Spirocyclic sulfamidate imines via palladium-catalysed asymmetric (3 + 2)

cycloaddition reactions.

Quoc Hoang Pham,^{*a*} Andrew J. Tague,^{*a*} Christopher Richardson,^{*a*} Michael G. Gardiner,^{*b*} Stephen G. Pyne,^{**a*} and Christopher J. T. Hyland.^{*a**}

^aSchool of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.

^bResearch School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, 2601, Australia.

Supporting information

1. General	2
2. Table of reaction optimisation results ^a	3
3. Synthesis of vinylcyclopropanes	5
4. Synthesis of 1-azadienes	9
a. Synthesis of α -hydroxyketones	9
b. Synthesis of methylene active cyclic sulfamidate imines	11
c. Synthesis of aldehydes	14
d. Synthesis of the 1-azadiene	15
5. Synthesis of spirocyclic sulfamidate imines	23
6. Post-synthetic modifications	42
a. Olefin cross-metathesis	42
b. Regioselective transesterification/amidation	42
c. Regioselective amidation	.44
d. Regioselective transesterification	45
e. Double transesterification	46
f. Diastereoselective imine reduction	46
7. Crystallographic data	48
8. References	50
9. NMR spectra of novel compounds	51
10. HPLC chromatograms1	22

1. General

Reagents and solvents were acquired from commercial suppliers and were used either without further purification or purified by standard techniques. Anhydrous solvents were passed through activated alumina for dryness before being stored under N₂ over 4 Å molecular sieves. Anhydrous THF was obtained by distillation from a sodium/benzophenone ketyl still under nitrogen. Air- and moisturesensitive reactions were performed in oven-dried glassware under an inert N2 atmosphere. For thinlayer chromatography (TLC), silica gel plates were obtained from Merck & Co., visualised under UV light and/or by treatment with either potassium permanganate or cerium molybdate TLC stain solution, followed by heating. Purification was carried out using flash column chromatography (FCC) with silica gel 60 (0.04 - 0.06) mm obtained from Chem-Supply. Solvent used for NMR analysis was deuterated chloroform (CDCl₃) with 0.1% w/v tetramethylsilane (TMS), obtained from Sigma–Aldrich. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded with either a Bruker Avance III 400 spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) or a Bruker Avance Neo 500 spectrometer equipped with a BBO Prodigy N₂ cryoprobe (500 MHz for ¹H NMR, 125 MHz for ¹³C NMR, and 470 MHz for ¹⁹F NMR). Trifluorotoluene was used as an external reference for ¹⁹F NMR analysis and was referenced to 0.00 ppm. Abbreviations used in the descriptions of NMR resonances include: singlet (s), doublet (d), triplet (t), quartet (q), heptet (h), multiplet (m), broad singlet (br s), doublet of doublet (dd), doublet of doublet of doublet (ddd). High-performance liquid chromatography (HPLC) was performed using a Shimadzu Nexera X2 UHPLC equipped with a PDA detector. Melting point analysis was carried out using a Buchi Melting Point M-560 instrument.

2. Table of reaction optimisation results^a

^aReaction conditions: 1a (0.12 mmol, 1.2 equiv.), 2a (0.1 mmol, 1.0 equiv.), Pd₂dba₃•CHCl₃ (2.5 mol%), Ligand (7.5 mol% or 15 mol%), solvent (0.067 M wrt 2a), rt, 24 h. ^bYield determined by ¹H NMR integration against an internal standard (1,3,5trimethoxybenzene), isolated yield in parentheses. ^cDetermined by ¹H NMR analysis of the crude reaction mixture. ^dEnantiomeric ratio determined by chiral HPLC. ^eReaction time: 6 h. ^fReaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.11 mmol, 1.1 equiv.), Pd2dba3•CHCl3 (2.5 mol%), Ligand (7.5 mol%), solvent (0.067 M wrt VCP), rt, 24 h. ^gConcentration: 0.134 M wrt 2a. ^hConcentration: 0.034 M wrt 2a. ⁱConcentration: 0.017M wrt 2a. ^j1.5 equiv. of 1a used. ^kMonomeric Pd source (5 mol%) used. /Pd2dba3•CHCl3 (1.5 mol%) and Ligand (5 mol%) used. mPd2dba3•CHCl3 (0.5 mol%) and Ligand (2 mol%) used.

