Unprecedented perspectives in the application of CinNapht fluorophores provided by a "Late-stage" functionalization strategy.

Eléonore Tacke,^a Minh-Duc Hoang,^a Kevin Tatoueix,^b Benoît Keromnes,^a Elsa Van Eslande,^a Philippe Durand,^a Gregory Pieters^b and Arnaud Chevalier^{*a}

a. Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.

b. Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France.

E-mail: arnaud.chevalier@cnrs.fr

Supporting Information

١.	Additional figures
	Fig S1: Study of caesium contribution in reactivity of aniline
	Fig S2: HPLC MaxPlot chromatogram of crude mixture obtained after one night of reaction between CinNapht 4 and <i>para</i> -nitroaniline
	Fig S3: Highlighting the low stability of aryl azide 5n7
	Fig S4: non fluorogenic SPAAC reaction between 5n and DBCO-acid
	Fig S5: Absorbance, Emission and excitation spectra of CinNaphts 5a-5q
	Fig S6: Absorbance, Emission and excitation spectra of CinNaphts 6a-6m and 7a and 7b in Organic Solvents
	Fig S7: Absorbance, Emission and excitation spectra of CinNaphts 6a-6m in PBS + 5% BSA 14
	Fig S8: Epsilon Calculation in organic solvents16
	Fig S9: Epsilon Calculation in PBS buffer at pH = 7.4 supplemented with 5% BSA
	Fig S10: Photobleaching Mechanism

	Fig S11: Representative view of mitochondria targeted CinNapht 6i and 6j subcellular localization	24
	Fig S12: turn on measurment	24
	Fig S13 Photophysical caracterisation of 5n in Oil and Tiacetine	25
11.	Experimental section	27
	Abbreviations	27
	Instrument and methods	27
	Synthesis protocols	28
	4-fluoro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1)	28
	6-amino-5-(2-amino-5-fluorophenyl)-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (3)	28
	11-butyl-2-fluoro-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (4)	29
	11-butyl-2-(butylamino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5a)	30
	11-butyl-2-(butyl(methyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5b)	. 30
	11-butyl-2-(tert-butylamino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5c)	31
	2-(benzylamino)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5d)	31
	2-(benzyl(methyl)amino)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (56	e)32
	11-butyl-2-(2-methylhydrazineyl)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5g) 32
	11-butyl-2-((4-(trifluoromethyl)phenyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11 dione (5i)	.H)- 33
	11-butyl-2-(methyl(phenyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5	k)33
	11-butyl-2-(diphenylamino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5m)	34
	2-azido-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5n)	34
	2-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)amino)etha 1-sulfonic acid (50)	ne- 35
	11-butyl-2-((2-hydroxyethyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione	(5p) 35
	2-((2-aminoethyl)thio)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5r).	36
	11-butyl-2-(3,3-difluoroazetidin-1-yl)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione	(6a) 37
	1-(11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)piperidine-4- carboxylic acid (6b)	37
	2-(but-3-yn-1-ylamino)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (6c)	38
	tert-butyl (35-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnoli yl)amino)-3,6,9,12, 15,18,21,24,27,30,33-undecaoxapentatriacontyl)carbamate (6d')	in-2- 38
	2-((35-amino-3,6,9,12,15,18,21,24,27,30,33-undecaoxapentatriacontyl)amino)-11-butyl-10H- benzo[c]isoquinolino [4,5-gh]cinnoline-10,12(11H)-dione (6d)	39
	11-butyl-2-((2-(2-(((2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2- yl)oxy)ethoxy)ethoxy)ethyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione	(6e)
		39

	tert-butyl N6-(11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin- lysinate (6f)	2-yl)-L- 40
	11-butyl-2-((2-morpholinoethyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-d (6g)	lione 40
	3-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2- yl)(dodecyl)amino)propane-1-sulfonic acid (6h)	41
	(3-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2- yl)amino)propyl)triphenyl phosphonium (6i)	41
	1-(3-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2- yl)amino)propyl)pyridin-1-ium (6j)	42
	N-(2-(2-(2-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2- yl)amino)ethoxy)ethoxy)ethyl)-4-(4-(6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]- yl)phenoxy)butanamide (6k)	-2'- 42
	11-butyl-2-(pyrrolidin-1-yl-2,2,5,5-d4)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dic (6l)	one 43
	1-(11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)-N-(35-((1 butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)amino)- 3,6,9,12,15,18,21,24,27,30,33-undecaoxapentatriacontyl)piperidine-4-carboxamide (7a)	1- 44
	2-((2-(1-benzyl-1H-1,2,3-triazol-4-yl)ethyl)amino)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinn 10,12(11H)-dione (7b)	oline- 44
	1-Ammonium-3,6-dioxaoct-8-yl 2,3,4,6-tetra-O-acetyl- α -D-mannopyranoside p-toluenesulfonate	(8) 45
	1-Ammonium-3,6-dioxaoct-8-yl α -D-mannopyranoside p-toluenesulfonate (9)	45
	3-(dodecylamino)propane-1-sulfonic acid (10)	45
F	hotophysical characterization	46
	Bleaching experiments:	46
(ell Culture and Confocal Microscopy	46
	Cell Culture and cell Imaging	46
	Confocal fluorescence microscopy	47
	Colocalization experiments:	47
III.	NMR and MS Spectra	48
IV.	Single Crystal X-ray Crystallography (SC-XRD)	105
E	xperimental	105
	Figure 1: (left) ORTEP drawing of compound 4 with thermal ellipsoids drawn at the 30% problems level; (right) Labelling scheme of the structure.	oability 107
	Table 2: Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Paral (Å ² $\times 10^3$) for compound 4. U _{eq} is defined as 1/3 of the trace of the orthogonalised U _{ij} tensor	meters 107
	Table 3: Anisotropic Displacement Parameters (×10 ⁴) for compound 4. The anisotropic displace factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11}+2hka^* \times b^* \times U_{12}+]$.	ement 109
	Table 4: Bond Lengths in Å for compound 4	109
	Table 5: Bond Angles in [°] for compound 4	111

	Table 6: Torsion Angles in \degree for compound 4	111
	Table 7: Hydrogen Bonds for compound 4	113
	Table 8: Hydrogen Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Dis Parameters (Å ² ×10 ³) for compound 4.	splacement
V.	DFT calculations	115
(Ground state geometries and frontiers molecular orbitals distributions:	115
9	Simulated UV spectra (blue lines) and oscillator strengths (green bars):	119
	Simulated UV data (excitation number, energy, wavelength, oscilator strenghs and transition	ו involved): 123
(Cartesian coordinates of the optimized geometries:	127

I. Additional figures

Fig S1: Study of caesium contribution in reactivity of aniline

Entry	Base	Conversion			
Entry		1 h	overnight		
1	NaHCO ₃	< 1 %	< 1 %		
2	Na ₂ CO ₃	< 1 %	< 1 %		
	Na ₂ CO ₃	< 1 %	10 %		
3	Cs ₂ CO ₃	37.9 %	71.6 %		
4	NaHCO ₃ + CsF	< 1 %	32.4 %		
5	$Na_2CO_3 + CsF$	12.3 %	78.7 %		
6	Na ₂ CO ₃ + 15-Crown-5	< 1 %	< 1 %		

Chromatograms:

Fig S2: HPLC MaxPlot chromatogram of crude mixture obtained after one night of reaction between CinNapht 4 and *para*-nitroaniline

Fig S3: Highlighting the low stability of aryl azide 5n

<u>Top</u>: HPLC MaxPlot chromatogram of crude mixture obtained after incubating CinNapht **5n** at 0.25mM at room temperature in PBS buffer (left) and CH₃CN (right). <u>Bottom</u>: Emission spectrum of the mixture after incubation in PBS buffer with excitation at 440 nm and live A549 cell imaging of CinNaphts **5n** using a 63x oil immersion objective, nucleus was stained with Hoechst 33342, 1µg/mL for 20 min at 37 °C (λ_{Exc} : 405 nm, λ_{Em} : 425 to 500 nm), CinNapht **5n** incubated at 1 µM for 3 h at 37 °C (λ_{Exc} : 470 nm, λ_{Em} : 500 to 700 nm). Scale bar 20 µM.

Fig S4: non fluorogenic SPAAC reaction between 5n and DBCO-acid

<u>Top:</u> HPLC MaxPlot chromatogram of crude mixture after 4h of reaction between **5n** and DBCO acid (1.1 equiv.) at 5mM in DMSO (left) and extraction of UV spectrum and MS spectrum of SPAAC click product (right). <u>Bottom:</u> highlighting of separation between HOMO and LUMO with very low oscillator strength that explains the absence of fluorescence of the SPAAC click product.

Fig S5: Absorbance, Emission and excitation spectra of CinNaphts 5a-5q

Spectra were recorded at 25°C in CHCl₃ (and DMSO for compound 50). Emission spectrum was recorded using an excitation at 470 nm (5a, 5c, 5d, 5g and 5p), 480 nm (5e, 5i) or 500 nm (5b, 5k, 5m and 5o). Excitation spectrum was recorded using an emission at 570 nm (5a, 5d, 5e, 5g and 5p), (5b 600 (5i (5m 580nm and 5c), nm and 5k) or 630 nm and 50).

Fig S6: Absorbance, Emission and excitation spectra of CinNaphts 6a-6m and 7a and 7b in Organic Solvents

Spectra were recorded at 25°C. Emission spectrum was recorded using an excitation at 450 nm (6a and 6b), 460 nm (6c, 6g, 6j, 6k and 6l), 470 nm (6d, 6e and 6f), 490 nm (6i) and 520 nm (6h). Excitation spectrum was recorded using an emission at 550 nm (6a), 560 nm (6c and 6g), 580 nm (6e and 6f), 600 nm (6b, 6d, 6i, 6j, 6k and 6l) and 620 nm (6h).

<u>Spectra in CHCl</u>₃

Spectra in DMSO

Fig S7: Absorbance, Emission and excitation spectra of CinNaphts 6a-6m in PBS + 5% BSA

Spectras were recorded at 25°C in PBS + 5% BSA. Emission spectrum was recorded using an excitation at 470 nm. Excitation spectrum was recorded using an emission at 570 nm.

Fig S8: Epsilon Calculation in organic solvents

Absorbance spectra were recorded in at 25°C in CHCl₃ (and DMSO for compound 6b, 6j and 6k).

Fig S9: Epsilon Calculation in PBS buffer at pH = 7.4 supplemented with 5% BSA

Absorbance spectra were recorded in at 25°C in PBS buffer at pH = 7.4 supplemented with 5% BSA.

Fig S10: Photobleaching Mechanism

Fig S11: Representative view of mitochondria targeted CinNapht 6i and 6j subcellular localization

For this experiment, CinNapht 6i and 6j were incubated at 5 μ M for 3 h at 37 °C, then organelles trackers were added. **6i** and **6j** (λ_{Exc} : 470 nm, λ_{Em} : 550 to 700 nm) MitoViewTM 405 (λ_{Exc} : 405 nm, λ_{Em} : 425 to 500 nm), Scale bars 10 μ M

Fig S12: turn on measurment

Values obtaineded using ImageJ software measurement tool

	Lipid Droplet			Cell Cyt		oplasm
	Area	Mean			Area	Mean
1	0.593	638.372		1	0.528	27.61
2	0.528	742.295		2	0.528	25.397
3	0.528	404.548		3	0.528	56.336
4	0.528	399.274		4	0.528	19.692
5	0.528	197.082		5	0.528	26.014
6	0.528	337.048		6	0.528	31.151
7	0.528	491.411		7	0.528	21
8	0.528	333.342		8	0.528	22.158
9	0.528	243.062		9	0.528	42.596
10	0.528	1285.377		10	0.528	10.726
11	0.528	559.288		11	0.528	7.11
12	0.528	510.719		12	0.528	6.493
13	0.528	1114.055		13	0.528	5.466
14	0.528	1699.123		14	0.528	14.178
15	0.528	1030.397		15	0.528	11.589
16	0.528	651.075		16	0.528	15.452
17	0.528	394.041		17	0.528	22.801
18	0.528	409.452		18	0.528	16.438
19	0.528	308.603		19	0.528	41.068
20	0.528	376.514		20	0.528	23.267
Average Mean		606.2539		Averag	e Mean	22.3271
		Turi	n ON factor:	27.1532756		

Fig S13 Photophysical caracterisation of 5n in Oil and Tiacetine

<u>Canola Oil :</u>

Spectra were recorded at 25°C in Canola oil (mainly composed of unsaturated lipids \sim 93% from Lesieur, Asnières-sur-Seine, France). Emission spectrum was recorded using an excitation at 480 nm. Excitation spectrum was recorded using an emission at 620 nm.

<u>Triacetin</u>

Spectra were recorded at 25°C in Triacetin. Emission spectrum was recorded using an excitation at 480 nm. Excitation spectrum was recorded using an emission at 620 nm.

II. Experimental section

Abbreviations

The following abbreviations are used throughout the text of the ESI file: Abs, absorption; aq., aqueous; Ar, argon; BSA, Bovine Serum Albumin; DCM, dichloromethane; DMF, dimethylformamide; DMSO, dimethylsulfoxide; Em, emission; EtOAc, ethyl acetate; EtOH, ethanol; Ex, excitation; H₂O, water; Hept, heptane; HRMS, High-Resolution Mass Spectrum; IR, infrared; MeCN, acetonitrile; MeOH, methanol; min, minutes; NMR, Nuclear Magnetic Resonance; PBS, phosphate buffered saline; MS, mass spectrometry; RP, reversed phase; RT, room temperature; TFA, trifluoroacetic acid; THF, Tetrahydrofuran; TLC, Thin Layer Chromatography; UV, ultraviolet; Vis, Visible.

General

Unless otherwise noted, all commercially available reagents and solvents were used without further purification. TLC were carried out on silica gel aluminum plates with F-254 indicator; The spots were directly visualized or through illumination with UV lamp ($\lambda = 254/365$ nm). Flash-column chromatography purifications were performed on silica gel (40-63 µm) from Macherey-Nagel. Organic solvents for spectroscopy were purchased from Acros Organics or Sigma Aldrich. Absolute EtOH was provided by Carlo Erba. Colza oil (mainly composed of unsaturated lipids ~93% from Lesieur, Asnières-sur-Seine, France).

Instrument and methods

Proton NMR (¹H) spectra were recorded on a Bruker Avance 500 or 300 MHz and proton-decoupled carbon ¹³NMR spectra were recorded at 125 MHz. NMR experiments were carried out in deuteratd solvents and chemical shifts are expressed in parts per million (ppm) from the residual non-deuterated solvent signal. Calibration was made by using residual signals of partially deuterated solvent summarized in 2010 by Fulmer et al. The following abbreviations are used for the multiplicities: s: singlet; d: doublet; t: triplet; q: quadruplet; qt: quintuplet; m: multiplet or overlap of non-equivalent resonances; br s: broad singlet; Coupling constants (J) are reported in hertz (Hz).

High resolution mass spectra were determined on an AEI MS-9 using electrospray ionization (ESI) and a timeofflight (TOF) analyzer. IR spectra were recorded with a PerkinElmer Spectrum BX FT-IR spectrometer directly from the substance via attenuated total reflectance (ATR-IR) and bond vibration frequencies are expressed in reciprocal centimeters (cm⁻¹). HPLC-MS analyses were performed on an Alliance W2690 system (Waters, USA). UV-Visible absorption spectra were recorded on a Varian Cary 100 Series 2 Scan UV-Vis Spectrophotometer using a 10 mm path quartz cell. Emission spectra experiments were performed on an Edimburgh FS-5 spectrofluorimeter with a SC-20 module. Aright angle configuration was used. The relative fluorescence quantum yields were determined using DCM (4-(Dicyanomethylene)-2-methyl-6-(4dimethylaminostyryl)-4H-pyran) as reference ($\phi_{FL} = 0.43$ in EtOH) as reference with the following formula:

$$\Phi_{\rm F}({\rm x}) = \Phi_{\rm F}(0) \frac{1 - 10^{-{\rm A}_0}}{1 - 10^{-{\rm A}_x}} \frac{{\rm S}_{\rm x}}{{\rm S}_0} \left(\frac{{\rm n}_{\rm x}}{{\rm n}_0}\right)^2$$

Synthesis protocols

4-fluoro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1)

2-bromo-4-fluoroaniline (3.0 g, 16.0 mmol, 1.0 eq), KOAc (4.71 g, 48.0 mmol, 3.0 eq) and bis(pinacolato)diboron (6.09 g, 24.0 mmol, 1.5 eq) were dissolved in dioxane (85 mL) in a Schlenk tube. The resulting mixture was desoxygenated with freeze-pump-thaw cycling before addition of Pd(dppf)Cl₂ (1.17 g, 2.00 mmol, 0.10 eq). The reaction was heated overnight at 90 °C with constant stirring under argon. The mixture was cooled to room temperature and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (Hept/AcOEt 9:1 v/v) to afford compound **1** (3.18 g, 84 %) as a white solid. Analysis were in accordance with previous published work.¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.29 – 7.27 (m, 1H), 6.91 (td, J = 8.5, 3.1 Hz, 1H), 6.53 (dd, J = 8.8, 4.2 Hz, 1H), 4.57 (s, 2H), 1.34 (s, 12H).

