values for the reductive elimination activation energy (ΔE_{RE}^{\dagger}) and the difference between reductive elimination products and transition state can be calculated. A graphical representation of these energies, in addition to energy values for individual species (a.u.) and energy changes (a.u. and kJ mol⁻¹), are tabulated in Table S11.

Table S11. Calculated energy barriers between species of the form (L)Cu^{III}(Tol)(SO₂Ph)(I), reductive elimination transition state, and the resulting species, (L)CuI and (*p*-tolyl)sulfonylbenzene, Tol(SO₂Ph). Energy change values (Δ E) represent the following: Δ E_{RE}[‡], the activation energy for reductive elimination; Δ E_{prod}, the energy difference between transition state & resulting (L)CuI and (*p*-tolyl)sulfonylbenzene, Tol(SO₂Ph).

2.11. Reductive elimination energy profile construction: Variation of ΔE_{RE}^{\dagger} with any R group

Using the above calculated (geometry-optimised) energy values of each (bpy)copper(III) aryl(S-sulfinylphenyl) iodide complex, (bpy)copper(III) aryl(S-sulfinylphenyl) iodide complex reductive elimination transition state and resulting (bpy)copper(I) iodide and biaryl sulfone product Ar(SO₂Ph), energy values for the reductive

elimination activation energy (ΔE_{RE}^{\dagger}) and the difference between reductive elimination products and transition state can be calculated. A graphical representation of these energies, in addition to energy values for individual species (a.u.) and energy changes (a.u. and kJ mol⁻¹), are tabulated in Table S12.

Table S12. Calculated energy barriers between species of the form (bpy)Cu^{III}(Ar)(SO₂Ph)(I), reductive elimination transition state, and the resulting species, (bpy)CuI and biaryl sulfone Ar(SO₂Ph). Energy change values (ΔE) represent the following: ΔE_{RE}^{\dagger} , the activation energy for reductive elimination; ΔE_{prod} , the energy difference between transition state & resulting (bpy)CuI and biaryl sulfone Ar(SO₂Ph).

Mechanistic step	Visualisation of transition state	Activation energy (ΔE [‡] , kJ mol ⁻¹)	Predicted rate determining step(s)
Transmetalation	HO B OH t	+81.0	¥
Migratory insertion	[‡] N Cu ^r S≂o	+28.6	×
Oxidative addition	* N Cu ^l N S-Ph Me	+53.3	×
Reductive elimination	[‡] N Cu ^{III} S [±] ≥0 Ph	+29.7	×

2.12. Tabulated activation energies for key mechanistic steps in the copper(I)-catalysed sulfonylative Suzuki-Miyaura reaction of phenylboronic acid, sulfur dioxide, and 4-iodotoluene, using L=bpy

Table S13 – Summarised calculated activation energies for the key mechanistic steps of transmetalation, migratory insertion, oxidative addition, and reductive elimination, for the copper(I) catalysed sulfonylative Suzuki-Miyaura reaction of phenylboronic acid, sulfur dioxide, and 4-iodotoluene, using 2,2-bipyridine as the ligand.

Conclusion: Through comparison of computed activation energies for the key mechanistic steps of the catalytic cycle, the transmetalation and oxidative addition steps are predicted to most likely be the rate-determining steps. Although activation energies are generally an indication of the rate determining step of the process, due to the complexity of the catalytic cycle and number of species involved, it is hard in this instance to accurately pinpoint the rate-determining step. Furthermore, the dependence of the oxidative addition step on both the activation energy, and relative stability of the Cu^{III} species further complicates this comparison.

2.13. Overall energy profile for the copper(I)-catalysed sulfonylative Suzuki-Miyaura reaction of phenylboronic acid, sulfur dioxide, and 4-iodotoluene, using L=bpy

Figure S1 – Visualised overall energy profile for the copper(I)-catalysed sulfonylative Suzuki-Miyaura reaction of phenylboronic acid, sulfur dioxide, and 4-iodotoluene, using L=bpy, highlighting relative energies of all key intermediates in the catalytic cycle.

3. Computed atomic coordinates, energies, and vibrational frequencies for optimised ground state and transition state species

3.1. Transmetalation of phenylboronic acid onto copper(I)

3.1.1. Ground state geometry optimisations

Phenylboronic acid (4)

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	-1.93338400	-1.22118600	0.00017100
С	-0.53666300	-1.20044300	0.00023800
С	0.17852600	0.01427500	0.00010000
С	-0.56506800	1.21017100	-0.00015100
С	-1.96248400	1.19951800	-0.00022000
С	-2.64978800	-0.01892400	-0.00005800
В	1.74825800	0.00031400	0.00025600
0	2.53902400	1.12613100	0.00024800
0	2.38766300	-1.21473600	-0.00046800
Н	-2.46285900	-2.16978900	0.00029600
Н	0.01291000	-2.13717500	0.00041900
Н	-0.05979100	2.17363200	-0.00030300
Н	-2.51277900	2.13597900	-0.00040800
Н	-3.73604000	-0.03103600	-0.00011300
Н	2.06562800	1.96658200	0.00065600
Н	3.35131300	-1.13139100	-0.00054800

E(RB3LYP) -408.32479785 a.u.

(2,2'-Bipyridyl)copper(I)

Charge = 1	Multiplicity =	= 1	
ATOM	х	Y	Z
С	0.74966200	0.73245800	-0.00056900
С	2.70467900	-0.54502100	0.04030300
С	3.51342400	0.58901600	0.00567500
С	2.89511800	1.83750100	-0.03909700
С	1.50229400	1.91100600	-0.04357100
С	-0.74856000	0.73282600	0.00197800
С	-2.70445300	-0.54347400	-0.03975000
С	-3.51246000	0.59109500	-0.00671000
С	-2.89341000	1.83921800	0.03806700
С	-1.50057200	1.91182400	0.04386000
Н	3.12966400	-1.54182700	0.07222500
Н	4.59245600	0.48738700	0.01127200
Н	3.48529700	2.74712400	-0.07230000
Н	1.02108200	2.87908200	-0.08603500
Н	-3.12998400	-1.54004700	-0.07109100
Н	-4.59155400	0.49018600	-0.01350000

Н	-3.48305700	2.74922400	0.07018900
Н	-1.01878100	2.87963000	0.08616200
Ν	-1.36417100	-0.47584400	-0.03512500
Ν	1.36449800	-0.47652000	0.03699300
Cu	-0.00143900	-1.95941100	-0.00038300

E(RB3LYP) -2135.67609404 a.u.

Fluoride anion

Geometry-optimised cartesian coordinates					
Charge = -1	Multiplicity =	1			
ATOM	х	Y	Z		
F	0.0000000	0.00000000	0.0000000		

E(RB3LYP) -99.99302637 a.u.

Phenylfluoroboronate (11)

Geometry-optimised cartesian coordinates

Charge = -1	Multiplicity =	: 1	
ATOM	х	Y	Z
В	1.55620100	0.02885600	0.01066600
С	-0.07393600	0.01822600	0.04777900
С	-0.81839500	1.21325600	0.00101600
С	-0.81046700	-1.18222400	0.06002600
С	-2.21837300	1.21711200	-0.03336700
Н	-0.28434300	2.16095000	-0.00335900
С	-2.21091900	-1.19721500	0.02257300
Н	-0.27226500	-2.12660100	0.10627900
С	-2.92295900	0.00689800	-0.02462300
Н	-2.76061000	2.15971700	-0.06555100
Н	-2.74635700	-2.14416200	0.03394200
Н	-4.00970300	0.00273200	-0.05113500
0	2.08064500	1.18946600	0.72168000
0	2.10368200	0.03450900	-1.36502700
Н	1.80884600	-0.75126600	-1.84047000
Н	3.01927200	1.28365800	0.51477500
F	2.03553700	-1.21971400	0.66206000
E (RB3LYP)	-508.34070621	a.u.	

(2,2'-Bipyridyl)copper(I)-phenylfluoroboronate π adduct

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

onarge o	TIGT CTD TTOT CJ	-	
ATOM	х	Y	Z
С	-2.54349700	-0.23492700	-0.13022800
С	-1.89981500	-2.39319200	-0.72557900

С	-3.21178800	-2.85962400	-0.67423100
С	-4.21960200	-1.95837500	-0.32970000
С	-3.88293500	-0.63373500	-0.05399600
С	-2.08968200	1.15890600	0.14630400
С	-0.24576800	2.57402800	0.32513400
С	-1.05369800	3.67479100	0.61012600
С	-2.43570500	3.48687600	0.66077100
С	-2.96314300	2.21709900	0.42386400
Н	-1.07501700	-3.05017200	-0.98050000
Н	-3.42886100	-3.89839800	-0.89567000
Н	-5.25451700	-2.27922400	-0.27278100
Н	-4.65731900	0.07103200	0.22127200
Н	0.83625200	2.64485100	0.25344000
Н	-0.60756100	4.64771500	0.78375800
Н	-3.09946900	4.31751800	0.87752900
Н	-4.03500300	2.06649700	0.45095500
N	-0.75331900	1.35336100	0.10593000
N	-1.57115800	-1.11907800	-0.46356700
Cu	0.31691600	-0.35128000	-0.38700300
В	2.75732200	0.50737800	-1.09684000
С	2.38801600	-0.35188600	0.24727700
С	2.43941300	0.19261000	1.55821900
С	2.01097700	-1.72121900	0.14189200
С	2.15396100	-0.57222700	2.68595000
Н	2.71131200	1.23818800	1.66901400
С	1.71914800	-2.49769800	1.28719300
Н	2.06773400	-2.22473500	-0.82256000
С	1.78901400	-1.92506700	2.55281800
Н	2.20874700	-0.12375900	3.67462800
Н	1.44786900	-3.54351700	1.17201400
Н	1.56475300	-2.51843800	3.43481300
0	2.90254600	1.90743800	-0.76288200
0	1.64747900	0.33474800	-2.10338800
Н	1.85047400	-0.39067300	-2.70717700
Н	2.93876000	2.43024700	-1.57358600
F	3.96627000	-0.02805900	-1.72212600

E(RB3LYP) -2644.07375476 a.u.

(2,2'-Bipyridyl) phenylcopper(I)

Charge = 0	Multiplicity =	1	
ATOM	х	Y	Z
С	2.38060200	-0.41980900	0.00695300
С	1.57489100	-2.60206800	0.11623100
С	2.85990700	-3.13842300	0.11417600
С	3.94244600	-2.26099500	0.05137400
С	3.69910800	-0.88997400	-0.00427500
С	2.04765900	1.03091300	-0.05379600
С	0.39272100	2.60030600	-0.44981800
С	1.26131100	3.66551800	-0.20221100
С	2.58067600	3.37120800	0.14478000
С	2.98299700	2.03765600	0.22369600
N	0.77270800	1.31997500	-0.37932900
N	1.33173100	-1.27919200	0.06276800
Cu	-0.54826100	-0.62054700	-0.02336500
С	-2.45273700	-0.39470100	0.03983100
С	-3.39999500	-1.37430900	-0.35060800
С	-3.00838200	0.83844200	0.46623600
С	-4.78376600	-1.14818500	-0.32583100
С	-4.38857600	1.08223300	0.50273600
С	-5.28696800	0.08561900	0.10358700

Н	0.69938300	-3.23958700	0.16611700
Н	2.99880300	-4.21252600	0.15874900
Н	4.96086300	-2.63509700	0.03943500
Н	4.52830500	-0.19716000	-0.07449100
Н	-0.64689400	2.77265500	-0.71515900
Н	0.90885600	4.68860300	-0.27496200
Н	3.28790100	4.16607900	0.35866900
Н	3.99854900	1.79626200	0.51352300
Н	-3.04763500	-2.34806100	-0.68726800
Н	-2.34005900	1.63848700	0.78219500
Н	-5.46926000	-1.93367500	-0.63887000
Н	-4.76292600	2.04707700	0.84007300
Н	-6.35875500	0.26673600	0.12712100

a.u.

Fluoroboric acid

Geometry-optimised cartesian coordinates

E(RB3LYP) -2135.67609404

Charge = 0	Multiplicity =	1	
ATOM	х	Y	Z
В	0.01415000	-0.00417600	-0.00002700
0	1.36685800	0.11397500	0.00006800
0	-0.81746400	1.07315800	-0.00000900
F	-0.48724700	-1.26114000	-0.00001900
Н	1.67600500	1.02948800	-0.00034500
Н	-1.75668700	0.84458400	0.00017800
E (RB3LYP)	-276.54894956	a.u.	

3.1.2. Transition state optimisations

(2,2'-Bipyridyl)copper(I)-phenylfluoroboronate transmetalation transition state[†]

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	2.65327200	-0.59987000	-0.22755900
С	1.57836000	-2.66487000	-0.24426700
С	2.78687100	-3.35734200	-0.22201800
С	3.97098000	-2.62004700	-0.19612900
С	3.90379100	-1.22756100	-0.19769600
С	2.48904200	0.88072600	-0.23201400
С	1.00486300	2.64791200	0.01211800
С	2.00126300	3.59393600	-0.22913400
С	3.29398000	3.13726500	-0.48820000
С	3.54343900	1.76482800	-0.49275900
Н	0.62811500	-3.18714800	-0.26266600
Н	2.79141000	-4.44135800	-0.22236700
Н	4.93438100	-3.11843600	-0.16997800
Н	4.81488900	-0.64364200	-0.15974500
Н	-0.01862600	2.94593100	0.21800200
Н	1.76430300	4.65191400	-0.21646300
Н	4.09848500	3.83667200	-0.69070000
Н	4.53860200	1.39828400	-0.71238100

Ν	1.23907900	1.32872600	0.01393500
N	1.50767000	-1.32310500	-0.24726000
Cu	-0.23650500	-0.32794500	-0.08634400
В	-1.88255400	0.08694100	1.92892300
С	-2.18308400	-0.14708100	-0.27017200
С	-2.68140100	1.06501200	-0.80433500
С	-2.89091300	-1.31810600	-0.63873400
С	-3.79644000	1.11522200	-1.64819900
Н	-2.18767900	1.99601300	-0.53399800
С	-4.00850400	-1.28974800	-1.48043800
Н	-2.56040100	-2.28005400	-0.24905700
С	-4.46536700	-0.06712000	-1.98841600
Н	-4.14767200	2.06842600	-2.03724500
Н	-4.52317000	-2.21204500	-1.74070200
Н	-5.33539800	-0.03593200	-2.63934600
0	-1.33992500	1.35725300	2.14324800
0	-1.13207200	-1.01663300	2.38487200
Н	-1.55186800	-1.85568200	2.15948000
Н	-0.37483300	1.33364300	2.11855900
F	-3.25014400	0.04176500	2.16599900
E (RB3LYP)	-2644.04291861	a.u.	
ν	-246.84	cm ⁻¹	

3.2. Insertion of SO₂ into the copper–carbon bond

3.2.1. SO₂ insertion into the copper–carbon bond: variation of ΔE_{MI}^{\dagger} with aryl R group

For all geometry optimisations in the following section, the ligand is 2,2'-bipyridine, with variation of the migrating 4-substituted aryl group bound to copper.

3.2.1.1. Aryl group: Phenyl (R = H)

See section 3.2.2.2 for the previously reported geometry-optimised structures of (2,2'-bipyridyl) phenylcopper(I) sulfur dioxide complex and (2,2'-bipyridyl) phenylcopper(I) sulfur dioxide complex migratory insertion transition state[‡].

3.2.1.2. Aryl group: *p*-Tolyl (R = Me)

(2,2'-Bipyridyl) p-tolylcopper(I) sulfur dioxide complex (12b)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	2.90937500	0.39202700	-0.08623800
С	2.76037800	-1.92194800	-0.27945900
С	4.14095700	-2.05630200	-0.40746300
С	4.92340000	-0.90371900	-0.36999900
С	4.30060500	0.33315700	-0.20710900
С	2.16161500	1.66527200	0.08171000
С	0.04574000	2.62488400	0.22939600
С	0.57949100	3.90432900	0.37932600
С	1.96729700	4.04571300	0.38103300
С	2.77134200	2.91528300	0.23083500
N	0.81773800	1.54116400	0.08555300
N	2.15525500	-0.73602900	-0.12427300
Cu	0.12705400	-0.44292000	-0.02753800
S	-0.48124600	-2.72696200	0.23896500
0	-0.96091000	-2.78266500	1.66929900
0	-1.48682600	-3.23665100	-0.75942600

С	-1.77695900	-0.15142100	-0.10792500
С	-2.30663900	0.38016300	-1.29524000
С	-2.61411700	-0.22505700	1.00938800
С	-3.63390300	0.82445700	-1.35598700
С	-3.93867400	0.22923300	0.95295900
С	-4.47244400	0.75726600	-0.23228300
H	2.10814700	-2.78854000	-0.29634400
Н	4.57925900	-3.03959900	-0.53224800
Н	6.00237200	-0.96096800	-0.46722600
Н	4.89617300	1.23657900	-0.18237600
Н	-1.02369800	2.44331900	0.21999400
Н	-0.07813600	4.75851200	0.49311400
Н	2.42343800	5.02296400	0.49953800
Н	3.84923300	3.01568900	0.23755400
Н	-1.68487000	0.46357900	-2.18426900
Н	-2.23957500	-0.66558900	1.93130400
Н	-4.02013200	1.23265000	-2.28838600
Н	-4.56564400	0.16822300	1.84087000
С	-5.91358100	1.20977900	-0.30823900
Н	-6.03302500	2.05025200	-0.99971500
Н	-6.56265400	0.40021500	-0.66572100
Н	-6.28787700	1.51867000	0.67290800
E (RB3LYP)	-2955.46237133	a.u.	

(2,2'-Bipyridyl) p-tolylcopper(I) sulfur dioxide complex migratory insertion transition state⁺

Charge = 0	Multiplicity =	1	
ATOM	х	Y	Z
С	2.86056100	-0.06542400	0.37260100
С	2.08637700	-2.24088800	0.70615100
С	3.35248900	-2.69006900	1.07813200
С	4.40349000	-1.77264800	1.08756500
С	4.15816900	-0.44653300	0.73020500
С	2.49018500	1.32433700	-0.02432800
С	0.78028000	2.72034400	-0.76954800
С	1.62052100	3.83250100	-0.78689900
С	2.94923100	3.66061100	-0.39820600
С	3.39050100	2.39512000	-0.01101200
N	1.20324400	1.50310900	-0.40303900
N	1.85011300	-0.96512200	0.36701700
Cu	0.04389400	-0.20046100	-0.22484300
S	-1.09964200	-2.08603900	-1.30468800
0	-1.15275300	-3.10756400	-0.18430200
0	-2.28813100	-2.16158300	-2.24042700
С	-1.93246800	-0.28562900	-0.13550900
С	-2.60362100	0.73586000	-0.83196200
С	-2.39407400	-0.65807200	1.13227300
С	-3.67919800	1.40015000	-0.24330400
С	-3.47009000	0.01488200	1.72390500
С	-4.12792300	1.05118200	1.04531100
Н	1.22456600	-2.90069300	0.66737200
H	3.50332100	-3.72901400	1.34830300
H	5.40528200	-2.08197100	1.36691300
H	4.97083900	0.26873000	0.72792800
H	-0.26519900	2.79110500	-1.05246300
H	1.23823900	4.79949100	-1.09331800
Н	3.63676500	4.49992400	-0.39226700
Н	4.41809300	2.25632600	0.30003400
Н	-2.28053500	1.01299800	-1.83261200
Н	-1.92119400	-1.49489100	1.64224600

H H C H H	-4.18182300 -3.80945900 -5.31400000 -5.39274000 -5.24464200 -6.24917400	2.19923200 -0.27575400 1.75819100 1.55460100 2.84226000 1.43142400	-0.78434900 2.71570100 1.65771000 2.72942800 1.51751200 1.18650600
E (RB3LYP) v	-2955.45255569 -167.82	a.u. cm^{-1}	

3.2.1.3. Aryl group: 4-Methoxyphenyl (R = OMe)

(2,2'-Bipyridyl) 4-methoxyphenylcopper(I) sulfur dioxide complex (12a)

Charge = 0	Multiplicity	= 1	
ATOM	х	Y	Z
С	3.12295800	0.57546000	-0.13370800
С	3.14441900	-1.74097700	-0.34929400
С	4.52681200	-1.76888100	-0.51808200
С	5.22035500	-0.56060100	-0.49009200
С	4.51044200	0.62361000	-0.29561200
С	2.28672500	1.78659900	0.07220200
С	0.11081200	2.57878900	0.31012200
С	0.54946600	3.89529000	0.44697000
С	1.92108100	4.14389700	0.39409300
С	2.80351300	3.07973000	0.20494000
N	0.95777400	1.55875200	0.12838600
N	2.45554900	-0.60637600	-0.16289200
Cu	0.41482600	-0.47240300	0.01212400
S	-0.00695100	-2.81005800	0.18635300
0	-0.46386100	-2.99074700	1.61308100
0	-0.97666600	-3.34025100	-0.83626800
С	-1.50873600	-0.33356000	0.02815100
С	-2.13649500	0.19054400	-1.10905300
С	-2.29135200	-0.52459000	1.17537300
С	-3.50159400	0.52313200	-1.11475800
С	-3.64671200	-0.19046500	1.19744800
С	-4.25849000	0.33484300	0.04881400
Н	2.55985600	-2.65468000	-0.35848400
Н	5.03417200	-2.71503500	-0.66631900
Н	6.29727300	-0.53458300	-0.61837600
Н	5.03642000	1.56933000	-0.27725700
Н	-0.94086800	2.31476900	0.34155200
Н	-0.16743900	4.69530400	0.59228800
Н	2.30472100	5.15322500	0.49999000
Н	3.86969500	3.26404900	0.16826000
Н	-1.56763600	0.35806900	-2.02113200
Н	-1.84324400	-0.96884600	2.06137300
Н	-3.94723700	0.92302300	-2.01836800
Н	-4.24725500	-0.33593900	2.09136600
0	-5.59563200	0.62882000	0.16397200
С	-6.27298100	1.16158500	-0.97528300
Н	-6.24843600	0.45994400	-1.81786600
Н	-7.30614400	1.31684000	-0.66286700
Н	-5.83797200	2.11951200	-1.28551700
E (RB3LYP)	-3030.67374712	a.u.	

(2,2'-Bipyridyl) 4-methoxyphenylcopper(I) sulfur dioxide complex migratory insertion transition state[‡]

Geometry-	optimised cartesian	coordinates	
Charge =	0 Multiplicity	= 1	
ATOM	х	Y	Z
С	3.08381500	0.08388200	-0.49571200
С	2.41261300	-2.12163700	-0.85326000
С	3.67813000	-2.48802000	-1.30850400
С	4.67466700	-1.51254600	-1.34886600
С	4.37744300	-0.21298200	-0.93752400
С	2.66174300	1.43848400	-0.03460700
С	0.92062400	2.71302000	0.84213900
С	1.69923400	3.86943500	0.85446500
С	3.01359400	3.78351800	0.39476400
С	3.50196500	2.55697700	-0.05635400
N	1.38893300	1.53351000	0.41384800
N	2.12575800	-0.87119400	-0.46205400
Cu	0.31350800	-0.23640600	0.24142100
S	-0.63537200	-2.25674200	1.34696400
0	-1.74466200	-2.44308000	2.35921600
0	-0.72939000	-3.21425100	0.17518500
С	-1.64479700	-0.41879300	0.34991800
С	-2.24224400	-0.78130700	-0.86181500
С	-2.30284000	0.52184800	1.16950800
С	-3.43202400	-0.18536700	-1.30060000
С	-3.48711100	1.11970600	0.75665700
С	-4.05354200	0.77242600	-0.48609000
H	1.59260700	-2.83071800	-0.78812000
H	3.86992800	-3.50899800	-1.61831800
H	5.67409700	-1.75647600	-1.69376000
H	5.14777600	0.54734500	-0.95974500
H	-0.11088200	2.71637100	1.18035100
Н	1.28198200	4.80394700	1.21189200
H	3.65387200	4.65934200	0.38325700
H	4.51866300	2.48477800	-0.42129100
H	-1.78407300	-1.56567900	-1.46074500
H	-1.88125100	0.78774200	2.13573800
H	-3.86291600	-0.48105500	-2.24976200
H	-3.99515500	1.85493800	1.37393000
0	-5.21728100	1.41328100	-0.79933000
C	-5.85961000	1.10325100	-2.04069000
H	-6.14985300	0.04723100	-2.08218300
H 	-6.75178600	1.72845800	-2.07605000
Н	-5.21092500	1.34121900	-2.89150800
E (RB3LYP)	-3030.66499867	a.u.	
ν	-159.93	Cm-1	

E(RB3LIP)	-3030.66499867	a
ν	-159.93	CI

3.2.1.4. Aryl group: 4-Nitrophenyl (R = NO₂)

(2,2'-Bipyridyl) 4-nitrophenylcopper(I) sulfur dioxide complex (12e)

Geometry-optimised cartesian coordinates			
Charge = 0	Multiplicity =	1	
ATOM	x	Y	Z
С	3.31363100	0.55129000	-0.05594400
С	3.31361700	-1.76924200	-0.23604600
С	4.70326900	-1.81950100	-0.31327400
С	5.41207000	-0.62147700	-0.25345900
С	4.70938100	0.57569900	-0.12304700
С	2.48567000	1.77849100	0.07393400
С	0.31372900	2.60670400	0.20866200
С	0.76506500	3.92170700	0.31092800
С	2.14068900	4.15131100	0.29063000
С	3.01403400	3.06995600	0.17053900
N	1.15205500	1.56943000	0.09393200
N	2.63147500	-0.62198600	-0.11084600
Cu	0.60117900	-0.45106700	-0.02663300
S	0.12756200	-2.82082000	0.11208500
0	-0.37929700	-2.99557900	1.51752900
0	-0.82561300	-3.29091100	-0.94840500
С	-1.31916600	-0.31631300	-0.06025400
С	-1.93804600	0.15322000	-1.23561100
С	-2.10883200	-0.47158800	1.09067500
С	-3.29728600	0.45972800	-1.26813900
С	-3.46793900	-0.16344900	1.08973900
С	-4.04735500	0.30049400	-0.09704100
H	2.71882200	-2.67524800	-0.27236600
Н	5.20410900	-2.77508100	-0.41558600
H	6.49548700	-0.61316700	-0.30757500
H	5.24869600	1.51285000	-0.07675700
H	-0.74288100	2.36218400	0.21559200
H	0.05435300	4./3491900	0.40312400
H	2.53445200	5.15926900	0.36767500
H 	4.08281500	3.24063800	0.15528300
H 	-1.355/0600	0.28651400	-2.14303900
H	-1.66033800	-0.86/98800	1.99/39400
н 	-3.//245800	0.81/38900	-2.1/353400
Н	-4.0/355000	-0.28004600	1.98036400
N	-5.46/35300	0.62590000	-0.11430100
0	-5.96929600	1.03868400	-1.16949300
U	-0.1229/000	0.4/983300	0.92/01800

E(RB3LYP) -3120.66229754 a.u.

(2,2'-Bipyridyl) 4-nitrophenylcopper(I) sulfur dioxide complex migratory insertion transition state⁺

Geometry-op	timised cartesian co	ordinates	
Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	3.18138700	0.35947900	-0.43847900
С	2.78768900	-1.89891300	-0.88157100
С	4.09432200	-2.09227800	-1.32728000
С	4.96469300	-1.00237700	-1.31740100
С	4.50655700	0.23676700	-0.86824800
С	2.59238700	1.63898000	0.05661200
С	0.69076100	2.68126700	0.91108900
С	1.33624600	3.91396300	0.99481400
С	2.66753200	3.98937700	0.58562700
С	3.30375800	2.84219700	0.11060500
N	1.30106400	1.57814800	0.45821000
N	2.34773600	-0.70677100	-0.45255700
Cu	0.47465500	-0.29752300	0.22704200
S	-0.36057600	-2.58300000	1.26074100
0	-1.53582200	-3.02658300	2.10199600
0	-0.20366800	-3.38999300	-0.01109200
С	-1.43462400	-0.81219800	0.39080200
С	-1.91536200	-1.06801200	-0.90406000
С	-2.16510500	0.03659300	1.24716500
С	-3.06384400	-0.43374200	-1.37765900
С	-3.31727300	0.67300300	0.79833300
С	-3.74388800	0.43054600	-0.51505300
Н	2.05775300	-2.70251800	-0.85462100
Н	4.41323100	-3.07055600	-1.66836800
Н	5.99049800	-1.11064200	-1.65379500
Н	5.17830300	1.08550700	-0.85527900
Н	-0.34517500	2.55954000	1.21120600
Н	0.80580400	4.78229100	1.36846100
Н	3.20807600	4.92892700	0.63225700
Н	4.33546800	2.89511400	-0.21272100
Н	-1.38884000	-1.78521800	-1.52902800
Н	-1.82206600	0.20749600	2.26337000
Н	-3.43301100	-0.60372900	-2.38148700
Н	-3.87776100	1.34523500	1.43603800
N	-4.95182000	1.10221800	-0.99826200
0	-5.32898100	0.87693600	-2.15455200
0	-5.54507000	1.86984400	-0.23080500
E (DB3T VD)	-3120 64700236	2 11	

H	-0.34517500	2.55954000	1.2
Н	0.80580400	4.78229100	1.3
Н	3.20807600	4.92892700	0.6
Н	4.33546800	2.89511400	-0.2
Н	-1.38884000	-1.78521800	-1.5
Н	-1.82206600	0.20749600	2.2
Н	-3.43301100	-0.60372900	-2.3
Н	-3.87776100	1.34523500	1.4
Ν	-4.95182000	1.10221800	-0.9
0	-5.32898100	0.87693600	-2.1
0	-5.54507000	1.86984400	-0.2
E (RB3LYP)	-3120.64700236	a.u.	
ν	-154.17	Cm^{-1}	

3.2.1.5. Aryl group: 4-Fluorophenyl (R = F)

(2,2'-Bipyridyl) 4-fluorophenylcopper(I) sulfur dioxide complex (12d)

Geometry-optimis	ed cartesian c	oordinates	
Charge = 0	Multiplicity	= 1	
ATOM	х	Y	Z
С	2.90270000	0.34071600	-0.07400400
С	2.69964400	-1.96965700	-0.26081800
С	4.07782600	-2.13834600	-0.37140100
С	4.88799100	-1.00550200	-0.32657700
С	4.29346100	0.24660800	-0.17552100
С	2.18563900	1.63335600	0.07862700
С	0.09371400	2.64482200	0.21959300
С	0.65774200	3.91297200	0.35294400
С	2.04844000	4.02158400	0.34769000
С	2.82500100	2.87070300	0.20902200
N	0.83913100	1.54130000	0.08681300
N	2.12138800	-0.76890700	-0.11688800
Cu	0.10404500	-0.42676100	-0.02818400
S	-0.55534100	-2.71390200	0.20757100
0	-1.04413900	-2.77754500	1.63252300
0	-1.56493200	-3.18016300	-0.80489300
С	-1.79609200	-0.10047400	-0.10295200
С	-2.32078200	0.44482400	-1.28738300
С	-2.63206400	-0.18322600	1.01700300
С	-3.64615600	0.89721600	-1.35806300
С	-3.95752700	0.27211000	0.97799300
С	-4.43009400	0.80022800	-0.21594600
Н	2.02769800	-2.82072800	-0.28375000
Н	4.49301400	-3.13258100	-0.48805800
H	5.96643600	-1.08946700	-0.40880800
H	4.91069900	1.13496500	-0.14334400
Н	-0.97983600	2.48989000	0.21540000
H	0.02067800	4.78359100	0.45860800
H	2.52787100	4.98929400	0.45162300
H	3.90494200	2.94679600	0.20841600
H	-1.69880400	0.52993200	-2.17501200
Н	-2.25939800	-0.63743500	1.93200400
Н	-4.06056300	1.31550400	-2.26999200
Н	-4.60994400	0.21393400	1.84371200
F	-5.72915000	1.24467700	-0.27070700

E(RB3LYP) -3015.38193959 a.u.

(2,2'-Bipyridyl) 4-fluorophenylcopper(I) sulfur dioxide complex migratory insertion transition state⁺

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	2.84490000	-0.14576000	-0.35527800
С	1.99019200	-2.29192200	-0.68287300
С	3.24232700	-2.79301600	-1.03564500
С	4.32848600	-1.91762400	-1.03801200
С	4.13091700	-0.58030900	-0.69290100
С	2.52564900	1.26098300	0.02673500
С	0.86593500	2.73170700	0.74124400
С	1.75077400	3.80859600	0.76121200
С	3.07570100	3.57946700	0.38984300
С	3.46901200	2.29408800	0.01672200
N	1.24242600	1.49527300	0.38804400
N	1.79987100	-1.00520300	-0.35616500
Cu	0.02075400	-0.16149600	0.20794100
S	-1.20378600	-2.02874700	1.32931800
0	-2.41247400	-2.07098000	2.23790500
0	-1.25246900	-3.05857400	0.21869200
С	-1.95950600	-0.23259500	0.12440600
С	-2.41245500	-0.61499500	-1.14638000
С	-2.60882300	0.81688600	0.80070100
С	-3.45989500	0.07000800	-1.77297000
С	-3.66036100	1.51025600	0.19838300
С	-4.05295900	1.11765500	-1.07926800
H	1.10321400	-2.91766900	-0.64907100
Н	3.35562300	-3.83911200	-1.29635600
H	5.32080800	-2.26807700	-1.30209900
H	4.97094600	0.10240900	-0.68462100
Н	-0.17864200	2.84827600	1.01167900
Н	1.40482500	4.79257700	1.05645100
Н	3.79736100	4.38965900	0.38648300
Н	4.49378400	2.11135500	-0.28078100
Н	-1.95637200	-1.47365300	-1.63337900
Н	-2.29225100	1.09553800	1.80215400
Н	-3.82014200	-0.20214800	-2.75966700
Н	-4.17003200	2.32989800	0.69421300
F	-5.08514300	1.78885100	-1.67286900
E (RB3LYP)	-3015.37074131	a.u.	
ν	-161.61	Cm^{-1}	

3.2.2. SO₂ insertion into the copper–carbon bond: variation of ΔE_{MI}^{\dagger} with complex ligand

For all geometry optimisations in the following section, the migrating aryl group on copper is phenyl, with variation of the ligand bound to copper.