|| N

L16

L15

L17

4

3. Synthesis of vinylcyclopropanes

Bis(2,2,2-trifluoroethyl) malonate (S1)

 ${}_{\mathsf{F}_3\mathsf{CH}_2\mathsf{CO}_2\mathsf{C}}{}_{\swarrow}\mathsf{CO}_2\mathsf{CH}_2\mathsf{CF}_3 \quad \text{Procedure:}^1$

A suspension of malonic acid (3.235 g, 30.993 mmol), 2,2,2-trifluoroethanol (10.6 mL, 145.480 mmol), MgSO₄ (3.777 g, 31.376 mmol), and H₂SO₄ (0.7 mL, 13.132 mmol) in anhydrous benzene (15 mL) was stirred at reflux for 72 h. The reaction mixture was then cooled to rt and filtered. The eluent was diluted with benzene, then washed with sat. aq. Na₂CO₃, water, and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The desired clear oil product was then used directly without further purification (5.200 g, 59%).

R_f: 0.53 (25% CH₂Cl₂ in hex).

¹**H NMR** (500 MHz, CDCl₃): δ 4.55 (q, *J* = 8.2 Hz, 4H), 3.61 (s, 2H).

¹³**C NMR** (125 MHz, CDCl₃): δ 164.1, 122.5 (q, *J* = 277.2 Hz), 61.2 (q, *J* = 37.2 Hz), 40.2.

The NMR spectroscopic data agreed with those reported.¹

Bis(2,2,2-trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate (1a)

Procedure:1

 $\int_{CO_2CH_2CF_3} A$ suspension of **S1** (4.900 g, 18.225 mmol), *trans*-1,4-dibromo-2-butene (4.138 g, $CO_2CH_2CF_3$ 19.345 mmol), and Cs_2CO_3 (15.086 g, 46.288 mmol) in anhydrous THF (150 mL) was heated at reflux for 24 h. The reaction mixture was then allowed to cool to rt, filtered, then diluted with Et₂O. The ethereal mixture was then washed successively with saturated aqueous NaHCO₃, water, and brine. The organic layer was then dried over Na₂SO₄, filtered, then concentrated *in vacuo*. Purification by FCC (40% CH₂Cl₂ in hexane) afforded the desired product as a clear oil (1.990 g, 34%). **R**_f = 0.24 (30% CH₂Cl₂ in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 5.47 (ddd, *J* = 17.1, 10.0, 7.7 Hz, 1H), 5.35 (ddd, *J* = 17.0, 1.5, 0.6 Hz, 1H), 5.23 (ddd, *J* = 10.0, 1.6, 0.7 Hz, 1H), 4.62–4.44 (m, 4H), 2.74 (app q, *J* = 8.0 Hz, 1H), 1.90 (dd, *J* = 8.0, 5.2 Hz, 1H), 1.74 (dd, *J* = 9.1, 5.2 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 167.5, 165.2, 131.3, 122.6 (q, *J* = 277.5 Hz), 120.3, 61.3 (q, *J*, = 37.1), 61.2 (q, *J* = 37.1), 35.1, 32.9, 21.5.

The NMR spectroscopic data agreed with those reported.¹

Bis(2,2,2-trifluoroethyl) (E)-2-styrylcyclopropane-1,1-dicarboxylate (1b)

Procedure:1

A solution of **1a** (164.5 mg, 0.514 mmol), styrene (1.1 mL, 9.601 mmol), and Grubbs catalyst 2^{nd} generation (11.7 mg, 0.0138 mmol) in anhydrous CH₂Cl₂ (4 mL) was heated at reflux for 1 h. The reaction mixture was allowed to cool to rt, then concentrated *in*

vacuo. Purification by FCC (10% EtOAc in hexane) afforded the desired product as a yellow oil (168.8 mg, 82%).