6-amino-5-(2-amino-5-fluorophenyl)-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (3)

6-amino-5-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (2.0 g, 5.76 mmol, 1.0 eq.), 4-fluoro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (2.05 g, 8.64 mmol, 1.5 eq.), and Na₂CO₃ (1.83 g, 17.3 mmol, 3.0 eq.) were dissolved in a mixture of H₂O, EtOH, and toluene (40 mL, 3:3:10 v/v) in a Schlenk tube. The resulting mixture was deoxygenated with freeze-pump-thaw cycling before addition of Pd(PPh₃)₄ (666 mg, 0.576 mmol, 0.1 eq.). The reaction was heated overnight at 80 °C with constant stirring under argon. The mixture was cooled to room temperature, then diluted with DCM and washed with water. The organic layer was collected, dried over MgSO₄, and evaporated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (DCM/EtOAc 95:5 to 90:10) to afford compound **3** (1.95 g, 90 %) as a yellow

orange solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.59 (d, J = 7.3 Hz, 1H), 8.36 (s, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.67 (t, J = 7.8 Hz, 1H), 6.98 (td, J = 8.5, 2.6 Hz, 1H), 6.91 (dd, J = 8.8, 2.6 Hz, 1H), 6.80 (dd, J = 8.8, 4.8 Hz, 1H), 5.11 (s, 2H), 4.20 – 4.11 (t, 2H), 3.58 (s, 2H), 1.75 – 1.66 (m, 2H), 1.48 – 1.38 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 164.6, 164.0, 157.4, 155.5, 146.3, 140.5, 135.5, 131.6, 129.5, 127.1, 125.6, 123.4, 120.5, 118.1, 117.7 (d, J = 22.2 Hz), 117.1 (d, J = 7.8 Hz), 116.7 (d, J = 22.3 Hz), 112.4, 40.2, 30.5, 20.5, 14.0. ¹⁹**F NMR** (282 MHz, CDCl₃) δ -125.59 (d, J = 3.7 Hz).

Rf (DCM/ EtOAc 8:2) = 0.5

IR (neat): v = 3466, 3358, 3239, 2958, 2876, 1684, 1631, 1586, 1498, 1427, 1393, 1339, 1227, 1146, 777cm⁻¹ **ESI-HRMS** calculated for $C_{22}H_{21}FN_3O_2$ [M+H]⁺ 378.1618, found 378.1602

11-butyl-2-fluoro-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (4)

A solution of compound **3** (1.00 g, 2.65 mmol, 1.00 eq.) in CH_3Cl_3 was cooled in an ice bath to 0°C. *m*CPBA (937 mg, 5.43 mmol, 2.05 eq.) was added and the reactring mixture was kept at 0 °C under stirring for 2h after what it was allowed to warm to room temperature. The mixture was then stirred under argon at room temperature 3 days until the reaction was completed. The mixture was washed with a 10% aqueous $Na_2S_2O_3$ solution and extracted with DCM. The organic layer was then washed again with a saturated solution of $NaHCO_3$. The organic layer was dried over $MgSO_4$ and concentrated under reduced pressure to give crude product, which was purified by flash chromatography on silica gel (Hept/EtOAc 95:5 to 85:15, v/v) to afford compound **4** (705 mg, 71 %) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 10.02 (d, *J* = 8.2 Hz, 1H), 9.46 (s, 1H), 8.89 (dd, *J* = 8.9, 5.4 Hz, 1H), 8.78 (d, *J* = 7.3 Hz, 1H), 8.34 (d, *J* = 8.8 Hz, 1H), 8.13 (t, *J* = 7.8 Hz, 1H), 7.78 (dd, *J* = 12.2, 4.7 Hz, 1H), 4.32 – 4.18 (m, 2H), 1.86 – 1.71 (m, 2H), 1.56 – 1.41 (m, 2H), 1.02 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 165.6, 163.9, 163.6, 163.2, 145.2, 141.7, 135.1 (d, J = 10.1 Hz), 132.1, 130.8, 129.8, 129.6, 127.8, 125.6, 123.5 (d, J = 10.8 Hz), 122.9, 120.7 (d, J = 25.5 Hz), 118.8 (d, J = 4.9 Hz), 106.7 (d, J = 23.6 Hz), 40.8, 30.4, 20.5, 14.0.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -100.69 (d, *J* = 5.7 Hz)

Rf (Hept/EtOAc 5:5) = 0.6

IR (neat): v = 2961, 2873, 1705, 1663, 1622, 1600, 1473, 1418, 1365, 1337, 1230, 1194, 1150, 1127, 1090, 987, 913, 846, 786, 732, 688 cm⁻¹

 $\textbf{ESI-HRMS} \text{ calculated for } C_{22}H_{17}FN_{3}O_{2} \text{ [M+H]}^{+} \text{ 374.1305, found } \text{ 374.1308}$

General procedure:

CinNapht-F **4** (20 mg, 0.05 mmol, 1 eq), NaHCO₃ (18 mg, 0.21 mmol, 4 eq) or Cs₂CO₃ (70 mg, 0.21 mmol, 4 eq) and the corresponding amine (0.11 mmol, 2 eq) were dissolved in DMF (0.50 mL, 0.1 M) and stirred at 100 °C. After the reaction was completed (monitored by TLC using Hept/EtOAc 8:2) the mixture was cooled down to room temperature and diluted in DCM. The mixture was washed with brine and the combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel or on preparative TLC plate using an appropriate eluting solvent mixture to afford the desired pure product.

11-butyl-2-(butylamino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5a)

Compound **5a** was prepared according to the general procedure with butylamine (10.5 μ L, 0.107 mmol) for 2 h. The crude product was purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **5a** (21 mg, 92 %) as an orange yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.96 (d, J = 8.2 Hz, 1H), 9.46 (s, 1H), 8.72 (d, J = 7.2 Hz, 1H), 8.46 (d, J = 9.0 Hz, 1H), 8.04 (t, J = 7.8 Hz, 1H), 7.38 (s, 1H), 7.22 (d, J = 8.9 Hz, 1H), 4.72 (s, 1H, CinNapht-<u>NH</u>-CH₂-CH₂-CH₂-CH₃), 4.25 (t, J = 7.5 Hz, 2H), 3.41 (q, J = 6.6 Hz, 2H, CinNapht-NH-<u>CH₂-CH₂-CH₂-CH₃), 1.85 – 1.71 (m, 4H), 1.58 (qt, 7.4 Hz, 2H), 1.49 (sx, J = 7.4 Hz, 2H), 1.04 (m, 6H).</u>

¹³**C NMR** (126 MHz, CDCl₃) δ 164.3, 164.0, 151.7, 143.2, 142.2, 133.2, 131.3, 131.1, 129.9, 128.7, 127.6, 126.6, 124.6, 123.1, 122.6, 118.3, 97.1, 52.8, 40.6, 39.3, 30.4, 29.8, 29.6, 20.5, 20.4, 14.0, 13.9.

Rf (DCM/EtOAc 8:2) = 0.4

IR (neat): v = 2960, 2926, 2868, 1736, 1702, 1654, 1621, 1599, 1538, 1435, 1337, 1224, 1177, 1112, 820, 780, 752, 693 cm⁻¹

ESI-HRMS calculated for C₂₆H₂₇N₄O₂ [M+H]⁺ 427.2134, found 427.2126

11-butyl-2-(butyl(methyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5b)

Compound **5b** was prepared according to the general procedure with *N*-methylbutylamine (13.0 μ L, 0.11 mmol) for 2 h. The crude product was purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **5b** (22 mg, 95 %) as a red solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.96 (d, J = 8.2 Hz, 1H), 9.46 (s, 1H), 8.71 (d, J = 7.2 Hz, 1H), 8.52 (d, J = 9.0 Hz, 1H), 8.03 (t, J = 7.8 Hz, 1H), 7.44 (d, J = 10.7 Hz, 2H), 4.24 (t, J = 7.5 Hz, 2H), 3.63 (t, J = 7.4 Hz, 2H), 3.27 (s, 3H, CinNapht-N(<u>CH₃</u>)-Bu, 1.76 (m, 4H), 1.49 (m, 4H), 1.02 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 164.3, 164.0, 151.7, 143.2, 142.2, 133.2, 131.3, 131.1, 129.9, 128.7, 127.6, 126.6, 124.6, 123.1, 122.6, 118.3, 97.1, 52.8, 40.6, 39.3, 30.4, 29.8, 29.6, 20.5, 20.4, 14.0, 13.9.

Rf (DCM/EtOAc 8:2) = 0.7

IR (neat): v = 2955, 2929, 2873, 1701, 1663, 1610, 1520, 1492, 1464, 1430, 1385, 1367, 1346, 1270, 1225, 1185, 1118, 920, 867, 814, 788, 752, 693 cm⁻¹

ESI-HRMS calculated for C₂₇H₂₉N₄O₂ [M+H]⁺441.2291, found 441.2280

11-butyl-2-(tert-butylamino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5c)

Compound **5c** was prepared according to the general procedure with *tert*butylamine (22.5 μ L, 0.11 mmol) overnight. As the boiling point of tertbutylamine is very low, several equivalents were gradually added to help the completion of the reaction. The crude product was purified by flash chromatography on silica gel (DCM/EtOAc 98:2, v/v) to afford compound **5c** (11 mg, 47 %) as a red solid.

¹**H NMR** (300 MHz, CDCl₃) δ 9.96 (d, J = 8.2 Hz, 1H), 9.43 (d, J = 4.4 Hz, 1H), 8.71 (d, J = 7.3 Hz, 1H), 8.46 (d, J = 7.6 Hz, 1H), 8.03 (t, J = 7.8 Hz, 1H), 7.62 (s, 1H), 7.22 (s, 1H), 4.87 (s, 1H, CinNapht-<u>NH</u>-C(CH₃)₃), 4.24 (t, J = 7.4 Hz, 2H), 1.76 (qt, J = 7.4 Hz, 2H), 1.62 (s, 9H, CinNapht-NH-C(CH₃)₃), 1.50 (sx, J = 7.4 Hz, 2H), 1.01 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.9, 163.5, 149.9, 143.2, 142.3, 132.6, 131.0, 130.6, 129.5, 128.4, 127.2, 126.1, 124.4,

122.9, 122.4, 122.3, 117.9, 97.8, 51.8, 40.3, 30.0, 29.3 (3C), 20.2, 13.6.

Rf (DCM/MeOH 95:5) = 0.6

IR (neat): v = 2961, 2930, 2870, 1702, 1662, 1619, 1539, 1498, 1472, 1435, 1399, 1368, 1336, 1272, 1226, 1181, 1115, 1078 cm⁻¹

ESI-HRMS calculated for $C_{26}H_{27}N_4O_2$ [M+H]⁺ 427.2134, found 427.2141

2-(benzylamino)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5d)

Compound **5d** was prepared according to the general procedure with benzylamine (12.0 μ L, 0.11 mmol) for 4 h. The crude product was purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **5d** (12.0 mg, 54 %) as an orange solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.95 (d, *J* = 7.8 Hz, 1H), 9.44 (s, 1H), 8.69 (d, *J* = 7.0 Hz, 1H), 8.48 (d, *J* = 8.9 Hz, 1H), 8.00 (s, 1H), 7.51 (s, 1H), 7.42 – 7.22 (m, 6H), 5.00 (s, 1H, CinNapht-<u>NH</u>-CH₂-C₆H₅), 4.58 (s, 2H, CinNapht-NH-<u>CH₂-C₆H₅), 4.19 (m, 2H), 1.71 (m, 2H), 1.43 (m, 2H), 0.94 (t, *J* = 7.0 Hz, 3H). Due to poor solubility, no ¹³C NMR spectra could be obtained.</u>

Rf (DCM/MeOH 95:5) = 0.6

IR (neat): v = 2923, 2853, 1696, 1649, 1610, 1597, 1573, 1555, 1532, 1498, 1464, 1435, 1398, 1367, 1334, 1267, 1222, 1181, 1157, 1109, 1076, 907, 845, 820, 788, 765, 745, 699 cm⁻¹

ESI-HRMS calculated for $C_{29}H_{25}N_4O_2$ [M+H]⁺ 461.1978, found 461.1972

2-(benzyl(methyl)amino)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5e)

Compound **5e** was prepared according to the general procedure with N-methylbenzylamine (14.0 μ L, 0.107 mmol) for 4 h. The crude product was purified by preparative TLC (DCM/EtOAc 7:3, v/v) to afford compound **5e** (20 mg, 83 %) as a dark red solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.97 (d, *J* = 8.2 Hz, 1H), 9.46 (s, 1H), 8.72 (d, *J* = 7.3 Hz, 1H), 8.53 (d, *J* = 9.3 Hz, 1H), 8.04 (t, *J* = 7.8 Hz, 1H), 7.59 (s, 1H), 7.48 (d, *J* = 9.1 Hz, 1H), 7.40 – 7.26 (m, 5H, CinNapht-N(CH₃)-CH₂-C₆H₅), 4.88 (s, 2H, CinNapht-N(CH₃)-CH₂-C₆H₅), 4.24 (t, *J* = 7.4 Hz, 2H), 3.38 (s, 3H, CinNapht-N(CH₃)-CH₂-C₆H₅), 1.77 (qt, *J* = 7.4 Hz, 2H), 1.49 (sx, *J* = 7.4 Hz, 2H), 1.01 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.3, 163.9, 152.2, 143.3, 142.2, 136.9, 133.3, 131.4, 131.0, 129.9, 129.2 (2C), 128.8, 127.9, 126.6 (2C), 124.5, 123.3, 122.6, 118.6, 118.4, 97.8, 56.5, 40.7, 39.6, 30.4, 29.8, 29.7, 20.6, 14.0 Rf (DCM/EtOAc 8:2) = 0.7

IR (neat): v = 2962, 2925, 2854, 1703, 1663, 1612, 1524, 1494, 1434, 1395, 1347, 1227, 1116, 814, 786, 749, 704 cm⁻¹

ESI-HRMS calculated for C₃₀H₂₇N₄O₂ [M+H]⁺ 475.2134, found 475.2121

11-butyl-2-(2-methylhydrazineyl)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5g)

Compound **5g** was prepared according to the general procedure with methylhydrazine (6.00 μ L, 0.11 mmol) for 1 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 99:1, v/v) to afford compound **5g** (17 mg, 80 %) as a purple solid.

¹H NMR (300 MHz, DMSO) δ 9.82 (d, J = 7.2 Hz, 1H), 9.50 (s, 1H), 8.63 (d, J = 6.3 Hz,

1H), 8.42 (d, J = 9.4 Hz, 1H), 8.18 – 8.09 (m, 1H), 7.92 (d, J = 9.2 Hz, 1H), 7.85 (s, 1H), 5.14 (s, 2H, CinNapht-N(CH₃)-<u>NH₂</u>), 4.19 – 4.06 (m, 2H), 3.49 (s, 3H, CinNapht-N(<u>CH₃</u>)-NH₂), 1.55 – 1.75 (m, J = 7.3 Hz, 2H), 1.45 – 1.35 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H).

Due to poor solubility, no ¹³C NMR spectras could be obtained.

Rf (DCM/MeOH 95:5) = 0.6

IR (neat): v = 2923, 2852, 1698, 1656, 1608, 1491, 1440, 1396, 1376, 1333, 1231, 1180, 1123, 906, 856, 839, 815, 783, 752, 691 cm⁻¹

ESI-HRMS calculated for C₂₃H₂₂N₅O₂ [M+H]⁺ 400.1774, found 400.1762

11-butyl-2-((4-(trifluoromethyl)phenyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)dione (5i)

Compound **5i** was prepared according to the general procedure with 4-nitroaniline (17.0 mg, 0.107 mmol) and Cs_2CO_3 (70 mg, 0.214 mmol) overnight. The crude product was purified by flash chromatography on silica gel (DCM/EtOAc 98:2, v/v) to afford compound **5i** (21 mg, 45 %) as an orange solid.

¹H NMR (300 MHz, CDCl₃) δ 10.00 (dd, *J* = 8.4, 1.2 Hz, 2H), 9.24 (s,

2H), 8.86 (d, *J* = 9.0 Hz, 2H), 8.74 (dd, *J* = 7.4, 1.2 Hz, 2H), 8.47 (d, *J* = 2.2 Hz, 2H), 8.10 (dd, *J* = 8.4, 7.4 Hz, 2H), 7.88 (dd, *J* = 9.0, 2.3 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 4.11 (t, *J* = 7.5 Hz, 4H), 1.61 (m, 4H), 1.35 (m, 4H), 0.90 (t, *J* = 7.3 Hz, 6H).

¹³**C NMR** (75 MHz, CDCl₃) δ 163.7 (2C), 163.2 (2C), 149.8 (2C), 148.7, 145.3 (2C), 142.1 (2C), 134.0 (2C), 131.9 (2C), 130.8 (2C), 129.6 (2C), 129.3 (2C), 127.8 (2C), 127.5 (2C), 125.7 (2C), 125.6 (2C), 124.8 (2C), 123.5 (2C), 122.6 (2C), 118.3 (2C), 115.0 (2C), 40.5 (2C), 30.1 (2C), 20.3 (2C), 13.7 (2C).

Despite many efforts, CF₃ signals and Ar near CF₃ signals could not be seen

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.19.