3.2.2.1. Ligand: None

Phenylcopper(I) sulfur dioxide complex (13a)

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
Cu	-0.72128000	1.19650000	-0.36588100
S	-2.32405400	-0.36784900	0.12470900
0	-2.08892300	-1.55225300	-0.74175000
0	-2.40288100	-0.62910700	1.58383600
С	0.96823400	0.34100100	-0.11147600
С	2.05790400	1.10099000	0.34978300
С	1.15813200	-1.01360700	-0.41107600
С	3.32088000	0.50991900	0.49351800
С	2.42163100	-1.60380100	-0.27058200
С	3.50391200	-0.84183800	0.18275400
Н	1.93406500	2.15152600	0.59739000
Н	0.32217000	-1.62108600	-0.75360200
Н	4.15686900	1.10630000	0.85008400
Н	2.55664600	-2.65527700	-0.51073700
Н	4.48252300	-1.29947100	0.29785500
E (RB3LYP)	-2420.63226902	a.u	

Phenylcopper(I) sulfur dioxide complex migratory insertion transition state[‡]

Charge = 0	Multiplicity	= 1	
ATOM	х	Y	Z
Cu	0.48145700	1.86829700	-0.04730500
S	1.73287500	-0.94868500	-0.35034900
0	2.29443700	-0.74531600	1.03203700
0	1.21754700	-2.34428000	-0.56905700
С	-0.30008500	0.08817100	-0.09175400
С	-1.16522400	-0.02692300	-1.20875800
С	-0.80726900	-0.23305400	1.18984500
С	-2.49050400	-0.43112700	-1.04408500
С	-2.13379500	-0.63059800	1.35665200
С	-2.97124900	-0.73435400	0.23736100
Н	-0.78574900	0.18607900	-2.20479400
Н	-0.12996600	-0.20626700	2.04085100
Н	-3.14708500	-0.51885600	-1.90502700
Н	-2.51393800	-0.87438800	2.34463000
Н	-3.99861500	-1.06413400	0.36235400
E (RB3LYP)	-2420.61653111	a.u.	
ν	-142.18	Cm^{-1}	

3.2.2.2. Ligand: 2,2,'-Bipyridine (bpy)

(2,2'-Bipyridyl) phenylcopper(I) sulfur dioxide complex (12c)

Geometry-optimised cartesian coordinates			
Charge =	0 Multiplicity :	= 1	
ATOM	x	Y	Z
С	2.68296000	0.05449100	-0.04605600
С	2.19781700	-2.21551700	-0.20460200
С	3.54649000	-2.55600000	-0.27844300
С	4.49010500	-1.53169200	-0.23135100
С	4.05316900	-0.21281500	-0.11396100
С	2.12903200	1.42822500	0.07366000
С	0.17702400	2.69315100	0.16881100
С	0.89247500	3.88410800	0.28651200
С	2.28584900	3.81984000	0.29731000
С	2.91527300	2.57923200	0.19009800
N	0.78140800	1.50345200	0.06564600
N	1.77079100	-0.94995600	-0.09178000
Cu	-0.19166000	-0.35783800	-0.04154600
S	-1.14236200	-2.53537600	0.15188000
0	-1.65391300	-2.56406200	1.57137300
0	-2.19143800	-2.85358200	-0.88002300
С	-2.03410600	0.20715100	-0.12391700
С	-2.48040800	0.81171500	-1.31136400
С	-2.86771500	0.24457500	0.99962800
С	-3.73165900	1.44089300	-1.37031000
С	-4.11480200	0.88314400	0.95183700
С	-4.55080800	1.48137500	-0.23595500
Н	1.42513500	-2.97628900	-0.23342800
Н	3.83704900	-3.59611600	-0.36973600
H	5.55122900	-1.75064800	-0.28598900
Н	4.77540000	0.59259500	-0.08099200
Н	-0.90734000	2.67215500	0.15228700
Н	0.36694900	4.82870900	0.36785500
Н	2.88051200	4.72261200	0.38947400
Н	3.99623600	2.52091500	0.20195200
Н	-1.85249100	0.80180700	-2.19972100
Н	-2.55433200	-0.25465100	1.91424900
Н	-4.06322200	1.89954900	-2.29899500
Н	-4.74602500	0.90701200	1.83718100
Н	-5.51992300	1.97109500	-0.27862200
E (RB3LYP)	-2916.13931626	a.u.	

(2,2'-Bipyridyl) phenylcopper(I) sulfur dioxide complex migratory insertion transition state⁺

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity =	1	
ATOM	x	Y	Z
С	2.59552000	-0.46354100	0.24547300
С	1.46922900	-2.49341500	0.47903200
С	2.65291700	-3.17865300	0.74878400
С	3.84680800	-2.45699300	0.76160700
С	3.82106900	-1.08560500	0.50621400
С	2.45676800	0.99433600	-0.04085100
С	0.98400200	2.72087300	-0.57009400
С	2.00954800	3.66459900	-0.58884900
С	3.30780900	3.23250500	-0.31719700
С	3.53584300	1.88477100	-0.03883300
N	1.20129000	1.42487700	-0.30750900
N	1.44466700	-1.17453500	0.23841300
Cu	-0.22586500	-0.05610100	-0.17111200
S	-1.74980900	-1.57582500	-1.31544300
0	-1.88673100	-2.71543200	-0.32333300
0	-2.99910500	-1.34352500	-2.13979200
С	-2.18281700	0.14841700	0.12235300
С	-2.72209700	1.34307000	-0.38561600
С	-2.57282000	-0.30466500	1.38916600
С	-3.60308900	2.10030300	0.39061900
С	-3.45198400	0.45475500	2.17154000
С	-3.96485900	1.65656800	1.67108500
Н	0.50460600	-2.99124400	0.44440800
Н	2.63237800	-4.24540500	0.94051800
Н	4.79036900	-2.95236800	0.96549700
Н	4.74448600	-0.52061900	0.51005600
Н	-0.04702800	2.99634900	-0.76720100
Н	1.79014000	4.70324500	-0.80821200
Н	4.13589800	3.93352700	-0.31888300
Н	4.54004500	1.54309100	0.17739400
Н	-2.45264900	1.67715500	-1.38451600
Н	-2.20483200	-1.26585100	1.74179500
Н	-4.01076500	3.02983000	0.00194800
Н	-3.74528800	0.10573800	3.15815400
Н	-4.65643000	2.24196700	2.27045300
E (RB3LYP)	-2916.12840764	a.u.	
ν	-179.07	Cm^{-1}	

3.2.2.3. Ligand: 4,4'-Dimethoxy-2,2,'-bipyridine (4,4'-diMeObpy)

(4,4'-Dimethoxy-2,2'-bipyridyl) phenylcopper(I) sulfur dioxide complex (13b)

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	-2.02730000	-0.03226500	0.02900700
С	-1.72062900	-2.32979200	0.07554500
С	-3.08579600	-2.58162600	0.13528500
С	-3.95493900	-1.48175900	0.14163500
С	-3.40423600	-0.19012300	0.08735700
С	-1.36841000	1.30071700	-0.02615800
С	0.66514800	2.41567500	-0.04497900
С	0.05562400	3.66411800	-0.11809400
С	-1.34631700	3.70767800	-0.14836700
С	-2.06414900	2.49993200	-0.10211300

E (RB3LYP)	-3145.21971560	a.u.	
Н	-5.61548500	-3.38748900	1.15475500
Н	-5.68144200	-3.43322500	-0.63980700
Н	-6.99248100	-2.64952900	0.28751900
С	-5.92257900	-2.84846200	0.25321800
Н	-0.81374000	6.26073700	0.62933700
Н	-2.20765900	6.84604500	-0.32297500
Н	-0.78285800	6.17186900	-1.16421700
С	-1.41352100	6.10274700	-0.27241400
0	-2.08405100	4.82993100	-0.22095700
0	-5.29494700	-1.55315800	0.19683700
Н	6.29380800	1.23264600	0.49321100
Н	5.49316800	0.35030800	-1.69512800
Н	4.78376500	1.16899700	2.47446700
Н	3.21927300	-0.62524800	-1.88445600
Н	2.49662600	0.25945100	2.26593700
Н	-3.14526300	2.54192600	-0.13158000
Н	0.66746500	4.55544600	-0.15101400
Н	1.74576000	2.32352300	-0.01822500
Н	-4.07719500	0.65722000	0.09800600
Н	-3.43599900	-3.60401600	0.17441200
Н	-1.01600000	-3.15477700	0.06474000
С	5.29039800	0.82549400	0.40225300
С	4.83926100	0.32932000	-0.82628200
С	4.44128700	0.78951700	1.51450300
С	3.54706200	-0.20300700	-0.93681300
C	3.14613500	0.26700200	1.39317700
C	2.68409400	-0.23510900	0.16463100
0	2.57244600	-3.34765700	0.73653700
0	2.13071000	-2.86403600	-1.70436100
S	1.58028500	-2.88229700	-0.29803500
Cu	0.80782000	-0.65692900	0.01968900
N	-1.18542200	-1.10298100	0.02438600
Ν	-0.01502500	1.26481300	-0.00012600

(4,4'-Dimethoxy-2,2'-bipyridyl) phenylcopper(I) sulfur dioxide complex migratory insertion transition state[‡]

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	1.90144600	-0.55036300	0.06356800
С	0.80385000	-2.59674700	0.15281400
С	1.99308200	-3.30357100	0.30115300
С	3.19001200	-2.57273900	0.32726700
С	3.13455600	-1.17389800	0.20396600
С	1.74492800	0.92963500	-0.07151000
С	0.25697500	2.68549700	-0.37002900
С	1.26773000	3.64083800	-0.33059100
С	2.58366300	3.19110200	-0.14841200
С	2.81639000	1.81166000	-0.01592600
N	0.47251200	1.36985000	-0.24928800
N	0.74713600	-1.26316200	0.03973200
Cu	-0.93747400	-0.12881500	-0.19908400
S	-2.50773500	-1.58102000	-1.37702600
0	-2.60342800	-2.77581700	-0.44525000
0	-3.79363000	-1.30626600	-2.13142400
С	-2.88277400	0.05771000	0.16507900
С	-3.44110100	1.27643800	-0.25821200

E (RESLIP)	-179.90	$a.u.$ cm^{-1}	
	2145 20001417		
Н	4.16109200	-5.03866200	-0.29961600
Н	4.02708100	-4.88949800	1.48485400
Н	5.61652900	-4.71959200	0.68650700
С	4.54797700	-4.53295300	0.59063900
Н	3.07291800	5.66327500	-1.18133700
Н	4.50381200	5.82492800	-0.12370200
Н	2.86975700	5.79267300	0.59834400
С	3.50187500	5.40678700	-0.20756300
0	3.67014900	3.98264800	-0.08445100
0	4.41900300	-3.10537000	0.46139200
Н	-5.26840100	2.03321300	2.51551300
Н	-4.32501600	-0.14558000	3.25362900
Н	-4.71255800	2.93870500	0.26718600
Н	-2.84291700	-1.43963200	1.70770400
Н	-3.21118200	1.66243300	-1.24820200
Н	3.83417800	1,47421400	0.13143700
Н	1.01797700	4.68783300	-0.43684300
Н	-0 77814400	2 98431600	-0 50206000
н	4 06376600	-0 61923800	0.21860700
n u	1 96595000	-3.10805500	0.11/02400
с ц	-0 15387900	-3 10803300	1.03937000
C	-4.07050500	1 4905000	2.2/5/9500
C	-4.29043200	1.99072500	0.59046900
C	-3.22350100	-0.46168200	1.420/0900
C	2 22250100	0 46169200	1 42070000

3.2.2.4. Ligand: 4,4'-Dinitro-2,2,'-bipyridine (4,4'-diNO₂bpy)

(4,4'-Dinitro-2,2'-bipyridyl) phenylcopper(I) sulfur dioxide complex (13c)

Charge = 0	Multiplicity	= 1	
ATOM	x	Y	Z
С	-1.73169400	-0.41799800	0.03165600
С	-1.06148400	-2.64648500	0.06160700
С	-2.37563700	-3.10738500	0.12159100
С	-3.37179300	-2.14329500	0.13661200
С	-3.07690700	-0.78762100	0.09232700
С	-1.29242800	1.00057700	-0.01778600
С	0.55202200	2.42088300	-0.02255100
С	-0.25028400	3.56010300	-0.09957100
С	-1.62235100	3.35260700	-0.13665600
С	-2.17709600	2.07934300	-0.09746600
N	0.04089400	1.18761000	0.01626100
N	-0.74459900	-1.34687000	0.01923600
Cu	1.18589900	-0.61105300	0.02248200
S	2.31319900	-2.69505600	-0.33059500
0	2.83918300	-2.57056000	-1.73520300
0	3.36202000	-3.01981200	0.69361700
С	2.97159300	0.10257800	0.17901800
С	3.32843900	0.68387300	1.40819600
С	3.83118300	0.26507900	-0.91323400
С	4.51858500	1.41327400	1.53753900
С	5.01683300	1.00328700	-0.79373400
С	5.36421500	1.57717800	0.43446600
Н	-0.23217100	-3.34407300	0.04355500
Н	-2.60018000	-4.16483000	0.15501400

Н	-3.87755600	-0.06220700	0.11131100
Н	1.63346900	2.48876700	0.01208100
Н	0.17743700	4.55310400	-0.12996500
Н	-3.25021300	1.95795800	-0.13533200
Н	2.67844800	0.57730300	2.27395500
Н	3.58904700	-0.21185200	-1.86073200
Н	4.78177400	1.85257000	2.49684100
Н	5.66946200	1.12375300	-1.65521000
Н	6.28622100	2.14376600	0.53229900
N	-2.52963800	4.52237300	-0.22368100
N	-4.79200300	-2.56470200	0.20125800
0	-3.74046000	4.30740800	-0.22813500
0	-5.64863600	-1.68286900	0.21406900
0	-2.01523500	5.63703100	-0.28569800
0	-5.02434100	-3.77090900	0.23761600

E(RB3LYP) -3325.15005759 a.u.

(4,4'-Dinitro-2,2'-bipyridyl) phenylcopper(I) sulfur dioxide complex migratory insertion transition state[‡]

Charge = 0	Multiplicity	= 1	
ATOM	х	Y	Z
С	1.49936600	-0.72576000	-0.02527100
С	0.10497500	-2.59541700	-0.08793700
С	1.17008800	-3.47022000	0.12542100
С	2.42820200	-2.89840100	0.26413500
С	2.62511400	-1.52496400	0.19076100
С	1.56341000	0.75863000	-0.13562500
С	0.35596600	2.72056200	-0.50200000
С	1.49516100	3.51580100	-0.39467700
С	2.69153600	2.85781500	-0.14141900
С	2.75467500	1.47727500	-0.00599600
N	0.38841100	1.38646400	-0.37807200
N	0.27010800	-1.26870900	-0.15542400
Cu	-1.23857400	0.15275200	-0.40430000
S	-2.94278600	-0.93563600	-1.61299500
0	-3.09763300	-2.30330500	-0.98239100
0	-4.21051900	-0.39162500	-2.22600700
С	-3.10792200	0.30232500	0.31720200
С	-3.66837800	1.58704600	0.23727700
С	-3.33185600	-0.48537600	1.45309200
С	-4.40585900	2.09709600	1.30989900
С	-4.06872500	0.02317800	2.52919400
С	-4.60261600	1.31510300	2.45643300
Н	-0.91308800	-2.94994200	-0.21563900
Н	1.02133700	-4.54018700	0.17994600
Н	3.62059400	-1.11879800	0.29833300
Н	-0.61569300	3.16119400	-0.69064900
Н	1.44558300	4.59095500	-0.50104700
Н	3.70401700	1.00030900	0.19137100
Н	-3.53205700	2.18271300	-0.66163000
Н	-2.95033900	-1.50364800	1.47704500
Н	-4.83110700	3.09555000	1.25244800
Н	-4.23534100	-0.58688500	3.41297000
Н	-5.18392100	1.70826200	3.28566700
N	3.93854100	3.64560800	-0.01063100
N	3.60057100	-3.77383400	0.49473100
0	4.98095000	3.03376900	0.21855700
0	4.70569400	-3.24030100	0.58303400
0	3.85654900	4.86583400	-0.13952700

3.39883200 -4.98362400 0.58466500

E(RB3LYP) -3325.14123770 a.u. ∨ -181.89 cm⁻¹

3.3. Oxidative addition of copper(I) into the copper–carbon bond

3.3.1. Oxidative addition of 4-iodotoluene to (L)Cu(SO₂Ph): Variation of ΔE_{OA}^{\dagger} with complex ligand

3.3.1.1. Geometry optimisations of common species to all pathways

Geometry optimisations, followed by a frequency calculation were carried out for each species. The geometry-optimised molecular coordinates (Å) and energies (B3LYP/6-31G+(d,p) for C, H, N, O, S, Cu & SDD/ ECP46MWB for I) are shown below (solvent = N,N-dimethylformamide).

4-lodotoluene (17b)

0

Geometry-optimised cartesian coordinates

Charge =	0 Multiplicity	= 1	
ATOM	х	Y	Z
С	-2.99041000	0.00014200	-0.01128200
С	-2.26787400	-1.20245100	-0.01104000
С	-0.86885300	-1.21463800	-0.00530000
С	-0.18196800	0.0009000	-0.00152900
С	-0.86876700	1.21477000	-0.00530700
С	-2.26788100	1.20263600	-0.01103200
Н	-2.80034700	-2.15022700	-0.01729900
Н	-0.33510400	-2.15875500	-0.00697900
Н	-0.33503600	2.15889700	-0.00698200
Н	-2.80025000	2.15046300	-0.01726300
С	-4.50086000	-0.00014700	0.01700000
Н	-4.90933800	-0.88430800	-0.48201200
Н	-4.86873300	-0.00721200	1.05075900
Н	-4.90957400	0.89040700	-0.47022900
I	1.97430300	-0.00003200	0.00228200

E(RB3LYP) -282.40553667 a.u.

3.3.1.2. Ligand: None

Copper(I) phenylsulfinate (14a)

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
Cu	2.06110000	-1.06983200	0.21878000
S	0.89811600	0.76872100	-0.15210700
С	-0.85596800	0.28478700	-0.05743100
С	-1.52161000	0.35872100	1.16852700
С	-2.85574600	-0.05243800	1.24195200
С	-3.50478100	-0.53691200	0.10059200
С	-2.82397400	-0.60971200	-1.12022800
С	-1.49018100	-0.20044500	-1.20398300
0	1.08480800	1.79126800	0.94459400
0	1.08850600	1.28257300	-1.56059200
Н	-1.00563200	0.74319700	2.04199200
Н	-3.38696400	0.00810600	2.18704400

Н	-4.54089600	-0.85599200	0.16186400
Н	-3.33047900	-0.98100400	-2.00602300
Н	-0.95075200	-0.24344900	-2.14439200

E(RB3LYP) -2420.64481194 a.u.	
--------------------------------------	--

Copper(I) phenylsulfinate-4-iodotoluene cation- π complex (15a)

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity	= 1	
ATOM	x	Y	Z
Cu	-1.80689400	-0.11060700	-0.69566700
S	-1.65305800	2.09616700	-0.49109000
С	-0.01143100	2.31519200	0.27993900
С	1.02943200	2.90711900	-0.43608300
С	2.28817400	3.02486300	0.16449100
С	2.49692700	2.53800700	1.45882500
С	1.44710400	1.93367600	2.16219600
С	0.18613900	1.82096600	1.57334100
0	-1.57456200	2.85080600	-1.80264000
0	-2.63658200	2.67191900	0.51101600
Н	0.84817100	3.26854000	-1.44302200
Н	3.10451900	3.48863700	-0.38158000
Н	3.47762400	2.62194100	1.91783100
Н	1.61113600	1.54984900	3.16478100
Н	-0.63316300	1.35129200	2.11003200
С	0.05531600	-1.83417700	1.40103800
С	0.43246800	-1.75692500	0.05955700
С	-0.51652600	-1.95317600	-0.95796100
С	-1.86459900	-2.22512300	-0.60703800
С	-2.26509400	-2.27587400	0.75355300
С	-1.28185800	-2.08022000	1.73589500
Н	0.78442100	-1.68044100	2.18828700
Н	-0.22201000	-1.96187100	-2.00167800
H	-2.57155500	-2.49691500	-1.38876500
H	-1.56153100	-2.11740000	2.78459300
I	2.45328000	-1.30846400	-0.46256700
С	-3.68949000	-2.59913700	1.12331900
H	-4.37957900	-2.33340700	0.31883200
H	-3.79219900	-3.67427500	1.31305100
Н	-3.99102700	-2.07137800	2.03201800
E (RB3LYP)	-2703.08186042	a.u.	

Copper(I) phenylsulfinate-4-iodotoluene oxidative addition transition state⁺

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

Multiplicity =	= 1	
х	Y	Z
-1.15791000	-0.90202000	0.12584600
0.64963700	-2.19435400	0.59712900
-0.41700700	0.92771300	0.13968600
	Multiplicity = x -1.15791000 0.64963700 -0.41700700	Multiplicity = 1 X Y -1.15791000 -0.90202000 0.64963700 -2.19435400 -0.41700700 0.92771300

I	-3.16915300	0.43924000	-0.34093700
С	2.11833200	-1.35238400	-0.05984100
С	0.22051500	1.32871000	-1.02585300
С	1.24692600	2.26966100	-0.88855700
С	1.57371500	2.82130200	0.36036000
С	0.84268900	2.41817900	1.48812600
С	-0.19379800	1.47941300	1.39166400
С	2.87877100	-0.54339600	0.78628500
С	3.96707300	0.15521000	0.25664300
С	4.27497500	0.04914900	-1.10364500
С	3.49973900	-0.76151400	-1.94155300
С	2.41065800	-1.46554800	-1.42181200
0	0.87973200	-2.30740000	2.08454300
0	0.54435800	-3.49795600	-0.16232500
С	2.70951700	3.80633000	0.48591300
Н	-0.02870300	0.90860100	-1.99231000
Н	1.79711100	2.57049100	-1.77571600
Н	1.07295800	2.83727700	2.46392800
Н	-0.76042700	1.17811400	2.26415100
Н	2.62025500	-0.46591000	1.83645700
Н	4.56783900	0.78594900	0.90481200
Н	5.11643400	0.60080000	-1.51231600
Н	3.74061100	-0.84329700	-2.99720400
Н	1.79954900	-2.09678000	-2.05877900
Н	2.77141800	4.45821800	-0.39047400
Н	2.60429200	4.43027900	1.37757100
Н	3.66365700	3.27064300	0.56371900
E (RB3LYP)	-2703.05852945	a.u.	
ν	-93.00	Cm^{-1}	

ν

p-Tolyl(S-sulfinylphenyl)copper(III) iodide (16a)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
Cu	1.06977100	0.29385700	0.29697500
S	-0.58471500	1.44215500	1.21806900
С	-0.28920500	-1.06619000	0.23387500
I	3.40207200	-0.05726900	-0.51904000
С	-2.01436300	1.63909000	0.15536000
С	-0.86136100	-1.29415900	-1.01307800
С	-1.62390200	-2.45665800	-1.16982500
С	-1.83758400	-3.34082100	-0.09813900
С	-1.26512700	-3.04099400	1.14663100
С	-0.49716800	-1.88193200	1.33429800
С	-3.17467200	0.92349400	0.45992800
С	-4.26368900	1.03653900	-0.40558800
С	-4.17117400	1.83604400	-1.55149100
С	-2.99274800	2.53398800	-1.84039000
С	-1.89280200	2.43596900	-0.98519900
0	-1.03549000	1.00341900	2.55860100
0	0.27353000	2.66533200	1.09354200
С	-2.69711600	-4.56884900	-0.28608600
Н	-0.72124100	-0.61059200	-1.84371400
Н	-2.06265900	-2.66833600	-2.14164800
Н	-1.42452300	-3.70601300	1.99121200
Н	-0.09140000	-1.63575800	2.30963400
Н	-3.22067400	0.30051500	1.34595400
Н	-5.17975800	0.49730300	-0.18699200
Н	-5.02052400	1.91364900	-2.22317000

Н	-2.92727300	3.15297300	-2.72934800
Н	-0.96976200	2.96586000	-1.19266500
Н	-2.41294900	-5.11276400	-1.19292900
Н	-2.61338800	-5.25058300	0.56433900
Н	-3.75240900	-4.29044200	-0.39182400

-2703.06559220 E (RB3LYP) a.u.

3.3.1.3. Ligand: 2,2'-Bipyridine (bpy)

(2,2'-Bipyridyl)copper(I) phenylsulfinate (14b)

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity	= 1	
ATOM	x	Y	Z
С	2.90866600	0.38754400	-0.00446800
С	3.15691500	-1.93082000	-0.01690100
С	4.54724600	-1.83705600	-0.02483900
С	5.12310600	-0.56710700	-0.02217000
С	4.29691200	0.55653700	-0.01192100
С	1.94644900	1.52792500	0.00623800
С	-0.29852300	2.14599900	0.01773500
С	0.01942400	3.50367300	0.02606800
С	1.36609300	3.86626500	0.02428900
С	2.34272300	2.86974500	0.01406500
Ν	0.63795800	1.18740600	0.00833900
N	2.35882100	-0.85159100	-0.00694500
Cu	0.33813100	-0.88380300	0.00524800
S	-1.58580400	-1.94365100	0.02075700
0	-1.89842600	-2.73577000	-1.24175000
0	-1.89580700	-2.68375800	1.31506100
С	-2.79303400	-0.56652300	-0.00606200
С	-3.21376500	0.00157600	1.19939500
С	-4.03330100	1.13457100	1.17539400
С	-4.41959800	1.69545800	-0.04747800
С	-3.99311500	1.11898500	-1.24981400
С	-3.17407000	-0.01418000	-1.23221600
Н	2.65428500	-2.89136400	-0.01846700
Н	5.15209400	-2.73641100	-0.03283600
Н	6.20140900	-0.44782800	-0.02810000
Н	4.73633600	1.54563200	-0.01003900
Н	-1.32805100	1.80464500	0.01863000
Н	-0.76962900	4.24697800	0.03377900
Н	1.65802400	4.91124600	0.03081800
Н	3.38980200	3.14471600	0.01277200
Н	-2.90078700	-0.44151900	2.13923100
Н	-4.36624000	1.57973700	2.10839900
Н	-5.05022400	2.57935300	-0.06363200
Н	-4.29495400	1.55226500	-2.19885200
Н	-2.83136400	-0.46878400	-2.15615700
E (RB3LYP)	-2916.16084963	a.u.	

(2,2'-Bipyridyl)copper(I) phenylsulfinate-4-iodotoluene cation- π complex (**15b**)

a.u.

E (RB3LYP)

Charge = 0	Multiplicity	= 1	
ATOM	Х	Y	Z
С	1.58171400	-0.86338500	1.82551500
С	2.05435500	-2.64667100	0.40258800
С	3.24030400	-2.93919800	1.07363900
С	3.59358700	-2.14763100	2.16580000
С	2.75749500	-1.09778800	2.54542300
С	0.61508200	0.21760900	2.17148400
С	-1.48667700	1.11815600	1.74328000
С	-1.32281700	2.10508600	2.71431000
С	-0.12217700	2.13945800	3.42340200
С	0.85972800	1.18601300	3.15146500
N	-0.54460900	0.20460700	1.47798300
N	1.24567100	-1.64081200	0.76771600
Cu	-0.52818200	-1.17167500	-0.08972700
S	-2.24979400	-1.79688000	-1.32099100
0	-2.29099900	-1.29292200	-2.75718600
0	-2.62619000	-3.26703200	-1.17246000
С	-3.61479400	-0.89816500	-0.49308100
С	-4.04048800	-1.33556100	0.76620400
C	-4.98944000	-0.58893300	1.46890200
C	-5.50429700	0.59086000	0.91509300
C	-5.0/420400	1.01919200	-0.34524400
	-4.12318200	0.27499100	-1.05304100
н	1./3214000	-3.22504900	-0.45609300
н	3.80241000	-3.76303300	0.74281500
п u	4.30732300	-2.34107800	2.71703300
п u	-2 20560200	1 04451600	1 15625600
н	-2 11231700	2 82562800	2 89593500
н	0 05306100	2.02502000	4 17875800
Н	1 79779800	1 20957300	3 69169400
Н	-3.62626900	-2.24489400	1.19137900
Н	-5.32324800	-0.92256000	2.44719100
Н	-6.23562200	1.17455700	1.46642500
Н	-5.47114900	1.93424300	-0.77524500
Н	-3.77332800	0.59547100	-2.02819400
С	0.69427300	0.79636000	-1.86750100
С	1.72269300	1.36402700	-1.11239800
С	1.50616500	2.52234200	-0.36576000
С	0.24850700	3.13194800	-0.40655700
С	-0.79720800	2.60565000	-1.17871600
С	-0.55752500	1.42637500	-1.89744900
Н	0.85446300	-0.10887300	-2.44339500
Н	2.29866300	2.95519100	0.23467000
Н	0.08505800	4.03491500	0.17576100
H	-1.34676000	0.96476600	-2.48231600
С	-2.14972900	3.27554500	-1.20399800
H	-2.05675700	4.36152900	-1.10817600
Н	-2.68753700	3.05485600	-2.13024500
н	-2.//484900	2.92445800	-0.3/46/500
T	3.0/525100	0.40834300	-1.12044400
E (RB3LYP)	-3198.56928085	a.u.	