R_f = 0.32 (10% EtOAc in hexane).

CO₂CH₂CF₃

¹**H NMR** (400 MHz, CDCl₃): δ 7.38–7.22 (m, 5H), 6.69 (dd, *J* = 15.9, 0.8, 1H), 5.83 (dd, *J* = 15.8, 8.4, 1H), 4.64–4.43 (m, 4H), 2.91 (app q, *J* = 9.1 Hz, 1H), 2.03 (dd, *J* = 8.0, 5.3 Hz, 1H), 1.85 (dd, *J* = 9.1, 5.3 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 167.5, 165.4, 136.2, 135.4, 128.6, 128.0, 126.3, 122.6 (two overlapping q, *J* = 277.2 Hz), 122.5, 61.3 (two overlapping q, *J* = 37.0 Hz), 35.3, 33.4, 22.3.

The NMR spectroscopic data agreed with those reported.¹

Diethyl 2-vinylcyclopropane-1,1-dicarboxylate (1c)

Procedure:²

 $\int_{CO_2Et} CO_2Et$ A suspension of diethyl malonate (0.300 mL, 1.970 mmol), *trans*-1,4-dibromo-2-butene (454.8 mg, 2.126 mmol), and Cs₂CO₃ (1.674 g, 5.138 mmol) in anhydrous THF (10 mL) was heated at reflux overnight. The reaction mixture was then allowed to cool to rt, filtered, then diluted with Et₂O. The ethereal mixture was then washed successively with saturated aqueous NaHCO₃, water, and brine. The organic layer was then dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by FCC (50% CH₂Cl₂ in hexane) afforded the desired product as a clear oil (304.4 mg, 73%). **R**_f = 0.22 (50% CH₂Cl₂ in hexane).

¹H NMR (400 MHz, CDCl₃): δ 5.44 (ddd, *J* 17.1, 10.1, 8.3 Hz, 1H), 5.30 (ddd, *J* = 17.1, 1.7, 0.7 Hz, 1H), 5.14 (ddd, *J* = 10.2, 1.7, 0.7 Hz, 1H), 4.28–4.12 (m, 4H), 2.57 (app q, *J* = 9.1 Hz, 1H), 1.69 (dd, *J* = 7.5, 4.9 Hz, 1 H), 1.55 (dd, *J* = 9.0, 4.9 Hz), 1.27 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 169.7, 167.4, 133.2, 118.4, 61.6, 61.5, 35.9, 31.1, 20.4, 14.2, 14.1.

The NMR spectroscopic data agreed with those reported.³

2-Vinylcyclopropane-1,1-dicarbonitrile (1d)

Procedure:²

A suspension of malononitrile (0.130 mL, 2.064 mmol), *trans*-1,4-dibromo-2-butene (501.6 mg, 2.345 mmol), and Cs₂CO₃ (1.858 g, 5.701 mmol) in anhydrous THF (10 mL) was heated at reflux overnight. The reaction mixture was then allowed to cool to rt, filtered, then diluted with Et₂O. The ethereal mixture was then washed successively with saturated aqueous NaHCO₃, water, and

brine. The organic layer was then dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by FCC (50% CH_2Cl_2 in hexane) afforded the desired product as a clear oil (85.4 mg, 33%). $\mathbf{R}_f = 0.21$ (50% CH_2Cl_2 in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 5.66–5.50 (m, 3 H), 2.69 (app q, *J* = 9.0 Hz, 1H), 2.07 (dd, *J* = 9.1, 6.2 Hz, 1H), 1.83 (dd, *J* = 8.3, 6.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 129.7, 123.1, 115.0, 113.4, 33.3, 23.4, 5.7.