Rf (DCM/MeOH 95:5) = 0.6

IR (neat): v = 2958, 2921, 2852, 1703, 1662, 1602, 1515, 1489, 1473, 1455, 1434, 1408, 1380, 1367, 1325, 1261, 1227, 1163, 1116, 1094, 1066, 1014, 938, 908, 862, 843, 815, 787, 751, 735, 699, 691, 667 cm⁻¹ **ESI-HRMS** calculated for C₅₁H₃₇F₃N₇O₄ [M+H]⁺ 868.2853 found 868.2803

11-butyl-2-(methyl(phenyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5k)

Compound **5k** was prepared according to the general procedure with N-methylaniline (11.5 μ L, 0.11 mmol) and Cs₂CO₃ (70 mg, 0.214 mmol) instead of NaHCO₃ overnight. The crude product was purified by flash chromatography on silica gel (DCM/EtOAc 98:2, v/v) to afford compound **5k** (3.0 mg, 12%) as a dark orange solid.

¹**H NMR** (500 MHz, CDCl₃) δ 10.00 (d, *J* = 8.1 Hz, 1H), 9.49 (s, 1H), 8.75 (d, *J* = 7.3 Hz, 1H), 8.44 (d, *J* = 9.2 Hz, 1H), 8.06 (t, *J* = 7.6 Hz, 1H), 7.70 (s, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.25-7.40 (m, 4H), 4.26 (t, *J* = 7.4 Hz, 2H), 3.64 (s, 3H, CinNapht-N(<u>CH₃</u>)-C₆H₅), 1.78 (qt, 2H), 1.50 (sx, *J* = 7.4 Hz, 2H), 1.02 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 164.3, 163.9, 151.9, 146.7, 143.9, 142.3, 132.5, 131.5, 131.1, 130.5 (2C), 130.0, 128.9, 127.7, 127.2, 126.8 (2C), 126.6, 124.5, 123.6, 122.7, 121.1, 118.5, 99.4, 41.3, 40.7, 30.4, 29.8, 20.6, 14.0. **Rf** (DCM/EtOAc 8:2) = 0.7

IR (neat): v = 2957, 2924, 2854, 1702, 1660, 1614, 1592, 1485, 1466, 1435, 1393, 1333, 1314, 1259, 1227, 1184, 1108, 1025, 908, 843, 821, 783, 751, 731, 702, 693 cm⁻¹

ESI-HRMS calculated for $C_{29}H_{25}N_4O_2$ [M+H]⁺ 461.1978, found 461.1956

11-butyl-2-(diphenylamino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5m)

Compound **5m** was prepared according to the general procedure with dibenzylamine (18 mg, 0.107 mmol) and Cs_2CO_3 (70 mg, 0.214 mmol) instead of NaHCO₃ overnight. The crude product was purified by flash chromatography on silica gel (DCM/EtOAc 99:1, v/v) to afford compound **5m** (21 mg, 76 %) as a red solid.

¹**H NMR** (500 MHz, CDCl₃) δ 10.01 (d, J = 8.2 Hz, 1H), 9.20 (s, 1H), 8.74 (d, J = 7.3 Hz, 1H), 8.55 (d, J = 9.2 Hz, 1H), 8.07 (t, J = 7.8 Hz, 1H), 8.01 (s, 1H), 7.63 (dd, J = 9.2, 1.9 Hz, 1H), 7.44 (t, J = 7.8 Hz, 4H), 7.30 (dd, J = 14.2, 7.5 Hz, 6H), 4.20 (t, J = 7.4 Hz, 2H), 1.74 (qt, J = 7.4 Hz, 2H), 1.46 (sx, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.2, 163.7, 151.8, 146.0 (2C), 144.6, 142.3, 132.8, 131.6, 131.0, 130.3 (4C), 129.9, 129.0, 127.6, 126.5 (4C), 126.4, 126.2 (2C), 125.0, 124.0, 123.9, 122.7, 118.5, 107.3, 40.7, 30.4, 20.6, 14.0. Rf (DCM/EtOAc 8:2) = 0.8

IR (neat): v = 2960, 2926, 2868, 1736, 1702, 1654, 1621, 1538, 1435, 1337, 1224, 1177, 1112, 820, 780, 752, 693 cm⁻¹

ESI-HRMS calculated for $C_{34}H_{27}N_4O_2$ [M+H]⁺ 523,2134 found 523.2133

2-azido-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5n)

Compound **5n** was prepared according to the general procedure with NaN₃ (7.0 mg, 0.107 mmol) for 20 min, during which a precipitate forms. The mixture was filtered and the residue was washed with water several times. The residue was then redissolved in DCM, and the mixture was dried over MgSO₄ and concentrated under reduced pressure to give compound **5n** (18 mg, 86 %) without further purification.

¹**H NMR** (500 MHz, CDCl₃) δ 9.93 (d, J = 8.2 Hz, 1H), 9.37 (s, 1H), 8.75 (dd, J = 14.4, 8.1 Hz, 2H), 8.14 (s, 1H), 8.08 (t, J = 7.8 Hz, 1H), 7.62 (d, J = 8.7 Hz, 1H), 4.23 (t, J = 7.4 Hz, 2H), 1.77 (qt, J = 7.4 Hz, 2H), 1.49 (sx, J = 7.3 Hz, 2H), 1.02 (t, J = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.1, 163.5, 145.7, 145.3, 142.1, 134.2, 132.2, 131.0, 129.9, 129.7, 127.9, 125.7, 125.5, 123.3, 123.1, 118.3, 110.1, 41.0, 30.6, 30.1, 20.8, 14.2

Rf (DCM/EtOAc 8:2) = 0.7

IR (neat): v = 2960, 2873, 2118, 1704, 1655, 1613, 1467, 1381, 1330, 1273, 1232, 1096, 844, 786, 752, 689 cm⁻¹ **ESI-HRMS** calculated for C₂₂H₁₇N₆O₂ [M+H]⁺ 397.1413, found 397.1404 2-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)amino)ethane-1-sulfonic acid (50)

Compound **50** was prepared according to the general procedure **A** with taurine (13 mg, 0.107 mmol) overnight. The reaction mixture was redissolved in DCM, filtered and concentrated under reduced pressure. The residue was purified by preparative TLC (DCM/MeOH 8:2, v/v) to afford compound **50** (24 mg, 94 %) as a red solid.

¹**H NMR** (300 MHz, DMSO) δ 9.72 (d, J = 8.1 Hz, 1H), 9.36 (s, 1H), 8.56 (d, J = 7.3 Hz, 1H), 8.30 (d, J = 9.1 Hz, 1H), 8.09 (t, J = 7.8 Hz, 1H), 7.49 (d, J = 13.0 Hz, 2H), 7.41 (d, J = 9.1 Hz, 1H), 4.09 (t, J = 7.5 Hz, 2H), 3.67 (q, J = 6.5 Hz, 2H, CinNapht-NH-CH₂-CH₂-SO₃H), 2.88 (t, J = 6.9 Hz, 2H, CinNapht-NH-CH₂-CH₂-SO₃H), 1.67 (qt, J = 7.5 Hz, 2H), 1.38 (sx, J = 7.4 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO) δ 163.4, 162.6, 151.9, 143.3, 132.0, 130.4, 129.6, 128.8, 128.6, 126.9, 126.6, 124.6, 124.5, 122.4, 122.2, 121.5, 117.5, 103.0, 102.8, 95.1, 49.5, 29.6, 19.8, 13.7.

Rf (DCM/EtOAc 8:2) = 0.3

IR (neat): v = 3386, 2960, 1731, 1704, 1659, 1621, 1540, 1501, 1440, 1404, 1339, 1215, 1170, 1129, 1043, 825, 783, 751, 694, 667 cm⁻¹

ESI-HRMS calculated for $C_{24}H_{23}N_4O_5S$ [M+H]⁺ 479.1389, found 479.1375

11-butyl-2-((2-hydroxyethyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5p)

Compound **5p** was prepared according to the general procedure **A** with ethanolamine (6.40μ L, 0.107 mmol) for 1 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 99:1 to 97:3, v/v) to afford compound **5p** (14 mg, 64 %) as a red solid.

¹**H NMR** (500 MHz, DMSO) δ 9.79 (d, *J* = 7.8 Hz, 1H), 9.47 (s, 1H), 8.62 (d, *J* =

7.3 Hz, 1H), 8.34 (d, J = 9.1 Hz, 1H), 8.12 (t, J = 7.8 Hz, 1H), 7.58 (s, 1H), 7.51 (d, J = 9.1 Hz, 2H), 4.93 (t, J = 5.2 Hz, 1H), 4.12 (t, J = 7.3 Hz, 2H), 3.74 (d, J = 5.5 Hz, 2H), 3.56 – 3.49 (m, 2H), 1.67 (qt, J = 7.4 Hz, 2H), 1.40 (sx, J = 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H).

Due to poor solubility, no ¹³C NMR spectras could be obtained.

Rf (DCM/EtOAc 8:2) = 0.7

IR (neat): v = 3379, 2963, 2931, 2484, 1698, 1655, 1615, 1599, 1532, 1499, 1456, 1436, 1401, 1374, 1352, 1336, 1316, 1269, 1223, 1181, 1125, 1081, 1003, 937, 915, 874, 824, 786, 751, 693 cm⁻¹ **ESI-HRMS** calculated for $C_{24}H_{23}N_4O_3$ [M+H]⁺415.1770 found 415.1759 2-((2-aminoethyl)thio)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (5r)

Compound **5r** was prepared according to the general procedure **A** with cysteamine hydrochloride (12 mg, 0.107 mmol) for 1 h. The crude product was purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **5r** (11 mg, 49 %) as a yellow solid.

¹**H NMR** (300 MHz, DMSO) δ 9.20 (d, J = 8.2 Hz, 1H), 8.70 (s, 1H), 8.22 – 8.14 (m, 2H), 7.93 (s, 1H), 7.79 (t, J = 7.8 Hz, 1H), 7.68 (dd, J = 8.8, 1.8 Hz, 1H), 3.89 (t, J = 7.4 Hz, 2H), 3.31 (t, J = 7.2 Hz, 2H, CinNapht-S-CH₂-CH₂-CH₂-NH₂), 3.00 (br, 2H, CinNapht-S-CH₂-CH₂-NH₂), 1.65 – 1.54 (qt, J = 7.4 Hz, 2H), 1.38 (sx, J = 7.3 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO) δ 162.6, 161.7, 161.2, 145.2, 144.6, 140.1, 130.4, 130.3, 129.1, 129.0, 128.8, 127.9, 125.9, 125.0, 123.5, 121.6, 120.2, 116.4, 116.2, 69.8, 33.7, 29.5, 19.8, 13.7.

Rf (DCM/MeOH 95:5) = 0.6

IR (neat): v = 2958, 2924, 2851, 1702, 1655, 1616, 1597, 1548, 1505, 1483, 1465, 1433, 1416, 1378, 1364, 1334, 1263, 1229, 1187, 1141, 1090, 1065, 1022, 972, 942, 909, 839, 823, 784, 751, 687, 672 cm⁻¹

ESI-HRMS calculated for $C_{26}H_{23}N_4O_2$ [M+H+MeCN]⁺ 471.1529, found 471.1535 and $C_{24}H_{23}N_4O_2S$ [M+H]⁺ 431.1363, found 431.1360
11-butyl-2-(3,3-difluoroazetidin-1-yl)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (6a)

Compound **6a** was prepared according to the general procedure with 3,3-Difluoroazetidine hydrochloride (14.0 mg, 0.11 mmol) for 4 h. The crude product was purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **6a** (18 mg, 75 %) as an orange solid.

¹**H NMR** (300 MHz, $CDCl_3 + 1\%$ TFA*) δ 9.66 (d, *J* = 8.3 Hz, 1H), 9.44 (s, 1H), 8.84 (d, *J* = 7.3 Hz, 1H), 8.71 (d, *J* = 8.8 Hz, 1H), 8.16 (t, *J* = 7.9 Hz, 1H), 7.43 (s, 1H), 7.35 (d, *J* = 9.0 Hz, 1H), 4.80 (t, *J*_(H-F) = 11.1 Hz, 4H, CinNapht-N-(<u>CH₂)₂-</u>CCF₃), 4.17 (t, *J* = 7.4 Hz, 2H), 1.78 (qt, *J* = 7.3 Hz, 2H), 1.38 (sx, *J* = 7.3 Hz, 2H), 1.00 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃ + 1% TFA) δ 163.8, 160.0, 139.8, 134.8, 134.1, 131.0, 130.8, 130.2, 130.1, 126.0, 125.5,

125.2, 122.9, 121.9, 120.7, 117.6, 116.6, 98.5, 69.7, 63.8, 41.3, 30.1, 20.3, 13.7.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -75.72

Rf (DCM/MeOH 95:5) = 0.6

IR (neat): v = 2950, 2918, 2851, 1701, 1660, 1618, 1530, 1510, 1485, 1436, 1392, 1378, 1335, 1231, 1205, 1187, 1112, 905, 840, 750, 694 cm⁻¹

ESI-HRMS calculated for $C_{25}H_{21}F_2N_4O_2$ [M+H]⁺ 447.1633, found 447.1627

*TFA was added to improve solubility.

1-(11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)piperidine-4-carboxylic acid (6b)

Compound **6b** was prepared according to the general procedure with isonipecotic acid (14.0 mg, 0.11 mmol) overnight. The crude product was purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **6b** (15 mg, 60 %) as a dark red solid.

¹**H NMR** (300 MHz, DMSO) δ 9.48 (d, J = 7.3 Hz, 1H), 9.03 (s, 1H), 8.36 (d, J = 6.3 Hz, 1H), 8.22 (d, J = 9.4 Hz, 1H), 7.92 (t, J = 7.8 Hz, 1H), 7.68 (dd, J = 9.4, 2.5 Hz, 1H), 7.46 (d, J = 2.8 Hz, 1H), 4.17 (d, J = 13.2 Hz, 2H), 3.97 (t, J = 7.5 Hz, 2H), 3.19 (t, J = 10.8 Hz, 2H), 2.65 (m, 1H), 2.03 (m, 2H), 1.68 – 1.80 (m, 2H), 1.68 (qt, J = 7.3 Hz, 2H), 1.37 (sx, J = 7.3 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO) δ 175.9, 163.1, 162.2, 152.2, 142.5, 140.6, 131.9, 130.2, 129.4, 128.4, 126.4, 126.2, 123.1, 122.3, 121.9, 120.2, 117.23, 102.7, 99.4, 46.4, 40.1 (overlap with DMSO-d6 signal – 2C), 29.6, 29.0, 27.6 (2C), 19.8, 13.7.

Rf (DCM/MeOH 95:5) = 0.3

IR (neat): v = 2958, 2920, 2851, 1722, 1699, 1655, 1607, 1516, 1489, 1435, 1400, 1337, 1259, 1229, 1188, 1133, 1114, 1098, 1028, 930,863, 815, 786, 751, 718, 692, 667 cm⁻¹

ESI-HRMS calculated for C₂₈H₂₇N₄O₄ [M+H]⁺ 483.2032, found 483.2051

2-(but-3-yn-1-ylamino)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (6c)

Compound **6c** was prepared according to the general procedure with But-3yn-1-amine (9.0 μ L, 0.11 mmol) for 4 h. The crude product was purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **6c** (14.0 mg, 62 %) as a dark orange solid.

¹**H NMR** (300 MHz, CDCl₃) δ 10.02 (dd, *J* = 8.3, 1.2 Hz, 1H), 9.54 (s, 1H), 8.77 (dd, *J* = 7.4, 1.2 Hz, 1H), 8.56 (d, *J* = 9.0 Hz, 1H), 8.08 (dd, *J* = 8.3, 7.5 Hz, 1H), 7.52 (d, *J* = 2.4 Hz, 1H), 7.31 (dd, *J* = 9.1, 2.4 Hz, 1H), 5.02 (t, *J* = 5.5 Hz, 1H, CinNapht-<u>NH-CH₂-CCH</u>), 4.32 – 4.20 (m, 2H), 3.65 (m, 2H, CinNapht-NH-<u>CH₂-CCH</u>), 2.72 (td, *J* = 6.4, 2.6 Hz, 2H, CinNapht-NH-CH₂-<u>CCH</u>), 2.72 (td, *J* = 7.2 Hz, 2H), 1.49 (sx, 2H, *J* = 7.2 Hz), 1.02 (t, *J* = 7.3 Hz, 3H).