(2,2'-Bipyridyl)copper(I) phenylsulfinate-4-iodotoluene oxidative addition transition state[‡]

Charge = 0	Multiplicity =	= 1 v	7
C	2 08289300	-0 53489800	-1 59638000
C	1 42610800	-2 70024600	-1 03886900
C	2 61364300	-3 2/310900	-1 52427200
C	3 56063400	-2 37649500	-2 07325900
C	3 29427600	-1 00843300	-2 11083900
C	1 71344100	0 90375900	-1 55182400
C	0 07739500	2 44025000	-0 92922700
C	0 85883500	3 51911300	-1 33812300
C	2 11977700	3 25563300	-1 87368600
C	2 55506900	1 93507800	-1 98064000
N	0 49187700	1 17275700	-1 03819800
N	1 16833100	-1 38671900	-1 07843200
Cu	-0 50846500	-0 48942400	-0 28462900
S	0 54473600	-0 48413100	2 06316800
C	2 11991100	0 42254300	1 83026300
C	2 11614600	1 82049600	1 87073600
C	3 27962700	-0 27791700	1 49043000
C	3 28835100	2 52161700	1 57697800
C	4 45161300	0 42792000	1 19865900
C	4 45599100	1 82632500	1 23836400
0	0 99343100	-1 87219300	2 52543400
0	-0 17377000	0 31667000	3 15538400
н	0 64979200	-3 31987700	-0 60121700
Н	2 78458300	-4 31228100	-1 47116100
Н	4 49808700	-2 75803500	-2 46458100
н	4 02507000	-0 32725600	-2 52783500
н	-0 90629600	2 58070400	-0 49604300
Н	0.48671000	4.53166600	-1.23072200
Н	2.76394300	4.06674900	-2.19696300
Н	3.53791700	1.72167300	-2.38096400
Н	1.20339700	2.34794200	2.12943100
Н	3.25723000	-1.36244400	1.45582400
Н	3.28907400	3.60756800	1.60268100
Н	5.35527500	-0.11329200	0.93263700
Н	5.36373100	2.37376900	1.00126600
I	-2.35725600	-2.26862300	0.00454700
С	-2.39036700	0.21088400	-0.12284000
С	-2.60476200	0.90246700	1.07243700
С	-2.89141300	0.67607200	-1.34432600
С	-3.26940500	2.13176200	1.01528500
Н	-2.21754000	0.52524900	2.01228500
С	-3.55080300	1.90757200	-1.36974700
Н	-2.75333400	0.10420200	-2.25444200
С	-3.75327000	2.65278100	-0.19621000
Н	-3.41260300	2.69048600	1.93679000
Н	-3.91932700	2.28584900	-2.31981400
С	-4.44722500	3.99255900	-0.24128400
Н	-5.18114600	4.03530700	-1.05153000
Н	-4.95802400	4.21008800	0.70130000
Н	-3.71980900	4.79587600	-0.41427600
E (RB3LYP)	-3198.54898568	a.u.	
ν	-77.74	Cm^{-1}	

(2,2'-Bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16b)

Charge = 0	Multiplicity	= 1	
ATOM	x	Y	Z
С	2.27495800	1.14242700	-0.10055500
С	1.39411300	1.11205300	-2.26448000
С	2.57217700	1.60741800	-2.81309400
С	3.63656100	1.87899000	-1.95218100
С	3.48703300	1.64604000	-0.58678800
С	2.02990100	0.84389700	1.33505800
С	0.54088200	-0.00984700	2.89176900
С	1.44508000	0.16376100	3.93967800
С	2.69329400	0.71402700	3.64719700
C	2.99215600	1.05848100	2.32967800
N	0.81910700	0.32416100	1.62672200
N	1.25498000	0.88432000	-0.94933400
Cu	-0.51320900	0.21502000	-0.23/96400
S	-0.01867000	-2.0093/600	-0.68852500
C	1.78401600	-2.15654100	-0.48995800
C	2.50412500	-2.41310100	-1 597/1700
C	3 69040700	-2 47158000	-1.39/41/00
C	3 99689100	-2 02420400	-1 42314400
C	4 53505200	-2 27157400	-0 15490300
0	-0 29224900	-2 25051100	-2 14587500
0	-0.59622000	-2.98871300	0.28701800
Н	0.53159700	0.88314300	-2.88040600
H	2.64602400	1.77094200	-3.88189900
Н	4.57479700	2.26465600	-2.33707600
Н	4.31005900	1.84964600	0.08556600
Н	-0.43864300	-0.44001100	3.06964400
Н	1.17317900	-0.12619500	4.94844000
Н	3.42839000	0.86941800	4.43010600
Н	3.96138300	1.47775800	2.09147600
Н	1.63791900	-2.56037200	1.62274500
Н	2.17843700	-1.76970400	-2.57173100
H	4.10765500	-2.66619900	1.92609600
H	4.65220400	-1.87277500	-2.27539700
H	5.61215900	-2.30812800	-0.02229600
1	-1.52448700	2.62608900	-0.15/40600
C	-2.31842900	-0.45643900	-0.05514800
C	-2 86080400	-0.65627700	-1.2064//00
C	-4 33385700	-0.03627700	-1 08140600
Ч	-2 61108800	-0.58692100	-2 18927700
C	-4 15245500	-1 18744400	1 31799600
н	-2 30974800	-0 39626600	2 10513100
C	-4.90619200	-1.50859900	0.17838800
H	-4.89786300	-1.51067300	-1.98155100
Н	-4.57708900	-1.34318200	2.30720700
С	-6.28693700	-2.11139100	0.30649600
Н	-6.90891900	-1.87328000	-0.56184200
Н	-6.22998100	-3.20477400	0.37967500
Н	-6.79849400	-1.75051900	1.20434400
E (RB3LYP)	-3198.55386175	a.u.	

3.3.1.4. Ligand: 4,4'-Dimethoxy-2,2'-bipyridine (4,4'-diMeObpy)

(4,4'-Dimethoxy-2,2'-bipyridyl)copper(I) phenylsulfinate (14c)

Charge = 0	Multiplicity =	: 1	
ATOM	x	Y	Z
С	-1.26307900	1.23240600	0.00326900
С	1.00129500	1.73289600	0.03369900
С	0.76865500	3.10487900	0.01384700
С	-0.56358300	3.54100700	-0.01704200
С	-1.59111500	2.58217100	-0.02223500
С	-2.28741500	0.14448500	0.00272300
С	-2.66655000	-2.14698500	-0.01932500
С	-4.04812100	-1.98892400	-0.00203600
С	-4.55587300	-0.68215800	0.02095200
С	-3.65291600	0.39435700	0.02422800
N	-1.79859900	-1.12466300	-0.01726900
N	0.02703800	0.81435400	0.02812300
Cu	0.21155000	-1.26395400	-0.01045400
S	2.07988600	-2.41450000	-0.04139700
С	3.34963900	-1.09450800	0.00486200
0	2.35529600	-3.23800600	1.21019600
0	2.36033200	-3.15066700	-1.34529900
С	3.78068400	-0.51624000	-1.19226400
С	4.64954800	0.57881400	-1.15252100
С	5.07517500	1.09257900	0.07809500
С	4.63837100	0.50631800	1.27189800
C	3.76976400	-0.58913800	1.23837700
0	-0.95644600	4.82825200	-0.04379000
С	0.04588000	5.86097700	-0.04301700
0	-5.86114800	-0.35909100	0.04153000
C	-6.83985000	-1.41495900	0.03946300
Н	2.01564700	1.34920800	0.05468300
Н	1.60692700	3.78836400	0.02096200
Н	-2.61589600	2.92939400	-0.04978700
Н	-2.22881400	-3.13876600	-0.03608600
Н	-4.68499700	-2.86294100	-0.00576800
Н	-4.05357900	1.39925700	0.04668100
Н	3.43661900	-0.92185600	-2.13819600
Н	4.99010300	1.03161700	-2.07909800
Н	5.74422200	1.94744600	0.10681600
Н	4.97050800	0.90286800	2.22688600
Н	3.41847500	-1.05060500	2.15565800
Н	-0.50536500	6.79968700	-0.07033000
Н	0.65126500	5.81242700	0.86758800
Н	0.68573800	5.78030700	-0.92740100
Н	-7.80624400	-0.91355200	0.05782000
Н	-6.75301400	-2.02103800	-0.86770900
Н	-6.73112000	-2.04475200	0.92789100

E(RB3LYP) -3145.24078749 a.u.

(4,4'-Dimethoxy-2,2'-bipyridyl)copper(I) phenylsulfinate-4-iodotoluene cation- π complex (15c)

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

Multiplicity =	= ⊥	
х	Y	Z
0.98929800	-0.70624300	-1.36911100
-1.23850700	-0.07996900	-1.49826600
-1.62718600	-1.31258800	-2.01045800
-0.63502100	-2.28639700	-2.19291500
0.69371500	-1.96903800	-1.86875200
2.36919100	-0.28558500	-0.98516400
3.69710400	1.41346500	-0.12619400
4.85440300	0.64554200	-0.20713400
	Multiplicity = x 0.98929800 -1.23850700 -1.62718600 -0.63502100 0.69371500 2.36919100 3.69710400 4.85440300	Multiplicity = 1 \mathbf{X} \mathbf{Y} 0.98929800 -0.70624300 -1.23850700 -0.07996900 -1.62718600 -1.31258800 -0.63502100 -2.28639700 0.69371500 -1.96903800 2.36919100 -0.28558500 3.69710400 1.41346500 4.85440300 0.64554200

С	4.73811600	-0.65904200	-0.70853100
С	3.47152500	-1.12103700	-1.10433500
N	2.48483100	0.97726400	-0.49517100
N	0.02645900	0.22845000	-1.18587700
Cu	0.72677700	1.95710500	-0.27999200
S	-0.43992200	3.73937800	0.26293500
С	-2.11172200	3.27662300	-0.32568800
0	-0.62844900	3.97842000	1.75520300
0	-0.09980900	4.99641200	-0.52856300
C	-2.42302500	3.43306200	-1.68018500
C	-3.64254300	2.95132900	-2.16595300
C	-4.538/9900	2.31040600	-1.30132700
C	-4.22068400	2.161/5900	0.05368800
0	-0.85064000	-3 53347700	-2 65360300
C	-2 19646800	-3 93155300	-2 96838200
0	5 75533400	-1 52842800	-0 84840800
C	7 08003600	-1 11649100	-0 46582300
Н	-1.97436800	0.69684100	-1.32308200
Н	-2.67055000	-1.49316000	-2.23047900
Н	1.45157500	-2.72966600	-2.00498400
Н	3.73839900	2.42609600	0.25935400
Н	5.79732600	1.06705500	0.11433000
Н	3.39016800	-2.12871800	-1.49072600
Н	-1.71493700	3.92200500	-2.34192800
Н	-3.89020100	3.07066700	-3.21677800
Н	-5.48110100	1.92813300	-1.68269700
Н	-4.91647900	1.66875200	0.72649100
Н	-2.74473600	2.53819000	1.59325300
Н	-2.12351700	-4.96695400	-3.29861200
Н	-2.83354700	-3.86875300	-2.08050700
H	-2.60562100	-3.31330000	-3.77405300
H	7.72050700	-1.97340000	-0.66997800
H	7.40594200	-0.258/3200	-1.06280300
H C	1 22605000	-0.8/146400	0.60043400
C	-1.23093900	-0.39200300	2.00033200
C	0 65593100	-1.00491100	1 8795/300
C	1 50633100	-0 86356000	2 25013900
C	1 01038900	0.00000000	2.23013500
C	-0 36936300	0.64023000	2 36812800
Н	-2.29712000	-0.19502800	1.88649200
Н	1.06434800	-2.89431600	1.67723000
Н	2.57386500	-1.05414600	2.32299600
Н	-0.76149400	1.63979500	2.52907400
I	-2.03577000	-3.28210700	1.24893600
С	1.91996000	1.54855000	2.93622100
Н	1.63022900	2.48513600	2.44846800
Н	1.85477100	1.71019300	4.01912200
Н	2.96342000	1.33374700	2.69197900
E (RB3LYP)	-3427.64789041	a.u.	

(4,4'-Dimethoxy-2,2'-bipyridyl)copper(I) phenylsulfinate-4-iodotoluene oxidative addition transition state⁺

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

cnarge = 0	MULLIPIICILY =	= 1	
ATOM	х	Y	Z
С	1.94063400	-0.44266300	-1.06755400
N	1.02271200	-1.37984200	-0.72123500
С	1.39716100	-2.66270700	-0.66480200
С	2.68537500	-3.10129400	-0.95130900
С	3.63576400	-2.13816400	-1.32497800

ν	-82.36	cm^{-1}	
E (BB3LVD)	-3427 62660169	a 11	
I	-2.56643300	-2.57727600	-0.21659700
Н	-5.69911400	3.68124400	-0.06713400
Н	-5.56144100	3.52082200	-1.83011100
H	-4.29964500	4.34951900	-0.91261900
C	-5.00089200	3.50551700	-0.89078000
н	-4.00623500	1.84289400	-2.82994000
Н	-4.20079400 -4 31354600	2.20400700	1 44513500
C	-Z./JZJ/100 -A 25570/00	2 20/86700	-2.54200300
Ч	-3./9906100 -2 75237100	1.4/929200 -0 27068500	-1.020/4200
С	-3.0332/300	1 <u>47</u> 929200	_1 8267/200
U U	-3.9/3381UU _3 03337300	1./U4688UU 0.15617500	U.J68222UU 1 7/0/0000
C	-3.08/93900	U.286454UU 1 70/69900	-1.0/512200
	-3.26334400	0.314//900	U./SI//800
C	-2./901000	-U.IOIUU/UU	-0.38024100
С	U.ZUI39/UU _2 70515500	2.32316800 -0 16100700	2.4/480400 _0 3802/100
n u	Z.Z3/UZIUU 0.20120700	3./33133UU 2.32516000	2.29/02/00
n u	4.4/ZUIYUU 2.22702100	2.090499UU 2.75212E00	2.0242/100
ч	4.0/200/00 1 /7201000	2 69619900 2 69619900	2 02/27100
п	2.02490000 A 67268700	-1.20003300 0 21705000	2.100310UU 1 93556/00
n u	4.83030100	-4.38283000 -1 20002500	2 10621000
n u	5.29294500	-4.103466UU	-0.5/602900
н	6.43405000	-3./1/11000	-1.8/593600
н	L./U//3800	5.90106800	-0.22585600
n u	1.304494UU	J. YZ 684 YUU 5 00106000	-1.900020UU
n u	2.99093300 1 36440400	5 92694000	-1.304303UU
n u	-1.444/4900	2.40019300 6.35311500	-0.49040000
n u	-U.II332UUU _1 ///7/000	4.404413UU 2 40010500	-0.02303500
n u	-0 11532000	1.93010300	-1.431/0800
п	3,90393200 3,33837800	1 95616500	-1 43170800
н	2,910/3400 3 qq5q52nn	-0 05077900	-1 66641200
н	0.02394000 2 91873 <u>4</u> 000	-4 15513500	-0.37277300
Н	T.TOZ03000	-3 36687000	-0 37277500
C	1 18269000	1 87517200	2 36308700
C	2.32705500	2.67091300	2.26552400
C	3.58513600	2.07545900	2.11166600
C	3,69830400	0.68198900	2.06037900
C	2.55490800	-0.11806900	2.15561600
õ	0.26686700	-1.89773900	2.83805300
0	-1.16692600	0.18542700	3.22792500
č	1.30347000	0.48284800	2.31178800
S	-0.21008200	-0.55245200	2.28374200
C	5.38434700	-3.75936200	-1.58852900
C	2.11984100	5.71931500	-1.22379900
0	2.60217000	4.36883900	-1.33572800
0	4.91932200	-2.39852100	-1.63526600
C	-0.38531800	2.34160300	-0.71930600
C	0.36511100	3.49855300	-0.90292100
C	1.73495400	3.35301700	-1.16510300
c	2.27714400	2.06012000	-1.24751700
C	1 45041900	0 96276100	-1 05001500
N	0.12817000	1 10946300	-0.78658000
C	-0 83054600	-0 64442100	-0 20553300
C	3 24721400	-0 78985200	-1 38441000

(4,4'-Dimethoxy-2,2'-bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16c)

Charge = 0	Multiplicity =	1	
ATOM	x	Y	Z
С	2.27495800	1.14242700	-0.10055500
С	1.39411300	1.11205300	-2.26448000

С	2.57217700	1.60741800	-2.81309400
С	3.63656100	1.87899000	-1.95218100
С	3.48703300	1.64604000	-0.58678800
С	2.02990100	0.84389700	1.33505800
С	0.54088200	-0.00984700	2.89176900
С	1.44508000	0.16376100	3.93967800
С	2.69329400	0.71402700	3.64719700
С	2.99215600	1.05848100	2.32967800
N	0.81910700	0.32416100	1.62672200
N	1.25498000	0.88432000	-0.94933400
Cu	-0.51320900	0.21502000	-0.23796400
S	-0.01867000	-2.00937600	-0.68852500
С	1.78401600	-2.15654100	-0.48995800
С	2.30412500	-2.41316100	0.78038300
С	2.61223800	-1.96331400	-1.59741700
С	3.69040700	-2.47158000	0.94292800
С	3.99689100	-2.02420400	-1.42314400
C	4.53505200	-2.27157400	-0.15490300
0	-0.29224900	-2.25051100	-2.14587500
0	-0.59622000	-2.98871300	0.28701800
Н	0.53159700	0.88314300	-2.88040600
Н	2.64602400	1.77094200	-3.88189900
Н	4.57479700	2.26465600	-2.33707600
Н	4.31005900	1.84964600	0.08556600
Н	-0.43864300	-0.44001100	3.06964400
Н	1.17317900	-0.12619500	4.94844000
Н	3.42839000	0.86941800	4.43010600
Н	3.96138300	1.47775800	2.09147600
Н	1.63791900	-2.56037200	1.62274500
Н	2.17843700	-1.76970400	-2.57173100
Н	4.10765500	-2.66619900	1.92609600
Н	4.65220400	-1.87277500	-2.27539700
Н	5.61215900	-2.30812800	-0.02229600
I	-1.52448700	2.62608900	-0.15740600
С	-2.31842900	-0.45643900	-0.05514800
С	-3.04232100	-0.74675900	-1.20647700
С	-2.86089400	-0.65627700	1.20932600
С	-4.33385700	-1.27670400	-1.08140600
Н	-2.61108800	-0.58692100	-2.18927700
С	-4.15245500	-1.18744400	1.31799600
Н	-2.30974800	-0.39626600	2.10513100
С	-4.90619200	-1.50859900	0.17838800
Н	-4.89786300	-1.51067300	-1.98155100
H	-4.57708900	-1.34318200	2.30720700
С	-6.28693700	-2.11139100	0.30649600
Н	-6.90891900	-1.87328000	-0.56184200
Н	-6.22998100	-3.20477400	0.37967500
Н	-6.79849400	-1.75051900	1.20434400

E(RB3LYP) -3427.63151675 a.u.

$\textbf{3.3.1.5. Ligand: 4,4'-Dinitro-2,2'-bipyridine (4,4'-diNO_2bpy)}$

(4,4'-Dinitro-2,2'-bipyridyl)copper(I) phenylsulfinate (14d)

Geometry-optimised cartesian coordinates				
Charge = 0	Multiplicity =	1		
ATOM	х	Y	Z	
С	-1.15293900	0.94172100	-0.00047000	
N	0.17217000	0.68566600	0.00438400	
С	1.05062900	1.69463600	0.00286200	
С	0.65753900	3.03333300	-0.00421200	
С	-0.70834800	3.27983100	-0.01005500	
С	-1.64176300	2.25072000	-0.00814900	

Cu	0.60724600	-1.38200500	-0.00542200
N	-1.41763600	-1.45663100	0.00067200
С	-2.04110900	-0.25515300	0.00253400
С	-3.43476300	-0.16261400	0.00759300
С	-4.15791500	-1.34817600	0.01070500
С	-3.53430500	-2.58770500	0.00933900
С	-2.13997900	-2.58550000	0.00414600
N	-1.19149700	4.68105100	-0.01878300
N	-5.63861500	-1.28119400	0.01564500
0	-6.16022300	-0.16748900	0.01680800
0	-0.34627500	5.57383400	-0.01897000
S	2.60832200	-2.30102900	-0.02981500
С	3.70434400	-0.83533300	0.00533500
0	2.97408700	-3.07455800	1.22785400
0	2.96541700	-3.00695400	-1.32894800
С	4.07601100	-0.22771200	-1.19712900
С	4.79987600	0.96855000	-1.16574600
С	5.13953100	1.55124700	0.06087800
С	4.76319000	0.93417200	1.25987400
С	4.03976000	-0.26226700	1.23543200
0	-6.25538300	-2.34454100	0.01823000
0	-2.40728400	4.86702900	-0.02549600
Н	2.09927200	1.42127500	0.00725000
Н	1.38319800	3.83541300	-0.00540500
Н	-2.69728200	2.48223500	-0.01335100
Н	-3.95509200	0.78443900	0.00975800
Н	-4.09691900	-3.51138300	0.01197900
Н	-1.58114600	-3.51331200	0.00242200
Н	3.79898200	-0.68873900	-2.13958500
Н	5.09425000	1.44583200	-2.09572400
Н	5.69481900	2.48411300	0.08251000
Н	5.02913600	1.38489500	2.21141300
Н	3.73527500	-0.74947100	2.15613000
E (RB3LYP)	-3325.17290925	a.u.	

(4,4'-Dinitro-2,2'-bipyridyl)copper(I) phenylsulfinate-4-iodotoluene cation- π complex (**15d**)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	-1.03132900	-0.68220600	1.08395800
N	0.30461900	-0.71506600	0.89198200
С	0.93737900	-1.88906800	0.78953200
С	0.27243500	-3.11260700	0.87526900
С	-1.10140800	-3.06121600	1.06594200
С	-1.78347400	-1.85619000	1.17325500
Cu	1.15739600	1.20675400	0.71399900
N	-0.78412900	1.71488600	1.05436900
С	-1.63938800	0.67299100	1.16652000
С	-3.01342700	0.87502400	1.32241500
С	-3.47240500	2.18433000	1.34549700
С	-2.60850400	3.26614900	1.22657700
С	-1.25420500	2.97083700	1.08318100
N	-1.87267200	-4.32213700	1.13148100
N	-4.92540800	2.42740200	1.48925400
0	-5.66657200	1.44721300	1.55398900
0	-1.24192500	-5.37781100	1.13037100
S	3.32161100	1.67061900	0.87782800
С	4.04348900	-0.00879700	0.79267000
0	3.90127400	2.38670500	-0.33479200
0	3.79974200	2.22003400	2.21479100

С	4.24056700	-0.73500900	1.97066400
С	4.65891100	-2.06777800	1.89378500
С	4.86753400	-2.66714200	0.64570600
С	4.66741700	-1.93136100	-0.52905900
С	4.25182300	-0.59772500	-0.45883900
0	-5.30561200	3.59635100	1.53149200
0	-3.10039000	-4.24029900	1.17345100
Н	2.00754500	-1.84682500	0.62667100
Н	0.80226300	-4.05142200	0.78524900
Н	-2.85449300	-1.85546600	1.31486200
Н	-3.71539900	0.05810400	1.40856500
Н	-2.96554600	4.28714800	1.24261900
Н	-0.51827300	3.75973800	0.98464900
Н	4.06495900	-0.25867300	2.92987800
Н	4.81579900	-2.63781800	2.80491700
Н	5.18313500	-3.70470600	0.58848000
Н	4.83091400	-2.39554500	-1.49733200
Н	4.08351700	-0.01770100	-1.35999100
С	-0.76962100	-0.04912100	-2.27306100
С	-0.63424200	-1.43775600	-2.34479100
С	-1.77576700	-2.23454100	-2.23847800
С	-3.04963000	-1.67121600	-2.05355500
С	-3.15171000	-0.27461700	-2.00524800
С	-2.02090600	0.54399700	-2.11516100
H	0.33989100	-1.89772600	-2.46884500
Н	-1.66871000	-3.31534600	-2.28494600
H	-4.12407800	0.19087200	-1.86853900
Н	-2.12518500	1.62233700	-2.06409700
С	-4.26131200	-2.55630200	-1.88461400
H	-5.18860100	-1.97905700	-1.93077300
Н	-4.29719300	-3.32956600	-2.65922200
Н	-4.23030200	-3.07005300	-0.91612500
Ι	0.98994600	1.18186300	-2.33404200
E (RB3LYP)	-3607.57521541	a.u.	

(4,4'-Dinitro-2,2'-bipyridyl)copper(I) phenylsulfinate-4-iodotoluene oxidative addition transition state[‡]

Charge = 0	Multiplicity	= 1	
ATOM	х	Y	Z
С	1.07177200	1.23307000	0.16190500
Ν	-0.06218500	1.22579700	-0.57057600
С	-0.38353600	2.27726400	-1.33257200
С	0.41155600	3.41846700	-1.40898800
С	1.56893600	3.42105300	-0.64040500
С	1.92363300	2.34188600	0.15641000
Cu	-1.28289600	-0.45710300	-0.43559000
Ν	0.37676500	-0.91579600	0.98118500
С	1.36046300	0.00382200	0.94725400
С	2.58579400	-0.21336000	1.58451100
С	2.74227400	-1.41232400	2.26782500
С	1.73079600	-2.36168300	2.32929200
С	0.54938000	-2.05735700	1.65171900
N	2.45556800	4.60800100	-0.66964100
N	4.03832800	-1.69060500	2.92685800
0	4.14866900	-2.74886100	3.54386100

0	3.48124300	4.57285900	0.00845000
S	-0.22993400	-1.42141000	-2.35840600
С	1.57616300	-1.35761700	-2.08299300
I	-3.18268300	-2.05227300	0.05643600
С	-2.64676300	0.49267600	0.65944000
С	-3.43770100	1.36587800	-0.08165700
С	-3.82092200	2.57677100	0.51170700
С	-3.46605300	2.88493500	1.83242200
С	-2.71670500	1.94294300	2.56123900
С	-2.31606800	0.73201000	1.99237100
0	-0.51317200	-2.88819400	-2.62461700
0	-0.46755200	-0.49655300	-3.54310900
С	2.19805000	-2.40517500	-1.39607000
С	3.55323300	-2.30255400	-1.07199100
С	4.27678000	-1.15806100	-1.43060200
С	3.64861100	-0.12098000	-2.12861500
С	2.29223300	-0.21783500	-2.45607700
С	-3.87181200	4.19342300	2.46801800
0	4.93038000	-0.85074900	2.81303900
0	2.11156900	5.55700000	-1.37170500
Н	-1.30454600	2.19858000	-1.89717900
Н	0.13799400	4.25754200	-2.03432400
Н	2.82967700	2.37996000	0.74394400
Н	3.40150200	0.49409300	1.54456900
Н	1.85654100	-3.29551100	2.86072900
Н	-0.28392500	-2.75233100	1.63412200
Н	-3.73519200	1.13041800	-1.09765000
Н	-4.41476500	3.27895900	-0.06778800
Н	-2.43965200	2.15666300	3.59078100
Н	-1.73351800	0.01699500	2.56078200
Н	1.62515300	-3.28450800	-1.12007100
H	4.04150600	-3.10893200	-0.53255000
H	5.32639800	-1.07574000	-1.16467900
Н	4.20925600	0./6530100	-2.41086400
H	1.78902700	0.5/94/000	-2.99324600
н	-3.00500600	4.85/03200	2.5/43/800
н	-4.6210/100	4./1583600	1.86/14600
н	-4.28338900	4.0358/400	3.4/044100
E (RB3LYP)	-3607.55150263	a.u.	
ν	-76.26	Cm^{-1}	

(4,4'-Dinitro-2,2'-bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16d)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	1.78312300	-0.40862100	-0.55402300
N	0.67776900	-1.17973200	-0.46831600
С	0.77102300	-2.51338400	-0.56588600
С	1.98719400	-3.16931600	-0.73147800
С	3.12016600	-2.36900200	-0.79341400
С	3.04643000	-0.98631800	-0.71246600
Cu	-1.15831700	-0.34182000	-0.16369500
N	0.31912400	1.45989300	-0.19329400
С	1.57951500	1.05892300	-0.44663700
С	2.63038600	1.97257300	-0.58152100
С	2.32579000	3.31832100	-0.42917700
С	1.03480000	3.75120900	-0.15742700
С	0.05620400	2.76148200	-0.05087200
N	4.45051900	-3.00509900	-0.93654500
N	3.41496300	4.31536100	-0.55385000

E (RB3LYP)	-3607.56011056	a.u.	
н	-/.614/5300	1.42505100	0.60640700
H	- /.33650200	0.6/109300	2.1/883200
н	- / . 82019800	-0.32603100	0.80310300
C	- / . 21113100	0.53406000	1.09/42600
1	-1./1568/00	-0.35089800	-2./0643300
н	-5.31099400	2.42840/00	0.5364//00
н	-5.8404/600	-1.83106400	0.862//000
C	-5./5504200	0.32448/00	0./4865300
Н	-2.92681500	2.09/18500	0.00/11800
C	-4.90965300	1.41811800	0.50500700
Н	-3.44213900	-2.16935900	0.35526600
C	-5.20/20100	-U.96531/00	0.68328200
	-3.55266800	1.23642100	0.209/3300
	-3.85133500	-1.16535/00	0.38909000
C	-3.04350400	-U.USOUI3UU	0.1/0/2100
п	0.94535300	-2.641/9500	2.43648500
н	3.400/4300	-2.53414600	2.83682400
Н	4.50026000	-0.33249400	3.216//800
Н	3.14/49/00	1./5492400	3.20069600
H	0.69498100	1.64103400	2.77424900
H	-0.97088800	3.02949200	0.16614500
H	0.79758000	4./9930/00	-0.03266500
H 	3.64/3/300	1.6/263200	-0.79020100
H 	3.95063000	-0.39/14/00	-0.75965000
H 	2.04227900	-4.24/52/00	-0.79606500
H 	-0.15/41/00	-3.06//0400	-0.49956/00
0	5.43685600	-2.2/049800	-0.94465100
0	4.54811500	3.89878300	-0.78970300
С	1.43841400	-1.69001800	2.59913200
C	2.81290400	-1.62158700	2.83812200
С	3.42945900	-0.38149300	3.04453500
С	2.67079100	0.79432500	3.03210900
С	1.29527100	0.73836700	2.79239700
0	-1.52218500	-1.95786500	2.50488700
0	-1.69279900	0.56995000	2.89373000
С	0.69905700	-0.50490900	2.57048300
S	-1.07063900	-0.57146300	2.15222300
0	4.48634900	-4.23006900	-1.03372600
0	3.11987400	5.50061000	-0.41218300

3.3.1.6. Ligand: *N*,*N*'-Dimethylethylenediamine (DMEDA)

(N,N'-Dimethylethylenediamine)copper(I) phenylsulfinate (14e)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	2.35230600	-2.11868800	-0.68420800
N	0.94998700	-1.69590200	-0.46514400
Cu	1.11394300	0.43951000	-0.19876700
N	3.13516400	0.13415600	-0.03653200
С	3.29768400	-1.32194000	0.21577100
С	0.30170800	-2.33170200	0.70052900
С	3.83468400	0.96745800	0.96897200
S	-0.69533200	1.69193200	-0.17882700
0	-0.89236300	2.60058400	1.02782000
0	-0.98243700	2.36800900	-1.51549800
С	-2.02613500	0.44290800	-0.01354900
С	-2.59843300	0.19319800	1.23488900
С	-3.52668000	-0.84547600	1.36939000

С	-3.86681300	-1.63037300	0.26260300
С	-3.28561600	-1.37324600	-0.98572100
С	-2.36113700	-0.33526000	-1.12637800
Н	2.59717300	-1.92175600	-1.73295600
Н	2.48818100	-3.19352800	-0.50180800
Н	3.05891600	-1.49783000	1.26888100
Н	4.33465900	-1.64118600	0.05179900
Н	0.34613900	-3.42808500	0.65020100
Н	0.79209500	-2.00132700	1.61908600
Н	-0.74061400	-2.01082400	0.73935000
Н	3.73780900	2.01713300	0.68713400
Н	4.89782400	0.70613300	1.04687800
Н	3.35925100	0.82178300	1.94133000
Н	-2.31565100	0.80698500	2.08383600
Н	-3.97878600	-1.04325100	2.33697600
Н	-4.58144600	-2.44082600	0.37107500
Н	-3.55137500	-1.98071900	-1.84592400
Н	-1.90064000	-0.12892200	-2.08783200
Н	0.40457600	-1.91751900	-1.29434500
Н	3.54578600	0.33924700	-0.94883800
E (RB3LYP)	-2689.91028811	a.u.	

(*N*,*N*'-Dimethylethylenediamine)copper(I) phenylsulfinate-4-iodotoluene cation- π complex (**15e**)

Charge = 0	Multiplicity	= 1	
ATOM	х	Y	Z
С	2.15089700	2.75026600	-1.97082000
N	2.54559400	1.64933000	-1.06291600
Cu	0.91179100	0.22572200	-1.32734900
N	-0.09814800	1.75387500	-2.23529400
С	0.64377400	2.99448300	-1.88756900
С	2.76951400	2.07628300	0.33195000
С	-1.54635700	1.87000800	-1.94862200
S	1.42290900	-1.87009300	-0.83792500
0	0.39197800	-2.72113700	-0.10615600
0	2.10509500	-2.58251800	-1.99938600
С	2.75444900	-1.64116700	0.39728100
С	2.43061500	-1.59275500	1.75581300
С	3.42562600	-1.28200000	2.68872900
С	4.73188000	-1.01927500	2.25987600
С	5.04788700	-1.07506200	0.89657900
С	4.05701600	-1.38353800	-0.04030700
Н	2.41474500	2.45222100	-2.99072600
Н	2.68855100	3.68097000	-1.74259800
Н	0.35865300	3.26551900	-0.86679600
Н	0.35753500	3.82520900	-2.54508100
Н	3.54847900	2.84721800	0.40863800
Н	1.84187200	2.47614800	0.74340600
Н	3.06075200	1.20773200	0.92568900
Н	-2.04452500	0.94413700	-2.24016600
Н	-1.99836500	2.71575400	-2.48265400
Н	-1.68179300	2.01088400	-0.87635300
Н	1.41415200	-1.80238800	2.07323300
Н	3.18089600	-1.24427300	3.74634600
Н	5.50151100	-0.77223400	2.98519600
Н	6.06264200	-0.87620400	0.56401800
Н	4.28568000	-1.42848100	-1.10073700
Н	3.40394900	1.22673000	-1.40799700
Н	0.00786700	1.60035000	-3.23935700

С	-0.95001000	2.08542700	2.18418400
С	-2.31727700	2.34471500	1.99885100
С	-3.15990700	1.41261700	1.38515900
С	-2.62226700	0.20084700	0.94766300
С	-1.27203800	-0.09634100	1.12324900
С	-0.44857400	0.85335500	1.74165800
Н	-2.73636200	3.28873300	2.33804100
Н	-4.21138900	1.64015000	1.24774900
Н	-0.85498800	-1.03945200	0.78477400
Н	0.60270000	0.61836500	1.88016800
С	-0.05106900	3.11248700	2.83164900
Н	0.18463300	3.92341700	2.13131700
Н	-0.53414400	3.56873300	3.70166800
Н	0.89342800	2.66871200	3.15842500
I	-3.88544600	-1.21656000	-0.06672500

E(RB3LYP) -2972.31787540 a.u.