The NMR spectroscopic data agreed with those reported.²

2-Vinylspiro[cyclopropane-1,2'-indene]-1',3'-dione (1e)

Procedure:⁴

A suspension of 1,3-indandione (301.4 mg, 2.062 mmol), *trans*-1,4-dibromo-2-butene (444.0 mg, 2.076 mmol), and K_2CO_3 (616.4 mg, 4.460 mmol) in anhydrous DMF (20 mL) was stirred at rt and monitored by TLC. Upon completion, the reaction mixture was diluted with EtOAc, followed by the addition of water. The mixture was extracted with EtOAc, then the combined organic extracts were washed with H_2O and brine. The organic layer was dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by FCC (20% EtOAc in hexane) afforded the desired product as a red orange solid (279.4 mg, 68%).

 \mathbf{R}_{f} = 0.34 (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 7.97–7.92 (m, 2H), 7.80–7.77 (m, 2H), 6.03 (ddd, *J* = 17.1, 10.3, 9.5 Hz, 1H), 5.30 (ddd, *J* = 17.2, 1.51, 0.6 Hz, 1H), 5.16 (ddd *J* = 10.3, 1.5, 0.6 Hz, 1H), 2.86–2.79 (app q, *J* = 8.0 Hz, 1H), 2.15 (dd, *J* = 8.8, 4.0 Hz, 1H), 2.00 (dd, *J* = 8.1, 4.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 198.0, 197.1, 142.5, 141.8, 134.9, 134.8, 133.0, 122.50, 122.46, 118.5, 42.2, 40.2, 24.6.

The NMR spectroscopic data agreed with those reported.⁴

6,6-Dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione (1f)

Procedure:⁵

To a stirring solution of Meldrum's acid (572.1 mg, 3.969 mmol) in anhydrous DMF (4 mL) at 0 °C was added K_2CO_3 (750.7 mg, 5.432 mmol), and the resulting suspension was stirred at the same temperature for 10 min. *trans*-1,4-Dibromo-2-butene (1.071 g, 5.007 mmol) was then added, and the reaction mixture was stirred for an additional 20 min at 0 °C, then 45 min at rt. A second portion of K_2CO_3 (798.6 mg, 5.778 mmol) was then added, then the reaction mixture was stirred at rt overnight. Upon completion, indicated by TLC, the reaction was quenched with 1M HCl and extracted with EtOAc. The combined organic extracts were washed with water and brine, then

the organic layer was dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by FCC (20% EtOAc in hexane) afforded the desired product as a white solid (285.5 mg, 37%).

 \mathbf{R}_{f} = 0.27 (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 5.77 (dd, *J* = 17.1, 10.3, 9.5 Hz, 1H), 5.47 (ddd, *J* = 17.1, 1.3, 0.6 Hz, 1H), 5.35 (dd, *J* = 10.3, 1.3 Hz, 1H), 2.78 (app q, *J* = 9.1 Hz, 1H), 2.38 (dd, *J* = 9.1, 4.5 Hz, 1H), 2.23 (dd, *J* = 8.6, 4.5 Hz, 1H), 1.79 (app s, 3H), 1.73 (app s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 167.6, 165.2, 131.4, 121.9, 105.2, 43.1, 31.6, 27.7, 27.6, 24.7.

The NMR spectroscopic data agreed with those reported.⁵

5,7-Dimethyl-1-vinyl-5,7-diazaspiro[2.5]octane-4,6,8-trione (1g)

Procedure:⁴

A suspension of 1,3-dimethylbarbituric acid (310.1 mg, 1.986 mmol), *trans*-1,4-dibromo-2-butene (475.8 mg, 2.224 mmol), and K_2CO_3 (580.9 mg, 4.203 mmol) in anhydrous DMF (13 mL) was stirred at rt and monitored by TLC. Upon completion, the reaction mixture

was diluted with EtOAc, followed by the addition of water. The mixture was extracted with EtOAc, then the combined organic extracts were washed with H_2O and brine. The organic layer was dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by FCC (20% EtOAc in hexane) afforded the desired product as a white solid (122.7 mg, 30%).