 $^{13}\textbf{C}\,\textbf{NMR}\,(75\,\text{MHz},\text{CDCl}_3)\,\delta\,164.7,164.2,150.7,139.8,133.3,131.4,130.9,129.8,128.8,126.5,124.9,123.5,121.0,118.3,96.6,80.7,71.2,70.5,55.5,42.0,40.5,30.3,29.7,20.4,19.1,13.8,126.5,124.9,123.5,121.0,120.5$

Rf (DCM/MeOH 95:5) = 0.6

IR (neat): v = 2958, 2914, 2885, 1699, 1657, 1619, 1607, 1517, 1492, 1459, 1436, 1379, 1328, 1290, 1267, 1230, 1183, 1124, 1068, 943, 905, 831, 824, 786, 753, 693 cm⁻¹

 $\mbox{ESI-HRMS}$ calculated for $C_{26}H_{23}N_4O_2~[M+H]^+$ 423.1821, found 423.1831

tert-butyl (35-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2yl)amino)-3,6,9,12, 15,18,21,24,27,30,33-undecaoxapentatriacontyl)carbamate (6d')

Compound **6d'** was prepared according to the general procedure with O-(2-Aminoethyl)-O'-[2-(Boc-amino) ethyl]decaethylene glycol (69 mg, 0.107 mmol) for 4 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 99:1 to 95:5, v/v) to afford compound **6d'** (35 mg, 70 %) as a red solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.84 (d, *J* = 8.2 Hz, 1H), 9.32 (s, 1H), 8.62 (d, *J* = 7.3 Hz, 1H), 8.35 (d, *J* = 8.7 Hz, 1H), 7.94 (t, *J* = 7.8 Hz, 1H), 7.31 – 7.18 (m, 2H), 5.77 (s, 1H), 5.01 (s, 1H), 4.16 (t, *J* = 7.5 Hz, 2H), 3.88 – 3.73 (m, 2H), 3.68 – 3.53 (m, 40H), 3.45 (t, *J* = 4.8 Hz, 2H), 3.23 (d, *J* = 4.1 Hz, 2H), 2.31 (brs, 2H), 1.75 (qt, *J* = 7.4 Hz, 2H), 1.42 (sx, *J* = 7.4 Hz, 2H), 1.36 (s, 9H, CinNapht-PEG11-CH₂-CH₂-NH-C(CH₃)₃), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.0, 163.5, 151.4, 143.8, 141.9, 132.7, 131.0, 130.6, 129.5, 128.4, 127.2, 126.4, 124.8, 122.8, 122.3, 121.4, 118.0, 95.4, 70.4, 70.3, 70.1, 68.8, 41.3, 40.3, 30.1, 28.3, 20.3, 13.7 Rf (DCM/MeOH 95:5) = 0.4

IR (neat): v = 2868, 1701, 1661, 1619, 1590, 1541, 1505, 1477, 1455, 1437, 1363, 1344, 1271, 1239, 1221, 1180, 1130, 1107, 1083, 942, 916, 874, 829, 800, 779, 751, 736, 696 cm⁻¹

ESI-HRMS calculated for $C_{51}H_{76}N_5O_{15}$ [M+H]⁺ 998.5338, found 998.5356

2-((35-amino-3,6,9,12,15,18,21,24,27,30,33-undecaoxapentatriacontyl)amino)-11-butyl-10Hbenzo[c]isoquinolino [4,5-gh]cinnoline-10,12(11H)-dione (6d)

Compound **6d** was prepared by dissolving compound **6d'** (35.0 mg, 0.037 mmol) in a mixture of DCM (0.50 mL) and TFA (0.50 mL). After stirring for 1 h, the mixture was evaporated and dried under vacuum, to afford compound **6d** (33.0 mg, quantitative) as a dark red solid without further purification.

¹**H NMR** (300 MHz, CDCl₃) δ 9.68 (d, J = 8.0 Hz, 1H), 9.22 (s, 1H), 8.68 (d, J = 6.8 Hz, 1H), 8.34 (d, J = 9.2 Hz, 1H), 8.00 (t, J = 7.9 Hz, 1H), 7.55 - 7.44 (m, 3H), 7.30 (s, 1H), 6.80 (s, 5H), 4.18 (t, J = 7.5 Hz, 2H), 3.90 (t, J = 4.7 Hz, 2H), 3.78 - 3.61 (m, 40H), 3.18 (br, 2H), 1.82 - 1.67 (m, 2H), 1.55 - 1.40 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 163.3, 162.8, 153.7, 141.1, 140.4, 131.7, 130.7, 130.0, 128.9, 127.5, 127.3, 127.1, 125.4, 124.0, 123.4, 122.4, 118.9, 95.3, 70.1, 69.9, 69.7, 69.4, 68.5, 66.6, 43.3, 40.3, 39.7, 29.9, 29.4, 20.1, 13.5 **Rf** (DCM/MeOH 9:1) = 0.2

IR (neat): v = 2921, 2895, 1665, 1622, 1502, 1438, 1406, 1349, 1290, 1179, 1108, 951, 832, 798, 786, 751, 720, 707, 694 cm⁻¹

ESI-HRMS calculated for $C_{46}H_{68}N_5O_{13}$ [M+H]⁺ 898.4814, found 898.4799

11-butyl-2-((2-(2-(2-(((2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2yl)oxy)ethoxy)ethoxy)ethyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (6e)

Compound **6e** was prepared according to the general procedure with 2-[2-(2-Aminoethoxy)ethoxy]ethyl α -D-mannopyranoside **9** (49,0 mg, 0.107 mmol) for 4 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 99:1 to 95:5, v/v) to afford compound **6e** (29 mg, 81 %) as a red solid.

¹H NMR (699 MHz, MeOD) δ 9.18 (d, J = 7.9 Hz, 1H), 8.48 (s, 1H), 8.29 (d, J = 7.0 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.17 (dd, J = 9.0, 2.2 Hz, 1H), 6.71 (s, 1H), 3.99 (t, J = 7.8 Hz, 2H), 3.95 – 3.83 (m, 5H), 3.82 – 3.71 (m, 7H), 3.71 – 3.61 (m, 3H), 3.50 – 3.43 (m, 2H), 1.73 – 1.66 (m, 2H), 1.48 (m, 2H), 1.05 (t, J = 7.5 Hz, 3H). ¹³C NMR (176 MHz, MeOD) δ 164.9, 164.1, 153.6, 143.9, 142.2, 132.3, 131.7, 130.7, 129.6, 129.4, 127.7, 126.6, 126.0, 123.2, 118.6, 101.8, 74.7, 72.7, 72.2, 71.8, 71.6, 71.5, 70.4, 68.7, 67.8, 63.0, 44.1, 41.3, 31.2, 30.8, 21.5, 14.3 Rf (DCM/MeOH 8:2) = 0.1

IR (neat): v = 2957, 2925, 2855, 1733, 1665, 1623, 1460, 1378, 1215, 1082, 1053, 976, 750, 668 cm⁻¹ **ESI-HRMS** calculated for C₃₄H₄₁N₄O₁₀ [M+H]⁺ 665.2823, found 665.2800 tert-butyl N6-(11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)-Llysinate (6f)

Compound **6f** was prepared according to the general procedure with Fmoc-Lys-OtBu (49.0 mg, 0.11 mmol) for 4 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 99:1 to 95:5, v/v) to afford compound **6f** (12.0 mg, 27 %) as a red solid.

¹**H NMR** (300 MHz, CDCl₃) δ 9.91 (dd, J = 8.3, 1.1 Hz, 1H), 9.37 (s, 1H), 8.68 (dd, J = 7.4, 1.2 Hz, 1H), 8.42 (d, J = 9.0 Hz, 1H), 8.01 (dd, J = 8.1, 7.6 Hz, 1H), 7.31 (d, J = 2.2 Hz, 1H), 7.20 (dd, J = 9.1, 2.3 Hz, 1H), 5.01 (t, J = 4.8 Hz, 1H, CinNapht-<u>NH</u>-(CH₂)₄Lys,), 4.27 - 4.17 (m, 2H), 3.50 - 3.36 (m, 3H, CH₂ + CH(Lys)), 1.86 (br, 4H), 1.78 (m, 2H), 1.65 (m, 2H), 1.48 (s, 9H, C(<u>CH₃)₃</u>), 1.24 (br, 4H), 1.01 (t, J = 7.3 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 175.4, 164.2, 163.8, 151.4, 144.0, 142.2, 133.1, 131.3, 130.9, 129.8, 128.7, 127.6, 126.7, 125.1, 123.2, 122.6, 121.1, 118.2, 95.9, 81.3, 55.0, 43.6, 40.6, 34.5, 30.4, 28.8, 28.2 (3C), 23.4, 20.5, 14.0 Rf (DCM/MeOH 95:5) = 0.5

IR (neat): v = 2957, 2924, 2855, 1728, 1702, 1661, 1621, 1600, 1537, 1501, 1467, 1436, 1401, 1368, 1338, 1255, 1224, 1156, 1119, 1079, 822, 785, 751, 694 cm⁻¹

 $\mbox{ESI-HRMS}$ calculated for $C_{32}H_{38}N_5O_4$ $[M+H]^+$ 556.2924, found 556.2906

11-butyl-2-((2-morpholinoethyl)amino)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (6g)

Compound **6g** was prepared according to the general procedure with 2-morpholin-4-ylethanamine (14.0 μ L, 0.11 mmol) for 1 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 99:1 to 95:5, v/v) to afford compound **6g** (16.0 mg, 60 %) as an orange solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.92 (d, J = 8.2 Hz, 1H), 9.37 (s, 1H), 8.69 (d, J = 7.3 Hz, 1H), 8.45 (d, J = 9.0 Hz, 1H), 8.01 (t, J = 7.8 Hz, 1H), 7.33 (s, 1H), 7.27 (m, 1H), 5.54 (brs, 1H, CinNapht-<u>NH</u>-CH₂-CH₂-Morpholine), 4.22 (t, J = 7.4 Hz, 2H), 3.85 – 3.75 (m, 4H), 3.47 (q, 2H, J = 5.6 Hz, CinNapht-NH-<u>CH₂-CH₂-Morpholine</u>), 2.82 (t, J = 5.6 Hz, 2H, CinNapht-NH-CH₂-CH₂-Morpholine), 2.82 (t, J = 7.4 Hz, 2H), 1.76 (qt, J = 7.4 Hz, 2H), 1.48 (sx, J = 7.4 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 164.1, 163.7, 151.1, 143.9, 142.0, 133.0, 131.2, 130.8, 129.7, 128.6, 127.4, 126.5, 124.9, 123.1, 122.5, 121.0, 118.1, 96.1, 66.9, 56.3, 53.3, 40.5, 39.3, 30.2, 20.4, 13.9.
Rf (DCM/MeOH 95:5) = 0.5

IR (neat): v = 2957, 2829, 2857, 2816, 1699, 1656, 1614, 1577, 1559, 1526, 1500, 1467, 1456, 1435, 1400, 1370, 1335, 1299, 1272, 1223, 1182, 1114, 1079, 1068, 1035, 1009, 939, 914, 870, 823, 782, 751, 732, 694, 670 cm⁻¹ **ESI-HRMS** calculated for $C_{28}H_{30}N_5O_3$ [M+H]⁺ 484.2349, found 484.2332

3-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2yl)(dodecyl)amino)propane-1-sulfonic acid (6h)

Compound **6h** was prepared according to the general procedure with 3-(dodecylamino)propane-1-sulfonic acid (33 mg, 0.107 mmol) for 5 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 98:2 to 85:15, v/v) to afford compound **6h** (30 mg, 87 %) as a red solid.

¹**H NMR** (500 MHz, DMSO) δ 9.72 (d, J = 8.2 Hz, 1H), 9.39 (s, 1H), 8.56 (d, J = 7.3 Hz, 1H), 8.38 (d, J = 9.3 Hz, 1H), 8.07 (t, J = 7.8 Hz, 1H), 7.67 (dd, J = 9.5, 2.5 Hz, 1H), 7.52 (d, J = 2.6 Hz, 1H), 4.08 (t, J = 7.5 Hz, 2H), 3.78 (t, J = 7.7 Hz, 2H), 3.65 (t, J = 7.7 Hz, 2H), 2.59 (t, J = 7.2 Hz, 2H), 1.99 (m, 2H), 1.68 (m, 4H), 1.42 (m, 6H), 1.29 (m, 4H), 1.22 (m, 4H), 1.15 (m, 6H), 0.96 (t, J = 7.4 Hz, 3H), 0.77 (t, J = 6.9 Hz, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, DMSO) δ 163.5, 162.7, 150.9, 142.6, 141.3, 132.5, 130.6, 129.9, 129.0, 128.8, 127.1, 126.6, 124.0, 122.6, 122.4, 119.2, 117.6, 96.8, 50.5, 49.7, 48.6, 31.4, 29.8, 29.4, 29.3, 29.2, 29.1, 29.0, 28.9, 26.6, 26.5, 23.6, 22.2, 20.0, 14.1, 13.9.

Rf (DCM/MeOH 95:5) = 0.1

IR (neat): v = 2956, 2922, 2853, 1705, 1666, 1610, 1519, 1492, 1466, 1377, 1339, 1229, 1186, 1133, 1044, 787, 722 cm⁻¹

ESI-HRMS calculated for $C_{37}H_{49}N_4O_5S$ [M+H]⁺ 661.3424, found 661.3414

(3-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2yl)amino)propyl)triphenyl phosphonium (6i)

Compound **6i** was prepared according to the general procedure with 3aminopropyl(triphenyl)phosphanium bromide·HBr (52 mg, 0.11 mmol) for 1 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 99:1 to 90:10, v/v) to afford compound **6i** (26 mg, 66 %) as a red solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.85 (d, J = 8.2 Hz, 1H), 9.17 (s, 1H), 8.84 (s, 1H), 8.63 (d, J = 7.3 Hz, 1H), 8.33 (d, J = 9.0 Hz, 1H), 7.99 (d, J = 8.8 Hz, 1H), 7.94 (t, J = 7.8 Hz, 1H), 7.82 (dd, J = 12.5, 7.8 Hz, 6H, CH_{2Ar}(TPP)), 7.69 (t, J = 7.3 Hz, 3H, CH_{Ar}(TPP)), 7.60 (td, J = 7.4, 2.9 Hz, 6H, CH_{2Ar}(TPP)), 6.99 (s, 1H, CinNapht-<u>NH</u>-CH₂-CH₂-CH₂-TPP), 4.17-4.21 (m, 4H), 3.63 (br, 2H), 2.13 (br, 2H), 1.75 (qt, J = 7.4 Hz, 2H), 1.46 (sx, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 164.0, 163.7, 152.0, 144.0, 141.9, 134.9 (d, *J*(C-P) = 2.3 Hz), 133.4 (d, *J*(C-P) = 9.9 Hz), 132.4, 130.9, 130.7, 130.4 (d, *J*(C-P) = 12.5 Hz), 129.5, 128.2, 127.1, 126.6, 124.9, 123.7, 122.2, 118.3 (d, *J*(C-P) = 85.9 Hz), 118.0, 92.9, 42.4 (d, *J*(C-P) = 16.4 Hz), 40.3, 21.4 (d, *J*(C-P) = 32.0 Hz), 21.2 (d, *J* = 16.0 Hz), 24.9, 21.3, 20.5, 13.7

³¹**P NMR** (202 MHz, CDCl₃) δ 24.77

Rf (DCM/MeOH 95:5) = 0.3

IR (neat): v = 2959, 2928, 1699, 1657, 1621, 1600, 1541, 1501, 1467, 1437, 1401, 1371, 1338, 1280, 1224, 1181, 1115, 1076, 997, 917, 848, 822, 784, 724, 693 cm⁻¹

ESI-HRMS calculated for $C_{43}H_{38}N_4O_2P$ [M]⁺ 673.2732, found 673.2710

1-(3-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2yl)amino)propyl)pyridin-1-ium (6j)

Compound **6j** was prepared according to the general procedure with 1-(3-aminopropyl)pyridin-1-ium bromide \cdot HBr (32 mg, 0.107 mmol) for 1 h. The crude product was purified by flash chromatography by RP-HPLC (H₂O + 1% TFA/MeCN + 1% TFA 90:10 to 0:100 in 90 min) to afford compound **6j** (18 mg, 70 %) as a dark red solid.

¹**H NMR** (300 MHz, DMSO) δ 9.71 (dd, *J* = 8.3, 1.2 Hz, 1H), 9.27 (s, 1H), 9.22 – 9.16 (m, 2H), 8.63 (tt, *J* = 7.7, 1.3 Hz, 1H), 8.56 (dd, *J* = 7.4, 1.2 Hz, 1H), 8.31 (d, *J* = 9.7 Hz, 1H), 8.19 (dd, *J* = 7.7, 6.3 Hz, 2H, (C<u>H</u>_{Ar})₂ (Pyr)), 8.13 – 8.03 (m, 1H, C<u>H</u>_{Ar} (Pyr)), 7.55 (d, *J* = 5.9 Hz, 1H, CinNapht-<u>NH</u>-(CH₂)₃-Pyr), 7.43 – 7.34 (m, 2H, (C<u>H</u>_{Ar})₂ (Pyr)), 4.84 (t, *J* = 7.2 Hz, 2H), 4.08 (t, *J* = 7.4 Hz, 2H), 3.51 (m, 2H), 2.43 (t, *J* = 7.0 Hz, 2H), 1.67 (qt, *J* = 7.3 Hz, 2H), 1.40 (sx, *J* = 7.3 Hz, 2H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO) δ 163.3, 162.6, 151.9, 145.6, 144.9 (2C), 143.2, 132.0, 130.5, 129.6, 128.7, 128.1 (2C), 126.8, 126.5, 124.4, 122.5, 122.2, 117.4, 59.0, 29.7, 29.6, 19.8, 13.7

Rf (DCM/MeOH 95:5) = 0.8

IR (neat): v = 2964, 1701, 1658, 1618, 1600, 1488, 1471, 1453, 1434, 1406, 1381, 1327, 1271, 1224, 1169, 1111, 1066, 938, 879, 826, 798, 782, 749, 717, 691, 683 cm⁻¹

 $\mbox{ESI-HRMS}$ calculated for $C_{30}H_{28}N_5O_2~\mbox{[M]}^+$ 490.2243 found 490.2224

N-(2-(2-(2-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)amino)ethoxy)ethoxy)ethyl)-4-(4-(6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl)phenoxy)butanamide (6k)

Compound **6k** was prepared according to the general procedure with N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(4-(6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl) phenoxy)butanamide (34 mg, 0.05 mmol) for 1 h. The crude product was purified by flash chromatography by RP-HPLC ($H_2O + 1\%$ TFA/MeCN + 1% TFA 90:10 to 0:100 in 90 min) to afford compound **6k** (26 mg, 66 %) as a red solid.