(N,N'-Dimethylethylenediamine)copper(I) phenylsulfinate-4-iodotoluene oxidative addition transition state[‡]

Charge = 0	Multiplicity	= 1	
ATOM	x	Y	Z
С	-3.19822600	1.17641400	-0.32404000
N	-1.82955000	1.50545000	-0.79286600
Cu	-0.63991700	-0.11995800	-0.14016200
N	-2.42536000	-1.10688000	0.21562100
С	-3.46183200	-0.31775500	-0.50035900
С	-2.67856800	-1.25055700	1.67008200
С	-1.38784300	2.85026900	-0.36857700
H	-3.25531500	1.45077900	0.73343500
Н	-3.95802800	1.75968700	-0.85832400
Н	-3.39869900	-0.58008600	-1.56087300
Н	-4.46987800	-0.56742900	-0.14666900
Н	-3.65902600	-1.70105400	1.86701100
Н	-1.89518800	-1.87762800	2.10002800
Н	-2.63419100	-0.27022000	2.14837500
Н	-2.10146500	3.62800600	-0.66761900
H	-1.28033500	2.86062900	0.71821300
Н	-0.41585900	3.06047600	-0.81434500
H	-1.82499300	1.47613000	-1.81329700
Н	-2.39223000	-2.03968300	-0.19171400
С	1.28186400	0.52121400	0.06376600
С	1.79782200	1.26160400	-1.01237400
С	1.29620100	1.01478100	1.37783300
С	2.28172500	2.54602500	-0.76307900
Н	1.80586000	0.84666900	-2.01334900
C	1.77120200	2.31408200	1.59784800
H	0.94804000	0.40548000	2.20410000
С	2.27050000	3.07278700	0.53678600
H	2.66814000	3.13628600	-1.58855600
H	1./6563800	2.71545600	2.6066/300
н	2.65618900	4.07082000	0./1868000
1	1.319/4000	-1.82676800	-0.16988100
E (RB3LYP)	-2972.30001333	a.u.	
ν	-107.15	Cm^{-1}	

(N,N'-Dimethylethylenediamine) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16e)

Geometry-optimised cartesian coordinates Charge = 0Multiplicity = 1 ATOM Y х \mathbf{Z} -0.93238300 С 3.44805100 1.30162200 Ν 2.23194500 -0.32236800 1.88002300 Cu 0.89142700 -0.23520300 -0.03927800 -1.67858700-0.71224700 Ν 2.21802400 С 3.05418400 -2.12531100 0.43732600 С 1.80879200 -0.97289200 3.13422200 С 3.01652700 -1.38195800-1.92275000S -0.63920700 -1.95788300 0.42821000 С -2.23893800 -1.67024500 -0.37069700 С -2.32805900-1.81174200-1.75732800-2.38374400 С -1.53958800 -3.54640900 С -4.64906500 -1.12862100 -1.62410900 С -0.98951800 -0.23655000 -4.53848200С -3.32321300 -1.25368300 0.40055300 -0.09800000 -3.21629900-0.21849700 0 0 -0.90905100 -2.04841400 1.89959900 Н 3.94392600 -0.17910300 0.68349400 2.07963600 Н 4.15613900 -1.25046500 0.07790000 Н 3.94380000 -2.65548600 Η 2.45639300 -2.83177800 1.01919500 Н 1.49999000 -1.99914900 2,93218400 -0.97643800 Η 2.61190400 3.88481700 Η 0.94101500 -0.453152003.54225200 Н 3.54081200 -2.28185600 -2.26480200 Η 2.35189000 -1.02137600 -2.70916100 3.74451300 -1.70520300Η -0.60043500-2.12758000 Н -1.46421500 -2.33351900 Н -3.63435800 -1.64665400 -3.46063400 -0.91307000 Н -5.59302600-2.11585500Н -5.39247200 -0.66398600 0.34965700 Η -3.20924700 -1.12943800 1.47128600 -0.93326600 Η 1.58163400 -2.450194002.06583800 2.41692800 0.66046300 Η 0.34700400 С -0.60717400 0.94760300 С -1.43627900 1.37995900 -0.68690900 С -0.87734700 1.27051100 1.66857300 -2.57844700 C 2.12235400 -0.37617000 1.13745800 Η -1.20991800 -1.71908300 С -2.02952600 2.01627600 1.96487700 -0.23134100 0.93375900 Н 2.46939300 -2.89746200 2.44591900 С 0.95296800 -1.18245400 Н -3.23087000 2.44938000 -2.24912000 2.25444100 3.00311100 Н С -4.16143800 3.20940900 1.27513200 Н 4.02938700 0.56761400 -4.32342000 Н -5.03743600 2.55132700 1.21483500 Н -4.13057800 3.62897200 2.28491800 1.92999700 Т 2.09632700 -0.93022300

E(RB3LYP)

-2972.30825871

CS50

a.u.

3.3.1.7. Ligand: L-Prolinate

(L-Prolinate)copper(I) phenylsulfinate (14f)

Geometry-optimised cartesian coordinates

Charge = -1	Multiplicity	= 1	
ATOM	x	Y	Z
Cu	-0.80339300	-0.99203700	0.13778900
0	-2.77040900	-1.23421000	-0.08109100
С	-3.48330000	-0.18445600	0.13449100
С	-2.74139900	1.12792500	0.45848500
N	-1.36725400	0.89263300	0.97933400
0	-4.72752600	-0.13729700	0.05781600
С	-0.54183000	2.04809400	0.54779000
С	-0.99619000	2.22525400	-0.89943200
С	-2.52315500	1.99979800	-0.82268200
S	1.21665900	-1.75580700	-0.20724200
0	1.74940000	-2.66661900	0.89392400
0	1.49840900	-2.26532000	-1.61686700
С	2.25160300	-0.24938400	-0.07568700
С	2.76992100	0.12509900	1.16667700
С	3.45582600	1.33772600	1.28777500
С	3.61091200	2.17057100	0.17349300
С	3.08767600	1.78708300	-1.06689800
С	2.40366600	0.57461500	-1.19430400
Н	-3.34644400	1.67782000	1.18688100
Н	0.51846100	1.81245800	0.65255600
Н	-0.77104600	2.94414100	1.14274700
Н	-0.52431100	1.45228700	-1.51708200
Н	-0.72860800	3.20147100	-1.31150500
Н	-2.91019000	1.50730700	-1.71854800
Н	-3.05469500	2.94860500	-0.71410000
Н	2.63534500	-0.52934100	2.02187000
Н	3.86491800	1.63314800	2.24964500
Н	4.13725200	3.11544100	0.27143200
Н	3.20906500	2.43202400	-1.93235600
Н	1.98925700	0.26698400	-2.14901000
Н	-1.37775200	0.80480700	1.99361600
E (RB3LYP)	-2821.47854912	a.u.	

(L-Prolinate)copper(I) phenylsulfinate-4-iodotoluene cation- π complex (15f)

Multiplicity	= 1	
х	Y	Z
-0.24531200	0.49070900	1.17531500
0.87298300	2.02933900	1.84110200
0.86422800	3.07393000	1.09343000
-0.04686900	3.05807400	-0.15190200
-0.42525100	1.67879500	-0.55981600
	Multiplicity x -0.24531200 0.87298300 0.86422800 -0.04686900 -0.42525100	Multiplicity = 1 x Y -0.24531200 0.49070900 0.87298300 2.02933900 0.86422800 3.07393000 -0.04686900 3.05807400 -0.42525100 1.67879500

0	1.50789600	4.12135100	1.31588600
С	-1.79465400	1.74842500	-1.12530600
С	-2.48508700	2.69972000	-0.14975200
С	-1.41019700	3.77759000	0.11106500
S	-1.24078100	-1.36357700	1.79060000
0	-0.50403400	-2.65669500	1.45764900
0	-1.82295900	-1.33918400	3.20090100
С	-2.71814900	-1.41174000	0.70806000
С	-2.72176600	-2.21492900	-0.43432100
С	-3.80596900	-2.15191100	-1.31682400
С	-4.87468900	-1.28727000	-1.05459000
С	-4.86667700	-0.49173900	0.09820900
С	-3.78653200	-0.55183700	0.98250200
Н	0.49472700	3.56464700	-0.95791200
Н	-2.23616200	0.75008900	-1.15967900
Н	-1.78345300	2.16931900	-2.14127200
Н	-2.71460900	2.15671700	0.77382000
Н	-3.41781000	3.11070400	-0.54450000
Н	-1.46808100	4.18282200	1.12462200
Н	-1.52283100	4.61458100	-0.58344300
Н	-1.88579200	-2.88185200	-0.61877000
Н	-3.81421400	-2.77288300	-2.20825400
Н	-5.71169200	-1.23367000	-1.74469500
Н	-5.69781000	0.17622500	0.30545300
Н	-3.76830400	0.06353200	1.87671400
Н	0.23398500	1.32294900	-1.24748600
С	2.14225300	-0.70447900	-1.19549700
С	0.93775700	-1.40394500	-1.30754600
С	0.11250200	-1.15175900	-2.40752200
С	0.46210000	-0.21390000	-3.39179300
С	1.67742200	0.47129600	-3.24702000
С	2.52316600	0.23344400	-2.15494100
Н	0.62442400	-2.10249000	-0.53864100
Н	-0.83311300	-1.67971600	-2.48688100
Н	1.97276400	1.20908400	-3.98820900
Н	3.45400100	0.78212900	-2.06296000
I	3.42038500	-1.06560000	0.49753600
С	-0.46657200	0.06210200	-4.55015400
Н	-0.01442400	0.74633500	-5.27312600
Н	-0.73131500	-0.86375800	-5.07250600
Н	-1.40210700	0.51225300	-4.19759000

E(RB3LYP) -3103.88554404 a.u.

(L-Prolinate)copper(I) phenylsulfinate-4-iodotoluene oxidative addition transition state[‡]

Charge = -1	Multiplicity	= 1	
ATOM	х	Y	Z
С	-2.88037900	-1.88948600	0.54927200
N	-1.61613000	-1.33646500	1.10660000
Cu	-0.75344300	-0.08609700	-0.47616900
0	-2.16945800	-1.04246300	-1.61200000
С	-2.99255600	-1.79789900	-0.98604700
0	-3.91143500	-2.45827000	-1.52183700
С	-1.90572500	-0.71716500	2.43616700
С	-3.40454500	-0.95613100	2.69187500
С	-3.97538600	-1.08395700	1.27216800
S	0.91967400	-1.84206200	-0.96101100
С	2.51820700	-1.59255500	-0.09993200
С	2.55211000	-1.68524100	1.29442700
С	3.75757600	-1.47834700	1.96992400

С	4.92176700	-1.18390100	1.25016000
С	4.87892200	-1.09313700	-0.14492500
С	3.67170400	-1.28709200	-0.82380100
0	0.38888900	-3.12091500	-0.29551300
0	1.32153700	-2.03778000	-2.42192300
Н	-2.98297300	-2.94988800	0.81226300
Н	-1.26236600	-1.14611400	3.20971600
Н	-1.69727300	0.35584700	2.37950200
Н	-3.55662400	-1.89349700	3.23984600
Н	-3.86124000	-0.14734700	3.27018500
Н	-4.07154900	-0.09479700	0.80851200
Н	-4.94564200	-1.58320000	1.22866100
Н	1.64715600	-1.92172800	1.84562700
Н	3.78886400	-1.54584200	3.05378100
Н	5.85819200	-1.02139700	1.77626400
Н	5.78136500	-0.86109100	-0.70330200
Н	3.61697800	-1.21259900	-1.90495500
Н	-0.93495900	-2.08992300	1.17781700
С	0.39007000	1.54819700	-0.12809900
С	0.99371600	1.53922800	1.13686800
С	1.13345800	1.84361600	-1.28205200
С	2.36854400	1.75980100	1.22863500
Н	0.40668800	1.34510500	2.02668900
С	2.50772400	2.04842500	-1.16108200
Н	0.64981800	1.89003200	-2.25101900
С	3.14431300	2.02995200	0.09128800
Н	2.84311500	1.71711000	2.20491900
Н	3.09199300	2.23785700	-2.05802100
I	-1.88192700	2.30646200	-0.18099400
С	4.61747100	2.33333700	0.20807100
Н	5.03607800	1.92197100	1.13006600
Н	5.17450400	1.91456000	-0.63509400
Н	4.78976100	3.41707200	0.21273800
E (RB3LYP)	-3103.86121253	a.u.	
ν	-99.82	Cm^{-1}	

(L-Prolinate) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16f)

Geometry-optimised cartesian coordinates Charge = -1 Multiplicity = 1

Charge = -1	MUITIPIICITY	= 1	
ATOM	х	Y	Z
С	2.63042200	1.85471600	0.84060700
N	1.37896700	1.19024400	1.29354000
Cu	0.70614000	-0.01229600	-0.52914400
0	2.13991700	0.98643800	-1.37331800
С	2.84120800	1.81872500	-0.67873600
0	3.71429800	2.55897400	-1.16669800
С	1.65547000	0.44891400	2.56164200
С	3.09755800	0.81137800	2.95007800
С	3.74729600	1.09864600	1.58972800
S	-0.72442700	1.71685700	-1.19510800
С	-2.34182800	1.71153500	-0.36204300
С	-2.46557300	2.34035700	0.87923000
С	-3.69581100	2.30000600	1.54041400
С	-4.78002600	1.62867500	0.96363700
С	-4.64001800	1.00459500	-0.28074700
С	-3.41510200	1.04191400	-0.95116900
0	-0.07191900	2.99336300	-0.72790000
0	-1.01915800	1.60661700	-2.66729600
Н	2.63881000	2.90845400	1.14119000
Н	0.92270600	0.71568800	3.32818400

Н	1.56927600	-0.62427800	2.36292000
Н	3.11321100	1.71430000	3.57197800
Н	3.59397000	0.00797800	3.50246500
Н	3.96837800	0.15902900	1.07039300
Н	4.66477700	1.68771400	1.65061900
Н	-1.62045800	2.86427700	1.31218500
Н	-3.80569700	2.79018000	2.50319000
Н	-5.73278800	1.59175500	1.48366800
Н	-5.48050800	0.48189600	-0.72729700
Н	-3.28922900	0.55633000	-1.91150500
Н	0.66702700	1.89915900	1.43370400
С	-0.86308600	-1.03487300	-0.09668000
С	-1.37761200	-0.98000100	1.19435000
С	-1.51304300	-1.75332700	-1.09664800
С	-2.57937900	-1.64023400	1.47954000
Н	-0.87369100	-0.41841300	1.97244500
С	-2.71619700	-2.40535900	-0.79790300
Н	-1.10111600	-1.80543800	-2.09939100
С	-3.27170900	-2.35164900	0.48900500
Н	-2.98694000	-1.58409200	2.48644100
Н	-3.22866600	-2.95583600	-1.58382300
I	2.09323700	-2.23516300	-0.32637500
С	-4.60244300	-3.00133800	0.79056100
Н	-4.64760500	-3.36319000	1.82270200
Н	-5.42042000	-2.28089600	0.66074800
Н	-4.79843100	-3.84505400	0.12171400
E (RB3LYP)	-3103.87543824	a.u.	

3.3.1.8. Ligand: (2*S*,4*R*)-*N*-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide (DMPHPC)

((25,4R)-N-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide)copper(I) phenylsulfinate (14g)

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
Cu	1.30662300	1.44862000	0.09028700
N	0.10902200	-1.29503400	-0.39905200
С	1.34473400	-1.75937200	-0.05784300
С	2.51058100	-1.13532200	-0.85789000
N	2.79530900	0.25282000	-0.32774900
0	1.53260400	-2.57564100	0.84310200
С	3.79510800	0.01895300	0.76133400
С	4.76038100	-0.99298600	0.13535800
С	3.83346900	-1.91851200	-0.67493000
S	-0.39084500	2.82222100	0.34526600
0	-0.77972200	3.09549700	1.78472100
0	-0.26385800	4.06371400	-0.52036300
С	-1.80484400	1.90513400	-0.35719400
С	-1.80176700	1.62677300	-1.72845500
С	-2.84583600	0.87772200	-2.27535900
С	-3.87892300	0.41269800	-1.45227700
С	-3.86990400	0.69604200	-0.08439000
С	-2.82469300	1.43928100	0.47207200
С	-1.11657300	-1.76504100	0.17757500
С	-2.00998000	-2.46087300	-0.65828800
С	-3.21498500	-2.91422200	-0.10830600
С	-3.51567500	-2.68691800	1.23501100
С	-2.61770300	-1.98801400	2.04215300
С	-1.40687000	-1.50363600	1.52920400
С	-0.47129200	-0.71025200	2.40434500

С	-1.67946600	-2.70392700	-2.11054500
0	5.62915700	-0.33656100	-0.80329400
Н	2.21521600	-1.03701600	-1.90465700
Н	4.26187800	0.96297200	1.04705500
Н	3.27654800	-0.40422600	1.62468100
Н	5.34367600	-1.53289300	0.88819400
Н	3.64781600	-2.84734800	-0.13477400
Н	4.29281200	-2.15465900	-1.63625700
Н	-0.99601500	1.99336700	-2.35820800
Н	-2.85254900	0.65534800	-3.33817600
Н	-4.68153900	-0.18257900	-1.87647300
Н	-4.66010300	0.31703900	0.55533300
Н	-2.78831300	1.65049900	1.53513400
Н	-3.91721000	-3.45057300	-0.74034100
Н	-4.45325200	-3.04504700	1.65029600
Н	-2.86202600	-1.79583500	3.08317200
Н	-0.93257500	-0.49514500	3.37113400
Н	0.46550900	-1.24859000	2.57606300
Н	-0.21624600	0.24887500	1.94102900
Н	-2.41768400	-3.36402900	-2.57208300
Н	-1.67549500	-1.76539900	-2.67893900
Н	-0.68956000	-3.15804700	-2.22670600
Н	6.26340500	0.20926800	-0.31662800
Н	0.03361800	-0.75170100	-1.25136000
Н	3.31319900	0.72446200	-1.07524000

 $((2S,4R)-N-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide)copper(I) phenylsulfinate-4-iodotoluene cation-\pi complex (15g)$

Geometry-optimised cartesian coordinates

E(RB3LYP) -3187.01556871 a.u.

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
Cu	-0.33493600	-0.39854900	-0.77836600
N	2.33858200	1.17883100	-0.71512400
С	1.48780600	2.24252800	-0.75480300
С	0.50555900	2.23870400	-1.94575900
N	-0.66420400	1.33632100	-1.62316700
0	1.46834200	3.12383800	0.10455900
С	-1.63908900	2.24496100	-0.94562900
С	-1.60093100	3.50751700	-1.80943500
С	-0.11538100	3.63568800	-2.19541100
S	0.21154400	-2.43953400	-0.14671500
0	-0.11277900	-2.76556100	1.29907100
0	-0.23038200	-3.49390800	-1.14479700
С	2.03330600	-2.45727300	-0.23123700
С	2.64047800	-2.32910900	-1.48593000
С	4.03395300	-2.29512600	-1.56938700
С	4.80728500	-2.38724600	-0.40481400
С	4.18906800	-2.51524800	0.84136800
С	2.79372900	-2.54353700	0.93425000
С	3.38392000	1.01706600	0.25196100
С	4.71386900	1.06937600	-0.20655700
С	5.74354300	0.90160800	0.72739700
С	5.45527400	0.69684500	2.07774300
С	4.12897400	0.64320200	2.50786900
С	3.06846700	0.79148800	1.60369900
С	1.64208200	0.69226700	2.07412500
С	5.01799800	1.29821100	-1.66690900

0	-2.33830000	3.29985000	-3.02664800
Н	1.00653200	1.83276700	-2.82674400
Н	-2.61767200	1.76930500	-0.89674800
Н	-1.28786700	2.43882400	0.06933600
Н	-1.97711200	4.38745400	-1.27712000
Н	0.38063100	4.38421800	-1.57668200
Н	-0.02733800	3.92884800	-3.24311600
Н	2.03072800	-2.26217000	-2.38279300
Н	4.51531400	-2.19550100	-2.53773700
Н	5.89004700	-2.34478000	-0.47031200
Н	4.78934300	-2.56756300	1.74392000
Н	2.29445800	-2.62176500	1.89401800
Н	6.77579300	0.93610400	0.39003700
Н	6.26323700	0.56942600	2.79261700
Н	3.90584200	0.46541200	3.55634300
Н	1.59447800	0.33528800	3.10594900
Н	1.13718700	1.66074000	2.01318700
Н	1.06995400	-0.00717700	1.45520700
H	6.09250600	1.41606100	-1.82691100
Н	4.68285000	0.45294500	-2.28094800
H	4.51180300	2.19294500	-2.04555700
Н	-3.28201300	3.25179400	-2.81705800
Н	2.36843800	0.57083000	-1.52540300
Н	-1.08619200	1.10828800	-2.52803300
С	-2.28332200	-0.23388000	1.70330300
С	-3.48397700	-0.13968900	0.99618300
С	-4.29124400	0.99397500	1.09181200
С	-3.86861400	2.06212100	1.89119900
С	-2.65703600	2.01310900	2.59628700
С	-1.88522700	0.84635200	2.49857800
Н	-1.66785200	-1.12779800	1.65923200
Н	-5.22772600	1.06078600	0.54879600
H	-4.49436400	2.94847700	1.95638000
H	-0.95275200	0.77265300	3.04955900
I	-4.07757600	-1.76027800	-0.28968300
С	-2.17611000	3.19068100	3.40991500
H	-3.00805900	3.82528000	3.72855600
H 	-1.62904400	2.86363900	4.29943800
Н	-1.49310900	3.81252900	2.81746700
E (RB3LYP)	-3469.41657294	a.u.	

((25,4R)-N-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide)copper(I) phenylsulfinate-4-iodotoluene oxidative addition transition state[‡]

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	-2.61930100	-0.61011800	-1.79756600
N	-1.98759600	-1.51140000	-0.76252400
Cu	-0.32360300	-0.91221500	0.31580600
N	-1.52393400	1.46490500	-1.12941800
С	-2.72717500	0.83175300	-1.25013500
С	-1.34717100	2.78213300	-0.61070100
0	-3.80371100	1.33785500	-0.93053200
С	-1.78637000	3.11149600	0.68926200
С	-1.53123900	4.40710900	1.16475400
С	-0.85538300	5.34522500	0.38594000
С	-0.42377000	4.99768600	-0.89640700

С	-0.66335400	3.72034400	-1.41622100
С	-2.49033300	2.12138300	1.58270800
С	-0.20868600	3.36419500	-2.81223900
C	-3.14531700	-2.07051100	-0.01277100
C	-4 15037400	-2 41150100	-1 10859100
c	-1 00333400	-1 23526200	-2 09902000
0	2 70200200	2 65460000	1 67559600
0	-3.70309200	-3.03400900	1 7(2)4000
5	0.88053800	-1.06113300	-1.76634000
C a	2.69298700	-1.124//000	-1./186/000
C	3.42968200	0.04526300	-1.91180200
C	4.82269900	-0.00498500	-1.8109/800
С	5.46133200	-1.21054000	-1.50020000
С	4.71010800	-2.37494000	-1.30064500
С	3.31757900	-2.33610500	-1.40904500
0	0.44845400	-2.35655500	-2.44219600
0	0.57346700	0.19452500	-2.59078600
Н	-1.95824000	-0.59695600	-2.66632800
Н	-1.85750600	4.66989700	2.16766500
Н	-0.66214100	6.34056500	0.77576000
Н	0.09936600	5,72721300	-1.50894400
н	-3 56642800	2 11018500	1 38458700
н	-2 13631900	1 10080600	1 41800400
н	-2 32933100	2 36770100	2 63578700
ч	-1 02932700	2 93466800	-3 39822100
и и	0 15934400	4 25053500	-3 33506400
11 U	0.50136900	2 61634900	-2 70065900
п	0.39130000	2.01034900	-2.79903000
п	-2.03341300	-2.93317300 1 20204900	0.57570700
п	-3.33367700	-1.30304800	0.00043000
н	-3.1/130200	-2.31414300	-0.72400400
H	-4./8991300	-0.49629700	-1.93503100
H	-4.06/85400	-1.58391200	-3.13260600
H 	-4.22990800	-3.85038500	-2.46240000
H 	2.91613300	0.97283300	-2.14093400
H	5.40765100	0.895/5500	-1.9/090000
H 	6.54336600	-1.24309100	-1.41292400
Н	5.20680100	-3.31036600	-1.06069200
H	2.72336500	-3.23237800	-1.26171000
H	-0.74121300	1.07117500	-1.67297400
H	-1.58711700	-2.28880600	-1.29941300
С	1.11684400	-0.25731000	1.55439900
С	2.31650700	-0.97583900	1.61255100
С	1.09736900	1.14096400	1.54935400
С	3.51581600	-0.26744100	1.56763600
H	2.31440600	-2.05830400	1.65936400
С	2.31587600	1.82305800	1.48159600
Н	0.16866600	1.69424000	1.57512400
С	3.53854000	1.13603400	1.49454500
Н	4.45026600	-0.82098100	1.57126300
Н	2.30294000	2.90899500	1.43646800
I	-0.74640400	-1.34064400	2.81679000
С	4.84508000	1.88334500	1.40390600
Н	5.65955100	1.32497600	1.87430900
Н	5.11843000	2.03858100	0.35308700
Н	4.77765500	2.86757700	1.87673100
E (RB3LYP)	-3469.40214604	a.u.	
ν	-100.11	$\rm Cm^{-1}$	

((2S,4R)-N-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide) p-tolyl(S-phenylsulfinyl)copper(III) iodide (16g)

Charge = 0	Multiplicity =	= 1	
ATOM	Х	Y	Z
С	2.59902500	-0.82537800	1.50788300
N	1.75267600	-1.74795000	0.65347900
Cu	0.10830300	-0.96725000	-0.28804100
N	1.76817400	1.38470300	0.89126600
С	2.82706600	0.52963800	0.79605100
С	1.77429700	2.75141200	0.46699400
0	3.87079400	0.79289300	0.19995800
С	1.94544900	3.09086200	-0.88936500
С	1.90492800	4.44985500	-1.23773600
С	1.68759200	5.43675500	-0.27699500
С	1.50665000	5.07693300	1.06098100
С	1.54973900	3.73485900	1.45575000
С	2.14114300	2.04376500	-1.95248900
С	1.36753100	3.35155000	2.90605600
С	2.74657800	-2.58635500	-0.07836300
С	3.76798500	-2.92580600	0.99957200
С	3.92194600	-1.59129600	1.75464700
0	3.15954200	-3.94230500	1.81247600
S	-0.86931700	-0.80467000	1.83021900
С	-2.67082800	-0.82271100	1.83898700
С	-3.36304500	0.38876600	1.86819900
С	-4.75829600	0.36124500	1.82209400
С	-5.43484800	-0.86056500	1.73843700
С	-4.72179500	-2.06498500	1.70663800
С	-3.32609200	-2.05330400	1.75130400
0	-0.42736500	-2.04986500	2.55529900
0	-0.46119600	0.50699100	2.46011200
H	2.04587900	-0.64416400	2.43091500
Н	2.03152300	4.72714700	-2.28086900
Н	1.65328300	6.48260200	-0.56871100
H	1.33806600	5.84406300	1.81186300
H	3.1///8300	1.69316600	-1.9/2/5300
H	1.521/9500	1.16448500	-1./6568500
H	1.88211900	2.43645500	-2.93923800
п u	1 34054600	2.70720300	3 53998500
н	0 43580300	2 79637400	3 06327500
н	2 25496300	-3 45848400	-0 50839600
Н	3,19424800	-1.99342000	-0.87743500
Н	4.71418300	-3.28483200	0.58013700
Н	4.75956500	-1.02357800	1.34435600
Н	4.10105200	-1.75081900	2.82044100
Н	3.71875900	-4.10988200	2.58323500
Н	-2.82070200	1.32546300	1.91829000
Н	-5.31378300	1.29361700	1.84194800
Н	-6.51971900	-0.87476400	1.69470800
Н	-5.24974500	-3.01142900	1.64377500
H	-2.75694400	-2.97624400	1.72303100
Н	1.02943400	1.13183900	1.55440800
H	1.29950100	-2.37738400	1.32670700
С	-1.45839800	-0.04087100	-0.96253900
C	-2.61168700	-0.71303200	-1.35479200
C	-1.39650900	1.34505400	-0.91110/00
	-3./4808100	1 70557400	-1.669/9900
С	-2.03037700	2 07928000	-1 23208600
н	-0 49658700	1 86913200	-0 61126900
 C	-3 73800400	1 44032700	-1 60611300
с Н	-4 65640300	-0.48245000	-1.96469600
H	-2.50984200	3.16440100	-1.17568700
I	0.63057600	-1.55774900	-2.73110900
С	-4.99260000	2.22969300	-1.89808800
Н	-5.53914500	1.80992600	-2.74876900
Н	-5.66882400	2.20857700	-1.03420400
Н	-4.76618600	3.27705600	-2.11726500
E(RB3LYP)	-3469.40923851	a.u.	

3.4. Oxidative addition to (bpy)Cu(SO₂Ph): Variation of ΔE_{OA}^{\dagger} aryl iodide 4-position substituent

Geometry optimisations, followed by a frequency calculation were carried out for each species. The geometryoptimised molecular coordinates (Å) and energies (B3LYP/6-31G+(d,p) for C, H, N, O, S, Cu & SDD/ ECP46MWB for I) are shown below (solvent = N,N-dimethylformamide).

3.4.1. Geometry optimisations of common species to all pathways

(2,2'-Bipyridyl)copper(I) phenylsulfinate (14b)

See section 3.3.1.3 for the previously reported geometry-optimised structure of (2,2'-Bipyridyl)copper(I) phenylsulfinate.

3.4.1.1. Aryl iodide: Iodobenzene (R = H)

lodobenzene (17a)

Geometry-opt	imised cartesian co	oordinates	
Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	3.36851600	0.00000100	0.0000000
С	2.66709300	-1.20966000	0.0000000
С	1.26689500	-1.21875100	0.0000000
С	0.58545000	-0.0000300	0.0000000
С	1.26689300	1.21875000	0.0000000
С	2.66708800	1.20966300	0.0000000
I	-1.57071400	0.0000000	0.0000000
Н	4.45420300	0.0000500	0.0000000
Н	3.20322600	-2.15426900	0.0000000
Н	0.72780800	-2.15965800	0.0000000
Н	0.72779800	2.15965300	0.0000000
Н	3.20322400	2.15427000	0.0000000
E (RB3LYP)	-243.08233067	a.u.	

(2,2'-Bipyridyl)copper(I) phenylsulfinate-iodobenzene cation- π complex (15a)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	1.51832100	-0.66719900	1.81660300
С	1.82492000	-2.65659500	0.64388100
С	3.00682200	-2.94034500	1.32548300
С	3.43854500	-2.04207900	2.30123700
С	2.68833800	-0.89335100	2.54904900
С	0.65932400	0.53675100	2.00257000
С	-1.34996000	1.56634700	1.43908700
С	-1.06912000	2.67453400	2.23788100
С	0.14067400	2.69884100	2.93100500
С	1.01782600	1.61959300	2.81292900
N	-0.51072200	0.52937800	1.32540900
N	1.09698100	-1.55566400	0.88460400
Cu	-0.70053400	-1.10774700	0.05223100

S	-2.56654500	-1.87036700	-0.85435200
0	-2.64790600	-1.86165900	-2.37581400
0	-3.09139000	-3.15085800	-0.21516000
С	-3.76586300	-0.58642800	-0.33818700
С	-4.24207800	-0.59587200	0.97702000
С	-5.05040200	0.45336800	1.42315900
С	-5.37247600	1.50747800	0.55859300
С	-4.89383300	1.50708100	-0.75653000
С	-4.08546200	0.45820300	-1.20880800
Н	1.43778000	-3.32214200	-0.11971700
Н	3.56324400	-3.84185100	1.09542200
Н	4.34885700	-2.22819700	2.86170900
Н	3.01532400	-0.18983800	3.30425000
Н	-2.26905000	1.49760300	0.86775800
Н	-1.77799000	3.49245900	2.30139700
Н	0.40481100	3.54679100	3.55461500
Н	1.96416300	1.63494600	3.33881000
Н	-3.97602000	-1.41324400	1.64017400
Н	-5.42385900	0.45166200	2.44312700
Н	-5.99365600	2.32627100	0.90968000
Н	-5.14595500	2.32224600	-1.42877900
Н	-3.70727800	0.44123200	-2.22546000
С	0.76961500	0.27792800	-2.03743600
С	1.69093700	1.13018800	-1.42257900
С	1.33801200	2.42275600	-1.03332400
С	0.03585000	2.87395800	-1.28225700
С	-0.89583100	2.04143000	-1.90627200
С	-0.53072700	0.74434600	-2.27936300
H	1.04773800	-0.72821000	-2.33089300
Н	2.05510200	3.07185800	-0.54344200
H	-0.24505600	3.87656500	-0.97431800
Н	-1.24828800	0.07500200	-2.74245600
I	3.69447600	0.43666100	-1.07505800
Н	-1.90693600	2.39287400	-2.08362500
E (RB3LYP)	-3159.24436218	a.u.	