R_f = 0.32 (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 5.94 (ddd, *J* = 17.2, 10.3, 9.3 Hz, 1H), 5.41 (ddd, *J* = 17.2, 1.5, 0.6 Hz, 1H), 5.28 (dd, *J* = 10.3, 1.6 Hz, 1H), 3.33 (s, 3H), 3.32 (s, 3H), 2.85 (app q, *J* = 9.1 Hz, 1H), 2.31 (dd, *J* = 9.2, 3.9 Hz, 1H), 2.18 (dd, *J* = 8.7, 3.8 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 168.1, 166.2, 151.8, 131.8, 121.2, 45.1, 35.3, 28.9, 28.7, 27.4. The NMR spectroscopic data agreed with those reported.²

4. Synthesis of 1-azadienes

a. Synthesis of α -hydroxyketones

General procedure A:6

To a stirring solution of acetophenone (1.0 equiv.) and TFA (2.0 equiv.) in a 5:1 mixture of MeCN/H₂O (0.17 M wrt the acetophenone) was added PhI(OCOCF₃)₂ (2.0 equiv.). The resulting solution was then heated to reflux, monitored by TLC. Upon completion, the reaction mixture was allowed to cool to rt, then MeCN was removed under reduced pressure. The remaining aqueous solution was extracted with CH_2Cl_2 , then the combined organic extracts were washed with water and brine. The organic layer was dried over MgSO₄, filtered, then concentrated *in vacuo*, followed by purification by FCC.

2-Hydroxy-1-(4-methoxyphenyl)ethan-1-one (S2a)

The titled compound was prepared following the <u>General procedure A</u> using 4'methoxyacetophenone (3.198 g, 21.298 mmol), TFA (3.2 mL, 41.789 mmol), and PhI(OCOCF₃)₂ (17.398 g, 40.457 mmol) in 5:1 MeCN/H₂O (120 mL). Purification

by FCC (30%–50% EtOAc in hexane) furnished S2a as an orange solid (2.297 g, 65%).

 \mathbf{R}_{f} = 0.17 (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 7.91 (d, *J* = 9.0 Hz, 2H), 6.97 (d, *J* = 9.0 Hz, 2H), 4.82 (s, 2H), 3.89 (s, 3H). The NMR spectroscopic data agreed with those reported.⁷

2-Hydroxy-1-(4-nitrophenyl)ethan-1-one (S2b)

The titled compound was prepared following the <u>General procedure A</u> using 4'nitroacetophenone (3.305 g, 20.009 mmol), TFA (3.2 mL, 41.789 mmol), and PhI(OCOCF₃)₂ (17.175 g, 39.934 mmol) in 5:1 MeCN/H₂O (150 mL). Purification

by FCC (40% EtOAc in hexane) furnished **S2b** as an orange solid (679.0 mg, 19%).

 \mathbf{R}_{f} = 0.21 (40% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 8.37 (d, *J* = 8.9 Hz, 2H), 8.10 (d, *J* = 8.8 Hz, 2H), 4.94 (s, 2H).

¹³**C NMR** (100 MHz, CDCl₃): 197.2, 151.0, 137.8, 128.9, 124.3, 66.0.

The NMR spectroscopic data agreed with those reported.⁸

1-(4-Bromophenyl)-2-hydroxyethan-1-one (S2c)

Procedure:⁹

To a stirring solution of 2,4'-dibromoacetophenone (2.828 g, 10.174 mmol) in DMF (100 mL) at 0 °C was added NaNO₂ (896.3 mg, 12.990 mmol) in one portion,

and the resulting solution was stirred at the same temperature for 4 h. Upon completion, as indicated by TLC, the reaction was quenched with H_2O , then extracted with EtOAc. The combined organic layers were washed with H_2O and brine, dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by FCC afforded **S2c** as an orange oil (776.5 mg, 35%).