¹**H NMR** (699 MHz, DMSO) δ 9.73 (d, *J* = 8.1 Hz, 1H), 9.39 (s, 1H), 8.52 (d, *J* = 7.2 Hz, 1H), 8.32 (d, *J* = 9.0 Hz, 1H), 8.23 (br, 1H), 8.04 (m, 2H), 7.93 (m, 2H), 7.71 (m, 1H), 7.58 (br, 2H), 7.52 (s, 1H), 7.50 – 7.46 (m, 2H), 7.26 (m, 1H), 7.19 (m, 1H), 7.11 (m, 1H), 7.01 (m, 2H), 4.07 (t, *J* = 7.5 Hz, 2H), 3.99 (t, *J* = 6.5 Hz, 2H), 3.73 (t, *J* = 5.4 Hz, 2H), 3.62 (m, 2H), 3.58 (m, 4H), 3.50 (s, 2H), 3.44 (m, 4H), 3.21 (m, 4H), 2.87 (s, 2H), 2.25 (t, *J* = 7.4 Hz, 2H), 1.93 (m, 2H), 1.65 (m, 2H), 1.38 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (176 MHz, DMSO) δ 171.6, 163.3, 162.7, 160.1, 158.1, 157.9, 157.8, 157.6, 152.3, 143.3, 141.2, 131.9, 130.3, 129.6, 128.8, 128.5, 128.1, 126.9, 126.6, 124.5, 122.4, 122.2, 122.0, 118.1, 117.5, 116.4, 114.7, 69.7, 69.5, 69.1, 68.8, 67.0, 52.6, 47.4, 42.6, 42.1, 38.5, 31.5, 29.6, 24.7, 19.8, 13.7 **Rf** (DCM/MeOH 95:5) = 0.1 **IR** (neat): v = 2964, 2939, 2871, 1697, 1651, 1595, 1506, 1457, 1437, 1382, 1349, 1252, 1225, 1178, 1118, 990, 963, 822, 785, 719 cm⁻¹ **FCI HPMS** calculated for C H N = 0 [M]⁺ 004 4728, found 004 4725

ESI-HRMS calculated for $C_{57}H_{59}N_{11}O_6$ [M]⁺ 994.4728, found 994.4725

11-butyl-2-(pyrrolidin-1-yl-2,2,5,5-d4)-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (6l)

Compound **6I** was prepared according to the general procedure with deuterated pyrrolidine hydrochloride (12.0 mg, 0.11 mmol) for 1 h. The crude product was purified by flash chromatography on silica gel (DCM/MeOH 99:1 v/v) to afford compound **6I** (21.0 mg, 92 %) as a red solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.88 (dd, *J* = 8.2, 1.3 Hz, 1H), 9.24 (s, 1H), 8.65 (dd, *J* = 7.3, 1.3 Hz, 1H), 8.40 (d, *J* = 9.2 Hz, 1H), 7.98 (t, *J* = 7.8 Hz, 1H), 7.20 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.09 (d, *J* = 2.4 Hz, 1H), 4.20 (t, *J* = 7.6 Hz, 2H), 2.16 (s, 4H, CinNapht-N-(CD₂)₂-(<u>CH₂</u>)₂), 1.76 (m, 2H), 1.49 (m, 2H), 1.01 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 164.1, 163.6, 149.8, 143.0, 141.8, 133.0, 131.0, 130.8, 129.6, 128.3, 127.3, 126.4, 124.4, 122.6, 122.4, 118.6, 117.8, 96.8, 40.4, 30.2, 25.4, 25.3, 20.4, 13.9.

²D NMR (61 MHz, CDCl₃) δ 3.55 (bs, 4D).

Rf (DCM/MeOH 95:5) = 0.6

IR (neat): v = 2962, 2923, 2858, 1705, 1668, 1604, 1518, 1484, 1471, 1458, 1433, 1405, 1384, 1372, 1323, 1265, 1231, 1160, 1120, 1095, 1071, 1010, 941, 905, 863, 844, 819, 783, 752, 738, 695, 690, 667 cm⁻¹ ESI-HRMS calculated for $C_{26}H_{20}D_4N_4O_2$ [M+H]⁺429.2150, found 429.2178

1-(11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)-N-(35-((11-butyl-10,12-dioxo-11,12-dihydro-10H-benzo[c]isoquinolino[4,5-gh]cinnolin-2-yl)amino)-3,6,9,12,15,18,21,24,27,30,33-undecaoxapentatriacontyl)piperidine-4-carboxamide (7a)

To a solution of compound **6d** (5.6 mg, 6.20 μ mmol, 1eq) in DMF (62 μ L) was added compound **6b** (3 mg, 6.20 μ mol, 1eq), BOP (2.9 mg, 6.5 μ mol, 1.05 eq). The mixture was cooled down to 0 °C than DIEA (2.1 μ L, 0.0124 mmol, 2 eq) was added. The mixture was stirred at room temperature for 1 h. The crude mixture was concentrated *in vacuo* and purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **7a** (5 mg, 63 %) as a dark red solid.

¹**H NMR** (300 MHz, CDCl₃) δ 9.76 (d, J = 8.4 Hz, 2H), 9.13 (s, 2H), 8.60 (t, J = 6.6 Hz, 2H), 8.43 (s, 2H), 7.93 (t, J = 7.9 Hz, 2H), 7.52 (d, J = 9.4 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.14 (s, 1H), 6.49 (s, 1H), 4.29 – 4.21 (m, 2H), 4.16 (d, J = 13.1 Hz, 4H), 3.91 (d, J = 5.5 Hz, 2H), 3.75 (d, J = 5.0 Hz, 4H), 3.70 – 3.63 (m, 40H), 3.52 (s, 2H), 3.23 – 3.10 (m, 4H), 2.66 (d, J = 9.4 Hz, 2H), 2.11 (d, J = 12.2 Hz, 2H), 1.96 (s, 2H), 1.74 (d, J = 8.1 Hz, 4H), 1.03 – 0.98 (m, 6H).

Rf (DCM/MeOH 95:5) = 0.1

IR (neat): v = 2962, 2870, 1700, 1655, 1618, 1535, 1490, 1456, 1436, 1400, 1345, 1228, 1095, 1031, 948, 912, 842, 784, 750, 694, 664 cm⁻¹

ESI-HRMS calculated for $C_{74}H_{91}N_9O_{16}$ [M+H]⁺ 1362.6662, found 1362.6705

2-((2-(1-benzyl-1H-1,2,3-triazol-4-yl)ethyl)amino)-11-butyl-10H-benzo[c]isoquinolino[4,5-gh]cinnoline-10,12(11H)-dione (7b)

To a solution of compound **6c** (10 mg, 0.024 mmol, 1 eq) in DCM/H₂O (250 μ L, 1:1 v/v) was added benzylazide (3.2 mg, 0.024 mmol, 1 eq), CuSO₄.5H₂O (0.6 mg, 0.0024 mmol, 0.1 eq) and sodium ascorbate (1.4 mg, 0.0072 mmol, 0.3 eq). The mixture was stirred under argon atmosphere for 3 h. The crude mixture was washed with H₂O and extracted with DCM. The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by preparative TLC (DCM/MeOH 9:1, v/v) to afford compound **7b** (11 mg, 83 %) as an orange solid.

¹H NMR (300 MHz, CDCl₃) δ 9.96 (dd, J = 8.3, 1.3 Hz, 1H), 9.44 (s, 1H), 8.73 (dd, J = 7.4, 1.2 Hz, 1H), 8.45 (d, J = 8.9 Hz, 1H), 8.04 (dd, J = 8.3, 7.4 Hz, 1H), 7.45 – 7.32 (m, 5H, CinNapht-NH-CH₂-CH₂-triazol-CH₂-C₆H₅), 7.29 (m, 2H), 5.67 (s, 1H, CinNapht-NH-CH₂-CH₂-triazol-Bn), 5.54 (s, 2H, CinNapht-NH-CH₂-CH₂-triazol-CH₂-C₆H₅), 4.25 (dd, J = 8.5, 6.5 Hz, 2H), 3.75 (m, 2H, CinNapht-NH- CH_2 -CH₂-triazol-CH₂-C₆H₅), 3.64 (s, 1H), 3.19 (m, 2H, CinNapht-NH-CH₂-CH₂-triazol-CH₂-C₆H₅), 1.78 (m, 2H), 1.52 – 1.45 (m, 2H), 1.03 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 164.4, 151.7, 148.1, 135.1, 133.6, 131.8, 131.5, 130.3, 129.8, 129.4 (2C), 129.2, 128.7, 127.2 (2C), 125.5, 123.8, 123.1, 121.9, 96.4, 71.2, 54.9, 43.5, 41.1, 32.5, 30.8, 30.3, 25.4, 23.3, 21.0, 14.2, 14.0. **Rf** (DCM/MeOH 95:5) = 0.7 **IR** (neat): v = 2930, 2918, 2850, 1730, 1698, 1659, 1621, 1599, 1577, 1542, 1499, 1456, 1436, 1402, 1338, 1260, 1224, 1093, 1031, 816, 784, 750, 715, 694 cm⁻¹

ESI-HRMS calculated for $C_{33}H_{29}N_7O_2 [M+H]^+ 556.2057$, found 556.2068

1-Ammonium-3,6-dioxaoct-8-yl 2,3,4,6-tetra-O-acetyl- α -D-mannopyranoside p-toluenesulfonate (8)

Compound x was synthesized using a procerudre adapted from Yu and coworkers.² A suspension of 1-azido-3,6-dioxaoct-8-yl 2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranoside (1.015 g, 2.01 mmol, 1 eq), Pd/C 10% (100 mg, 10%w) and *p*toluenesulfonic acid (0.360 g, 2.10 mmol, 1.04 eq) in anhydrous MeOH (75 mL) was stirred under H₂ atmosphere (1 bar). The reaction was monitored by TLC (eluent: Heptane/EtOAc 4:6 v/v) and stirred until completion (1h30). The mixture was filtered on a pad of celite and washed with

MeOH (50 mL). The solvent was evaporated off to afford the desired 1-Ammonium-3,6-dioxaoct-8-yl 2,3,4,6-tetra-O-acetyl- α -D-mannopyranoside p-toluenesulfonate (1.144 g, 1.76 mmol, 88%) as a yellow amorphous solid. Analysis were in accordance with the litterature

¹**H NMR** (300 MHz, CD₃OD) : 7.71 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.29-5.23 (m, 3H), 4.90 (bs, 1H), 4.25 (dd, *J* = 12.3, 4.9 Hz, 1H), 4.17-4.04 (m, 3H), 3.83-3.89 (m, 1H), 3.75-3.65 (m, 10H), 3.20-3.08 (m, 2H), 2.37 (s, 3H), 2.15 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 1.97 (s, 3H).

1-Ammonium-3,6-dioxaoct-8-yl α -D-mannopyranoside p-toluenesulfonate (9)

A solution of 1-ammonium-3,6-dioxaoct-8-yl 2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranoside *p*-toluenesulfonate (200 mg, 0.31 mmol) in a mixture of MeOH/H₂O/NEt₃ (4:1:1 v/v/v) was stirred under Ar atmosphere. The reaction was monitored by TLC (eluent: EtOAc/Water/*i*PrOH 8:1:1 v/v/v) and stirred until completion (24h). The solvents were evaporated off then the residue was purified by reversed phase C18 silica gel column chromatography (H₂O/MeCN+0.1% TFA 9:1 to 0:1 v/v). The fractions were collected, concentrated under vacuum to

remove acetonitrile and then freeze-dried to afford the desired 1-ammonium-3,6-dioxaoct-8-yl α -D-mannopyranoside *p*-toluenesulfonate as a yellow amorphous powder (80 mg, 0.16 mmol, 50%). Analysis were in accordance with the litterature

¹**H NMR** (300 MHz, D₂O) : 7.72 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 4.92 (s, 1H), 4.02-3.64 (m18H), 2.42 (s, 3H)

3-(dodecylamino)propane-1-sulfonic acid (10)

The compound was prepared using a synthesis protocol adapted from Masahiko Abea's article.³ To a solution of dodecylamine (100 mg, 0.539 mmol, 1 eq) in CH₃CN was added 1,3-propane sultone (79 mg, 0.647 mg, 1.2 eq) and refluxed leading to the formation of a white precipitate within 5 min. After 30 min under reflux, the mixture was filtered, and the solid residue was recovered and washed twice with warm CH₃CN. The resulting solid was then dried under vacuum to afford compound the 3-(dodecylamino)propane-1-sulfonic acid (120 mg, 72%) as a white

powder. NMR analysis were in accordance with the literature³

Photophysical characterization

UV-vis absorption measurements (scan mode) were conducted on a Cary UV 100 spectrophotometer (Varian) using rectangular 10 mm path length quartz cuvettes at 25°C. Fluorescence spectroscopic studies (scan mode) were performed with a Spectrofluorimètre FS 5 (Edinburgh) at 25°C, with rectangular 10 mm path length quartz cuvettes from Hellma. The emission and excitation spectra were recorded with a diluted solution lower than 0.1 absorbance values. For the excitation and emission spectra the slits width were adjusted between 2–5 nm. All fluorescence spectra were corrected from the lamp fluctuations and the apparatus response fluctuations. Fluorescence quantum yields were measured at 25°C, using three diluted solution (A<0.1) and three diluted solution of using DCM (QY = 0.43 in EtOH)⁴. For each QY measurements, slit width, excitation wavelength, scan rate, integration time and emission range were kept the same for the reference and the sample. The fluorescence quantum yield was determined thanks to the following formula:

$$\Phi_{\rm F}({\rm x}) = \Phi_{\rm F}(0) \frac{1 - 10^{-{\rm A}_0}}{1 - 10^{-{\rm A}_x}} \frac{{\rm S}_x}{{\rm S}_0} \left(\frac{{\rm n}_x}{{\rm n}_0}\right)^2$$

Where S is the slope of the linear plot of the integrated fluorescence intensity in function of the absorbance value, n is the refractive index of the solvents (at 25°C) used in measurements, and the subscripts s and x represent standard and unknown, respectively.

Bleaching experiments:

Bleaching experiments were recorded by using a LED Array Driver (LAD-1 at 10.0 V) and a LED plate (λ =470 nm LED Array LEDA-B). The 10⁻⁵ M solutions of fluorophores in HPLC vials were put on the LED plate and irradiated at 470 nm for 3h in a black room. Emission spectras and UV-Visible absorption spectras were recorded every 30 minutes during the time of the bleaching. The resulting solutions at t = 0 min and t = 3h were analysed in HPLC-MS.

Experimental set-up:

Cell Culture and Confocal Microscopy

Cell Culture and cell Imaging

Cell lines were obtained from the American type Culture Collection (Rockville, USA) and were cultured according to the supplier's instructions. A459 cells were grown in RPMI 1640 containing 10% FCS and 1% glutamine. Cells were maintained at 37 °C in a humidified atmosphere containing 5% CO2 and were split every 3 or 4 days at a time when enough confluence was obtained. An Ibidi[®] μ -Slide 8 Well high Glass Bottom plate was seeded with 15 000 cells/well and then maintained at 37 °C in a humidified atmosphere containing 5% CO2 for 24h to 48h. After adequate confluence was obtained, the medium was removed and replaced

by a solution of fluorophore at desired concentration in the appropriate medium, prepared from a stock solution of fluorophore in DMSO, final concentration in DMSO < 1.0%, please note that no solubility issue was noted). The cells were incubated for appropriate amount of time at 37 °C in a humidified atmosphere containing 5% CO2. The fluorophofore solution was then removed and the cells were washed twice with pre-warmed PBS (1X). These wash steps are not required for LD imaging using CinNapht **5n** for which a replacement of the medium is sufficient. Finally, RPMI medium was added before imaging.

Confocal fluorescence microscopy

Fluorescence images were acquired using a Leica SP8-X inverted confocal microscope with a 63× oil immersion objective (HC PL APO CS2 Leica). Excitation was performed using a White laser pulsed at 80MHz set at the desired excitation wavelength or with a Diode 405 nm (Leica, 50 mW). Detection was carried out by using PMT detector (Hamamatsu 6357) or GaAsP Hybrid (Hamamatsu) collecting photons over the appropriate emission wavelength window.

Colocalization experiments:

LisoView[™]405, MitoView[™] 405, CellBrite Green[®] and NucSpot[®] live 488 were purchased from Biotium.