 $(2,2'-Bipyridyl) copper (I) phenyl sulfinate-iodobenzene oxidative addition transition state^{\frac{1}{2}}$

Multiplicity =	= 1	
х	Y	Z
1.81372000	-0.90309300	-1.57066200
0.66743900	-2.83916200	-0.96321700
1.69438200	-3.65776400	-1.42790400
2.81780500	-3.05156500	-1.99339900
2.87999800	-1.66058600	-2.06666600
1.79276500	0.58306700	-1.56177200
0.56328300	2.47682500	-0.99016400
1.57884800	3.33089400	-1.41550700
2.74455700	2.76455000	-1.93175600
2.85615500	1.37638700	-2.00428400
0.66685000	1.14488100	-1.06627700
0.72500900	-1.50336600	-1.03757300
-0.69383900	-0.21403500	-0.27410900
0.29504300	-0.39238100	2.07322100
2.04179300	0.10889500	1.84064300
2.37282600	1.46753000	1.85827400
3.00081200	-0.85471500	1.51944100
	Multiplicity = X 1.81372000 0.66743900 1.69438200 2.81780500 2.87999800 1.79276500 0.56328300 1.57884800 2.74455700 2.85615500 0.66685000 0.72500900 -0.69383900 0.29504300 2.04179300 2.37282600 3.00081200	Multiplicity = 1 X Y 1.81372000 -0.90309300 0.66743900 -2.83916200 1.69438200 -3.65776400 2.81780500 -3.05156500 2.87999800 -1.66058600 1.79276500 0.58306700 0.56328300 2.47682500 1.57884800 3.33089400 2.74455700 2.76455000 2.85615500 1.37638700 0.66685000 1.14488100 0.72500900 -1.50336600 -0.69383900 -0.21403500 0.29504300 -0.39238100 2.04179300 0.10889500 2.37282600 1.46753000 3.00081200 -0.85471500

С	3.67972200	1.86230700	1.56101100
С	4.30832900	-0.45517300	1.22378600
С	4.64751900	0.90194800	1.24108700
0	0.39793100	-1.83357200	2.57549000
0	-0.22562200	0.58444000	3.13297800
Н	-0.23231900	-3.24785000	-0.51423600
Н	1.61025200	-4.73550700	-1.34683900
Н	3.63941900	-3.65220600	-2.36978100
Н	3.75024900	-1.18126000	-2.49672300
Н	-0.36106300	2.85623000	-0.57004900
Н	1.45566800	4.40491100	-1.33479500
Н	3.56373100	3.39256000	-2.26632800
Н	3.76313700	0.92761600	-2.38863200
Н	1.61252800	2.20277300	2.10216300
Н	2.71940900	-1.90270600	1.50007200
Н	3.94052800	2.91675700	1.56930100
Н	5.05643800	-1.20151200	0.97169200
Н	5.66047600	1.21191500	1.00081500
I	-2.92544100	-1.49345800	0.01484900
С	-2.39056600	0.89424400	-0.17470400
С	-2.44404800	1.65236700	0.99978300
С	-2.73217800	1.42728800	-1.42466800
С	-2.78803100	3.00550300	0.89725200
Н	-2.17245200	1.21833100	1.95538500
С	-3.07240200	2.78170200	-1.50103400
Н	-2.71415800	0.80783000	-2.31361800
С	-3.10890500	3.56839200	-0.34368600
Н	-2.80490900	3.61459700	1.79639700
Н	-3.31621900	3.21335800	-2.46729800
Н	-3.38609800	4.61591600	-0.40880300
E (RB3LYP)	-3159.22500982	a.u.	

ν -88.96 cm⁻¹

(2,2'-Bipyridyl) phenyl(S-sulfinylphenyl)copper(III) iodide (16a)

Charge = 0	Multiplicity =	: 1	
ATOM	x	Y	Z
С	-1.89194400	-1.38884800	-0.13030300
С	-0.99456300	-1.20630200	-2.28011400
С	-2.07389400	-1.87282200	-2.84992500
С	-3.09578400	-2.31272800	-2.00728300
С	-3.00385200	-2.07057500	-0.63839600
С	-1.71950600	-1.06329700	1.30987800
С	-0.41030100	0.01030000	2.89192700
С	-1.29624200	-0.30214700	3.92315900
С	-2.43746800	-1.04062700	3.60911700
С	-2.65468500	-1.42625900	2.28701400
N	-0.60903900	-0.36324200	1.62295300
N	-0.91179900	-0.96979200	-0.96175400
Cu	0.72020000	-0.04183400	-0.22159300
S	-0.10919300	2.08274500	-0.66078100
С	-1.91526600	1.94890100	-0.48875600
С	-2.48643100	2.11811600	0.77426600
С	-2.68789500	1.63541600	-1.60878000
С	-3.86751600	1.96351800	0.91633500
С	-4.06792800	1.48336600	-1.45479500
С	-4.65570100	1.64085400	-0.19423000
0	0.14560100	2.37422800	-2.11225300

0	0.29672100	3.13055200	0.32985400
Н	-0.16841100	-0.84283300	-2.88068100
Н	-2.10603000	-2.03694200	-3.92069600
Н	-3.95749400	-2.83542700	-2.40895500
Н	-3.79538100	-2.40449100	0.01955300
Н	0.48586900	0.58915800	3.08688400
Н	-1.09230400	0.02717500	4.93583500
Н	-3.15376500	-1.30908100	4.37872100
Н	-3.54259000	-1.99035600	2.03158200
Н	-1.86265900	2.36319000	1.62624200
Н	-2.21573200	1.51408200	-2.57693700
Н	-4.32372100	2.08876800	1.89345300
Н	-4.68009200	1.23679100	-2.31684700
Н	-5.72756800	1.51209900	-0.07754900
I	2.09190000	-2.26745600	-0.16170800
С	2.39818800	0.89453500	0.01187400
С	3.07127900	1.34303000	-1.12074300
С	2.88917600	1.12052000	1.29413900
С	4.26260700	2.06516300	-0.95969100
Н	2.66911000	1.16191800	-2.11196700
С	4.07966800	1.84499100	1.44533200
Н	2.37632800	0.73568800	2.16730000
С	4.76555300	2.31753900	0.32103000
Н	4.78918500	2.42828700	-1.83823700
Н	4.46883800	2.02787200	2.44336000
Н	5.68933900	2.87572300	0.44260700
E (RB3LYP)	-3159.23128040	a.u.	

3.4.1.2. Aryl iodide: 4-Iodotoluene (R = Me)

See section 3.3.1.1 for the previously reported geometry-optimised structure of 4-iodotoluene (**17b**). Additionally, see section 3.3.1.3 for the previously reported geometry-optimised structures of (2,2'-bipyridyl)copper(I) phenylsulfinate (**14b**), (2,2'-bipyridyl)copper(I) phenylsulfinate-4-iodotoluene cation- π complex (**15b**), (2,2'-bipyridyl)copper(I) phenylsulfinate-4-iodotoluene oxidative addition transition state[†] and (2,2'-bipyridyl) *p*-tolyl(*S*-sulfinylphenyl)copper(II) iodide (**16b**).

3.4.1.3. Aryl iodide: 4-lodoanisole (R = OMe)

4-lodoanisole (17c)

		-	
Geometry-opti	mised cartesian co	ordinates	
Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	0.58897600	-1.08107500	-0.00000100
С	1.98719100	-0.98523800	-0.00000200
С	2.59925200	0.27598400	-0.00000100
С	1.80558300	1.43490200	0.0000000
С	0.41576600	1.33940300	0.0000000
С	-0.18548300	0.07619500	-0.00000100
0	3.94772700	0.48099400	-0.00000100
I	-2.33382900	-0.07828000	0.0000000
С	4.81412800	-0.65834100	0.0000300
Н	0.12670200	-2.06210300	-0.00000300
Н	2.57215200	-1.89668000	-0.00000200
Н	2.29117900	2.40558200	0.0000000
Н	-0.18283400	2.24365500	0.00000100
Н	5.82822900	-0.25864800	0.00000400
Н	4.66161500	-1.27096400	0.89625700
Н	4.66161800	-1.27096700	-0.89625000
E (RB3LYP)	-357.61578516	a.u.	

Charge = 0	Multiplicity :	= 1	
ATOM	х	Y	Z
С	1.57983300	-1.16991000	1.62606000
C	2.05472100	-2.70222000	-0.06221700
C	3 22752000	-3 11587900	0 56725500
c	2 57071100	2 52111000	1 70070700
	3.37071100	-2.52111900	1.70070700
C	2.74079400	-1.535/8600	2.31458500
С	0.62244400	-0.14447100	2.13057600
С	-1.46718300	0.83771900	1.83988500
С	-1.29791200	1.65779500	2.95419600
С	-0.09973300	1.56851800	3.66368200
С	0.87273700	0.65778100	3.25016700
Ν	-0.53272200	-0.03434200	1.43855600
N	1 24989800	-1 76083400	0 45245800
Cu	-0 54031700	-1 16643100	-0 30888900
c	2 22104700	1 74012200	1 49251500
5	-2.32104700	-1.74012200	-1.46551500
0	-2.46155400	-1.12905100	-2.86906200
0	-2.65080100	-3.23619800	-1.43686100
С	-3.65434000	-0.96248200	-0.50473000
С	-4.12036500	-1.60329400	0.64788700
С	-5.03819200	-0.94881300	1.47458200
С	-5.48024500	0.34010400	1.14965300
С	-5.00709700	0.97272100	-0.00545500
С	-4.08750400	0.32349500	-0.83664800
Н	1.73867900	-3.12914600	-1.00765400
н	3 84657800	-3 88122400	0 11311800
п ц	4 47302900	-2 81/98600	2 30685800
и и	2 00619900	_1 06070100	2.50005000
11	2.33010000	0 07142200	1 24162200
п	-2.3/1/0300	0.0/143300	1.24103200
н	-2.08143900	2.34806500	3.2463/300
H	0.0/984200	2.19845100	4.52891200
Н	1.80841300	0.58663100	3./9056800
H	-3.76458700	-2.59984100	0.89061500
Н	-5.40545300	-1.44115100	2.37052100
Н	-6.18806100	0.84996400	1.79679900
Н	-5.34726600	1.97324300	-0.25639000
Н	-3.69319000	0.81332000	-1.71908200
С	1.02678800	0.75480300	-1.81413600
С	1.93416100	1.36557500	-0.94028300
С	1.53757400	2.43368000	-0.14091500
C	0.22628700	2,92088800	-0.22234300
C	-0.68311700	2 32687300	-1 10531300
C	-0 28185500	1 23/11300	-1 89336500
	1 22224100	1.23411300	2 42072200
п 11	1.32324100	-0.08633800	-2.43073200
п	2.23143400	2.099/0600	0.54965400
H 	-0.061/6200	3.74946100	0.41238000
H	-1.00015200	0.76045000	-2.55472800
I	3.95327200	0.64780200	-0.83422900
0	-1.97732300	2.72186500	-1.26199500
С	-2.46961700	3.79965900	-0.46071800
Н	-1.92048800	4.72640800	-0.66329300
Н	-3.51452100	3.92464900	-0.74415000
Н	-2.40755300	3.55846200	0.60633300
E (RB3LYP)	-3273.78040421	a.u.	

(2,2'-Bipyridyl)copper(I) phenylsulfinate-4-iodoanisole oxidative addition transition state⁺

Geometry-opti	mised cartesian co	ordinates	
Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	2.37167400	-0.19535500	-1.52718600
С	2.20686500	-2.42619600	-0.87264800
С	3.51421100	-2.69546900	-1.27117100
С	4.26389200	-1.65589400	-1.82471700
С	3.68871800	-0.39242300	-1.95456800
С	1.67434000	1.11557100	-1.58480700
C	-0.29808900	2.25467900	-1.09873500
C	0.22222800	3.46230600	-1.55974100
C	1.52/99/00	3.4/381500	-2.05087900
	2.26497300	2.28994200	-2.06220700
N	0.40588400	1.11/14600	-1.11/00100
N Cu	1.65254000	-1.21406300	-1.0021/100
cu	-0.21397800	-0.39351700	-0.30803300
5 C	2 03461600	0.30331700	2.00447000
C	1 65373100	2 25001100	1 81367000
C	3 35222400	0 53053800	1 56811900
C	2 60466600	3 22940900	1.51670900
C	4.30190100	1.51472600	1.27363400
C	3,92861500	2.86251600	1.24399600
0	1.53853100	-1.59587300	2.56460700
0	-0.18309900	0.21285100	3.12498200
Н	1.57251700	-3.18952000	-0.43346000
Н	3.92659800	-3.69038600	-1.14771900
Н	5.28637900	-1.82250700	-2.14756800
Н	4.26503800	0.42327900	-2.37221400
Н	-1.30180000	2.18314000	-0.69590600
Н	-0.38093900	4.36244500	-1.52618400
Н	1.97429100	4.39379600	-2.41399000
Н	3.28325300	2.29160200	-2.42963200
Н	0.62327700	2.52202300	2.02016000
H	3.62286400	-0.52039800	1.58449500
H	2.31236800	4.27521300	1.48814200
Н	5.32742000	1.22//3/00	1.05850600
H	4.66402200	3.62492/00	1.00355800
	-1.61460300	-2.84198400	0.02192000
C	-2.20034900	-0.42962600	-0.20329700
C	-2 78880200	-0 15028600	-1 44917700
C	-3 54093500	1 26826900	0 85863200
Н	-2.14667400	0.00468500	1.91245500
C	-3.72453300	0.87424300	-1.53700500
H	-2.50139400	-0.70535500	-2.33439800
С	-4.10863900	1.58716000	-0.38574100
Н	-3.81434800	1.80651300	1.75791800
Н	-4.17238700	1.13297200	-2.49114900
0	-5.03445900	2.56417000	-0.58133000
С	-5.48909100	3.31955900	0.54870500
Н	-4.66225100	3.86846900	1.01347100
Н	-6.22071000	4.02524600	0.15562000
Н	-5.96662000	2.66904900	1.29001400
_ . ·			
E (RB3LYP)	-3273.75962766	a.u.	
ν	-/2.09	Cm ⁻¹	

(2,2'-Bipyridyl) 4-methoxyphenyl(S-sulfinylphenyl)copper(III) iodide (16c)

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1 ATOM X Y Z C 2.54735900 0.99558500 0.07498500 C 1.78615300 1.21822500 -2.12303000

E (RB3LYP)	-3273.76375302	a.u.	
	0.0102,000	2.00/00/00	1.01101100
H	-6.34627600	-2.53790400	1.51154400
H	-7.82120400	-2.05055800	0.63080500
Н	-6.90015200	-0.83432100	1.55876200
č	-6.82367800	-1.73472900	0.93750100
0	-6.10975700	-1.46889700	-0.27249000
н Н	-4 59061800	-1 04048000	2.33103200
ч	-4 715/1300	-0 94563100	-2 33185200
п	-2.20090000	-0.20349300	_0 19372300
U U	-4.11/18900	-U.003012UU	1 02110400
п	-2.34394500	-0.19023600	-2.3/531600
C	-4.16651800	-0./9/59800	-1.40662200
C	-2./8296100	-0.42/8/800	0.99286800
C	-2.83946500	-0.36663600	-1.42654300
C	-2.15457100	-0.20056500	-0.22301100
⊥ C	-1.1123/600	2./99//600	-0.05290000
н т	5.58/23000	-2.1316/300	0.02509300
н	4./9/86300	-2.02241300	-2.22463300
п	3.94866400	-3.12239100	1.005551000
H	2.36216/00	-1.6/832/00	-2.63391400
H	1.51760100	-2.77531000	1.43956000
H	4.13276500	1.00382100	2.36628300
H 	3.42623500	0.24684800	4.61365300
H	1.07477700	-0.59826300	4.93349700
H	-0.4519//00	-0.61589/00	2.95948500
H	4.62038200	1.50/71900	0.41753500
H	5.05014700	2.09327400	-1.94529500
H	3.1/4/3100	1.89507300	-3.61667800
H	0.94278000	1.11572600	-2.79682900
0	-0.66189700	-2.89234700	-0.03815700
0	-0.16200300	-1.97541900	-2.37621200
С	4.52626300	-2.58971600	-0.15740700
C	4.08425300	-2.18849500	-1.42345500
C	3.60622200	-2.80839000	0.87430400
С	2.72170200	-1.99188200	-1.66055900
C	2.24124000	-2.61522700	0.64852400
С	1.81806100	-2.20622000	-0.61790500
S	0.04791300	-1.88587900	-0.89112700
Cu	-0.29474600	0.32761200	-0.27337200
N	1.55738800	0.89692700	-0.84030400
N	0.93875600	0.16221500	1.65264300
С	3.12169100	0.64896300	2.51996200
С	2.72498100	0.22035900	3.78597800
С	1.42316600	-0.24685700	3.96875600
С	0.56642500	-0.25453700	2.86791600
С	2.20118800	0.60081800	1.46577400
С	3.82129800	1.43085100	-0.30807500
С	4.06376200	1.76020500	-1.63986300
C	3.02929100	1.65240900	-2.57049300
C	1 78615300	1 21822500	-2 12303000
-			

3.4.1.4. Aryl iodide: 1-lodo-4-nitrobenzene (R = NO₂)

1-lodo-4-nitrobenzene (17d)

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity	= 1	
ATOM	х	Y	Z
С	0.26770700	1.22014200	0.00003100
С	1.66149900	1.22191900	0.00004300
С	2.33760000	0.00006400	0.00004800
С	1.66166000	-1.22178500	0.00005800
С	0.26787900	-1.22019000	0.00004600
С	-0.41637800	-0.00001900	0.00002800
N	3.80324700	-0.00000100	0.00003100
I	-2.55508900	-0.00001700	-0.00001500
0	4.38936400	-1.08791300	-0.00008900
0	4.38920500	1.08792500	-0.00004800
Н	-0.26913900	2.16135200	0.00001400
Н	2.21310400	2.15346000	0.00003600
Н	2.21339900	-2.15327900	0.00006600
Н	-0.26872400	-2.16149700	0.00004500
E (RB3LYP)	-447.59523531	a.u.	

(2,2'-Bipyridyl)copper(I) phenylsulfinate-1-iodo-4-nitrobenzene cation- π complex (15d)

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	1.80420900	-1.17192600	1.66842900
С	2.39607900	-2.66646700	-0.01953300
С	3.62845100	-2.93314600	0.57411100
С	3.94213600	-2.28191500	1.76640500
С	3.02205400	-1.39128600	2.31935800
С	0.75229700	-0.25450200	2.19279300
С	-1.43566000	0.49767400	1.94280300
С	-1.32981300	1.34311000	3.04649700
С	-0.11533500	1.38463200	3.73119900
С	0.93889100	0.57710200	3.30257700
N	-0.42290000	-0.27337900	1.52500600
N	1.50726300	-1.81298100	0.51153500
Cu	-0.33087000	-1.42228500	-0.22456000
S	-2.00682600	-1.85158100	-1.59024000
0	-2.06572800	-1.00958100	-2.85740200
0	-2.28860800	-3.33138000	-1.81672800
С	-3.42568700	-1.26475700	-0.59300200
С	-3.80165900	-2.00120500	0.53594400
С	-4.78565300	-1.49539300	1.38914600
С	-5.38174100	-0.25669300	1.11654200
С	-4.99972000	0.47128800	-0.01535700
С	-4.01703500	-0.03259800	-0.87572100
Н	2.10068600	-3.14002700	-0.94896000
H	4.31568700	-3.63014900	0.10839300
Н	4.89010400	-2.46112100	2.26292900
Н	3.25399400	-0.88611300	3.24837500
Н	-2.35381500	0.42847100	1.36918600

Н	-2.17414300	1.95352600	3.34553800
Н	0.01546700	2.03834800	4.58734500
Н	1.88759800	0.60977000	3.82322600
Н	-3.32261700	-2.95281800	0.74675900
Н	-5.08183400	-2.06140000	2.26758800
Н	-6.13764300	0.14011900	1.78786900
Н	-5.45578300	1.43385600	-0.22703800
Н	-3.70203000	0.52697000	-1.74864200
С	0.73897100	1.04861600	-1.71777200
С	1.73759200	1.51833000	-0.85729500
С	1.45826400	2.47184000	0.12857000
С	0.16782700	2.98404300	0.23774700
С	-0.81109600	2.54241100	-0.65529000
С	-0.54986400	1.57656500	-1.62731000
Н	0.94859600	0.28512700	-2.45755200
Н	2.23068300	2.81814500	0.80472200
Н	-0.07410200	3.71878500	0.99505200
Н	-1.33032900	1.20311100	-2.27809600
I	3.72884300	0.77958200	-1.05732100
N	-2.15925500	3.10075400	-0.55501500
0	-2.94199800	2.91091600	-1.49153300
0	-2.45510800	3.73429800	0.46462200
	-2262 76005027	2 11	
E (KDSLIP)	-2202.10002921	a.u.	

(2,2'-Bipyridyl)copper(I) phenylsulfinate-1-iodo-4-nitrobenzene oxidative addition transition state[†]

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	2.41632500	0.05601000	-1.59920800
С	2.51814300	-2.19858900	-1.01030100
С	3.81573700	-2.32213800	-1.50112500
С	4.41838400	-1.19763100	-2.06789200
С	3.71373100	0.00459600	-2.11803500
С	1.58994300	1.28932000	-1.56284000
С	-0.45761700	2.20676200	-0.93545700
С	-0.07589800	3.48066000	-1.34927500
С	1.19856100	3.64353800	-1.89214700
С	2.04251200	2.53858400	-1.99784400
N	0.34708600	1.14349200	-1.04591900
N	1.83986400	-1.04505800	-1.06383900
Cu	-0.02024500	-0.73581800	-0.27950900
S	0.94921800	-0.40710400	2.05212800
С	2.11721600	0.98419700	1.83117900
С	1.63472700	2.29597800	1.87886600
С	3.44574400	0.72275600	1.48796900
С	2.49634800	3.35659300	1.58805400
С	4.30497800	1.78821500	1.19971900
С	3.83064700	3.10350100	1.24590500
0	1.84216400	-1.56810800	2.48577100
0	-0.00130200	0.07959600	3.14976200
Н	1.99508400	-3.03400200	-0.55666200
Н	4.33233700	-3.27296500	-1.43762300
Н	5.42746600	-1.25159000	-2.46301700
Н	4.17608000	0.88427100	-2.54731800
Н	-1.43025900	2.02349700	-0.49459600
Н	-0.75949700	4.31463300	-1.23922500
Н	1.53946300	4.61972300	-2.22079300
Н	3.03932100	2.65761700	-2.40249000
Н	0.59731700	2.47866100	2.14075100

3.79475000	-0.30407800	1.44757700
2.12601700	4.37720500	1.61924400
5.33876600	1.58994200	0.93124800
4.49600700	3.92927700	1.01105900
-1.21496400	-3.01147200	-0.00953800
-2.02940900	-0.72589400	-0.09070000
-2.45864800	-0.16032700	1.12089100
-2.65803800	-0.41830500	-1.31155200
-3.49056100	0.77334700	1.09866300
-1.95991100	-0.40012200	2.05312700
-3.68893700	0.51466800	-1.32842000
-2.33382900	-0.88762700	-2.23227000
-4.09620800	1.09569500	-0.12181000
-3.82091200	1.24872100	2.01391600
-4.17399100	0.78546300	-2.25783500
-5.18120600	2.07108600	-0.13831300
-5.54210000	2.56715600	0.93636000
-5.69348500	2.36209200	-1.22679700
-3363.73831340	a.u.	
-66.53	Cm^{-1}	
	3.79475000 2.12601700 5.33876600 4.49600700 -1.21496400 -2.02940900 -2.45864800 -2.65803800 -3.49056100 -1.95991100 -3.68893700 -2.33382900 -4.09620800 -3.82091200 -4.17399100 -5.18120600 -5.54210000 -5.69348500 -3363.73831340 -66.53	3.79475000 -0.30407800 2.12601700 4.37720500 5.33876600 1.58994200 4.49600700 3.92927700 -1.21496400 -3.01147200 -2.02940900 -0.72589400 -2.45864800 -0.16032700 -2.65803800 -0.41830500 -3.49056100 0.77334700 -1.95991100 -0.40012200 -3.68893700 0.51466800 -2.33382900 -0.88762700 -4.09620800 1.09569500 -3.82091200 1.24872100 -4.17399100 0.78546300 -5.54210000 2.56715600 -5.69348500 2.36209200

(2,2'-Bipyridyl) 4-nitrophenyl(S-sulfinylphenyl)copper(III) iodide (16d)

Charge = 0	Multiplicity =	: 1	
ATOM	Х	Y	Z
С	2.71675500	0.92816300	-0.08436000
С	1.84569200	1.03011400	-2.25200600
С	3.07734400	1.38525200	-2.79108900
С	4.16373000	1.51452500	-1.92450600
С	3.98243200	1.28581200	-0.56223800
С	2.43047800	0.64601500	1.34642200
С	0.84108800	-0.04557500	2.88487600
С	1.75277600	0.00898900	3.93906300
С	3.05846100	0.41334600	3.65977000
С	3.40443600	0.73590100	2.34819500
N	1.16518300	0.26876100	1.62558900
N	1.67667000	0.80498100	-0.93953500
Cu	-0.14903400	0.34529700	-0.24127100
S	0.06911100	-1.92020700	-0.69527000
С	1.83693800	-2.28553700	-0.49915600
С	2.31892000	-2.61705000	0.76877200
С	2.68117600	-2.18257200	-1.60674300
С	3.68719300	-2.84832300	0.92829700
С	4.04725900	-2.41597200	-1.43385400
С	4.54976500	-2.74197400	-0.16863400
0	-0.24307300	-2.11906500	-2.14813400
0	-0.63232000	-2.79766900	0.29239100
H	0.96396800	0.91546300	-2.87241100
H	3.17435500	1.55176100	-3.85750500
H	5.14326500	1.78720600	-2.30292400
H	4.82158100	1.37952800	0.11437700
H	-0.18268600	-0.36096500	3.05304700
H	1.44245000	-0.25919900	4.94268500
H	3.80132600	0.47297900	4.44842700
Н	4.41733300	1.04254000	2.12035700
Н	1.63886800	-2.68990900	1.60965600
Н	2.27506200	-1.92720700	-2.57870800
Н	4.07705300	-3.10420900	1.90854400
Н	4.71654400	-2.33763700	-2.28494000

Н	5.61399400	-2.91290500	-0.03778200
I	-0.88871800	2.84643300	-0.13218800
С	-2.01894700	-0.09280200	-0.09731000
С	-2.74974000	-0.29405200	-1.27111200
С	-2.61202100	-0.24233400	1.15804800
С	-4.09038900	-0.66798100	-1.19424600
Н	-2.27621100	-0.18596000	-2.24028400
С	-3.95155100	-0.61495100	1.24845200
Н	-2.05047800	-0.06181400	2.06563700
С	-4.67284000	-0.82408200	0.06796700
Н	-4.67373800	-0.83869600	-2.09063900
Н	-4.43142800	-0.73741000	2.21155700
N	-6.07644100	-1.21632800	0.15654300
0	-6.70667600	-1.39527500	-0.89353900
0	-6.58100800	-1.35501800	1.27831000

E(RB3LYP) -3363.74734701 a.u.

3.4.1.5. Aryl iodide: 1-Fluoro-4-iodobenzene (R = F)

<u>1-Fluoro-4-iodobenzene (17e)</u>

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	-0.89711600	1.21774400	-0.00000200
С	-2.29621500	1.21947100	0.00000100
С	-2.96148300	0.0000100	-0.00000200
С	-2.29621500	-1.21947000	-0.00000200
С	-0.89711600	-1.21774400	0.00000100
С	-0.21269000	0.0000000	-0.00000100
F	-4.32490900	-0.00000100	0.00000200
I	1.93823500	0.00000000	0.0000000
H	-0.36212200	2.16051700	-0.00000100
H	-2.85651300	2.14798000	0.00000100
H	-2.85651600	-2.14797700	-0.00000100
H	-0.36212200	-2.16051700	0.00000100

E(RB3LYP) -342.32201426 a.u.

(2,2'-Bipyridyl)copper(I) phenylsulfinate-1-fluoro-4-iodobenzene cation- π complex (15e)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	1.54719200	-1.02707400	1.70956200
С	1.95696800	-2.71926800	0.16121700
С	3.14052400	-3.08955500	0.79718800
С	3.52172100	-2.39079900	1.94206400
С	2.71881500	-1.34767100	2.40230200
С	0.62343800	0.06424000	2.13166700
С	-1.44611600	1.06940900	1.78240300
С	-1.23106200	1.99351400	2.80422300
С	-0.02197100	1.94130900	3.49761000
С	0.91824500	0.96727600	3.15920600
N	-0.54425700	0.13468700	1.45464300
N	1.17861300	-1.72084400	0.60536700
Cu	-0.61841600	-1.18959100	-0.15910300

S	-2.40087200	-1.68762100	-1.36109100
0	-2.43950600	-1.13705100	-2.78123800
0	-2.85532100	-3.13751500	-1.24736900
С	-3.69438000	-0.73808000	-0.47947500
С	-4.18074900	-1.22865200	0.73723700
С	-5.06623100	-0.45019800	1.48726700
С	-5.45585300	0.81320300	1.02347700
С	-4.96433400	1.29508800	-0.19461600
С	-4.07747000	0.51969400	-0.95014800
Н	1.61063800	-3.22801000	-0.73142300
Н	3.73797300	-3.90290800	0.40143000
Н	4.43270400	-2.64929100	2.47184700
Н	3.00424900	-0.80126600	3.29222700
Н	-2.36217600	1.07052400	1.20141100
Н	-1.98894300	2.73331700	3.03601000
Н	0.19249800	2.64977800	4.29115200
Н	1.86362000	0.92597000	3.68541700
Н	-3.86342700	-2.20476700	1.09122500
Н	-5.44807900	-0.82538100	2.43238100
Н	-6.13751600	1.42021600	1.61206300
Н	-5.26361500	2.27516900	-0.55460800
Н	-3.68073300	0.88444900	-1.89086700
С	0.82402300	0.79408000	-1.87619000
С	1.78852900	1.38942800	-1.05839800
С	1.49121900	2.52235900	-0.29764000
С	0.21240500	3.08381400	-0.37037500
С	-0.72712700	2.49019000	-1.20264300
С	-0.45783300	1.35426000	-1.95388000
H	1.04998100	-0.09483000	-2.45409700
Н	2.23589200	2.97235800	0.34860400
H	-0.05023300	3.95867500	0.21362000
Н	-1.22485900	0.88859000	-2.56266000
I	3.76238300	0.55751500	-0.97691100
F	-1.97420800	3.03771000	-1.26884200
E (RB3LYP)	-3258.48453869	a.u.	

(2,2'-Bipyridyl)copper(I) phenylsulfinate-1-fluoro-4-iodobenzene oxidative addition transition state[‡]

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	2.07228400	-0.58805300	-1.59307200
С	1.35253400	-2.73050700	-1.02415700
С	2.52329200	-3.31037400	-1.50744400
С	3.49492100	-2.47466600	-2.06120700
С	3.26891800	-1.09953800	-2.10560200
С	1.74575900	0.86105200	-1.55498700
С	0.15859200	2.44986800	-0.93906000
С	0.97264500	3.50279900	-1.35116100
С	2.22502800	3.19830600	-1.88501400
С	2.61906900	1.86450300	-1.98661700
N	0.53239900	1.16944700	-1.04339800
N	1.13346300	-1.41017900	-1.07051700
Cu	-0.51104700	-0.45884100	-0.27709700
S	0.50883900	-0.47172500	2.06338400
С	2.11343000	0.38213600	1.83914700
С	2.15590500	1.77952800	1.87447400
С	3.25027000	-0.35851200	1.50704700

С	3.35221500	2.43969900	1.58281100
С	4.44631100	0.30659200	1.21753400
С	4.49715100	1.70425300	1.25170100
0	0.90609600	-1.86936600	2.54062300
0	-0.19933500	0.36061800	3.13801000
Н	0.55894400	-3.32499800	-0.58270200
Н	2.66289200	-4.38380100	-1.44900700
Н	4.42046700	-2.88560000	-2.45104100
Н	4.01915300	-0.44228400	-2.52643600
Н	-0.81916900	2.62352900	-0.50493400
Н	0.63192900	4.52663900	-1.24710900
Н	2.89422100	3.98786300	-2.21069500
Н	3.59516200	1.61930300	-2.38524800
Н	1.26010000	2.33804700	2.12692200
Н	3.19157300	-1.44180400	1.47627300
Н	3.38926000	3.52508700	1.60428700
Н	5.33242200	-0.26556800	0.95744200
Н	5.42361500	2.22001800	1.01608000
I	-2.42142000	-2.18011800	0.00336500
С	-2.39054000	0.27108700	-0.12868100
С	-2.59748600	0.97234500	1.06600900
С	-2.86269700	0.75048700	-1.35936000
С	-3.23246500	2.21663500	1.01508400
Н	-2.22434200	0.58808600	2.00865100
С	-3.49553800	1.99492400	-1.40621400
H	-2.72392700	0.17576200	-2.26708000
С	-3.67015700	2.69428800	-0.21627000
H	-3.38441000	2.80462000	1.91379200
H	-3.85184800	2.40992900	-2.34265900
F	-4.29706700	3.90215800	-0.25940800
E (RB3LYP)	-3258.46444549	a.u.	