R_f = 0.27 (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.6 Hz, 2H), 7.66 (d, *J* = 8.6 Hz, 2H), 4.85 (s, 2H), 3.45 (s, 1H). The NMR spectroscopic data agreed with those reported.⁸

1-(3-Bromophenyl)-2-hydroxyethan-1-one (S2d)

The titled compound was prepared following the <u>General procedure A</u> using 3'bromoacetophenone (0.67 mL, 5.016 mmol), TFA (0.77 mL, 10.555 mmol), and PhI(OCOCF₃)₂ (4.327 g, 10.061 mmol) in 5:1 MeCN/H₂O (30 mL). Purification by

FCC (25% EtOAc in hexane) furnished **S2d** as a yellow oil (322.3 mg, 30%).

 \mathbf{R}_{f} = 0.26 (25% EtOAc in hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 8.07 (s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 4.87 (s, 2H).

¹³**C NMR** (125 MHz, CDCl₃): 197.5, 137.4, 135.2, 131.0, 130.8, 126.4, 123.5, 65.8.

The NMR spectroscopic data agreed with those reported.⁸

1-(2-bromophenyl)-2-hydroxyethan-1-one (S2e)

The titled compound was prepared following the <u>General procedure A</u> using 2'bromoacetophenone (0.66 mL, 4.895 mmol), TFA (0.77 mL, 10.555 mmol), and PhI(OCOCF₃)₂ (4.415 g, 10.267 mmol) in 5:1 MeCN/H₂O (30 mL). Purification by FCC

(30% EtOAc in hexane) furnished S2e as a yellow oil (460.9 mg, 44%).

 \mathbf{R}_{f} = 0.28 (30% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃): δ 7.70–7.67 (m, 1H), 7.56–7.53 (m, 2H), 7.45–7.37 (m, 2H), 4.79 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): 201.5, 136.8, 134.5, 133.0, 129.4, 127.6, 119.9, 68.0.

The NMR spectroscopic data agreed with those reported.¹⁰

1-Hydroxy-3,3-dimethylbutan-2-one (S2f)

Procedure:11

To a reaction vessel containing 1-bromopinacolone (1.50 mL, 11.151 mmol) and a stir bar at 0 °C was slowly added an aqueous solution of 1 M NaOH (13 mL) over 20 mL, and the resulting mixture was stirred at the same temp for 1 h. The reaction mixture was then extracted with EtOAc, then the combined organic extracts were washed with water and brine. The combined organic layer was dried over MgSO₄, filtered, then concentrated *in vacuo*. The crude material was then used directly in the subsequent step without further purifications (1.192 g, 90%).

R_f = 0.26 (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 4.40 (s, 2H), 1.19 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃): 215.2, 63.9, 42.1, 26.2.

The NMR spectroscopic data agreed with those reported.¹²

b. Synthesis of methylene active cyclic sulfamidate imines

General procedure B:

To a stirring solution of *t*-BuOH (1.5 equiv.) in THF (1.0 M wrt CSI) at -10 °C was added chlorosulfonyl isocyanate (CSI) (1.2 equiv.) dropwise, followed by rapid stirring at the same temperature for 30 min. A solution of α -hydroxy ketone (1.0 equiv.) in THF (final conc. 0.5 M wrt α -hydroxy ketone) was then added to the CSI/*t*-BuOH mixture, followed by the dropwise addition of Et₃N (1.2 equiv.). The resulting solution was then stirred at -10 °C and monitored by TLC. Upon completion, the reaction was quenched with water, extracted with EtOAc, then the combined organic extracts were washed with water and brine. The combined layer was dried over MgSO₄, filtered, and then concentrated *in vacuo*. The resulting mixture was heated at reflux overnight. Upon completion, the reaction mixture was allowed to cool down to rt, then quenched with sat. aq. NaHCO₃, followed by extraction with EtOAc. The combined organic extracts were then washed with water and brine, dried over MgSO₄, filtered, then concentrated *in vacuo*. The concentrated *in vacuo*, followed by the sat. aq. NaHCO₃, followed by extraction with EtOAc. The combined organic extracts were then washed with water and brine, dried over MgSO₄, filtered, then concentrated *in vacuo*.