- Protocol for MitoView[™] 405 staining: After 3h of incubation with CinNapht dye, the medium was removed and cells were washed once with prewarmed PBS (1X). A 100 nM MitoView[™] 405 solution in appropriate medium was then added, and cells were incubated for 15 minutes at 37 °C. The medium was removed, cells were washed once with prewarmed PBS (1X) then appropriate medium was added before imaging
- Protocol for LysoView[™] 405 staining: After 3h of incubation with CinNapht dye, the medium was removed and cells were washed once with prewarmed PBS (1X). A 1X LysoView[™] 405 solution in a appropriate medium was obtained by dilution of the commercial 1000X solution in DMSO and added to the cells. They were incubated for 30 minutes at 37°C. The medium was removed, cells were washed once with prewarmed PBS (1X) then appropriate medium or a nucleus staining medium solution was added before imaging
- <u>CellBrite Green® staining</u>: After 3h of incubation with CinNapht dye, the medium was removed and cells were washed once with prewarmed PBS (1X). A 1:200 CellBrite green solution in a appropriate medium was obtained by dilution of the commercial commercial stock solution and Immediately vortex to mix well. Within 1-2 minutes, cells were incubated with this solution for 30 minutes at 37°C. The medium was removed, cells were washed 3 times for 5 minutes with prewarmed PBS (1X) then appropriate medium or a nucleus staining medium solution was added before imaging
- <u>Protocol for NucSpot® live 488 staining</u>: The 1X nucleus staining agent solution was obtained by dilution of the commercial 1000X solution in DMSO supplemented with 50 nm of Verapamil. After incubation with the CinNapht dye, this solution was added to the cells that were then incubated for 30 minutes at 37 °C. The imaging experiments were then directly conducted without washing step
- <u>Protocol for HOECHST 33342 staining</u>: A 1µg/mL solution was prepared by dilution of a stock solution of 1mg/mL in DMSO:H₂O (1:1). The solution was centrifuged to avoid eventual solid residue. After incubation with the CinNapht dye, this solution was added to the cells that were then incubated for 15 minutes at 37 °C. Cells were washed once with prewarmed PBS (1X) then appropriate medium was added before imaging

III. NMR and MS Spectra

Compound 3:

Compound 4:

Compound 5a:

52

Compound 5b:

¹H NMR

Compound 5c:

Compound 5d:

Compound 5e:

59

Compound 5g:

Compound 5i:

¹³C NMR

¹⁹F NMR

Compound 5k:

¹³C NMR

Compound 5m:

Compound 5n:

Compound 5o:

¹H NMR

Compound 5p:

¹H NMR

Compound 5r:

¹H NMR

04-Jan-2023.6::1::7 1: TCE MS ES+	LCTPenier	EQ75_tacke26-1 28 (0.716)
1007 472	535	1.04 e+00 4
0/		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	474.1505	
132.0734 431.1360 231.0126 338.3266	513.1871 693.3167 737.3376 861.2648 889.2624 989.1349 1093.5577 1291.3955 1455.2290/1499.2450 1692	.9429 1860.2963
100 200 300 400	500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1	m/z 700 1800 1900 2000

¹H NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Compound 6b:

¹H NMR

Compound 6c:

¹H NMR

06-Jul-2022.2::6::7 1: TOEMSES+	LCTPerrier	EQ75_tacke14-221 (0.574)
100 423		839+003
165.1022 224.0113 0	424.1838 425.1874 649.3246 737.3740 781.4040 845.3631 913.4943 1001.53961085.6123 1267.5336 1505.6851 1689.75	<u>328</u> m/2

Compound X:

Compound 6d:

¹H NMR

Compound 6e:

¹H NMR

Compound 6f:

Compound 6g:

Compound 6h:

¹H NMR

Compound 6i:

³¹P NMR

Compound 6j:

Compound 6k:

Compound 6I:

Compound 7a:

- 1. F. Zhou and T. G. Driver, *Org. Lett.*, 2014, **16**, 2916-2919.
- L. Yu, Y. Hou, C. Cheng, C. Schlaich, P.-L. M. Noeske, Q. Wei and R. Haag, ACS App. Mat. Int., 2017, 9, 44281-44292.
- 3. K. Sakai, M. Kaji, Y. Takamatsu, K. Tsuchiya, K. Torigoe, K. Tsubone, T. Yoshimura, K. Esumi, H. Sakai and M. Abe, *Colloids Surf. A Physicochem. Eng. Asp.*, 2009, **333**, 26-31.
- 4. K. Rurack and M. Spieles, Anal. Chem., 2011, 83, 1232-1242.

IV. Single Crystal X-ray Crystallography (SC-XRD)

Crystal data for ET_I_047:

 $C_{22}H_{16}FN_{3}O_{2}$, $M_{r} = 375.39$, monoclinic, $P2_{1}/n$ (No. 14), a = 4.8187(4) Å, b = 15.7239(18) Å, c = 22.4752(16) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 91.507^{\circ}$ V = 1702.3(3)Å³, T = 173.00(10) K, Z = 4, μ (Cu K $_{\alpha}$) = 0.849, 11107 reflections measured, 2878 unique ($R_{int} = 0.0554$) which were used in all calculations. The final wR_{2} was 0.3593 (all data) and R_{1} was 0.0934 (I≥2 σ (I)). The goodness of fit on F2 was 0.933.

Experimental

Crystals of compound **4** were obtained by slow evaporation of Heptane/Ethyl Acetate mixture.

Single crystals suitable to X-ray diffraction structural analyses were transferred upon a microscope slide and one of them selected under a binocular, mounted on a nylon loop and fixed with Paratone[®] oil. Then, X-ray diffraction and crystallographic data were collected at 273 K using redundant \square scans on Rigaku Rapid II (IP area detector system) diffractometer equipped with a rotating anode mm007 HF generator and Osmic mirrors (Cu K α radiation, $\lambda = 1.54187$ Å). Data were indexed, integrated and scaled using *FS_Process* from the *CrystalClear* [1] software suite.

Using Olex2 [2], the structure was readily solved by intrinsic phasing methods (SHELXT [3]), and by full-matrix least-squares methods on F² using SHELXL [4]. The non-hydrogen atoms were refined anisotropically, and hydrogen atoms have been added geometrically and treated as riding on their parent atoms.

The molecular graphics presented here were computed with Mercury 2020.3.0 [5].

Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database (the deposition number is CCDC 2221167). Copies of the data can be obtained free of charge from the CCDC at www.ccdc.cam.ac.uk.

[1] Rigaku CrystalClear-SM Expert 2.0 r4. 2009

[2] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

[3] Sheldrick, G.M. Acta Cryst. 2015, A71, 3-8.

[4] Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.

[5] Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. J. *Appl. Cryst.* **2006**, 39, 453-457.

Identification c	ode	ET_1_047	
		A. Crystal Data	
Empirical Formula		C ₂₂ H ₁₆ FN ₃ O ₂	
Formula Weight		375.39	
Crystal Color, H	abit	[light yellow, rect.Prism]	
Crystal Dimensions	s (mm³)	0.50 × 0.02 × 0.01	
Crystal Syste	m	monoclinic	
Space Group)	<i>P2</i> ₁ / <i>n</i>	
	a (Å)	4.8187(4)	
	b (Å)	15.7239(18)	
Unit call dimensions	<i>c</i> (Å)	22.4752(16)	
Unit cell dimensions	α (°)	90	
	$\beta()$	91.507	
	γ(°)	90	
Volume (Å3)	2901.98(10)	
Z value		4	
Calculated density D _{calc.} (g.cm ⁻³)		1.465	
Absorption coefficient μ (mm ⁻¹)		0.849	
F (000)		784.0	
		B. Intensity Measurements	
Diffractomet	er	Rigaku Rapid II	
Radiation type		Cu K _α	
Wavelength (Å)		1.54187	
Voltage, Current (kV, mA)		(40, 30)	
<i>Т</i> (К)		273.00 (10)	
2θ range for data col	lection (°)	6.862 to 130.17	
Limiting indices		-4 ≤ h ≤ 5, -18 ≤ k ≤ 12, -26 ≤ l ≤ 26	
Reflections collected	d/unique	11107/2878	
Completeness to θ	full (%)	98.8	
		C. Structure Solution and Refinement	
R _{int}		0.0554	
Absorption corre	ection	Semi-empirical from equivalents	
Refinement method		Full-matrix least-squares on F ²	
Data/restraints/parameters		2878/0/254	
Goodness-of-fit	on F ²	0.933	
Final R indices	R ₁	0.0934	
[/>2σ(/)] B indices	WR ₂	0.2397	
(all data)	wR ₂	0.9593	

Largest Δ peak and hole (e.Å ⁻³)	0.45/-0.27
---	------------

Figure 1: (left) ORTEP drawing of compound 4 with thermal ellipsoids drawn at the 30% probability level; (right) Labelling scheme of the structure.

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for **compound 4**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	x	у	Z	U _{eq}
023	8262(8)	5682(3)	7714.4(18)	87.5(15)
F28	1332(8)	8092(3)	5555.4(17)	108.4(14)
022	8296(9)	2918(3)	8294(2)	94.4(16)
N20	8154(9)	4307(4)	8030(2)	68.0(15)
N7	-1302(10)	4231(3)	5966(2)	77.7(16)
N8	-2331(10)	4821(4)	5616(2)	80.6(16)
C6	5079(10)	4769(4)	7203(2)	59.9(16)
C1	4017(11)	3937(4)	7152(3)	62.0(15)
C4	1956(11)	5263(4)	6404(2)	64.2(17)
C2	1882(11)	3778(4)	6722(2)	62.6(16)
C19	7280(11)	4975(5)	7665(3)	69.1(19)
C15	5065(11)	3284(4)	7519(3)	65.8(17)
C5	4125(11)	5405(4)	6843(3)	65.2(16)
C3	846(11)	4447(4)	6356(3)	65.4(17)
C10	829(12)	5901(4)	6014(3)	66.0(17)

Atom	x	У	Z	U _{eq}
C21	7264(11)	3460(5)	7977(3)	71.9(18)
C14	1741(11)	6752(4)	5986(3)	72.5(18)
C18	895(12)	2928(5)	6686(3)	77.4(19)
C9	-1339(13)	5649(5)	5618(3)	73.3(18)
C16	4045(13)	2480(4)	7464(3)	80.9(19)
C24	10285(13)	4493(4)	8497(3)	84(2)
C11	-2561(12)	6222(5)	5216(3)	85(2)
C13	468(14)	7275(5)	5593(3)	82(2)
C17	1943(14)	2302(5)	7045(3)	85(2)
C12	-1671(14)	7039(5)	5199(3)	88(2)
C25	9113(14)	4604(5)	9108(3)	93(2)
C26	7349(14)	5396(5)	9198(3)	96(2)
C27	8994(16)	6218(5)	9199(3)	111(3)
Table 3: Anisotropic Displacement Parameters (×10⁴) for **compound 4**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11}+2hka^* \times b^* \times U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
023	79(3)	89(4)	92(3)	11(3)	-36(2)	-15(3)
F28	112(3)	98(3)	114(3)	19(2)	-18(2)	-1(3)
022	90(3)	94(4)	98(3)	6(3)	-20(3)	20(3)
N20	64(3)	70(4)	69(3)	12(3)	-11(3)	8(3)
N7	72(3)	86(4)	74(4)	-13(3)	-13(3)	-3(3)
N8	66(3)	99(5)	76(4)	-2(4)	-21(3)	15(3)
C6	54(3)	58(4)	66(4)	-5(3)	-11(3)	0(3)
C1	59(3)	63(4)	64(4)	-10(3)	0(3)	1(3)
C4	52(3)	74(5)	66(4)	-10(4)	-11(3)	9(3)
C2	65(3)	56(4)	66(4)	-12(3)	-4(3)	-5(3)
C19	54(3)	79(5)	74(4)	-18(4)	-10(3)	-9(4)
C15	60(4)	62(5)	75(4)	-11(4)	-8(3)	0(4)
C5	62(3)	64(4)	69(4)	1(3)	-7(3)	-8(3)
C3	57(3)	68(5)	70(4)	-10(4)	-13(3)	-8(3)
C10	56(3)	76(5)	65(4)	-3(4)	-10(3)	9(3)
C21	57(4)	72(5)	86(5)	-9(4)	-3(3)	7(4)
C14	62(4)	83(6)	72(4)	1(4)	-12(3)	9(4)
C18	62(4)	93(6)	76(4)	-13(4)	-13(3)	-1(4)
C9	71(4)	79(6)	69(4)	-10(4)	-9(3)	8(4)
C16	85(5)	70(5)	87(5)	-16(4)	-2(4)	4(4)
C24	82(4)	89(5)	79(5)	-1(4)	-17(4)	-5(4)
C11	68(4)	115(7)	70(4)	2(5)	-17(3)	24(5)
C13	77(4)	88(6)	81(5)	7(4)	-7(4)	-1(4)
C17	85(4)	79(5)	90(5)	-5(4)	-4(4)	-18(4)
C12	87(5)	88(6)	89(5)	2(5)	-19(4)	10(4)
C25	84(5)	123(7)	71(5)	-2(4)	-16(4)	-14(5)
C26	70(4)	152(8)	65(4)	-13(5)	-9(3)	3(5)
C27	123(6)	101(6)	108(6)	-20(5)	-6(5)	0(5)

Table 4: Bond Lengths in Å for compound 4

Atom	Atom	Length/Å	Atom	Atom	Length/Å
023	C19	1.212(7)	C4	C10	1.430(7)
F28	C13	1.355(7)	C2	C3	1.419(7)
022	C21	1.209(7)	C2	C18	1.419(8)
N20	C19	1.392(7)	C15	C21	1.485(8)
N20	C21	1.403(7)	C15	C16	1.361(7)
N20	C24	1.478(7)	C10	C14	1.410(7)
N7	N8	1.305(6)	C10	C9	1.412(8)
N7	C3	1.381(7)	C14	C13	1.344(8)
N8	C9	1.387(7)	C18	C17	1.362(8)
C6	C1	1.409(7)	C9	C11	1.395(8)
C6	C19	1.500(7)	C16	C17	1.392(9)
C6	C5	1.359(7)	C24	C25	1.509(8)
C1	C2	1.415(7)	C11	C12	1.355(8)
C1	C15	1.402(7)	C13	C12	1.392(8)
C4	C5	1.435(7)	C25	C26	1.525(8)
C4	C3	1.393(7)	C26	C27	1.515(8)

Table 5: Bond Angles in [°] for compound 4.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C19	N20	C21	125.5(6)	N7	C3	C4	123.7(6)
C19	N20	C24	117.6(5)	N7	C3	C2	115.7(6)
C21	N20	C24	116.9(5)	C4	C3	C2	120.6(5)
N8	N7	C3	118.3(6)	C14	C10	C4	125.4(6)
N7	N8	C9	122.7(5)	C9	C10	C4	116.9(6)
C1	C6	C19	120.3(6)	C9	C10	C14	117.6(6)
C5	C6	C1	121.3(5)	022	C21	N20	120.0(6)
C5	C6	C19	118.3(6)	022	C21	C15	123.5(7)
C6	C1	C2	118.4(6)	N20	C21	C15	116.5(6)
C15	C1	C6	120.6(5)	C13	C14	C10	118.2(6)
C15	C1	C2	121.1(6)	C17	C18	C2	121.9(6)
C5	C4	C10	124.7(6)	N8	C9	C10	120.9(6)
C3	C4	C5	117.9(6)	N8	C9	C11	117.7(7)
C3	C4	C10	117.4(5)	C11	C9	C10	121.4(7)
C1	C2	C3	120.3(6)	C15	C16	C17	120.2(6)
C1	C2	C18	116.2(6)	N20	C24	C25	113.6(5)
C3	C2	C18	123.5(6)	C12	C11	C9	120.1(7)
023	C19	N20	121.7(5)	F28	C13	C12	115.9(7)
023	C19	C6	122.0(6)	C14	C13	F28	119.1(6)
N20	C19	C6	116.3(6)	C14	C13	C12	125.0(7)
C1	C15	C21	120.7(6)	C18	C17	C16	120.4(6)
C16	C15	C1	120.2(6)	C11	C12	C13	117.7(7)
C16	C15	C21	119.1(6)	C24	C25	C26	116.0(6)
C6	C5	C4	121.5(5)	C27	C26	C25	113.8(6)

Table 6: Torsion Angles in [°] for compound 4.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
F28	C13	C12	C11	178.9(5)	C5	C6	C1	C15	178.6(5)
N20	C24	C25	C26	-68.8(7)	C5	C6	C19	023	-1.8(9)
N7	N8	C9	C10	-1.4(9)	C5	C6	C19	N20	178.9(5)
N7	N8	C9	C11	178.7(5)	C5	C4	C3	N7	178.0(5)
N8	N7	C3	C4	0.9(9)	C5	C4	C3	C2	-1.3(8)
N8	N7	C3	C2	-179.8(5)	C5	C4	C10	C14	2.5(9)
N8	C9	C11	C12	180.0(6)	C5	C4	C10	C9	-178.8(5)
C6	C1	C2	C3	-0.3(8)	C3	N7	N8	C9	0.6(9)
C6	C1	C2	C18	179.6(5)	C3	C4	C5	C6	-0.1(8)
C6	C1	C15	C21	1.5(8)	C3	C4	C10	C14	-178.0(5)
C6	C1	C15	C16	-179.4(5)	C3	C4	C10	C9	0.7(8)
C1	C6	C19	023	179.0(5)	C3	C2	C18	C17	179.9(6)
C1	C6	C19	N20	-0.3(7)	C10	C4	C5	C6	179.4(5)
C1	C6	C5	C4	1.4(8)	C10	C4	C3	N7	-1.6(9)
C1	C2	C3	N7	-177.8(5)	C10	C4	C3	C2	179.2(5)
C1	C2	C3	C4	1.5(9)	C10	C14	C13	F28	-179.4(5)
C1	C2	C18	C17	0.1(9)	C10	C14	C13	C12	-1.2(10)
C1	C15	C21	022	-177.9(6)	C10	C9	C11	C12	0.1(10)
C1	C15	C21	N20	1.6(8)	C21	N20	C19	023	-175.6(5)
C1	C15	C16	C17	-0.4(9)	C21	N20	C19	C6	3.8(8)
C4	C10	C14	C13	179.8(5)	C21	N20	C24	C25	-81.9(7)
C4	C10	C9	N8	0.7(8)	C21	C15	C16	C17	178.7(6)
C4	C10	C9	C11	-179.4(5)	C14	C10	C9	N8	179.5(5)
C2	C1	C15	C21	-178.7(5)	C14	C10	C9	C11	-0.6(9)
C2	C1	C15	C16	0.4(9)	C14	C13	C12	C11	0.7(10)
C2	C18	C17	C16	-0.1(10)	C18	C2	C3	N7	2.3(8)
C19	N20	C21	022	175.1(5)	C18	C2	C3	C4	-178.4(5)
C19	N20	C21	C15	-4.4(8)	C9	C10	C14	C13	1.1(8)
C19	N20	C24	C25	100.6(6)	C9	C11	C12	C13	-0.1(10)

A E	B C	D	Angle/°	Α	В	С	D	Angle/°
C19 C	6 C1	C2	178.0(5)	C16 (C15 (221	022	3.0(9)
C19 C	6 C1	C15	-2.2(8)	C16 (215 (221	N20	-177.5(5)
C19 C	6 C5	C4	-177.8(5)	C24 N	1200	219	023	1.7(8)
C15 C	1 C2	C3	179.9(5)	C24 M	1200	219	C6	-178.9(5)
C15 C	1 C2	C18	-0.2(8)	C24 M	1200	221	022	-2.2(8)
C15 C1	L6 C17	7 C18	0.2(10)	C24 N	1200	221	C15	178.3(5)
C5 C	6 C1	C2	-1.2(8)	C24 (225 (226	C27	-69.7(7)

Table 7: Hydrogen Bonds for compound 4.