ν −80.50 cm⁻¹

(2,2'-Bipyridyl) 4-fluorophenyl(S-sulfinylphenyl)copper(III) iodide (16e)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	2.24498400	1.16679800	-0.13627500
С	1.34315200	1.08463200	-2.29106000
С	2.50795900	1.58836900	-2.85971300
С	3.57596500	1.89242300	-2.01418900
С	3.44380200	1.68120600	-0.64343400
С	2.01805600	0.88834400	1.30616600
С	0.55373600	0.04375200	2.89102600
С	1.46532900	0.24652600	3.92720200
С	2.70444000	0.80559400	3.61352200
С	2.98689400	1.13114300	2.28759300
N	0.81684900	0.35802400	1.61774300
N	1.22094000	0.87882100	-0.97052000
Cu	-0.52636400	0.19896500	-0.23257000
S	-0.00638900	-2.02280300	-0.65161400
С	1.79776200	-2.14507100	-0.46172200
С	2.32744900	-2.37555000	0.80964100
С	2.61638200	-1.95908300	-1.57753800
С	3.71521100	-2.41608900	0.96422500
С	4.00251900	-2.00174800	-1.41054600
С	4.55076700	-2.22352000	-0.14186400
0	-0.28991800	-2.28504100	-2.10211100

0	-0.57051600	-2.98671000	0.34515300
Н	0.47846000	0.83047800	-2.89380800
Н	2.56895600	1.73387600	-3.93190300
Н	4.50391900	2.28637600	-2.41520900
Н	4.26977500	1.91016100	0.01710700
Н	-0.41896300	-0.39420500	3.08617900
Н	1.20597000	-0.02850300	4.94339800
Н	3.44493200	0.98258300	4.38666900
Н	3.94884100	1.55719900	2.03269800
Н	1.66794300	-2.51684300	1.65822300
Н	2.17470100	-1.78557300	-2.55205700
Н	4.14051700	-2.59074900	1.94763400
Н	4.65096600	-1.85619100	-2.26899500
Н	5.62896300	-2.24595400	-0.01534600
I	-1.56658400	2.59724600	-0.16314000
С	-2.31983500	-0.49363400	-0.04230200
С	-3.04363200	-0.79102400	-1.19490100
С	-2.85248900	-0.71173100	1.22548200
С	-4.32837900	-1.33912900	-1.08205100
Н	-2.61556200	-0.62274600	-2.17710000
С	-4.13575900	-1.25907200	1.35082600
Н	-2.29595800	-0.45753100	2.11893500
С	-4.83968900	-1.55935600	0.19089700
Н	-4.91564300	-1.59029400	-1.95909100
Н	-4.57960200	-1.44284300	2.32361000
F	-6.09458900	-2.09278000	0.30833300
E (RB3LYP)	-3258.47145376	a.u.	
3.5. Reductive elimination from copper(III)

3.5.1. Reductive elimination pathways via an O-bound or S-bound copper(III) sulfinate

Geometry optimisations, followed by a frequency calculation were carried out for each species. The geometryoptimised molecular coordinates (Å) and energies (B3LYP/6-31G+(d,p) for C, H, N, O, S, Cu & SDD/ ECP46MWB for I) are shown below (solvent = N,N-dimethylformamide).

3.5.1.1. Geometry optimisations of common species to both pathways

(2,2'-Bipyridyl)copper(I) iodide

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

onarge o	TIGT CTDTTCTCT	<u> </u>	
ATOM	х	Y	Z
С	2.24889300	-0.74598400	-0.00055300
С	2.24873300	0.74626900	0.00055200
С	3.42000400	-1.51236600	-0.03237300
Ν	1.03052400	-1.33444400	0.02793900
С	3.41968000	1.51290400	0.03234000
Ν	1.03023900	1.33446200	-0.02790700
С	3.32477100	-2.90416700	-0.02909700
С	0.94313000	-2.67277400	0.03063600
С	2.06435300	-3.50157100	0.00461300
С	3.32414200	2.90468400	0.02906500
С	0.94255000	2.67276900	-0.03060100
С	2.06359200	3.50181300	-0.00461000
Cu	-0.55683500	-0.00023100	0.00001800
I	-3.08073900	-0.00008200	-0.00001000
Н	4.39465000	-1.04198800	-0.06402300
Н	4.39442900	1.04273800	0.06396300
Н	4.22469400	-3.51006600	-0.05379900
Н	-0.06217400	-3.08060200	0.05469100
Н	1.94563600	-4.57927100	0.00901500
Н	4.22393400	3.51078000	0.05374100
Н	-0.06284600	3.08037600	-0.05462600
Н	1.94464100	4.57948700	-0.00900800
E (RB3LYP)	-2147.32202298	a.u.	

3.5.1.2. O-bound sulfinate pathway: Ground state and transition state geometry optimisations

(2,2'-Bipyridyl) p-tolyl(O-sulfinylphenyl)copper(III) iodide (18)

Geometry	opermised carcestan e	Soorarnaces	
Charge =	0 Multiplicity	= 1	
ATOM	х	Y	Z
С	-1.96532200	0.42139900	-1.53506500
N	-1.19442900	1.29218000	-0.84093800
Cu	0.59452300	0.53634200	-0.22501300
N	-0.19075900	-1.13347700	-1.11489700
С	-1.40216800	-0.93867000	-1.68785900

0	-0.11120500	0.20941700	1.85439500
S	-0.72623600	-1.16871800	2.26755500
С	-3.21571800	0.80127100	-2.02913500
С	-3.67885600	2.09344300	-1.78677700
С	-2.88663500	2.97303700	-1.05067500
С	-1.64606800	2.52836200	-0.59774500
С	0.36681500	-2.35171000	-1.12847000
С	-0.24646200	-3.44349400	-1.73773000
С	-1.47920000	-3.24991100	-2.36172300
С	-2.06477100	-1.98566000	-2.33530600
0	-0.91820800	-1.19392100	3.79287900
С	-2.43938600	-0.98924000	1.62999200
С	-3.10289100	0.23818200	1.71983700
С	-4.41099100	0.34877800	1.24709300
С	-5.04860000	-0.76221300	0.67671500
С	-4.37656400	-1.98448200	0.58324000
С	-3.06704000	-2.10049600	1.06615400
Н	-3.82894800	0.10155800	-2.58169500
Н	-4.65057600	2.40086000	-2.15873100
Н	-3.21291300	3.98227200	-0.82715000
Н	-0.98418700	3.17120400	-0.02859500
Н	1.32746800	-2.44214100	-0.63651600
Н	0.23733000	-4.41322800	-1.72034500
Н	-1.98597000	-4.07311400	-2.85432400
Н	-3.03006500	-1.82649200	-2.79821200
Н	-2.58118300	1.09703600	2.13100700
Н	-4.92796300	1.30254500	1.30212200
H	-6.06171500	-0.66918900	0.29617200
H	-4.86441400	-2.84267800	0.12981800
H	-2.53426200	-3.04515400	0.98473000
I	1.98312500	2.63761500	0.13884200
С	2.38984000	-0.19279000	-0.07935700
С	3.08836500	-0.41541600	-1.26301900
С	2.73876700	-0.80419100	1.11862000
С	4.11966600	-1.36243800	-1.25545900
H	2.82859300	0.10951600	-2.17548400
С	3.77823400	-1.74464000	1.10051600
H	2.19932900	-0.57473100	2.02868200
С	4.47649500	-2.04306500	-0.07991800
H	4.65508800	-1.56307300	-2.18023600
H	4.04530800	-2.24711800	2.02711600
С	5.57393700	-3.08158600	-0.08997400
H	5.16508800	-4.07397400	-0.31790300
H	6.32972200	-2.85663900	-0.84849900
Н	6.07020400	-3.14719800	0.88285700

(2,2'-Bipyridyl) *p*-tolyl(*O*-sulfinylphenyl)copper(III) iodide reductive elimination transition state[†] (yielding sulfinic acid ester product)

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

E(RB3LYP) -3198.55271298 a.u.

charge – U	Multiplicity -	- 1	
ATOM	Х	Y	Z
С	1.82785800	-1.85657400	-0.79269700
Ν	1.63249700	-0.86878500	0.10614100
Cu	-0.29310300	-0.11679300	0.14439900
Ν	-0.50573400	-1.54913400	-1.28573700
С	0.62255100	-2.24509800	-1.56834500
0	-0.26383600	1.71940000	0.75144300
S	0.23082500	3.09982600	-0.04525100
С	3.07911800	-2.46728200	-0.92921600

С	4.12806500	-2.04809500	-0.11035800
С	3.90584900	-1.03647000	0.82497200
С	2.63397400	-0.47318300	0.89780800
С	-1.65514200	-1.86306800	-1.89804600
С	-1.74463300	-2.88421700	-2.84112600
С	-0.58727200	-3.59749400	-3.15593700
С	0.60783300	-3.27680800	-2.51272300
0	0.32055600	4.14030500	1.04426300
С	1.94564700	2.61789000	-0.40488100
С	2.97965300	3.00884500	0.44730500
С	4.28948500	2.63472700	0.13656000
С	4.55170700	1.88736100	-1.01811800
C	3.50720200	1.51418600	-1.87068800
C	2.19436200	1.88391200	-1.56855000
Н	3.24002700	-3.25666100	-1.65278500
Н	5.10592700	-2.50909100	-0.20356100
Н	4,69535200	-0.68308600	1,47792600
Н	2.39790000	0.32299700	1.59503000
Н	-2.51766900	-1.26870400	-1.61880300
Н	-2.69592000	-3.10628600	-3.31096400
Н	-0.61196400	-4.39723300	-3.88886200
Н	1.51039700	-3.82882600	-2.74283600
Н	2.75309300	3.59510000	1.33227400
Н	5.10346700	2.92386100	0.79448100
Н	5.57063400	1.59447500	-1.25243200
Н	3.71145100	0.93292800	-2.76446400
Н	1.38112800	1.59154200	-2.22707800
I	-0.85367600	-1.62868100	2.58379100
С	-1.90156500	1.01475100	-0.11648100
С	-2.11235100	1.37744600	-1.44272600
C	-2.91556400	0.99689100	0.83606200
С	-3.43451000	1.59933100	-1.85372900
Н	-1.29897300	1.44146800	-2.15518900
С	-4.22113800	1.21931200	0.39341600
Н	-2.69512800	0.78662700	1.87429300
С	-4.50426300	1.52034600	-0.95199900
Н	-3.61930500	1.83950700	-2.89740400
Н	-5.03128500	1.17329100	1.11683700
С	-5.92740600	1.74371900	-1.40508500
Н	-6.45408600	0.78740800	-1.51325900
Н	-6.48655400	2.34091200	-0.67751400
Н	-5.96476400	2.25483700	-2.37116600

E (RB3LYP)	-3198.53479916	a.u.
ν	-275.38	$\rm Cm^{-1}$

Phenyl 4-methylbenzenesulfinate (19)

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	-2.70143400	1.97851000	0.80268700
С	-2.49446900	0.60153800	0.90926500
С	-1.83859500	-0.06417600	-0.13052900
С	-1.39598900	0.60647400	-1.27155000
С	-1.60666500	1.98402400	-1.36644400
С	-2.25561400	2.66731900	-0.33169500
S	-1.54926400	-1.84205000	0.04514600
0	-0.17706300	-1.76064500	1.11449800
0	-1.07680500	-2.31036400	-1.30259700
С	0.90523100	-0.97405400	0.72193500
С	1.08950200	0.27158600	1.32719000
С	2.18979100	1.04989800	0.96688800
С	3.10532200	0.61166100	-0.00465100

С	2.89365200	-0.64261500	-0.59713800
С	1.80225100	-1.43997700	-0.24110800
С	4.27008400	1.48216500	-0.41535900
Н	-3.20811400	2.51117800	1.60120200
Н	-2.82993200	0.06080300	1.78987100
Н	-0.89546100	0.05425300	-2.05987300
Н	-1.26360200	2.52249900	-2.24437200
Н	-2.41789000	3.73796200	-0.41045200
Н	0.37487300	0.61569000	2.06692200
Н	2.33663400	2.01505700	1.44464600
Н	3.59345700	-1.00647000	-1.34481400
Н	1.64000400	-2.40975300	-0.69690400
Н	5.07845000	0.88909600	-0.85285000
Н	3.95862500	2.21975900	-1.16548700
Н	4.67369700	2.03668100	0.43762400
E (RB3LYP)	-1051.27648103	a.u.	

3.5.1.3. S-bound sulfinate pathway: Ground state and transition state geometry optimisations

(2,2'-Bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16b)

Multiplicity	= 1	
х	Y	Z
2.27495800	1.14242700	-0.10055500
1.39411300	1.11205300	-2.26448000
2.57217700	1.60741800	-2.81309400
3.63656100	1.87899000	-1.95218100
3.48703300	1.64604000	-0.58678800
2.02990100	0.84389700	1.33505800
0.54088200	-0.00984700	2.89176900
1.44508000	0.16376100	3.93967800
2.69329400	0.71402700	3.64719700
2.99215600	1.05848100	2.32967800
0.81910700	0.32416100	1.62672200
1.25498000	0.88432000	-0.94933400
-0.51320900	0.21502000	-0.23796400
-0.01867000	-2.00937600	-0.68852500
1.78401600	-2.15654100	-0.48995800
2.30412500	-2.41316100	0.78038300
2.61223800	-1.96331400	-1.59741700
3.69040700	-2.47158000	0.94292800
3.99689100	-2.02420400	-1.42314400
4.53505200	-2.27157400	-0.15490300
-0.29224900	-2.25051100	-2.14587500
-0.59622000	-2.98871300	0.28701800
0.53159700	0.88314300	-2.88040600
2.64602400	1.77094200	-3.88189900
4.57479700	2.26465600	-2.33707600
4.31005900	1.84964600	0.08556600
-0.43864300	-0.44001100	3.06964400
1.17317900	-0.12619500	4.94844000
3.42839000	0.86941800	4.43010600
3.96138300	1.47775800	2.09147600
1.63791900	-2.56037200	1.62274500
2.17843700	-1.76970400	-2.57173100
4.10765500	-2.66619900	1.92609600
4.65220400	-1.87277500	-2.27539700
5.61215900	-2.30812800	-0.02229600
	X 2.27495800 1.39411300 2.57217700 3.63656100 3.48703300 2.02990100 0.54088200 1.44508000 2.69329400 2.99215600 0.81910700 1.25498000 -0.51320900 -0.01867000 1.78401600 2.30412500 2.61223800 3.69040700 3.99689100 -0.59622000 -0.59622000 -0.59622000 0.53159700 2.64602400 4.57479700 4.31005900 -0.43864300 1.17317900 3.42839000 3.96138300 1.63791900 2.17843700 4.10765500 4.65220400	X Y 2.27495800 1.14242700 1.39411300 1.11205300 2.57217700 1.60741800 3.63656100 1.87899000 3.48703300 1.64604000 2.02990100 0.84389700 0.54088200 -0.00984700 1.44508000 0.16376100 2.69329400 0.71402700 2.99215600 1.05848100 0.81910700 0.32416100 1.25498000 0.88432000 -0.51320900 0.21502000 -0.51320900 -2.15654100 2.30412500 -2.41316100 2.69224900 -2.27157400 -0.29224900 -2.25051100 -0.59622000 -2.98871300 0.53159700 0.88314300 2.64602400 1.77094200 4.57479700 2.26465600 4.31005900 1.84964600 -0.43864300 -0.44001100 1.17317900 -0.12619500 3.42839000 0.86941800 3.96138300 1.47775800 1.6

I	-1.52448700	2.62608900	-0.15740600
С	-2.31842900	-0.45643900	-0.05514800
С	-3.04232100	-0.74675900	-1.20647700
С	-2.86089400	-0.65627700	1.20932600
С	-4.33385700	-1.27670400	-1.08140600
Н	-2.61108800	-0.58692100	-2.18927700
С	-4.15245500	-1.18744400	1.31799600
Н	-2.30974800	-0.39626600	2.10513100
С	-4.90619200	-1.50859900	0.17838800
Н	-4.89786300	-1.51067300	-1.98155100
Н	-4.57708900	-1.34318200	2.30720700
С	-6.28693700	-2.11139100	0.30649600
Н	-6.90891900	-1.87328000	-0.56184200
Н	-6.22998100	-3.20477400	0.37967500
Н	-6.79849400	-1.75051900	1.20434400

E(RB3LYP) -3198.55386175 a.u.

(2,2'-Bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[‡] (yielding sulfone product)

Charge = 0	Multiplicity =	: 1	
ATOM	х	Y	Z
С	-2.29176900	-1.21619400	-0.32066400
С	-1.34381100	-0.90890400	-2.42696200
С	-2.45887200	-1.43806900	-3.07021400
С	-3.53090100	-1.86564500	-2.28544900
С	-3.44721700	-1.75618700	-0.89867200
С	-2.10368900	-1.07469700	1.14979000
С	-0.69296300	-0.35705700	2.85087500
С	-1.60477000	-0.72058100	3.84059000
С	-2.81557100	-1.28903400	3.44248300
С	-3.06856500	-1.47132200	2.08346700
N	-0.93431600	-0.52663500	1.54525400
N	-1.26705100	-0.79445700	-1.09330000
Cu	0.39894900	-0.08453400	-0.12093000
S	0.11660900	2.37375300	0.03050400
С	-1.67537100	2.20261700	-0.23970300
С	-2.52344000	2.10459600	0.86355900
С	-2.15602800	2.18351200	-1.55113600
С	-3.89753700	1.98190300	0.64131700
С	-3.52980300	2.05309800	-1.75763200
С	-4.39825800	1.94765500	-0.66406700
0	0.56469200	3.25663900	-1.08394100
0	0.25353700	2.83765200	1.44009200
H	-0.48017000	-0.55930000	-2.98231900
Н	-2.48137300	-1.50758700	-4.15176600
H	-4.42260300	-2.27987000	-2.74445800
Н	-4.27431800	-2.08685100	-0.28380000
Н	0.26155200	0.09088900	3.10474000
Н	-1.36788700	-0.55980500	4.88628200
Н	-3.55615000	-1.58666000	4.17765800
H	-4.00624700	-1.90971500	1.76657000
Н	-2.11650200	2.12254000	1.86733000
Н	-1.46989300	2.26444600	-2.38646700
Н	-4.57083500	1.90301200	1.48904900
H	-3.91968100	2.02784700	-2.77024100
Н	-5.46531700	1.83730900	-0.83114500
I	1.71452700	-2.51542000	-0.24081300
С	1.97624000	1.06556200	-0.01927200
С	2.64353900	1.15305500	-1.24186800

C	2.65194200	1.10119600	1.19748400
C	4.03856100	1.16905400	-1.23609100
H	2.09001600	1.19496900	-2.17357000
C	4.04851400	1.12508800	1.18226700
H	2.10551300	1.11054100	2.13298000
C	4.75976600	1.15288400	-0.02895000
H	4.57282700	1.20245900	-2.18208200
н	4.58882500	1.12709400	2.12530800
С	6.26790100	1.21754200	-0.03671600
н	6.60909700	2.25861400	-0.09636500
н	6.69068900	0.78383500	0.87402800
н	6.68359500	0.68783800	-0.89924600
E (RB3LYP)	-3198.54252954	a.u.	
v	-151.83	cm ⁻¹	

(p-Tolyl)sulfonylbenzene (3)

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity =	- 1	
ATOM	х	Y	Z
С	-3.18111400	-1.42988100	1.21520600
С	-2.24904700	-0.38977200	1.22216400
С	-1.79547300	0.11287000	-0.00026600
С	-2.24638000	-0.39414500	-1.22190100
С	-3.17842100	-1.43424200	-1.21327800
С	-3.64241200	-1.95143000	0.00139300
S	-0.56505800	1.42488300	-0.00137100
С	1.01629200	0.58033300	-0.00022400
С	1.61149800	0.24513700	1.21846800
С	2.82681700	-0.43901600	1.20860100
С	3.45287500	-0.79146400	0.00154900
С	2.82703300	-0.44143500	-1.20657400
С	1.61193700	0.24259400	-1.21823400
0	-0.68859000	2.15761100	-1.28320300
0	-0.68913300	2.16035200	1.27883000
С	4.78311800	-1.50338000	0.00127600
Н	-3.54775100	-1.82846300	2.15576900
Н	-1.88826200	0.03081900	2.15430600
Н	-1.88363400	0.02313500	-2.15477500
Н	-3.54296800	-1.83621700	-2.15320900
Н	-4.36684100	-2.76000400	0.00204000
Н	1.13694500	0.52040900	2.15398700
Н	3.29609000	-0.70072500	2.15265300
Н	3.29667700	-0.70526400	-2.14987700
Н	1.13758300	0.51599200	-2.15440100
Н	5.60450100	-0.77680800	-0.02625600
Н	4.91133500	-2.11088000	0.90158600
Н	4.88868800	-2.15084400	-0.87397100
E (RB3LYP)	-1051.27237794	a.u.	

3.5.2. Reductive elimination of (*p*-tolyl)sulfonylbenzene from (L)Cu(Tol)(SO₂Ph)(I): Variation of ΔE_{RE}[‡] with complex ligand

Geometry optimisations, followed by a frequency calculation were carried out for each species. The geometryoptimised molecular coordinates (Å) and energies (B3LYP/6-31G+(d,p) for C, H, N, O, S, Cu & SDD/ ECP46MWB for I) are shown below (solvent = N,N-dimethylformamide).

3.5.2.1. Geometry optimisations of common species to all pathways

(p-Tolyl)sulfonylbenzene (3)

See section 3.5.1.3 for the previously reported geometry-optimised structure of (*p*-tolyl)sulfonylbenzene (**3**).

3.5.2.2. Ligand: None

p-Tolyl(S-sulfinylphenyl)copper(III) iodide (16a)

See section 3.3.1.2 for the previously reported geometry-optimised structure of *p*-tolyl(*S*-sulfinylphenyl)copper(III) iodide (**16a**).

p-Tolyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[‡]

Geometry-op	timised cartesian co	ordinates	
Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
Cu	-1.07430100	-0.18394800	0.25227400
S	0.70742600	-1.20631500	1.24230300
С	0.43731000	1.02312400	0.27129400
I	-3.46625200	-0.16343900	-0.48671200
С	2.11850500	-1.56957800	0.19954600
С	1.03542800	1.21432500	-0.97287500
С	1.63136000	2.45332300	-1.22425500
С	1.66304000	3.45883400	-0.24273400
С	1.08846100	3.19809400	1.01288000
С	0.48441800	1.96772900	1.29140400
С	3.33876400	-0.95370200	0.48692200
С	4.42027000	-1.21266300	-0.35614600
С	4.26252700	-2.05418900	-1.46456800
С	3.02594600	-2.65018100	-1.73682100
С	1.93275900	-2.40824000	-0.90161900
0	1.17159000	-0.74577100	2.56744500
0	-0.22001400	-2.38276100	1.17817700
С	2.30020600	4.79497300	-0.53592000
Н	1.04274300	0.43457700	-1.72677800
Н	2.08708200	2.62985300	-2.19473300
Н	1.12186800	3.95635700	1.79042900
Н	0.07821000	1.75351600	2.27399600
Н	3.43650100	-0.29678200	1.34394200
Н	5.38242700	-0.75536100	-0.14923600
Н	5.10712300	-2.24473500	-2.11942700
Н	2.90946300	-3.30210000	-2.59646900
Н	0.96604900	-2.85983200	-1.09482500
Н	1.56731700	5.47328000	-0.99025900
Н	2.66887000	5.27149300	0.37667100
Н	3.13305700	4.69469300	-1.23795900
E (RB3LYP)	-2703.06467181	a.u.	
ν	-109.76	cm ⁻¹	

Copper(I) iodide

Charge = 0	Multiplicity =	- 1	
ATOM	х	Y	Z
Cu	0.0000000	0.00000000	-1.59942300
I	0.0000000	0.00000000	0.87515600
E (RB3LYP)	-1651.82615553	a.u.	

3.5.2.3. Ligand: 2,2'-Bipyridine (bpy)

See section 3.5.1.3 for the previously reported geometry-optimised structures of (2,2'-bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide (**16b**) and (2,2'-bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[†]. Additionally see section 3.5.1.1 for the previously reported geometry-optimised structure of <math>(2,2'-bipyridyl)copper(I) iodide.

3.5.2.4. Ligand: 4,4'-Dimethoxy-2,2'-bipyridine (4,4'-diMeObpy)

(4,4'-Dimethoxy-2,2'-bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16c)

See section 3.3.1.4 for the previously reported geometry-optimised structure of (4,4'-dimethoxy-2,2'-bipyridyl) *p*-tolyl(*S*-sulfinylphenyl)copper(III) iodide (**16c**).

(4,4'-Dimethoxy-2,2'-bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[‡]

Charge = 0	Multiplicity =	1	
ATOM	х	Y	Z
С	1.99492200	-0.43359000	-0.68951300
С	0.99183900	-2.52184900	-0.54922900
С	2.18060000	-3.19053900	-0.81608400
С	3.33281000	-2.41612100	-1.01688500
С	3.22640600	-1.01759400	-0.96027500
С	1.79760600	1.04238800	-0.61146000
С	0.31696800	2.76284600	-0.16273300
С	1.27660700	3.74549600	-0.38796900
С	2.56464600	3.32549700	-0.75160500
С	2.81944400	1.94941400	-0.86651700
N	0.55314400	1.45096900	-0.26497200
N	0.89091000	-1.18895100	-0.47206100
Cu	-0.84680200	-0.19439300	-0.03824100
S	-0.92635200	-0.04231700	2.44333000
С	0.87721900	-0.27956800	2.54608600
С	1.70945600	0.83906700	2.58974300
С	1.38060100	-1.58150400	2.59499900
С	3.08974600	0.64279800	2.68573700
С	2.76139900	-1.76238800	2.68305500
С	3.61464300	-0.65275100	2.72403500
0	-1.48221400	-1.17874400	3.23333600
0	-1.15293200	1.35661600	2.90609800
Н	0.07527700	-3.07706200	-0.38052200
Н	2.18797600	-4.27149400	-0.85401300
Н	4.11995900	-0.42830700	-1.11868700
Н	-0.69168300	3.04522200	0.11940900
Н	1.01019100	4.78841700	-0.28028400
Н	3.81564100	1.63351100	-1.14794800
Н	1.28630600	1.83533800	2.54732700
Н	0.70672500	-2.42978800	2.56062400
Н	3.75053700	1.50333500	2.71850500
Н	3.16941900	-2.76775100	2.71278700

Н	4.68873500	-0.79988700	2.78268200
I	-1.81065800	-0.30744000	-2.63758700
С	-2.56830600	-0.07488400	0.87726100
С	-3.24977500	-1.29259700	0.86350000
С	-3.23365700	1.14644300	0.80677900
С	-4.63093900	-1.27805300	0.66496000
Н	-2.71527400	-2.22727000	0.99320000
С	-4.61698700	1.14023200	0.61549200
Н	-2.68850800	2.07810500	0.89971800
С	-5.33238700	-0.06656100	0.53493100
Н	-5.17032400	-2.22056100	0.61809600
Н	-5.14491500	2.08666300	0.53258700
С	-6.83258000	-0.06309000	0.36658300
Н	-7.17109800	-0.93574800	-0.20004500
Н	-7.33047100	-0.09350400	1.34384600
Н	-7.17411400	0.83933400	-0.14866800
0	3.60341100	4.14410600	-1.00514000
0	4.56214100	-2.90670400	-1.26294400
С	3.40602000	5.56602100	-0.91147200
Н	3.11421400	5.85113200	0.10450600
Н	4.37008800	6.00968400	-1.15655600
Н	2.65043000	5.90043500	-1.62975900
С	4.74193300	-4.33276000	-1.32647800
Н	5.80201100	-4.48277800	-1.52649300
Н	4.47462500	-4.79989600	-0.37311900
Н	4.14698800	-4.76281700	-2.13856700
E (RB3LYP)	-3427.61964124	a.u.	
ν	-150.88	Cm^{-1}	

(4,4'-Dimethoxy-2,2'-bipyridyl)copper(I) iodide

Charge = 0	Multiplicity	= 1	
ATOM	x	Y	Z
С	1.51154700	0.74699200	-0.00457000
С	0.21858900	2.67067200	-0.04721000
С	1.33249400	3.50573000	-0.02854100
С	2.59821300	2.90308300	0.00727800
С	2.67941900	1.50053700	0.02053600
С	1.51117600	-0.74749100	0.00444800
С	0.21719200	-2.67048100	0.04666200
С	1.33066300	-3.50611800	0.02815000
С	2.59672000	-2.90414600	-0.00727100
С	2.67866200	-1.50164000	-0.02044000
N	0.28663500	-1.33266200	0.03558900
N	0.28730800	1.33280900	-0.03597500
Cu	-1.29674500	0.00048700	-0.00011600
0	3.77102800	3.56455700	0.03209500
С	3.75741000	5.00287500	0.01889500
0	3.76915800	-3.56625200	-0.03179800
С	3.75471800	-5.00458700	-0.01846900
Н	-0.78111900	3.09232900	-0.07274800
Н	1.19630500	4.57884400	-0.04008100
Н	3.66063000	1.04476100	0.05429200
Н	-0.78275100	-3.09161400	0.07195500
Н	1.19392800	-4.57916600	0.03945500
Н	3.66009600	-1.04633500	-0.05395500
Н	4.80396700	5.30354300	0.04433400
Н	3.28606800	5.37774400	-0.89543600
Н	3.23769400	5.39396500	0.89955200
Н	4.80112400	-5.30582600	-0.04330800
Н	3.28265100	-5.37907500	0.89564000
Н	3.23526800	-5.39542700	-0.89939000
I	-3.82355000	0.00060500	0.00012400

3.5.2.5. Ligand: 4,4'-Dinitro-2,2'-bipyridine (4,4'-diNO₂bpy)

(4,4'-Dinitro-2,2'-bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16d)

See section 3.3.1.5 for the previously reported geometry-optimised structure of (4,4'-dinitro-2,2'-bipyridyl) *p*-tolyl(*S*-sulfinylphenyl)copper(III) iodide (**16d**).

(4,4'-Dinitro-2,2'-bipyridyl) p-tolyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[‡]

Geometry-optimised cartesian coordinates			
Charge = 0	Multiplicity =	1	
ATOM	х	Y	Z
С	1.81994000	-0.51522200	-0.54135200
N	0.67255100	-1.21503000	-0.42564400
С	0.67835100	-2.54626700	-0.57242300
С	1.84177900	-3.27121500	-0.81669100
С	3.02050700	-2.54152000	-0.90456600
C	3.03856800	-1.15997600	-0.77641000
Cu	-1.07126200	-0.13444100	-0.05497900
N	0.47249700	1.43313600	-0.12295900
C	1 70407700	0 96117800	-0 40282600
C	2 79929300	1 81894100	-0 54514000
C	2 57140900	3 17849200	-0 38107300
C	1 30887100	3 68160600	-0 09493800
C	0 27954500	2 74796200	0.02310400
N	4 29862500	-3 25306800	-1 13318600
N	3 712002000	1 11202700	_0 51120200
N	3 19510100	4.113 <i>92700</i> 5.21222600	-0.36245800
0	1 25200000	_1 17519300	-0.30243800
0	-1 20611000	-4.4/518500	2 10909100
3	-1.30011000	-0.04127300	2.40099100
0	1 42064000	-0.44496700	2.0109/100
0	-1.43864900	1.38/25200	2.80/45300
0	-2.00/35300	-1.09/09300	3.19029/00
C	1.38305900	0.39022900	2.75731100
C	2./3324800	1 074420300	2.91420300
C	3.13/51800	-1.0/443/00	2.92073000
	2.19083800	-2.09918100	2.79534200
	0.83821100	-1.78922100	2.64/32300
0	4.81956100	3.63634800	-0./5/94600
0	5.32863900	-2.58142900	-1.1/462200
H	-0.28018900	-3.04366400	-0.48267400
H	1.8260/400	-4.34/63100	-0.92152200
H	3.9/511600	-0.62668500	-0.85251400
H	3./9564200	1.46488300	-0.76792700
H	1.13118600	4./40/6900	0.03461500
H 	-0./3046000	3.065/3900	0.25260300
H 	1.05303600	1.62200400	2./4414600
H	3.46553200	1.05854500	3.02059600
H	4.18942000	-1.32140500	3.02523400
H	2.50438700	-3.13820000	2.80770700
H	0.09419700	-2.57187500	2.55025600
С	-2.86131200	-0.05785000	0.72753100
С	-3.53861700	-1.27577600	0.63596600
С	-3.52050800	1.16533600	0.67697700
С	-4.90843000	-1.25048300	0.37885300
Н	-3.01221700	-2.21664400	0.75299400
С	-4.89658400	1.16778100	0.42750800
Н	-2.98057500	2.09218400	0.83105200
С	-5.60536000	-0.03263400	0.26569700

Н	-5.44594300	-2.18963200	0.27561500
H	-5.42087300	2.11755200	0.36598200
I	-1.76805000	-0.03716600	-2.69653100
С	-7.08870700	-0.03071800	-0.01328600
Н	-7.28836900	-0.38011300	-1.03342400
Н	-7.61958900	-0.70413200	0.66806400
Н	-7.51591100	0.97022300	0.08948600
E (RB3LYP)	-3607.55012412	a.u.	
ν	-154.01	cm^{-1}	

(4,4'-Dinitro-2,2'-bipyridyl)copper(I) iodide

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity	= 1	
ATOM	x	Y	Z
С	-1.22268700	0.74481600	0.01126400
N	-0.00601800	1.33089200	0.06619200
С	0.09031200	2.66651200	0.09012400
С	-1.02384200	3.50533200	0.06131100
С	-2.26576200	2.88664200	0.00033800
С	-2.39593400	1.50369100	-0.02731000
Cu	1.59306900	0.00065700	0.00097000
Ν	-0.00538700	-1.33055000	-0.06385600
С	-1.22234500	-0.74502800	-0.01027200
С	-2.39529300	-1.50444100	0.02709200
С	-2.26443400	-2.88732400	-0.00017000
С	-1.02215800	-3.50546700	-0.05961400
С	0.09162800	-2.66613200	-0.08744500
N	-3.48931500	3.71962900	-0.04021800
N	-3.48769200	-3.72089700	0.03910400
0	-4.57249200	-3.14402900	0.10708800
0	-3.34848600	4.94086200	0.00002900
0	-3.34621000	-4.94211700	0.00118400
0	-4.57365400	3.14228900	-0.11154100
Н	1.09397900	3.07349100	0.13475000
Н	-0.92258700	4.58211800	0.08361100
Н	-3.37878000	1.05752200	-0.08302800
Н	-3.37840300	-1.05873000	0.08163900
Н	-0.92040000	-4.58221100	-0.08155300
Н	1.09554900	-3.07260900	-0.13098800
I	4.10642200	0.00038100	-0.00088900
E (RB3LYP)	-2556.32942272	a.u.	