4-Phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (S3a)

mg, 4.185 mmol) in THF (70 mL). Recrystallisation of the crude residue from 1:2 THF/n-hexane at -20 °C afforded **S3a** as a light-yellow solid (3.600 g, 51%).

R_f = 0.15 (20% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃): δ 7.97 – 7.89 (m, 2H), 7.74 (ddt, J = 7.9, 7.1, 1.3 Hz, 1H), 7.66 – 7.54 (m, 2H), 5.59 (s, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 175.3, 135.9, 129.7, 128.9, 127.2, 74.3.

The NMR spectroscopic data agreed with those reported.¹³

4-(4-Methoxyphenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (S3b)

The titled compound was prepared following the General procedure B using S2a (2.297 g, 13.821 mmol), CSI (1.50 mL, 17.233 mmol), t-BuOH (2.00 mL, 20.912 mmol), and Et₃N (3.00 mL, 21.524 mmol) in THF (50 mL), then *p*TSA•H₂O (282.4 mg, 1.485 mmol) in THF (60 mL). Recrystallisation of the crude residue from 1:2 THF/n-hexane at -20 °C afforded **S3b** as a dark orange solid (1.075 mg, 34%).

R_f = 0.06 (20% EtOAc in hexane).

MeC

¹**H NMR** (400 MHz, CDCl₃): δ 7.94 – 7.74 (m, 2H), 7.11 – 6.99 (m, 2H), 5.54 (s, 2H), 3.93 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 174.1, 165.9, 131.3, 119.5, 115.2, 74.0, 55.8.

The NMR spectroscopic data agreed with those reported.¹³

4-(4-Nitrophenyl)-5*H*-1,2,3-oxathiazole 2,2-dioxide (S3c)

The titled compound was prepared following the General procedure B using S2b (679.0 mg, 3.748 mmol), CSI (0.41 mL, 4.710 mmol), t-BuOH (0.55 mL, 5.751 mmol), and Et₃N (0.80 mL, 5.740 mmol) in THF (20 mL), then *p*TSA•H₂O (92.0 mg, 0.484 mmol) in THF (20 mL). Recrystallisation of the crude residue from 1:2 THF/n-hexane at -20 °C

afforded **S3c** as a dark orange solid (552.5 mg, 61%).

R_f = 0.11 (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 8.64 – 8.31 (m, 2H), 8.23 – 8.09 (m, 2H), 5.63 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 173.4, 151.8, 132.3, 130.0, 124.8, 74.1.

The NMR spectroscopic data is in good agreement with those reported in DMSO-d₆.¹³

4-(4-Bromophenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (S3d)

The titled compound was prepared following the <u>General procedure B</u> using **S2c** (776.5 mg, 3.611 mmol), CSI (0.36 mL, 4.300 mmol), *t*-BuOH (0.52 mL, 5.437 mmol), and Et₃N (0.75 mL, 5.380 mmol) in THF (25 mL), then *p*TSA•H₂O (80.3 mg, 0.422 mmol) in THF (25 mL). Recrystallisation of the crude residue from 1:2 THF/*n*-hexane at -20 °C is a white active (254.6 mg, 270()

afforded S3d as a white solid (264.6 mg, 27%).

 \mathbf{R}_{f} = 0.15 (20% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃): δ 7.87 – 7.67 (m, 4H), 5.55 (s, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 174.3, 133.2, 131.6, 130.1, 126.0, 74.0.