DHA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C14 H14 O22 ¹	0.93	2.50	3.391(8)	160.5
C11 H11 N8 ²	0.93	2.56	3.465(9)	165.1

¹3/2-X,1/2+Y,3/2-Z; ²-1-X,1-Y,1-Z

Table 8: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 4.

Atom	x	У	Z	U(eq)
H5	4896.17	5945.04	6881.21	78
H14	3184.43	6945.31	6233.47	87
H18	-506.35	2795.92	6409.28	93
H16	4753.18	2047.99	7706.05	97
H24A	11261.26	5008.61	8390.49	100
H24B	11624.47	4032.85	8509.78	100
H11	-3988.66	6042.69	4959.12	102
H17	1249	1751.58	7010.79	102
H12	-2462.08	7428.34	4933.17	106
H25A	10646.44	4615.43	9396.21	112
H25B	7992.66	4108.99	9194.54	112

Atom	x	У	Z	U(eq)
H26A	5932.65	5422.73	8883.83	115
H26B	6415.59	5346.27	9573.63	115
H27C	9598.82	6334.49	8803.7	166
H27B	10580.98	6163.54	9463.39	166
H27A	7842.94	6675.59	9330.41	166

V. <u>DFT calculations</u>

Ground state geometries and frontiers molecular orbitals distributions:

5a:

номо

LUMO

5b:

номо

LUMO

5d:

номо

LUMO

5e:

номо

LUMO

5m:

номо

LUMO

5n:

номо

HOMO-1

5r:

HOMO-1

Simulated UV spectra (blue lines) and oscillator strengths (green bars):

5a:

5b:

5d:

6I:

Simulated UV data (excitation number, energy, wavelength, oscilator strenghs and transition involved):

5a:

No.	Energy (cm-1)	Wavelength	Osc.	Major contribs
		(nm)	Strength	
1	21768.90404	459.3708522	0.3426	HOMO->LUMO (99%)
2	23166.66286	431.6547471	0.0013	H-1->LUMO (91%)
3	27743.85925	360.4401216	0.0354	H-2->LUMO (69%), HOMO->L+1 (15%)
4	30304.66956	329.9821494	0.1705	H-3->LUMO (72%), H-2->LUMO (11%),
				HOMO->L+2 (11%)
5	31189.45977	320.6211353	0.0013	H-1->L+1 (84%)
6	31295.1184	319.5386537	0.3387	H-2->LUMO (16%), HOMO->L+1 (76%)
7	31468.5276	317.7778168	0.0027	H-4->LUMO (81%)
8	31775.82484	314.7046552	0.0008	H-3->LUMO (14%), HOMO->L+2 (77%)
9	34529.40166	289.6082619	0.0129	H-7->LUMO (35%), H-5->LUMO (45%)
10	35008.49499	285.6449557	0.0007	H-1->L+2 (93%)
11	35662.61063	280.4057197	0.0027	H-7->LUMO (39%), H-6->LUMO (14%),
				H-5->LUMO (22%)
12	36132.83186	276.7566084	0.0265	H-6->LUMO (47%), H-5->LUMO (12%),
				H-3->L+1 (21%)

No.	Energy (cm-	Wavelength	Osc. Strength	Major contribs
	1)	(nm)		
1	20819.58948	480.3168675	0.3342	HOMO->LUMO (99%)
2	22973.0898	435.291904	0.0013	H-1->LUMO (91%)
3	27474.47007	363.9742632	0.0339	H-2->LUMO (65%), HOMO->L+1 (16%)
4	29844.93354	335.0652461	0.2238	H-3->LUMO (55%), HOMO->L+1 (11%),
				HOMO->L+2 (24%)
5	30575.67185	327.0574086	0.3012	H-2->LUMO (22%), HOMO->L+1 (69%)
6	30975.72285	322.833467	0.0502	H-3->LUMO (28%), HOMO->L+2 (64%)
7	31183.81389	320.6791843	0.0014	H-1->L+1 (82%)
8	31438.68509	318.0794608	0.0006	H-4->LUMO (74%)
9	34416.48404	290.5584425	0.0146	H-7->LUMO (29%), H-5->LUMO (47%)
10	34993.17046	285.770048	0.0007	H-1->L+2 (93%)
11	35419.0312	282.3340917	0.0071	H-7->LUMO (32%), H-6->LUMO (31%),
				H-5->LUMO (11%)
12	35908.60973	278.4847443	0.017	H-7->LUMO (21%), H-6->LUMO (37%),
				H-5->LUMO (15%), H-3->L+1 (15%)

5d:

No	Energy (cm-	Wayelength	0.50	Major contribs
NO.	Lifergy (ciff	wavelength	USC.	
	1)	(nm)	Strength	
1	21551.13434	464.0126984	0.381	HOMO->LUMO (99%)
2	22937.60141	435.9653751	0.0013	H-1->LUMO (91%)
3	27810.80327	359.5724979	0.0305	H-2->LUMO (67%), HOMO->L+1 (12%)
4	30019.95585	333.1117491	0.2035	H-3->LUMO (65%), H-2->LUMO (11%),
				HOMO->L+2 (12%)
5	31093.47979	321.610835	0.2019	HOMO->L+1 (64%), HOMO->L+2 (15%)
6	31255.59723	319.9426946	0.0008	H-6->LUMO (25%), H-1->L+1 (63%)
7	31404.8098	318.4225621	0.001	H-6->LUMO (60%), H-1->L+1 (25%)
8	31692.74973	315.5295796	0.2248	H-3->LUMO (11%), H-2->LUMO (10%),
				HOMO->L+1 (13%), HOMO->L+2 (59%)
9	34208.393	292.3259213	0.0059	H-7->LUMO (14%), H-4->LUMO (70%)
10	34500.3657	289.852	0.0126	H-9->LUMO (26%), H-7->LUMO (32%), H-4-
				>LUMO (27%)
11	34885.89872	286.6487712	0.0011	H-1->L+2 (92%)
12	35008.49499	285.6449557	0.0019	H-5->LUMO (94%)

5e:

No.	Energy (cm-1)	Wavelength	Osc.	Major contribs
		(nm)	Strength	
1	21375.30548	467.8295714	0.3766	HOMO->LUMO (99%)

2	22972.28325	435.307187	0.0013	H-1->LUMO (91%)
3	27530.92888	363.2278462	0.0354	H-2->LUMO (70%), HOMO->L+1 (13%)
4	30001.4051	333.3177219	0.2238	H-4->LUMO (37%), H-3->LUMO (34%),
				HOMO->L+2 (12%)
5	30951.52621	323.085845	0.3238	H-2->LUMO (16%), HOMO->L+1 (77%)
6	31158.00415	320.944819	0.0031	H-1->L+1 (81%)
7	31357.22309	318.9057899	0.0263	H-3->LUMO (13%), HOMO->L+2 (75%)
8	31403.19669	318.4389187	0.0007	H-6->LUMO (76%)
9	32315.40975	309.4498902	0.0026	H-4->LUMO (44%), H-3->LUMO (50%)
10	33943.84314	294.6042367	0.0021	H-5->LUMO (95%)
11	34422.93648	290.5039786	0.0127	H-9->LUMO (32%), H-7->LUMO (47%)
12	34965.74761	285.994171	0.0004	H-1->L+2 (94%)

5m:

No.	Energy (cm-1)	Wavelength (nm)	Osc. Strength	Major contribs
1	19749.29175	506.347272	0.3672	HOMO->LUMO (99%)
2	22827.91	438.0602516	0.002	H-2->LUMO (75%), H-1->LUMO (16%)
3	26782.44637	373.3788864	0.1044	H-1->LUMO (38%), HOMO->L+1 (36%)
4	28310.06046	353.2313191	0.2847	H-3->LUMO (13%), HOMO->L+1 (44%), HOMO->L+2 (35%)
5	28955.304	345.3598691	0.1957	H-1->LUMO (38%), HOMO->L+1 (16%), HOMO->L+2 (29%)
6	29777.98952	335.8185076	0.1176	H-3->LUMO (65%), HOMO->L+2 (24%)
7	30893.45429	323.6931651	0.0017	H-2->L+1 (67%), H-1->L+1 (14%)
8	31133.00096	321.2025726	0.0005	H-8->LUMO (80%)
9	32440.42569	308.2573606	0.004	H-6->LUMO (14%), H-4->LUMO (74%)
10	33738.97832	296.3930889	0.0096	H-6->LUMO (55%), H-4->LUMO (20%)
11	34008.3675	294.0452817	0.0085	H-5->LUMO (71%)
12	34453.58554	290.2455533	0.0573	H-11->LUMO (27%), H-9->LUMO (25%), H-6->LUMO (13%), HOMO- >L+4 (15%)

5n:

No.	Energy (cm-1)	Wavelength (nm)	Osc. Strength	Major contribs
1	22471.41295	445.0098453	0.0016	H-1->LUMO (91%)
2	25575.84094	390.9939862	0.4349	HOMO->LUMO (98%)
3	27780.96075	359.9587534	0.0851	H-2->LUMO (81%)
4	30244.17798	330.6421489	0.0411	H-3->LUMO (88%)
5	30661.97317	326.1368713	0	H-4->LUMO (69%), H-1->L+1 (12%)
6	30880.54942	323.8284353	0.001	H-4->LUMO (11%), H-1->L+1 (74%)
7	33354.25186	299.8118514	0.2807	H-5->LUMO (12%), HOMO->L+1 (73%)
8	33498.6251	298.5197145	0.0003	H-3->L+3 (10%), H-2->L+3 (14%), HOMO->L+3 (68%)
9	33724.46034	296.5206826	0.0543	H-7->LUMO (20%), H-5->LUMO (40%), HOMO->L+1 (12%)
10	34656.03071	288.5500675	0.0028	H-7->LUMO (38%), H-2->L+1 (13%), HOMO->L+2 (12%)
11	34914.93468	286.4103883	0.0022	H-1->L+2 (82%)
12	35135.93059	284.6089411	0.0292	H-7->LUMO (18%), H-5->LUMO (17%), H-3->L+1 (11%), H-2->L+1 (16%), H-2- >L+2 (13%)

5r:

No.	Energy (cm-1)	Wavelength (nm)	Osc. Strength	Major contribs
1	22670.63189	441.0993063	0.0015	H-1->LUMO (88%)
2	23703.82811	421.8727858	0.3734	HOMO->LUMO (98%)
3	27455.91932	364.2201845	0.077	H-2->LUMO (75%)
4	29752.98633	336.1007157	0.1106	H-4->LUMO (61%), H-3->LUMO (19%),
				H-2->LUMO (12%)
5	30337.73829	329.6224624	0.0097	H-4->LUMO (22%), H-3->LUMO (75%)
6	30820.05784	324.4640244	0.0004	H-5->LUMO (26%), H-1->L+1 (54%)
7	30964.43108	322.9511943	0.0008	H-6->LUMO (13%), H-5->LUMO (42%),
				H-1->L+1 (32%)
8	32181.52172	310.7373258	0.3414	HOMO->L+1 (85%)
9	33235.68836	300.8813867	0.0049	HOMO->L+2 (69%)
10	33955.94146	294.4992708	0.0144	H-8->LUMO (25%), H-6->LUMO (35%),
				H-5->LUMO (14%)
11	34848.79721	286.9539496	0.0049	H-8->LUMO (35%), H-7->LUMO (26%),
				H-6->LUMO (10%)
12	35154.48134	284.4587551	0.0033	H-1->L+2 (84%)

6I:

No.	Energy (cm-1)	Wavelength	Osc. Strength	Major contribs
		(nm)		
1	20537.29543	486.9190316	0.3494	HOMO->LUMO (99%)
2	23039.22726	434.0423351	0.0012	H-1->LUMO (91%)
3	27491.40771	363.7500162	0.0335	H-2->LUMO (61%), HOMO->L+1 (20%)
4	29731.20936	336.3468966	0.2243	H-3->LUMO (39%), HOMO->L+1 (17%),
				HOMO->L+2 (37%)
5	30427.26583	328.6525991	0.3097	H-2->LUMO (30%), HOMO->L+1 (60%)
6	30782.95634	324.8550883	0.0585	H-3->LUMO (44%), HOMO->L+2 (50%)
7	31210.43018	320.4057086	0.0014	H-1->L+1 (83%)
8	31479.01281	317.6719696	0.0005	H-4->LUMO (78%)
9	34475.36251	290.0622146	0.014	H-7->LUMO (30%), H-5->LUMO (48%)
10	34956.87551	286.0667567	0.0006	H-1->L+2 (94%)
11	35526.30293	281.4815833	0.0047	H-7->LUMO (36%), H-6->LUMO (23%),
				H-5->LUMO (15%)
12	36015.07492	277.6615077	0.019	H-7->LUMO (16%), H-6->LUMO (41%),
				H-5->LUMO (14%), H-3->L+1 (18%)

Cartesian coordinates of the optimized geometries:

5a:

C -4.40414 0.66568 -0.28835 C -3.88616 -0.71547 -0.17749 C -2.49764 -0.95553 -0.11960 C -1.57956 0.13331 -0.16275 C -2.07446 1.52556 -0.27207 N -3.45778 1.69754 -0.35801 C -4.77744 -1.77457 -0.13086 C -4.30196 -3.08878 -0.02728 C -2.94451 -3.34222 0.03128 C -2.01513 -2.28309 -0.01252 C -0.58849 -2.50111 0.04712 C 0.29524 -1.40349 -0.00024 C -0.22993 -0.08928 -0.10441 N -0.16588 -3.79929 0.14961 N 1.10138 -4.06805 0.20767 C 2.02927 - 3.07451 0.16734 C 1.69964 -1.69359 0.06171 C 3.39548 -3.45618 0.23527 C 4.38091 -2.51653 0.19906 C 4.06309 -1.12343 0.09115 C 2.72041 -0.73525 0.02495

N 5.07774 -0.22473 0.05665 C 4.90503 1.21508 -0.04786 C 6.25696 1.91999 -0.05102 C 6.12581 3.44050 -0.15782 C 7.48139 4.14871 -0.15960 C -3.96484 3.07660 -0.46704 C -4.20531 3.71450 0.90134 C -4.72971 5.14443 0.76843 O -1.32414 2.48860 -0.29025 O -5.59673 0.91983 -0.32134 H -5.83807 -1.56536 -0.17638 H -5.00574 -3.91110 0.00735 H -2.56750 -4.35217 0.11165 H 0.42821 0.76784 -0.13975 H 3.62101 -4.51208 0.31605 H 5.42338 -2.81007 0.25177 H 2.47425 0.31270 -0.05621 H 6.02001 -0.57825 0.10826 H 4.35655 1.45718 -0.96703 H 4.29896 1.57732 0.79215 H 6.79703 1.66222 0.86760 H 6.85555 1.54414 -0.88914 H 5.57836 3.69211 -1.07298 H 5.51911 3.80981 0.67646 H 7.36249 5.23210 -0.23694 H 8.03603 3.93768 0.75955 H 8.09596 3.81843 -1.00234 H -3.22523 3.64496 -1.02771 H -4.89221 3.03114 -1.03449 H -4.92174 3.10140 1.45528 H -3.26701 3.70891 1.46312 H -4.89952 5.59263 1.75001 H -4.01751 5.77723 0.23061 H -5.67717 5.16755 0.22198