3.5.2.6. Ligand: N,N'-Dimethylethylenediamine (DMEDA)

(N,N'-Dimethylethylenediamine) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16e)

See section 3.3.1.6 for the previously reported geometry-optimised structure of (N,N'- dimethylethylenediamine) *p*-tolyl(*S*-sulfinylphenyl)copper(III) iodide (**16e**).

(N,N'-Dimethylethylenediamine) p-tolyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[‡]

Charge = 0	Multiplicity =	1	
ATOM	х	Y	Z
С	3.23798800	-1.60273400	1.35108300
N	2.10498700	-0.80801700	1.87409700
Cu	0.97629800	-0.40777200	-0.07070800
N	2.10192900	-2.01154900	-0.79896300
С	2.72441200	-2.66519300	0.38001500
С	1.48680800	-1.40976600	3.06984400
С	3.06943000	-1.71077600	-1.87645900
S	-1.09145600	-1.68800400	-0.06474500
С	-2.84001200	-1.28161400	-0.33503200
С	-3.33986800	-1.28134300	-1.63826000
С	-4.68534500	-0.96058600	-1.83806500
С	-5.50272400	-0.64536300	-0.74700600
С	-4.98154300	-0.65503800	0.55229800
С	-3.63802400	-0.97047500	0.76710000
0	-0.72909400	-2.51988500	-1.25885400
0	-1.00010400	-2.304/3500	1.288//000
H	3.90855200	-0.91900100	0.82318600
H	3.80832400	-2.07/85800	2.16116100
н	3.54065200	-3.3316/900	0.07396400
H	1.95693300	-3.2/349400	0.86/16200
н	0.98114000	-2.33610300	2.79548700
п u	2.22009000	-1.01331900	3.03441900
n u	3 56186600	-2 62469600	-2 23164700
ч	2 54010600	-1 23312900	-2 70288600
ч	3 82096200	-1 01047300	-1 51151500
Н	-2 69351100	-1 52999200	-2 47219300
Н	-5.09164600	-0.95772900	-2.84475500
Н	-6.54640200	-0.39311200	-0.90836300
Н	-5.61775800	-0.41567700	1.39871400
Н	-3.21884600	-0.97615600	1.76669800
Н	1.39115900	-2.63377400	-1.18347900
Н	2.44353300	0.12204900	2.11005200
С	-0.69636900	0.58374500	0.21132400
С	-1.17910100	1.32533000	-0.87173800
С	-0.99122300	0.93225300	1.52616100
С	-1.88193300	2.49933800	-0.61418900
Н	-0.99428400	1.00370400	-1.89110300
С	-1.69547300	2.11729100	1.76511800
H	-0.68310200	0.29654200	2.34642300
С	-2.15006500	2.91498300	0.70483600
Н	-2.23803000	3.09818500	-1.44863000
Н	-1.90680500	2.40907600	2.79038200
С	-2.91883300	4.18859900	0.95774200
Н	-2.30755600	5.06383800	0.70624200
H	-3.81985600	4.23545300	0.33684800
H -	-3.21721300	4.27696800	2.00576300
\bot	2.58196500	1./8200100	-0.66382700
E (DD 21 VD)	-2072 20122502	2.11	
	2912.29432393 -179 40	a.u.	
•		0111	

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

		1	Z
С	3.04081800	-0.67566100	0.06086300
N	1.80209400	-1.42136400	-0.25401200
Cu	0.27192700	0.05677800	-0.19788500
N	1.84815400	1.46914900	-0.29556300
С	3.04114200	0.66997900	-0.66728200
С	1.59928400	-2.59928600	0.61251200
С	1.99674800	2.19612500	0.98387000
Н	3.94089000	-1.24495200	-0.20855900
Н	3.06338000	-0.51983900	1.14402500
Н	3.97276700	1.20986700	-0.44778800
Н	2.99831400	0.49768300	-1.74760100
Н	1.44292300	-2.26089200	1.64002700
Н	0.70335100	-3.13068400	0.28468700
Н	2.45669300	-3.28640700	0.59107800
Н	2.07534900	1.48118200	1.80572000
Н	1.10451500	2.80337500	1.14888700
Н	2.88543400	2.84236600	0.99034100
Н	1.86269000	-1.74464500	-1.21964000
Н	1.67582800	2.15121700	-1.03019200
I	-2.25825900	0.03158000	0.01311200
E (RB3LYP)	-1921.07623127	a.u.	

3.5.2.7. Ligand: L-Prolinate

(L-Prolinate) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16f)

See section 3.3.1.7 for the previously reported geometry-optimised structure of (L-Prolinate) *p*-tolyl(*S*-sulfinylphenyl)copper(III) iodide (**16f**).

(L-Prolinate) p-tolyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[†]

Geometry-optimised cartesian coordinates
--

Charge = -1	Multiplicity	= 1	
ATOM	х	Y	Z
С	-2.53963400	-2.18568800	0.79843000
N	-1.37632100	-1.38449300	1.26785300
Cu	-0.80512000	-0.18322000	-0.48556300
0	-2.02897800	-1.41960500	-1.44742100
С	-2.65527100	-2.28597200	-0.73440500
0	-3.39514500	-3.18133400	-1.19308900
С	-1.76911400	-0.62484600	2.49562600
С	-3.21897700	-1.04256400	2.79589600
С	-3.74942100	-1.45830600	1.41654400
S	1.26338900	-1.48339400	-0.91919700
С	2.96398500	-1.39774100	-0.28569700
С	3.26707800	-2.03371500	0.91955500

С	4.57035400	-1.94414900	1.41658900
С	5.54289700	-1.22467100	0.71335200
С	5.21933300	-0.59545400	-0.49471000
С	3.91991500	-0.67487600	-1.00141400
0	0.71093000	-2.73418400	-0.30912400
0	1.35923600	-1.38374600	-2.40591600
Н	-2.48833400	-3.20843800	1.19042900
Н	-1.08322400	-0.84319900	3.31915800
Н	-1.71120800	0.44532800	2.27299400
Н	-3.23856800	-1.90003300	3.47886300
Н	-3.79674500	-0.23255000	3.25098500
Н	-3.98415600	-0.57010300	0.81872300
Н	-4.63264500	-2.09950800	1.45654600
Н	2.50257600	-2.58969100	1.45061500
Н	4.82314200	-2.43626200	2.35077900
Н	6.55306000	-1.15485000	1.10548800
Н	5.97570700	-0.04144000	-1.04214600
Н	3.65279300	-0.18774500	-1.93223100
Н	-0.59523600	-2.00825500	1.44621200
С	0.90986700	0.65860500	-0.12257900
С	1.25234600	0.85266800	1.21961300
С	1.37150400	1.51650200	-1.12244700
С	1.98161300	1.98876900	1.56671600
Н	0.94118500	0.14600100	1.98018700
С	2.09327300	2.65456600	-0.75357100
Н	1.16374400	1.30278100	-2.16557300
С	2.40942800	2.90822100	0.59040500
Н	2.22904100	2.16107100	2.61128000
Н	2.42951000	3.34198700	-1.52543500
I	-2.41198800	2.06559700	-0.43474200
C	3.18808200	4.13837700	0.98859800
Н	3.73001300	4.56296000	0.13888100
Н	2.51268100	4.91307800	1.3/282500
Н	3.90861700	3.91395900	1.78161900
E (RB3LYP)	-3103.86054550	a.u.	
ν	-179.15	Cm^{-1}	

ν	

(L-Prolinate)copper(I) iodide

Charge = -1	Multiplicity	= 1	
ATOM	x	Y	Z
Cu	0.10915100	-0.27668200	0.23153900
0	-1.27788700	-1.78242600	-0.18519500
С	-2.49571000	-1.42685400	-0.01699800
С	-2.76868800	0.04191600	0.37294200
N	-1.58410000	0.71208100	0.98242200
0	-3.49841200	-2.15885500	-0.18412700
С	-1.67120900	2.14755600	0.61041900
С	-2.07422600	2.06415700	-0.86106900
С	-3.10888400	0.91652400	-0.87819900
Н	-3.61246100	0.04626900	1.07128100
Н	-0.70925800	2.63662400	0.78066300
Н	-2.44454300	2.66357800	1.19824500
Н	-1.19484200	1.79399400	-1.45747200
Н	-2.47501700	3.00590600	-1.24484600
Н	-3.06117000	0.33577000	-1.80317400
Н	-4.12637600	1.30616800	-0.78804100
Н	-1.59614000	0.59716900	1.99416700
I	2.60501500	-0.00520400	-0.10849800
E (RB3LYP)	-2052.64060244	a.u.	

3.5.2.8. Ligand: (2S,4R)-N-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide (DMPHPC)

((2S,4R)-N-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide) p-tolyl(S-sulfinylphenyl)copper(III) iodide (16g)

See section 3.3.1.8 for the previously reported geometry-optimised structure of ((2*S*,4*R*)-*N*-(2,6-dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide) *p*-tolyl(*S*-sulfinylphenyl)copper(III) iodide (**16g**).

((2S,4R)-N-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide) p-tolyl(S-sulfinylphenyl)copper(III) iodide

reductive elimination transition state[‡]

Charge = 0	Multiplicity =	= 1	
ATOM	х	Y	Z
С	-2.65488400	-0.24010100	-1.81505800
N	-2.02199500	-1.33279600	-0.98317800
Cu	-0.39202000	-0.97325600	0.22019000
N	-1.51534900	1.71062400	-0.92813300
С	-2.71711200	1.07436700	-1.00455500
С	-1.27696400	2.98437300	-0.32621400
0	-3.74973900	1.48513600	-0.47530100
С	-1.47135900	3.17553200	1.05617700
С	-1.18229100	4.44051500	1.58951100
С	-0.69377500	5.47031400	0.78476700
С	-0.48237600	5.24963100	-0.57840400
С	-0.77091800	4.00745100	-1.15617700
С	-1.93177600	2.05650100	1.95155500
С	-0.54230600	3.76469700	-2.62986600
С	-3.18227500	-2.05618000	-0.38553200
С	-4.17337500	-2.15053100	-1.53859600
С	-4.05853900	-0.76482800	-2.20363900
0	-3.68773800	-3.20144800	-2.39095000
S	1.10967200	-0.80515600	-1.64718600
С	2.90397700	-0.86452200	-1.83160700
С	3.61808600	0.33556800	-1.84075900
С	5.00714000	0.27969900	-1.96400000
С	5.65536600	-0.95758900	-2.06525300
С	4.91847500	-2.14672700	-2.05289700
С	3.52672000	-2.10948100	-1.93172300
0	0.60883800	-2.10961400	-2.18163200
0	0.66663800	0.46186300	-2.31303100
Н	-2.01145700	-0.07856000	-2.68216000
H	-1.32644700	4.60686300	2.65365200
Н	-0.46923800	6.44005600	1.21978900
Н	-0.09633600	6.04882700	-1.20525700
Н	-2.98593200	1.81830500	1.78067500
Н	-1.36861300	1.13795300	1.76048500
Н	-1.79552300	2.31817400	3.00389400
Н	-1.43923300	3.35787500	-3.11016800
Н	-0.27047600	4.69290200	-3.13831200
Н	0.26535200	3.04174700	-2.79733500
Н	-2.86091400	-3.02417400	-0.00224100
Н	-3.58114500	-1.46214100	0.43871800
Н	-5.19128100	-2.37286500	-1.19962700
Н	-4.82612600	-0.09449300	-1.81100100
Н	-4.17910200	-0.82959200	-3.28770700
Н	-4.21985600	-3.22553800	-3.19788200
Н	3.10169700	1.28468900	-1.75372600
Н	5.58108600	1.20080500	-1.97830500
Н	6.73678900	-0.99370700	-2.15405900

Н	5.42285100	-3.10417700	-2.13640300
Н	2.93932700	-3.02041600	-1.91921700
Н	-0.77964800	1.35455600	-1.53946400
Н	-1.61024200	-1.98132000	-1.66038600
С	1.42574800	-0.32569600	0.62001800
С	2.34019400	-1.18904000	1.23380800
С	1.51528000	1.05689300	0.75332600
С	3.29981400	-0.64261900	2.07823900
Н	2.28603400	-2.26008000	1.07516400
С	2.47816800	1.58450100	1.62338000
Н	0.85887700	1.72418000	0.21050000
С	3.38311500	0.74998400	2.29039900
Н	3.99868400	-1.30452400	2.58303100
Н	2.52985200	2.66144100	1.75692500
I	-1.08363900	-1.91479700	2.59977300
С	4.44013400	1.31256200	3.20738700
Н	4.27169500	0.98082300	4.23871600
Н	5.43716300	0.96416700	2.91601700
Н	4.44070100	2.40544100	3.19792300
E (RB3LYP)	-3469.39725318	a.u.	
ν	-178.67	Cm^{-1}	

((25,4R)-N-(2,6-Dimethylphenyl)-4-hydroxypyrrolidine-2-carboxamide)copper(I) iodide

Multiplicity =	- I	
x	Y	Z
0.95651600	1.22900700	-0.19052100
-0.42808100	-1.40901700	-0.54354600
0.67592500	-2.00423800	-0.01194400
2.00357600	-1.58379600	-0.68494500
2.34413500	-0.16105900	-0.30064600
0.63276400	-2.78619200	0.93724200
3.17930000	-0.31627300	0.93055600
4.11510700	-1.47666700	0.57596000
3.20410000	-2.43771700	-0.20852300
-1.77274600	-1.59969000	-0.09514200
-2.69912500	-2.12418000	-1.01938400
-4.02757300	-2.28853600	-0.60849500
-4.42077300	-1.94677300	0.68744200
-3.48802200	-1.42261100	1.58337700
-2.14930400	-1.22823300	1.21096700
-1.17054900	-0.62553100	2.18626100
-2.26589000	-2.49925000	-2.41699000
5.14025900	-1.02985500	-0.32743800
1.86880900	-1.61108700	-1.76881400
3.69462000	0.62012700	1.15202000
2.52366100	-0.57231500	1.76675100
4.55876100	-1.94271300	1.46201500
2.85391500	-3.24661100	0.43409000
3.75022100	-2.86779800	-1.05000600
-4.75290300	-2.69490500	-1.30812100
-5.45338800	-2.08278800	0.99607300
-3.79941700	-1.14351200	2.58637600
-1.69519600	-0.17704200	3.03368200
-0.47436900	-1.38075100	2.56409000
-0.57107800	0.15755300	1.70941400
-3.07517100	-3.00077000	-2.95321100
-1.98070800	-1.61587100	-3.00296700
-1.39753200	-3.16704400	-2.39957100
5.75723600	-0.46008300	0.15356400
-0.30704100	-0.90897600	-1.41654500
2.98796500	0.16553700	-1.02643400
	X 0.95651600 -0.42808100 0.67592500 2.00357600 2.34413500 0.63276400 3.17930000 4.11510700 3.20410000 -1.77274600 -2.69912500 -4.02757300 -4.42077300 -3.48802200 -2.14930400 -1.17054900 -2.26589000 5.14025900 1.86880900 3.69462000 2.52366100 4.55876100 2.85391500 3.75022100 -4.75290300 -5.45338800 -3.79941700 -1.69519600 -0.47436900 -0.57107800 -3.07517100 -1.98070800 -1.39753200 5.75723600 -0.30704100 2.98796500	XY0.956516001.22900700-0.42808100-1.409017000.67592500-2.004238002.00357600-1.583796002.34413500-0.161059000.63276400-2.786192003.17930000-0.316273004.11510700-1.476667003.20410000-2.43771700-1.77274600-1.59969000-2.69912500-2.12418000-4.02757300-2.28853600-4.42077300-1.94677300-3.48802200-1.42261100-2.14930400-1.22823300-1.17054900-0.62553100-2.26589000-2.499250005.14025900-1.029855001.86880900-1.611087003.694620000.620127002.52366100-0.572315004.55876100-1.942713002.85391500-3.246611003.75022100-2.86779800-4.75290300-2.69490500-5.45338800-2.08278800-3.79941700-1.14351200-1.69519600-0.17704200-0.571078000.1575300-3.07517100-3.00077000-1.98070800-1.61587100-1.39753200-3.167044005.75723600-0.46008300-0.30704100-0.90897600

E(RB3LYP) -2418.17234411 a.u.

3.5.3. Reductive elimination of biaryl sulfones from (bpy)Cu(Ar)(SO₂Ph)(I): variation of ΔE_{RE}[‡] with aryl R group

3.5.3.1. Geometry optimisations of common species to all pathways

See section 3.5.1.1 for the previously reported geometry-optimised structure of (2,2'-bipyridyl)copper(I) iodide.

3.5.3.2. Aryl group: Phenyl (R = H)

(2,2'-Bipyridyl) phenyl(S-sulfinylphenyl)copper(III) iodide (16h)

See section 3.4.1.1 for the previously reported geometry-optimised structure of (2,2'-Bipyridyl) phenyl(*S*-sulfinylphenyl)copper(III) iodide (**16h**).

(2,2'-Bipyridyl) phenyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[†]

Charge = 0	Multiplicity =	1	
ATOM	x	Y	Z
С	-1.97814800	-1.40549600	-0.27006800
С	-1.06481800	-1.08124400	-2.38900900
С	-2.11172300	-1.75814900	-3.00768300
С	-3.12940600	-2.27377700	-2.20358700
С	-3.06228300	-2.09860200	-0.82270100
С	-1.81420100	-1.17858100	1.19253500
С	-0.49447200	-0.24584600	2.86166600
С	-1.37557300	-0.64711300	3.86449200
С	-2.52295300	-1.34769200	3.49016200
С	-2.74570400	-1.61836000	2.14066000
Ν	-0.70555300	-0.50270500	1.56508100
N	-1.00474200	-0.90418900	-1.06122200
Cu	0.58565700	-0.00466400	-0.11998300
S	0.06792300	2.43501600	0.01269800
С	-1.68748400	2.08070800	-0.30488000
С	-2.55533600	1.91566800	0.77471700
С	-2.12233100	1.99410400	-1.62953700
С	-3.90248400	1.65179100	0.51390400
С	-3.46883800	1.72237900	-1.87414300
С	-4.35598700	1.54649000	-0.80485500
0	0.44732300	3.37967300	-1.07566600
0	0.13418800	2.88150800	1.43207100
Н	-0.24392900	-0.66146200	-2.96031500
Н	-2.12363200	-1.87369700	-4.08545800
Н	-3.96592500	-2.80710100	-2.64312600
Н	-3.84584400	-2.49931500	-0.19259200
Н	0.40753400	0.30790200	3.09712100
Н	-1.16470100	-0.41257400	4.90178100
Н	-3.23875200	-1.67776900	4.23595100
Н	-3.63673900	-2.15509700	1.84112500
Н	-2.18370700	1.99085000	1.78941300
Н	-1.42254800	2.13049800	-2.44624300

Н	-4.59076400	1.51883700	1.34263200
Н	-3.82238400	1.64245400	-2.89719600
Н	-5.40082100	1.32630400	-1.00119900
I	2.13629800	-2.28997600	-0.18726700
С	2.03779900	1.30753100	-0.05176100
С	2.67083600	1.43419400	-1.28986100
С	2.71994100	1.42847100	1.15679200
С	4.05975400	1.58438300	-1.31045400
Н	2.09715300	1.40888100	-2.20964100
С	4.10879800	1.58903600	1.12092900
Н	2.18453800	1.40277500	2.09807400
С	4.77512400	1.65811700	-0.10831500
Н	4.57727500	1.65508900	-2.26253800
Н	4.66307200	1.66581300	2.05158500
Н	5.85246600	1.79208900	-0.13015000

E (RB3LYP)	-3159.21857922	a.u.
ν	-162.42	$\rm Cm^{-1}$

Sulfonyldibenzene

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity =	= 1	
ATOM	x	Y	Z
С	3.04702800	-1.05452100	1.21474200
С	1.95761300	-0.18065600	1.22138200
С	1.42465200	0.23530300	-0.00156500
С	1.94728200	-0.19740400	-1.22324400
С	3.03665900	-1.07120000	-1.21387300
С	3.58315800	-1.49946400	0.00115200
S	0.00000300	1.33159300	-0.00317900
С	-1.42464000	0.23529800	0.00058300
0	0.00107100	2.07809500	1.27600400
0	-0.00109300	2.07154400	-1.28618200
С	-1.94886000	-0.18965900	1.22427400
С	-3.03827300	-1.06346800	1.21899400
С	-3.58316900	-1.49943500	0.00600400
С	-3.04541400	-1.06222300	-1.20968900
С	-1.95601700	-0.18840200	-1.22041900
Н	3.47703000	-1.38316900	2.15552300
Н	1.53592000	0.18027100	2.15295200
Н	1.51780900	0.15058200	-2.15620200
Н	3.45863700	-1.41282900	-2.15366300
Н	4.43003100	-2.17868500	0.00220000
Н	-1.52055500	0.16418000	2.15556100
Н	-3.46151900	-1.39909600	2.16037500
Н	-4.43005500	-2.17863700	0.00815400
Н	-3.47415200	-1.39685900	-2.14893500
Н	-1.53313000	0.16663100	-2.15371800

E(RB3LYP) -1011.94750713 a.u.

3.5.3.3. Aryl group: *p*-Tolyl (R = Me)

See section 3.5.1.3 for the previously reported geometry-optimised structures of (2,2'-bipyridyl) p-tolyl(*S*-sulfinylphenyl)copper(III) iodide (**16b**), (*p*-tolyl)sulfonylbenzene (**3**) and (2,2'-bipyridyl) p-tolyl(*S*-sulfinylphenyl)copper(III) iodide reductive elimination transition state[‡]. Additionally see section 3.5.1.1 for the previously reported geometry-optimised structure of (2,2'-bipyridyl)copper(I) iodide.

3.5.3.4. Aryl group: 4-Methoxyphenyl (R = OMe)

(2,2'-Bipyridyl) 4-methoxyphenyl(S-sulfinylphenyl)copper(III) iodide (16i)

See section 3.4.1.3 for the previously reported geometry-optimised structure of (2,2'-bipyridyl) 4-methoxyphenyl(*S*-sulfinylphenyl)copper(III) iodide (**16i**).

(2,2'-Bipyridyl) 4-methoxyphenyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state[‡]

Geometry optimised cartesian coordinates	Geometry-optimised	cartesian	coordinates
--	--------------------	-----------	-------------

Artom x z <thz< th=""> z <t< th=""><th>Charge = 0</th><th>Multiplicity =</th><th>= 1 ••</th><th>-</th></t<></thz<>	Charge = 0	Multiplicity =	= 1 ••	-
C -2.31950600 -1.101980200 -0.33697000 C -1.50168500 -0.81827800 -2.47320400 C -2.63268500 -1.25820600 -3.15462700 C -3.74926300 -1.63190300 -2.40547000 C -3.69248800 -1.5592200 -1.01496100 C -2.36025500 -1.01471700 1.08031900 C -0.95570800 -0.42400600 2.83280000 C -3.36617400 -1.38839100 1.97968400 N -1.17394200 -0.53929700 1.51722200 N -1.45095000 -0.73792700 -1.13559300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.2338100 0.92275600 C -2.31629400 2.2338100 0.92275600 C -3.3647700 2.1544600 -1.63448000 C -3.3657300 2.1674600 0.78206400 C -3.3657300 2.1674500 0.78206400 C -3.3657300 <t< th=""><th>ATOM</th><th>X</th><th>Y</th><th>Z</th></t<>	ATOM	X	Y	Z
C -1.50188500 -0.8182/800 -2.4324000 C -2.63286500 -1.25820600 -3.15462700 C -3.74926300 -1.63190300 -2.40547000 C -3.69243800 -1.55992000 -1.01496100 C -2.36025500 -1.01471700 1.08031900 C -0.95570800 -0.42400600 2.83280000 C -3.36617400 -1.25906700 3.3486100 C -3.36617400 -1.3839100 1.97968400 N -1.17394200 -0.53929700 1.51722200 N -1.45095000 -0.73792700 -1.1359300 Cu 0.21820700 -0.1224800 -0.92838500 C -2.54745400 2.23306200 -1.50914600 C -3.6224400 2.23306200 -1.50914600 C -3.70500800 2.1344700 -0.49177700 O 0.50452400 3.04669200 -1.28896900 C -2.31629400 2.93862200 1.27817600 H -0.60400700 -0.51429900 -3.0057900 C -2.257300 -1.8	C	-2.51950600	-1.10980200	-0.3969/000
C -2.63268500 -1.25820600 -3.15462700 C -3.69243800 -1.65190300 -2.40547000 C -2.36025500 -1.01471700 1.08031900 C -0.95570800 -0.42400600 2.83280000 C -1.90847600 -0.76731000 3.79074000 C -3.36617400 -1.38839100 1.97968400 N -1.17394200 -0.53929700 1.5172200 N -1.45095000 -0.73792700 -1.1355300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.33491100 -0.0589000 C -2.54745400 2.22338100 0.92275600 C -2.54745400 2.23306200 -1.5044600 C -3.30654000 2.17332000 -1.63448000 C -3.30554000 2.17332000 -1.6344800 C -3.305000 2.17332000 -1.6344800 C -3.3050800 2.17332000 -1.6344800 C -4.51323800 2.17342700 -0.49177700 O 0.50452400 3.04669200 -1.28896900 C -4.51323800 2.13447400 -0.49177700 O 0.26724300 2.95862200 1.27817600 H -0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -4.55426500 -1.9755500 -2.89463400 H -0.66400700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -4.55426500 -1.9755500 -2.89463400 H -4.55426500 -1.9755500 -2.89463400 H -4.55426500 -1.84911800 -0.42769800 H -4.55426500 -1.53955000 4.05785900 H -2.08468600 2.24305600 1.90201700 H -4.31627400 -1.53955000 4.05785900 H -4.31627400 -1.53955000 4.05785900 H -4.31627400 -1.5395500 4.05785900 H -4.31627400 -2.62108000 -2.3302700 C 2.43124600 0.93410600 0.08122600 H -3.90946600 -2.6269200 -0.23302700 C 2.43124600 0.93219300 1.3492400 C 2.43124600 0.93219300 1.3492400 C 2.43124600 0.93219300 1.3492400 C 4.6079000 0.93140500 0.08122600 H -2.13003700 1.06529700 -2.05120700 H -3.159247900 2.07734500 -0.98663300 C 2.43124600 0.93219300 1.34922400 C 4.60679000 0.93219300 1.34922400 C 4.60679000 0.93219300 1.34922400 C 4.60679000 0.91352500 2.44126500 H 4.39278600 0.93527800 -1.89383700 H 4.30651500 0.93557800 -1.89383700 H 4.30651500 0.93557800 -1.89383700 H 4.30651500 0.93557800 -1.89383700	C	-1.50168500	-0.8182/800	-2.4/320400
C -3.74926300 -1.63190300 -2.40547000 C -3.69243800 -1.55992000 -1.01496100 C -0.95570800 -0.42400600 2.8328000 C -1.90847600 -0.76731000 3.79074000 C -3.13737100 -1.25906700 3.34886100 C -3.36617400 -1.38839100 1.97968400 N -1.47595000 -0.73792700 -1.1355300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.33491100 -0.5888900 C -1.75961300 2.23307100 -0.2883800 C -2.54745400 2.23306200 -1.50914600 C -3.93643700 2.1674600 0.782927560 C -3.93643700 2.17332000 -1.63448000 C -3.70500800 2.17332000 -1.63448000 C -4.51323800 2.1734200 -1.28896900 C -4.51323800 2.1734000 -0.49177700 O 0.50452400 3.04669200 -1.28896900 O 0.26724300 2.95862200 1.27817600 H -0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -4.55426500 -1.8491800 -0.42769800 H -3.90946600 -1.53955000 4.0578900 H -4.31627400 2.2101300 -2.62285600 H -4.559247900 2.07734500 -0.59536100 H -4.559247900 2.07734500 -0.59536100 H -4.559247900 2.07734500 -0.59536100 C 2.60842200 0.99655700 -1.08063400 C 4.00201700 0.95219300 1.3492200 C 4.00201700 0.96413500 -0.98663300 H -4.15294400 2.15011300 -2.62285600 H -4.15294400 2.91501300 -2.62285600 H -4.1679200 0.93219300 1.34922400 C 4.00201700 0.96413500 -0.98663300 C 4.60679000 0.91352500 2.44762600 H 4.30651500 0.93557800 -1.89383700 H 4.30651500 0.93557800 -1.89383700 H 4.30651500 0.93557800 -1.89383700 H 4.30651500 0.93557800 -1.89383700	С	-2.63268500	-1.25820600	-3.15462700
C -3.69243800 -1.55992000 -1.014000 C -2.36025500 -1.01471700 1.08031900 C -0.95570800 -0.42400600 2.8328000 C -1.90847600 -0.76731000 3.79074000 C -3.36617400 -1.38839100 1.97968400 N -1.17394200 -0.53929700 1.51722200 N -1.45095000 -0.73792700 -1.13559300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.33491100 -0.5889000 C -2.54745400 2.2338100 0.92275600 C -2.31629400 2.23306200 -1.50914600 C -3.93643700 2.16746000 0.78206400 C -3.93643700 2.16746000 0.78206400 C -3.70500800 2.17332000 -1.63448000 C -4.51323800 2.17332000 -1.63448000 C -4.51323800 2.17342000 -1.2896500 O 0.50452400 3.04669200 -1.2889500 O 0.26724300 2.95862200 1.27817600 H -0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.84911800 -0.42769800 H -2.63257300 -1.84911800 -0.42769800 H -2.63257300 -1.84911800 -0.42769800 H -2.63257300 -1.84911800 -0.42769800 H -2.63257300 -1.53147700 4.23774700 H -4.55426500 -1.84911800 -0.42769800 H -2.63257300 -2.5429900 -3.000579500 H -2.63257300 -2.5429900 -3.00057900 H -2.63257300 -1.84911800 -0.42769800 H -2.63257300 -1.84911800 -0.42769800 H -2.63257300 -1.84911800 -0.42769800 H -2.63257300 -1.53145700 4.85775500 H -2.08468600 2.24305600 1.9021700 H -2.6266700 2.14049700 1.66821400 H -3.90946600 -2.5101300 -2.62285600 H -2.16760800 2.26108000 -2.330302700 H -2.6266700 2.14049700 1.66821400 H -2.18468600 2.24305600 1.9021700 H -2.6266700 2.14049700 1.66821400 H -2.18468600 2.24305600 1.9021700 H -2.6266700 2.14049700 1.66821400 H -2.18468600 0.93410600 0.08122600 C 2.43124600 0.9321900 1.34952400 C 4.6079000 0.9413500 -0.23302700 H 4.59278600 0.93237200 1.44762600 H 2.13003700 1.06529700 -2.05120700 C 3.81583500 0.92327200 1.44762600 H 4.59278600 0.93527800 -1.89383700 H 4.59278600 0.98557800 -1.89383700 H 4.59278600 0.98557800 -1.89383700 H 4.59278600 0.98557800 -1.89383700 H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41533800 C 5.94885500 0.931352500 2.41533800 C 5.94885500 0.931352500 2.41533800 C 5.94885500 0.931352500 2.41	С	-3.74926300	-1.63190300	-2.40547000
C -2.36025500 -1.01471700 1.08031900 C -0.95570800 -0.42400600 2.83280000 C -3.13737100 -1.25906700 3.34886100 C -3.36617400 -1.38839100 1.97968400 N -1.17394200 -0.53929700 1.51722200 N -1.45095000 -0.73792700 -1.13559300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.33491100 -0.02888000 C -2.54745400 2.22338100 0.92275600 C -2.31629400 2.23306200 -1.50914600 C -3.93643700 2.16746000 0.78206400 C -3.70500800 2.17332000 -1.63448000 C -3.70500800 2.13447400 -0.49177700 O 0.50452400 3.04669200 -1.28896900 O 0.26724300 2.95862200 1.27817600 H -0.6040700 -0.51429900 -3.00057900 H -2.63257300	С	-3.69243800	-1.55992000	-1.01496100
C -0.95570800 -0.42400600 2.8328000 C -1.90847600 -0.76731000 3.79074000 C -3.33617400 -1.25906700 3.34886100 C -3.36617400 -1.38839100 1.97968400 N -1.17394200 -0.53929700 1.5172220 N -1.45095000 -0.73792700 -1.13559300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.33491100 -0.05889000 C -2.54745400 2.23306200 -1.50914600 C -3.93643700 2.16746000 0.78206400 C -3.70500800 2.17322000 -1.63448000 C -3.70500800 2.17347400 -0.49177700 O 0.50452400 3.04669200 -1.28896900 C -3.70500800 2.13447400 -0.49177700 O 0.26724300 2.95862200 1.27817600 H -0.60400700 -0.51429900 -3.0057900 H -2.63257300	С	-2.36025500	-1.01471700	1.08031900
C -1.90847600 -0.76731000 3.79074000 C -3.13737100 -1.25906700 3.3486100 C -3.36617400 -1.38839100 1.97968400 N -1.17394200 -0.53929700 1.51722200 N -1.45095000 -0.73792700 -1.13559300 Cu 0.21820700 -0.12249800 -0.5389000 C -1.75961300 2.25307700 -0.22838500 C -2.31629400 2.2336200 -1.63448000 C -3.93643700 2.16746000 0.78206400 C -3.93643700 2.16746000 0.78206400 C -3.93643700 2.16746000 0.49177700 O 0.50452400 3.04665200 -1.28896900 C -3.93643700 2.15447400 -0.49177700 O 0.50452400 3.04659200 -1.2886900 C -4.51323800 2.13447400 -0.49177700 O 0.60400700 -0.51429900 -3.00057900 H -0.66407600 <t< td=""><td>С</td><td>-0.95570800</td><td>-0.42400600</td><td>2.83280000</td></t<>	С	-0.95570800	-0.42400600	2.83280000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.90847600	-0.76731000	3.79074000
C -3.36617400 -1.38839100 1.97968400 N -1.17394200 -0.53929700 1.51722200 N -1.45095000 -0.73792700 -1.13559300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.33491100 -0.05889000 C -1.75961300 2.25307700 -0.22838500 C -2.54745400 2.22338100 0.92275600 C -2.31629400 2.23306200 -1.50914600 C -3.93643700 2.16746000 0.78206400 C -3.70500800 2.1732000 -1.63448000 C -3.70500800 2.1734200 -1.28896900 O 0.50452400 3.04669200 -1.28896900 O 0.26724300 2.95862200 1.27817600 H -0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.97555200 -2.89463400 H -4.55426500 -1.84911800 -0.42769800 H -4.66778600 -1.53955000 4.05785900 H -2.08468600 2.	С	-3.13737100	-1.25906700	3.34886100
N -1.17394200 -0.53929700 1.51722200 N -1.4509500 -0.73792700 -1.13559300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.33491100 -0.05889000 C -2.54745400 2.22338100 0.92275600 C -2.31629400 2.23306200 -1.63448000 C -3.93643700 2.16746000 0.78206400 C -3.70500800 2.17332000 -1.63448000 C -4.51323800 2.13447400 -0.49177700 O 0.50452400 3.04669200 -1.28896900 O 0.26724300 2.95862200 1.27817600 H -0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -2.63257300 -1.84911800 -0.42769800 H -2.63257300 -1.84911800 -0.42769800 H -4.6576100 -1.66876100 -0.65109000 4.84579500 H	С	-3.36617400	-1.38839100	1.97968400
N -1.45095000 -0.73792700 -1.13559300 Cu 0.21820700 -0.12249800 -0.11938200 S 0.05354000 2.33491100 -0.05889000 C -1.75961300 2.25307700 -0.22838500 C -2.54745400 2.22338100 0.92275600 C -3.93643700 2.16746000 0.78206400 C -3.70500800 2.17332000 -1.63448000 C -4.51323800 2.13447400 -0.49177700 O 0.50452400 3.04669200 -1.28896900 O 0.26724300 2.95862200 1.27817600 H -0.6040700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -4.65478600 -1.97555200 -2.89463400 H -4.6576100 -0.65109000 4.84579500 H -3.9946600 -1.53955000 4.05785900 H -3.6266700 2.14049700 1.66821400 H -4.5294400 <t< td=""><td>N</td><td>-1.17394200</td><td>-0.53929700</td><td>1.51722200</td></t<>	N	-1.17394200	-0.53929700	1.51722200
$\begin{array}{c} {\rm Cu} & 0.21820700 & -0.12249800 & -0.11938200 \\ {\rm s} & 0.05354000 & 2.33491100 & -0.05889000 \\ {\rm C} & -1.75961300 & 2.25307700 & -0.22838500 \\ {\rm C} & -2.54745400 & 2.2338100 & 0.92275600 \\ {\rm C} & -2.31629400 & 2.23306200 & -1.50914600 \\ {\rm C} & -3.93643700 & 2.16746000 & 0.78206400 \\ {\rm C} & -3.70500800 & 2.17332000 & -1.63448000 \\ {\rm C} & -4.51323800 & 2.1347400 & -0.49177700 \\ {\rm O} & 0.50452400 & 3.04669200 & -1.28896900 \\ {\rm O} & 0.26724300 & 2.95862200 & 1.27817600 \\ {\rm H} & -0.60400700 & -0.51429900 & -3.00057900 \\ {\rm H} & -2.63257300 & -1.30177000 & -4.23774700 \\ {\rm H} & -4.65478600 & -1.97555200 & -2.89463400 \\ {\rm H} & -4.55426500 & -1.84911800 & -0.42769800 \\ {\rm H} & 0.01604200 & -0.04052500 & 3.12414700 \\ {\rm H} & -1.68761100 & -0.65109000 & 4.84579500 \\ {\rm H} & -3.90946600 & -1.53955000 & 4.05785900 \\ {\rm H} & -4.31627400 & -1.77067200 & 1.62877700 \\ {\rm H} & -2.08468600 & 2.24305600 & 1.90201700 \\ {\rm H} & -4.552947900 & 2.07734500 & -2.8308400 \\ {\rm H} & -4.559247900 & 2.07734500 & -0.59536100 \\ {\rm I} & 40780300 & -2.62569200 & -0.23302700 \\ {\rm C} & 2.60842200 & 0.99655700 & -1.08063400 \\ {\rm C} & 2.13003700 & 1.06279700 & -2.05120700 \\ {\rm C} & 2.43124600 & 0.93410600 & 0.08122600 \\ {\rm H} & 2.13003700 & 1.06237700 & -2.05120700 \\ {\rm H} & 1.81928900 & 0.92327200 & 1.44762600 \\ {\rm H} & 1.81928900 & 0.92327200 & 1.44762600 \\ {\rm H} & 1.81928900 & 0.92327200 & 1.849383700 \\ {\rm H} & 4.59278600 & 0.98557800 & -1.89383700 \\ {\rm H} & 4.59278600 & 0.98557800 & -1.89383700 \\ {\rm H} & 4.59278600 & 0.98557800 & -1.89383700 \\ {\rm H} & 4.59278600 & 0.98557800 & -1.89383700 \\ {\rm H} & 4.59278600 & 0.98557800 & -1.89383700 \\ {\rm H} & 4.30651500 & 0.91352500 & 2.44553800 \\ {\rm O} & 5.9488500 & 0.89068500 & 0.48785100 \\ {\rm H} & 4.30651500 & 0.91352500 & 2.44553800 \\ {\rm H} & 4.30651500 & 0.91352500 & 2.44553800 \\ {\rm H} & 4.30651500 & 0.91352500 & 2.44553800 \\ {\rm H} & 4.30651500 & 0.91352500 & 2.44553800 \\ {\rm H} & 4.30651500 & 0.91352500 & 2.445753800 \\ {\rm H} & 4.30651500 & 0.91352500 & 2.445753800 \\ {\rm H} & 4.3065150$	N	-1.45095000	-0.73792700	-1.13559300
S 0.05354000 2.33491100 -0.05889000 C -1.75961300 2.25307700 -0.22838500 C -2.54745400 2.22338100 0.92275600 C -3.93643700 2.16746000 0.78206400 C -3.93642700 2.13447400 -0.49177700 O 0.50452400 3.04669200 -1.28896900 O 0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -4.65478600 -1.97555200 -2.89463400 H -4.55426500 -1.84911800 -0.42769800 H -4.31627400 -1.77067200 1.66871700 H -2.08468600 2.24305600 1.90201700 H -4.5294700 <t< td=""><td>Cu</td><td>0.21820700</td><td>-0.12249800</td><td>-0.11938200</td></t<>	Cu	0.21820700	-0.12249800	-0.11938200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	0.05354000	2.33491100	-0.05889000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.75961300	2.25307700	-0.22838500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-2.54745400	2.22338100	0.92275600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-2.31629400	2.23306200	-1.50914600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-3.93643700	2.16746000	0.78206400
C -4.51323800 2.13447400 -0.49177700 O 0.50452400 3.04669200 -1.28896900 O 0.26724300 2.95862200 1.27817600 H -0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -4.65478600 -1.97555200 -2.89463400 H -4.55426500 -1.84911800 -0.42769800 H 0.01604200 -0.04052500 3.12414700 H -1.68761100 -0.65109000 4.84579500 H -3.90946600 -1.53955000 4.05785900 H -4.31627400 -1.77067200 1.62877700 H -2.08468600 2.24305600 1.90201700 H -4.56266700 2.14049700 1.66821400 H -4.15294400 2.15011300 -2.62285600 H -4.559247900 2.07734500 -0.59536100 I 1.40780300 -2.62569200 -0.23302700 C 2.43124600 0.99455700 -1.08063400 C 2.43124600 0.	С	-3.70500800	2.17332000	-1.63448000
0 0.50452400 3.04669200 -1.28896900 0 0.26724300 2.95862200 1.27817600 H -0.60400700 -0.51429900 -3.00057900 H -2.63257300 -1.30177000 -4.23774700 H -4.65478600 -1.97555200 -2.89463400 H -4.55426500 -1.84911800 -0.42769800 H 0.01604200 -0.04052500 3.12414700 H -1.68761100 -0.65109000 4.84579500 H -3.90946600 -1.53955000 4.05785900 H -4.31627400 -1.77067200 1.62877700 H -2.08468600 2.24305600 1.90201700 H -4.56266700 2.14049700 1.66821400 H -4.559247900 2.07734500 -0.59536100 I 1.40780300 -2.62269200 -0.23302700 C 2.60842200 0.99655700 -1.08063400 C 2.43124600 0.92327200 1.44762600 H 2.13003700	С	-4.51323800	2.13447400	-0.49177700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.50452400	3.04669200	-1.28896900
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0	0.26724300	2.95862200	1.27817600
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-0.60400700	-0.51429900	-3.00057900
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-2.63257300	-1.30177000	-4.23774700
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-4.65478600	-1.97555200	-2.89463400
$\begin{array}{ccccccc} H & 0.01604200 & -0.04052500 & 3.12414700 \\ H & -1.68761100 & -0.65109000 & 4.84579500 \\ H & -3.90946600 & -1.53955000 & 4.05785900 \\ H & -4.31627400 & -1.77067200 & 1.62877700 \\ H & -2.08468600 & 2.24305600 & 1.90201700 \\ H & -1.67608600 & 2.26108000 & -2.38308400 \\ H & -4.56266700 & 2.14049700 & 1.66821400 \\ H & -4.15294400 & 2.15011300 & -2.62285600 \\ H & -5.59247900 & 2.07734500 & -0.59536100 \\ I & 1.40780300 & -2.62569200 & -0.23302700 \\ C & 1.84304000 & 0.93410600 & 0.08122600 \\ C & 2.60842200 & 0.99655700 & -1.08063400 \\ C & 2.43124600 & 0.95219300 & 1.34952400 \\ C & 4.00201700 & 0.96413500 & -0.98663900 \\ H & 2.13003700 & 1.06529700 & -2.05120700 \\ C & 3.81583500 & 0.92327200 & 1.44762600 \\ H & 1.81928900 & 0.99282900 & 2.24202700 \\ C & 4.60679000 & 0.91710200 & 0.28128300 \\ H & 4.59278600 & 0.98557800 & -1.89383700 \\ H & 4.30651500 & 0.91352500 & 2.41553800 \\ O & 5.94888500 & 0.89068500 & 0.48785100 \\ \end{array}$	Н	-4.55426500	-1.84911800	-0.42769800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	0.01604200	-0.04052500	3.12414700
$\begin{array}{ccccccc} H & -3.90946600 & -1.53955000 & 4.05785900 \\ H & -4.31627400 & -1.77067200 & 1.62877700 \\ H & -2.08468600 & 2.24305600 & 1.90201700 \\ H & -1.67608600 & 2.26108000 & -2.38308400 \\ H & -4.56266700 & 2.14049700 & 1.66821400 \\ H & -4.15294400 & 2.15011300 & -2.62285600 \\ H & -5.59247900 & 2.07734500 & -0.59536100 \\ I & 1.40780300 & -2.62569200 & -0.23302700 \\ C & 1.84304000 & 0.93410600 & 0.08122600 \\ C & 2.60842200 & 0.99655700 & -1.08063400 \\ C & 2.43124600 & 0.95219300 & 1.34952400 \\ C & 4.00201700 & 0.96413500 & -0.98663900 \\ H & 2.13003700 & 1.06529700 & -2.05120700 \\ C & 3.81583500 & 0.92327200 & 1.44762600 \\ H & 1.81928900 & 0.99282900 & 2.24202700 \\ C & 4.60679000 & 0.91710200 & 0.28128300 \\ H & 4.59278600 & 0.98557800 & -1.89383700 \\ H & 4.30651500 & 0.91352500 & 2.41553800 \\ O & 5.94888500 & 0.89068500 & 0.48785100 \\ \end{array}$	Н	-1.68761100	-0.65109000	4.84579500
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-3.90946600	-1.53955000	4.05785900
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-4.31627400	-1.77067200	1.62877700
$\begin{array}{ccccccc} H & & -1.67608600 & 2.26108000 & -2.38308400 \\ H & & -4.56266700 & 2.14049700 & 1.66821400 \\ H & & -4.15294400 & 2.15011300 & -2.62285600 \\ H & & -5.59247900 & 2.07734500 & -0.59536100 \\ I & & 1.40780300 & -2.62569200 & -0.23302700 \\ C & & & 1.84304000 & 0.93410600 & 0.08122600 \\ C & & & 2.60842200 & 0.99655700 & -1.08063400 \\ C & & & 2.43124600 & 0.95219300 & 1.34952400 \\ C & & & & 4.00201700 & 0.96413500 & -0.98663900 \\ H & & & & 2.13003700 & 1.06529700 & -2.05120700 \\ C & & & & & 3.81583500 & 0.92327200 & 1.44762600 \\ H & & & & 1.81928900 & 0.99282900 & 2.24202700 \\ C & & & & & 4.60679000 & 0.91710200 & 0.28128300 \\ H & & & & & & 4.59278600 & 0.98557800 & -1.89383700 \\ H & & & & & & & & & & & & & & & & & &$	Н	-2.08468600	2.24305600	1.90201700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-1.67608600	2.26108000	-2.38308400
$\begin{array}{ccccccc} H & -4.15294400 & 2.15011300 & -2.62285600 \\ H & -5.59247900 & 2.07734500 & -0.59536100 \\ I & 1.40780300 & -2.62569200 & -0.23302700 \\ C & 1.84304000 & 0.93410600 & 0.08122600 \\ C & 2.60842200 & 0.99655700 & -1.08063400 \\ C & 2.43124600 & 0.95219300 & 1.34952400 \\ C & 4.00201700 & 0.96413500 & -0.98663900 \\ H & 2.13003700 & 1.06529700 & -2.05120700 \\ C & 3.81583500 & 0.92327200 & 1.44762600 \\ H & 1.81928900 & 0.99282900 & 2.24202700 \\ C & 4.60679000 & 0.91710200 & 0.28128300 \\ H & 4.59278600 & 0.98557800 & -1.89383700 \\ H & 4.30651500 & 0.91352500 & 2.41553800 \\ O & 5.94888500 & 0.89068500 & 0.48785100 \\ \end{array}$	Н	-4.56266700	2.14049700	1.66821400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-4.15294400	2.15011300	-2.62285600
I 1.40780300 -2.62569200 -0.23302700 C 1.84304000 0.93410600 0.08122600 C 2.60842200 0.99655700 -1.08063400 C 2.43124600 0.95219300 1.34952400 C 4.00201700 0.96413500 -0.98663900 H 2.13003700 1.06529700 -2.05120700 C 3.81583500 0.92327200 1.44762600 H 1.81928900 0.99282900 2.24202700 C 4.60679000 0.91710200 0.28128300 H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41553800 O 5.94888500 0.89068500 0.48785100	Н	-5.59247900	2.07734500	-0.59536100
C1.843040000.934106000.08122600C2.608422000.99655700-1.08063400C2.431246000.952193001.34952400C4.002017000.96413500-0.98663900H2.130037001.06529700-2.05120700C3.815835000.923272001.44762600H1.819289000.992829002.24202700C4.606790000.917102000.28128300H4.592786000.98557800-1.89383700H4.306515000.913525002.41553800O5.948885000.890685000.48785100	I	1.40780300	-2.62569200	-0.23302700
C 2.60842200 0.99655700 -1.08063400 C 2.43124600 0.95219300 1.34952400 C 4.00201700 0.96413500 -0.98663900 H 2.13003700 1.06529700 -2.05120700 C 3.81583500 0.92327200 1.44762600 H 1.81928900 0.99282900 2.24202700 C 4.60679000 0.91710200 0.28128300 H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41553800 O 5.94888500 0.89068500 0.48785100	С	1.84304000	0.93410600	0.08122600
C2.431246000.952193001.34952400C4.002017000.96413500-0.98663900H2.130037001.06529700-2.05120700C3.815835000.923272001.44762600H1.819289000.992829002.24202700C4.606790000.917102000.28128300H4.592786000.98557800-1.89383700H4.306515000.913525002.41553800O5.948885000.890685000.48785100	С	2.60842200	0.99655700	-1.08063400
C 4.00201700 0.96413500 -0.98663900 H 2.13003700 1.06529700 -2.05120700 C 3.81583500 0.92327200 1.44762600 H 1.81928900 0.99282900 2.24202700 C 4.60679000 0.91710200 0.28128300 H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41553800 O 5.94888500 0.89068500 0.48785100	C	2,43124600	0.95219300	1.34952400
H 2.13003700 1.06529700 -2.05120700 C 3.81583500 0.92327200 1.44762600 H 1.81928900 0.99282900 2.24202700 C 4.60679000 0.91710200 0.28128300 H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41553800 O 5.94888500 0.89068500 0.48785100	C	4.00201700	0.96413500	-0.98663900
C 3.81583500 0.92327200 1.44762600 H 1.81928900 0.99282900 2.24202700 C 4.60679000 0.91710200 0.28128300 H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41553800 O 5.94888500 0.89068500 0.48785100	Н	2.13003700	1.06529700	-2.05120700
H 1.81928900 0.99282900 2.24202700 C 4.60679000 0.91710200 0.28128300 H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41553800 O 5.94888500 0.89068500 0.48785100	С	3.81583500	0.92327200	1.44762600
C 4.60679000 0.91710200 0.28128300 H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41553800 O 5.94888500 0.89068500 0.48785100	H	1.81928900	0.99282900	2,24202700
H 4.59278600 0.98557800 -1.89383700 H 4.30651500 0.91352500 2.41553800 O 5.94888500 0.89068500 0.48785100	C	4.60679000	0.91710200	0.28128300
H 4.30651500 0.91352500 2.41553800 0 5.94888500 0.89068500 0.48785100	H	4.59278600	0.98557800	-1.89383700
0 5.94888500 0.89068500 0.48785100	н	4.30651500	0.91352500	2.41553800
	0	5.94888500	0.89068500	0.48785100

С	6.82535600	0.89931000	-0.64672700
Н	6.69724700	1.81484500	-1.23484000
Н	7.83503600	0.86527200	-0.23799300
Н	6.65511200	0.02214100	-1.28081300

E (RB3LYP)	-3273.75377021	a.u.
ν	-147.12	Cm^{-1}

(p-tolyl)sulfonylbenzene (3)

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

Charge = 0	MULTIPLICITY	= 1	
ATOM	X	Y	Z
С	2.61267700	-0.21098600	-0.96991600
С	1.34037400	0.34244700	-1.11810900
С	0.62912800	0.75778800	0.00827100
С	1.17059900	0.62422900	1.29466300
С	2.43459300	0.07308600	1.44503300
С	3.16214600	-0.34943900	0.31586700
S	-1.01406800	1.43043600	-0.18678700
С	-2.12500200	0.02103700	-0.05591400
С	-2.46810300	-0.68259600	-1.21340700
С	-3.30806300	-1.79269900	-1.09979700
С	-3.78849500	-2.18457600	0.15470300
С	-3.43554400	-1.46719900	1.30317000
С	-2.59674300	-0.35482900	1.20467100
0	-1.28193600	2.31854600	0.96909400
0	-1.12826100	1.96519200	-1.56408000
Н	3.15851300	-0.52256600	-1.85115400
Н	0.91152000	0.45837700	-2.10741100
Н	0.61131200	0.95853500	2.16142900
Н	2.88188300	-0.03660300	2.42710300
Н	-2.09413600	-0.36153200	-2.17933300
Н	-3.58863300	-2.34686500	-1.98983400
Н	-3.81472300	-1.76934700	2.27421500
Н	-2.32163400	0.21661600	2.08428900
Н	-4.44115400	-3.04818000	0.23711200
0	4.38569700	-0.87504100	0.57229500
С	5.18919300	-1.33344600	-0.52464600
Н	5.42302100	-0.51121800	-1.20943000
Н	6.10823100	-1.70977000	-0.07667400
Н	4.68632800	-2.14089700	-1.06772700
E (RB3LYP)	-1126.48478419	a.u.	

3.5.3.5. Aryl group: 4-Nitrophenyl (R = NO₂)

(2,2'-Bipyridyl) 4-nitrophenyl(S-sulfinylphenyl)copper(III) iodide (16j)

See section 3.4.1.4 for the previously reported geometry-optimised structure of (2,2'-bipyridyl) 4-nitrophenyl(*S*-sulfinylphenyl)copper(III) iodide (**16***j*).

(2,2'-Bipyridyl) 4-nitrophenyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state⁺

Charge = 0 ATOM	Multiplicity X	= 1 Y	Z
С	2.72400900	1.10453600	-0.27593600
С	1.74569800	0.94787400	-2.38558000
С	2.89007500	1.42749600	-3.01569300
С	3.99045400	1.75588700	-2.22222400
С	3.90787200	1.59521000	-0.84025400
С	2.53592700	0.90750700	1.18807600
С	1.08388000	0.23101700	2.87182800
С	2.03378500	0.46363700	3.86496700
С	3.28687300	0.94033300	3.47822700
С	3.54188000	1.16670300	2.12618800
N	1.32560400	0.44458300	1.57251900
N	1.66861200	0.78585200	-1.05667100
Cu	-0.04963100	0.21145100	-0.09368500
S	-0.00654700	-2.35208600	0.10358100
С	1.75330800	-2.29854400	-0.31838200
С	2.69592200	-2.25485400	0.70978500
С	2.11640500	-2.31429000	-1.66736000
С	4.04985900	-2.22334500	0.36797400
С	3.47273600	-2.27355200	-1.99098600
С	4.43645900	-2.22289000	-0.97618200
0	-0.61472900	-3.25820600	-0.90594200
0	-0.08643400	-2.69008200	1.54811800
Н	0.85661700	0.68083400	-2.94643800
Н	2.91193600	1.53856000	-4.09374900
Н	4.90325800	2.13370500	-2.67101100
Н	4.75611200	1.85165200	-0.21869800
Н	0.09858300	-0.14788900	3.11773800
Н	1.79343100	0.27211000	4.90461600
Н	4.05871800	1.13216400	4.21639400
Н	4.51328500	1.53060800	1.81681100
Н	2.37650000	-2.24501000	1.74469000
Н	1.35880100	-2.35221500	-2.44184100
Н	4.79779900	-2.18800600	1.15361100
Н	3.77500300	-2.27561200	-3.03325000
Н	5.48996200	-2.18211000	-1.23491400
I	-1.24159700	2.64949700	-0.19389200
C	-1.6881/300	-0.8566/500	0.000/9500
C	-2.34464300	-0.901/3100	-1.23/24600
C	-2.39012200	-0.862/8500	1.20934000
C	-3./3213600	-0.82905900	-1.26841500
H	-1.78015200	-0.9/826600	-2.15929500
	-3.78036800	-0.80027600	1.18501200
H C	-1.86093100	-0.91492300	2.15243900
	-4.42/04400	-0.77141300	-0.03449200
п u	-4.20902200	-0.02403300	-2.20007000
N	-4.33330400 _5 20070400	-0.70564000	_0 08353000
0 IN	-6 /5381100	-0 68257200	-1 18361600
0	-6.49756500	-0.67357400	0.99277300
E (RB3LYP)	-3363.73072146	a.u.	
ν	-161.05	Cm^{-1}	

Geometry-optimised cartesian coordinates

Charge = 0	Multiplicity	= 1	
ATOM	х	Y	Z
С	-2.31202800	0.03151800	1.22525400
С	-1.01900800	0.54970900	1.22288000
С	-0.39126600	0.79807300	0.00018900
С	-1.01872700	0.54915400	-1.22259500
С	-2.31172300	0.03103700	-1.22504700
С	-2.93183900	-0.21910100	0.00006600
S	1.29377400	1.45377900	0.00023200
С	2.34224700	-0.00225900	0.00003900
С	2.72731300	-0.55802300	1.22344500
С	3.52355400	-1.70494700	1.21463100
С	3.91846600	-2.27625300	-0.00025600
С	3.52476600	-1.70379200	-1.21498400
С	2.72851000	-0.55686800	-1.22350400
0	1.48628900	2.16492400	-1.28178500
0	1.48634600	2.16460200	1.28241300
Н	-2.83090300	-0.17003100	2.15336700
Н	-0.51273300	0.76689900	2.15608000
Н	-0.51221900	0.76586600	-2.15577200
Н	-2.83048200	-0.17092600	-2.15316000
Н	2.42085700	-0.09755600	2.15609600
Н	3.83706000	-2.14772200	2.15444000
Н	3.83921300	-2.14567500	-2.15489900
Н	2.42289000	-0.09551600	-2.15599100
Н	4.53734800	-3.16807700	-0.00037000
Ν	-4.30036600	-0.76586300	-0.00021500
0	-4.83948600	-0.98029500	-1.08849700
0	-4.83945500	-0.98250200	1.08753100
E (RB3LYP)	-1216.45997536	a.u.	

3.5.3.6. Aryl group: Phenyl (R = F)

(2,2'-Bipyridyl) 4-fluorophenyl(S-sulfinylphenyl)copper(III) iodide (16k)

See section 3.4.1.5 for the previously reported geometry-optimised structure of (2,2'-bipyridyl) 4-fluorophenyl(*S*-sulfinylphenyl)copper(III) iodide (**16k**).

(2,2'-Bipyridyl) 4-fluorophenyl(S-sulfinylphenyl)copper(III) iodide reductive elimination transition state⁺

Geometry-optimised cartesian coordinate

Charge = 0	Multiplicity :	= 1	
ATOM	х	Y	Z
С	-2.27778300	-1.22722100	-0.33905000
С	-1.32191800	-0.89663800	-2.43849200

С	-2.43379800	-1.42066600	-3.09140400
С	-3.50822600	-1.85781900	-2.31527300
С	-3.43016900	-1.76274100	-0.92707800
С	-2.09565000	-1.09977200	1.13348200
С	-0.69583700	-0.39026100	2.84752300
С	-1.60879100	-0.77029200	3.82982000
С	-2.81396800	-1.34323400	3.42128300
С	-3.06083600	-1.51293500	2.05951500
N	-0.93123600	-0.54795700	1.53912400
N	-1.25071200	-0.79593700	-1.10333300
Cu	0.40646800	-0.09208800	-0.11246700
S	0.11792200	2.37977200	0.06795200
С	-1.66786800	2.19598500	-0.22050100
С	-2.52458100	2.07877200	0.87427800
С	-2.13528900	2.19046900	-1.53694200
С	-3.89555200	1.95049800	0.63731700
С	-3.50614100	2.05363900	-1.75735600
С	-4.38370500	1.92918800	-0.67310100
0	0.57033200	3.28465500	-1.02497500
0	0.24749500	2.80887500	1.48767200
Н	-0.45685700	-0.53973400	-2.98704500
Н	-2.45212700	-1.47887800	-4.17369500
Н	-4.39763600	-2.26826000	-2.78203600
Н	-4.25942900	-2.10038900	-0.31901500
Н	0.25440200	0.06186400	3.10995600
Н	-1.37686600	-0.61871400	4.87796700
Н	-3.55494400	-1.65408000	4.15054400
Н	-3.99402000	-1.95512900	1.73469900
H	-2.12708100	2.08671500	1.88189800
Н	-1.44223900	2.28659000	-2.36489600
Н	-4.57617500	1.85724000	1.47764800
Н	-3.88656700	2.03850100	-2.77369700
Н	-5.44840900	1.81411500	-0.85138500
I	1.75433100	-2.49265300	-0.24755900
С	1.96877900	1.07958100	-0.01029900
С	2.62675600	1.18319900	-1.23932400
С	2.65348200	1.10534500	1.20457500
С	4.02130600	1.21044300	-1.25752700
Н	2.06438300	1.23437800	-2.16464600
С	4.04920500	1.14083100	1.19370300
Н	2.11168000	1.10257400	2.14232700
С	4.69466100	1.18086400	-0.03876800
Н	4.57718800	1.26321100	-2.18712000
Н	4.62494800	1.14307700	2.11261300
F	6.05471200	1.22081400	-0.05328200

E (RB3LYP) v

- -3258.45869740 -154.44
 - a.u. cm^{-1}

1-Fluoro-4-(phenylsulfonyl)benzene

Geometry-optimised cartesian coordinates Charge = 0 Multiplicity = 1

charge = 0	MULCIPIICICY -	= 1	
ATOM	Х	Y	Z
С	3.18446500	-1.38093900	-1.21462200
С	2.23106200	-0.36053600	-1.22250400
С	1.76822400	0.13345200	0.00004600
С	2.23043300	-0.36158900	1.22241800
С	3.18382600	-1.38198900	1.21415500
С	3.65730600	-1.89093500	-0.00033300
S	0.51447400	1.42134500	0.00031300
С	-1.05294700	0.54433600	0.00008100

С	-1.63974000	0.20216100	-1.22176900
С	-2.84398700	-0.50130200	-1.22466800
С	-3.41271800	-0.83714700	-0.00024900
С	-2.84397400	-0.50189700	1.22433700
С	-1.63974000	0.20156700	1.22177900
0	0.61784600	2.15505400	1.28206000
0	0.61791700	2.15567600	-1.28106800
Н	3.55880900	-1.77290800	-2.15487200
Н	1.86159300	0.05151900	-2.15503400
Н	1.86051400	0.04967400	2.15512000
Н	3.55767300	-1.77477800	2.15426100
Н	4.39847200	-2.68415700	-0.00048100
Н	-1.17023600	0.48965700	-2.15561600
Н	-3.33618300	-0.78120100	-2.14890100
Н	-3.33618600	-0.78225800	2.14842200
Н	-1.17022800	0.48863200	2.15575400
F	-4.58613000	-1.52251600	-0.00040300
E (RB3LYP)	-1111.18804952	a.u.	

4. References

- 1. *Maestro*, Schrödinger LLC, New York, NY, 2019-02.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16 Rev. C.01*, Wallingford, CT, 2016.
- 3. *MacroModel*, Schrödinger LLC, New York, NY, 2019-02.
- 4. A. D. Becke, J. Chem. Phys., **1993**, *98*, 5648-5652.
- 5. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.*, **1988**, *37*, 785-789.
- 6. M. J. Frisch, J. A. Pople and J. S. Binkley, *J. Chem. Phys.*, **1984**, *80*, 3265-3269.
- 7. R. Ditchfield, W. J. Hehre and J. A. Pople, *J. Chem. Phys.*, **1971**, *54*, 724-728.
- 8. A. Bergner, M. Dolg, W. Kuechle, H. Stoll and H. Preuss, *Mol. Phys.*, **1993**, *80*, 1431-1441.
- 9. M. E. Foster and K. Sohlberg, *Phys. Chem. Chem. Phys.*, **2010**, *12*, 307-322.
- 10. S. Miertuš, E. Scrocco and J. Tomasi, *Chem. Phys.*, **1981**, *55*, 117-129.
- 11. J. P. Foster and F. Weinhold, J. Am. Chem. Soc., **1980**, 102, 7211-7218.
- 12. G. Vitzthum and E. Lindner, *Angew. Chem. Int. Ed. Engl.*, **1971**, *10*, 315-326.
- 13. C. Le, T. Q. Chen, T. Liang, P. Zhang and D. W. C. MacMillan, *Science*, **2018**, *360*, 1010-1014.