5b:

C -4.56474 0.54703 -0.29029 C -4.01343 -0.82379 -0.22017 C -2.62002 -1.03108 -0.15088 C -1.72954 0.08062 -0.14348 C -2.25768 1.46284 -0.21548 N -3.64368 1.60364 -0.31380 C -4.87782 -1.90576 -0.22310 C -4.37039 -3.21065 -0.15865 C -3.00804 -3.43215 -0.08987 C -2.10507 -2.34924 -0.08338 C -0.67469 -2.53314 -0.01087 C 0.18129 -1.41338 -0.00332 C -0.37535 -0.11044 -0.07154 N -0.22060 -3.82532 0.04786 N 1.05079 -4.06585 0.11533 C 1.95410 - 3.04732 0.12879 C 1.59288 -1.67260 0.07136 C 3.32566 -3.38801 0.21254 C 4.29005 -2.42225 0.23363 C 3.94903 -1.02856 0.16480 C 2.58637 -0.68922 0.09666 N 4.93245 -0.08010 0.16673 C 4.54714 1.33756 0.11313 C 5.67898 2.32661 -0.14634 C 5.12734 3.73725 -0.37972 C 6.23347 4.77006 -0.59959 C -4.18288 2.97300 -0.38387 C -4.44590 3.56264 1.00191 C -5.00236 4.98363 0.90951 O -1.53160 2.44430 -0.19363 O -5.76291 0.77256 -0.32945 H -5.94275 -1.72171 -0.27637 H -5.05347 -4.05098 -0.16259 H -2.60669 -4.43463 -0.03939 H 0.26075 0.76393 -0.06930 H 3.58356 -4.43868 0.25997 H 5.32553 -2.71978 0.29814 H 2.29199 0.34671 0.07670 H 3.82130 1.44806 -0.69759 H 4.02899 1.61655 1.04145 H 6.37057 2.35769 0.70101 H 6.25406 2.01225 -1.02380 H 4.45768 3.72447 -1.24665 H 4.51429 4.03265 0.47925 H 5.81715 5.76595 -0.76930 H 6.89591 4.82800 0.26921 H 6.84591 4.51089 -1.46836 H -3.45409 3.57598 -0.92221 H -5.10592 2.92310 -0.95793 H -5.15111 2.91633 1.53204 H -3.51094 3.56125 1.56929 H -5.18858 5.39731 1.90320 H -4.30154 5.64884 0.39636 H -5.94664 5.00205 0.35739 C 6.30916 -0.47498 0.44833 H 6.94609 0.40130 0.46264 H 6.39332 -0.97234 1.42035 H 6.69279 -1.14888 -0.32233

5d:

C -5.12637 0.82636 -0.30389 C -4.63926 -0.56672 -0.20268 C -3.25662 -0.83707 -0.13308 C -2.31552 0.23153 -0.15427 C -2.77913 1.63542 -0.25214 N -4.15736 1.83829 -0.35116 C -5.55296 -1.60691 -0.17709 C -5.10661 -2.93236 -0.08337 C -3.75596 -3.21562 -0.01395 C -2.80342 -2.17610 -0.03627 C -1.38340 -2.42469 0.03511 C -0.47662 -1.34705 0.00923 C -0.97117 -0.02124 -0.08507 N -0.98968 -3.73620 0.12706 N 0.26794 -4.03472 0.19413 C 1.22083 -3.06096 0.17364 C 0.92232 -1.67031 0.08149 C 2.57281 -3.47200 0.25209 C 3.58799 -2.55634 0.23839 C 3.30145 -1.15904 0.13838 C 1.96518 -0.74345 0.06648 N 4.30555 -0.24264 0.10057 C -4.63320 3.22919 -0.45050 C -4.87369 3.85815 0.92206 C -5.36547 5.30048 0.79862 O -2.00790 2.58185 -0.25084 O -6.31276 1.10632 -0.34781 H -6.60845 -1.37480 -0.23121 H -5.82823 -3.73962 -0.06516 H -3.40130 -4.23410 0.05870 H -0.29434 0.82175 -0.10437 H 2.77370 -4.53338 0.32743 H 4.61372 -2.89077 0.30689 H 1.75641 0.31639 -0.00630 H -3.87579 3.78718 -0.99771 H -5.55559 3.20989 -1.02744 H -5.60897 3.25530 1.46243 H -3.94154 3.82639 1.49314 H -5.53546 5.74244 1.78300 H-4.63420 5.92289 0.27442 H -6.30660 5.34980 0.24301 C 5.72459 -0.54447 0.26638 H 6.01691 -1.30518 -0.46442 H 5.92221 -0.95445 1.26368 H 4.05000 0.73192 0.14359 C 6.54133 0.70556 0.05156 C 7.12347 1.37264 1.13001 C 6.69402 1.22904 -1.23628 C 7.85489 2.54203 0.92690 H 7.00576 0.97415 2.13176 C 7.42152 2.39718 -1.44122 H 6.24171 0.71561 -2.07784 C 8.00448 3.05582 -0.35856

H 8.30571 3.04970 1.77148 H 7.53802 2.79187 -2.44374 H 8.57353 3.96412 -0.51810 5e: C 5.36592 -0.00416 0.56697 C 4.54386 -1.22321 0.40532 C 3.15510 -1.12411 0.18031 C 2.53109 0.15404 0.10222 C 3.33345 1.38950 0.26201 N 4.69724 1.22691 0.51417 C 5.14955 -2.46658 0.47643 C 4.38376 - 3.63078 0.32606 C 3.02204 -3.55221 0.10396 C 2.37973 -2.29959 0.02538 C 0.96062 -2.16959 -0.20687 C 0.37134 -0.89124 -0.27801 C 1.18423 0.26079 -0.12027 N 0.24890 -3.33252 -0.34899 N -1.02839 -3.29249 -0.56075 C -1.68512 -2.10228 -0.64578 C -1.04503 -0.83934 -0.51052 C -3.08223 -2.14020 -0.87529 C -3.81074 -0.98994 -0.96864 C -3.18073 0.29284 -0.84389 C -1.79850 0.33531 -0.60989 N -3.91798 1.43933 -0.94285 C 5.50762 2.44700 0.67438 C 6.04991 2.96048 -0.65957 C 6.88499 4.22762 -0.47418 O 2.84250 2.50460 0.18294 O 6.57239 -0.04344 0.74191 H 6.21646 -2.51721 0.64961 H 4.86532 -4.59899 0.38428 H 2.42229 -4.44370 -0.01420 H 0.75567 1.25210 -0.17274 H -3.55408 -3.11077 -0.96349 H -4.87836 -1.05404 -1.11533 H-1.30351 1.28822 -0.51292 H 4.86870 3.19543 1.13929 H 6.32538 2.20040 1.34858 H 6.65574 2.17493 -1.11993 H 5.20857 3.15935 -1.32944 H 7.26891 4.58777 -1.43132 H 6.28972 5.03050 -0.02922 H 7.74124 4.04310 0.18129 C -5.33825 1.40041 -1.26171 H -5.51024 0.71750 -2.09861 H -5.61442 2.39091 -1.62810 C -6.24588 1.02504 -0.10100 C -7.58122 0.70100 -0.35704

C -5.78638 1.01166 1.21512 C -8.44369 0.37665 0.68558 H -7.94643 0.69931 -1.37914 C -6.64836 0.68473 2.26101 H -4.74998 1.24632 1.42385 C -7.97869 0.36803 2.00048 H -9.47631 0.12537 0.47265 H -6.27685 0.67453 3.27915 H -8.64779 0.11116 2.81319 C -3.29287 2.73366 -0.70622 H -2.80361 2.76413 0.27213 H -2.54691 2.96878 -1.47324 H -4.06020 3.50367 -0.72428

5m:

C 5.53442 0.15074 0.47248 C 4.88806 -1.15620 0.22072 C 3.48553 -1.25032 0.10661 C 2.67702 -0.08355 0.22795 C 3.30230 1.23806 0.47463 N 4.69179 1.26265 0.60931 C 5.67291 -2.29031 0.09639 C 5.07576 -3.53578 -0.14220 C 3.70324 - 3.64651 - 0.25782 C 2.88038 -2.50802 -0.13691 C 1.44306 -2.57362 -0.25194 C 0.66947 -1.40334 -0.11880 C 1.31471 -0.16177 0.11802 N 0.89717 - 3.80779 - 0.49496 N -0.38419 -3.94559 -0.61177 C -1.21491 -2.86984 -0.49216 C -0.75251 -1.54948 -0.24077 C -2.60555 -3.09923 -0.63218 C -3.49674 -2.06947 -0.52360 C -3.04368 -0.74267 -0.25569 C -1.67829 -0.50558 -0.11595 N -3.96563 0.29477 -0.16129 C 5.32601 2.57000 0.85431 C 5.66380 3.30171 -0.44488 C 6.31677 4.65666 -0.17047 O 2.64826 2.26467 0.56156 O 6.74396 0.27850 0.56187 H 6.74679 -2.19329 0.18703 H 5.69737 -4.41742 -0.23702 H 3.23338 -4.60235 -0.44261 H 0.74273 0.75099 0.21289 H -2.93355 -4.10918 -0.84324 H -4.55488 -2.24895 -0.65247 H -1.33973 0.49747 0.09544

H 4.62963 3.15578 1.45128 H 6.22882 2.38285 1.43206 H 6.33449 2.67469 -1.03915 H 4.74539 3.43747 -1.02293 H 6.55581 5.17267 -1.10309 H 5.65226 5.30426 0.40917 H 7.24629 4.53927 0.39438 C -5.30469 0.05898 0.26697 C -6.36454 0.64714 -0.42822 C -5.56397 -0.72960 1.39133 C -7.67246 0.44220 -0.00241 H -6.15564 1.26206 -1.29466 C -6.87637 -0.94375 1.80109 H -4.73909 -1.16823 1.93880 C -7.93482 -0.35778 1.10915 H -8.48925 0.90099 -0.54688 H -7.06951 -1.55784 2.67268 H-8.95501-0.52002 1.43512 C -3.56616 1.64834 -0.38135 C -3.84590 2.62185 0.57926 C -2.91256 2.00370 -1.56416 C -3.47094 3.94355 0.35651 H -4.35665 2.33901 1.49118 C -2.52727 3.32347 -1.77307 H -2.70753 1.24470 -2.30882 C -2.80637 4.29837 -0.81569 H -3.68999 4.69457 1.10617 H -2.01877 3.59275 -2.69115 H -2.50944 5.32646 -0.98359

5n:

C -3.79576 -0.47002 -0.26659 C -2.78853 -1.54770 -0.14344 C -1.41298 -1.24028 -0.10310 C -0.98007 0.11462 -0.17784 C -1.97212 1.21238 -0.30523 N -3.31537 0.84339 -0.36936 C -3.20723 -2.86503 -0.06671 C -2.26525 -3.89709 0.04967 C -0.91365 -3.61460 0.09178 C -0.45994 -2.28149 0.01763 C 0.93869 -1.93273 0.06008 C 1.33678 -0.58408 -0.01502 C 0.35046 0.43008 -0.13431 N 1.83201 -2.96917 0.17578 N 3.10003 -2.74346 0.22158 C 3.58371 -1.46232 0.15616 C 2.74513 -0.32388 0.03606 C 4.98803 -1.30093 0.21390 C 5.54243 -0.05135 0.15476

C 4.70569 1.08643 0.03517 C 3.32853 0.95433 -0.02363 C -4.31065 1.92403 -0.49046 C -4.75051 2.45944 0.87229 C -5.78079 3.57961 0.72699 O -1.64072 2.38521 -0.35479 O -4.99413 -0.69143 -0.28274 H -4.26765 -3.07783 -0.09870 H -2.60283 -4.92429 0.10760 H -0.18071 -4.40386 0.18248 H 0.62760 1.47344 -0.19300 H 5.59796 -2.19023 0.30552 H 6.61344 0.09637 0.19722 H 2.70398 1.83275 -0.11520 H -3.85256 2.71490 -1.08136 H -5.16073 1.51430 -1.03207 H -5.17032 1.63554 1.45633 H -3.87070 2.82574 1.40877 H -6.09068 3.95586 1.70449 H -5.37131 4.42051 0.15951 H -6.67545 3.22730 0.20527 N 4.70981 3.35404 -0.11917 N 5.38249 2.32187 -0.01662 N 4.21774 4.36659 -0.21159

5r:

C 4.31792 0.17997 0.29345 C 3.62270 -1.12168 0.18166 C 2.21521 -1.17772 0.11870 C 1.44844 0.02258 0.15493 C 2.12417 1.34037 0.25686 N 3.51604 1.32886 0.35066 C 4.36632 -2.28896 0.13991 C 3.72219 -3.52975 0.03626 C 2.34392 -3.60368 -0.02606 C 1.56266 -2.43061 0.01348 C 0.12139 -2.45445 -0.04790 C -0.61068 -1.25150 -0.00314 C 0.08213 -0.01586 0.09613 N -0.47362 -3.68621 -0.14993 N -1.75864 -3.79267 -0.20954 C -2.55300 -2.67859 -0.16945 C -2.03783 -1.36174 -0.06402 C -3.95309 -2.87867 -0.23725 C -4.80562 -1.81068 -0.20030 C -4.29580 -0.48556 -0.09220 C -2.92970 -0.27198 -0.02523 S -5.50960 0.79687 -0.05250 C -4.51247 2.32401 0.10198

C -5.44692 3.53121 0.17287 N -4.63613 4.74303 0.32715 H-5.23437 5.52538 0.57227 C 4.20087 2.62993 0.45458 C 4.53940 3.21592 -0.91629 C 5.24392 4.56679 -0.78892 O 1.50443 2.39126 0.26230 O 5.53260 0.27341 0.33673 H 5.44515 -2.22194 0.18893 H 4.31226 -4.43716 0.00493 H 1.83855 -4.55589 -0.10608 H -0.45483 0.92193 0.12672 H -4.31790 -3.89473 -0.31752 H -5.87685 -1.96456 -0.25165 H -2.53773 0.72944 0.05928 H -4.20437 4.98344 -0.56059 H -3.90778 2.27520 1.00769 H -3.85591 2.40361 -0.76714 H -6.10191 3.54117 -0.71021 H -6.09000 3.43656 1.05137 H 3.53700 3.29682 1.00125 H 5.10734 2.46754 1.03422 H 5.17682 2.50889 -1.45461 H 3.61548 3.32652 -1.49106 H 5.48281 4.97827 -1.77217 H 4.61356 5.29263 -0.26676 H 6.17949 4.47233 -0.22983

6l:

C -4.44909 0.08355 -0.26173 C -3.66967 -1.16791 -0.14348 C -2.26024 -1.13062 -0.10423 C -1.57375 0.11538 -0.17510 C -2.33219 1.38173 -0.29681 N -3.72381 1.27909 -0.36018 C -4.33554 -2.38014 -0.07046 C -3.61045 -3.57425 0.04164 C -2.22918 -3.55600 0.08237 C -1.52557 -2.33642 0.01144 C -0.08352 -2.27092 0.05240 C 0.56740 -1.02263 -0.01831 C -0.20549 0.16112 -0.13253 N 0.58586 -3.46189 0.16076 N 1.88169 -3.47758 0.20432 C 2.59732 -2.32224 0.14470 C 2.00382 -1.03225 0.02994 C 4.01004 -2.42494 0.20038 C 4.79728 -1.31191 0.14613 C 4.21582 -0.00457 0.03325

C 2.81592 0.10315 -0.02229 C -4.49231 2.53049 -0.47808 C -4.83613 3.12887 0.88615 C -5.63215 4.42641 0.74418 O -1.78503 2.47241 -0.34316 O -5.66877 0.09960 -0.27755 H -5.41718 -2.38350 -0.10220 H -4.13894 -4.51785 0.09723 H -1.65982 -4.47059 0.16965 H 0.27134 1.13000 -0.18940 H 4.44092 -3.41503 0.28246 H 5.87256 -1.41571 0.17806 H 2.36394 1.08029 -0.09449 H -3.88526 3.22439 -1.05633 H -5.40007 2.29660 -1.03080 H -5.41165 2.39548 1.45792 H -3.90803 3.31513 1.43397 H -5.87389 4.84726 1.72279 H-5.06470 5.17833 0.18776 H -6.57275 4.25563 0.21223 C 4.49752 2.44965 -0.22877 C 6.47098 1.06606 0.13145 C 5.75943 3.27589 -0.49214 H 3.96389 2.79944 0.66400 H 3.79914 2.47424 -1.06902 C 6.83528 2.54188 0.31810 H 6.94587 0.64631 -0.76383 H 6.76314 0.45592 0.98871 H 6.00524 3.24668 -1.55706 H 5.63723 4.31918 -0.20074 H 7.85009 2.76049 -0.01480 H 6.75817 2.81061 1.37506 N 5.01028 1.09102 -0.02128