The NMR spectroscopic data are in good agreement with those reported in DMSO-d₆.¹⁴

4-(3-Bromophenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (S3e)

The titled compound was prepared following the <u>General procedure B</u> using **S2d** (322.3 mg, 1.499 mmol), CSI (0.16 mL, 1.838 mmol), *t*-BuOH (0.22 mL, 2.300 mmol), and Et₃N (0.31 mL, 2.224 mmol) in THF (5 mL), then *p*TSA•H₂O (20.8 mg, 0.109 mmol) in THF (10 mL). Recrystallisation of the crude residue from 1:2 THF/*n*-hexane at -20

°C afforded **S3e** as an off-white yellow solid (206.2 mg, 50%).

 \mathbf{R}_{f} = 0.11 (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 8.07 (t, *J* = 1.8 Hz, 1H), 7.85 (dddd, *J* = 9.9, 7.9, 1.9, 1.1 Hz, 2H), 7.48 (t, *J* = 7.9 Hz, 1H), 5.55 (s, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 174.1, 138.7, 131.7, 131.2, 129.1, 127.3, 123.9, 74.1.

The NMR spectroscopic data are in good agreement with those reported in DMSO-d₆.¹⁴

4-(2-Bromophenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (S3f)

The titled compound was prepared following the <u>General procedure B</u> using **S2e** (460.9 mg, 2.143 mmol), CSI (0.22 mL, 2.528 mmol), *t*-BuOH (0.31 mL, 3.241 mmol), and Et₃N (0.45 mL, 3.229 mmol) in THF (9 mL), then *p*TSA•H₂O (32.4 mg, 0.1780 mmol) in THF (15 mL). Purification by FCC (20% EtOAc in hexane) afforded **S3f** as an off-white semi-solid

(141.9 mg, 24%).

Mp: 132–136 °C.

 \mathbf{R}_{f} = 0.17 (20% EtOAc in hexane).

IR (neat): 1574, 1351, 1190, 977, 753, 662 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 8.23 − 8.06 (m, 1H), 7.84 − 7.71 (m, 1H), 7.58 − 7.47 (m, 2H), 5.80 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 176.5, 135.5, 135.3, 133.1, 128.8, 128.4, 123.1, 76.6.

HRESI-MS (ESI –ve): Found 273.9167, calc for C₈H₅NO₃SBr 273.9174 [M − H]⁻.

4-(tert-Butyl)-5H-1,2,3-oxathiazole 2,2-dioxide (S3g)

The titled compound was prepared following the <u>General procedure B</u> using **S2f** (1.192 g, 10.257 mmol), CSI (1.10 mL, 12.638 mmol), *t*-BuOH (1.50 mL, 15.684 mmol), and Et₃N (2.1 mL, 15.067 mmol) in THF (21 mL), then *p*TSA•H₂O (211.2 mg, 1.110 mmol) in THF (25 mL). Recrystallisation of the crude residue from 1:2 THF/*n*-hexane at -20 °C afforded **S3g** as a clear colourless solid (184.1 mg, 10%).

R_f = 0.16 (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 5.17 (s, 2H), 1.34 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃): δ 190.7, 73.9, 36.9, 27.3.

The NMR spectroscopic data agreed with those reported.¹³

c. Synthesis of aldehydes

3-Phenylpropiolaldehyde (S4a)

Procedure:15

A solution of phenylpropargyl aldehyde diethyl acetal (0.80 mL, 3.881 mmol) in a solution of 5% H₂SO₄ (1.0 mL) and glacial acetic (1.0 mL) was stirred at reflux with removal of EtOH for 1.5 h, after which the solution was allowed to cool to rt. The reaction mixture was neutralised with saturated aqueous NaHCO₃, followed by extraction with EtOAc. The combined organic layers were then washed with brine, dried over MgSO₄, filtered, then concentrated *in vacuo* to give **S4a** (415.2 mg, 82%) as a dark orange oil.

¹**H NMR** (400 MHz, CDCl₃): δ 9.43 (s, 1H), 7.67 – 7.58 (m, 2H), 7.57 – 7.46 (m, 1H), 7.46 – 7.38 (m, 2H). The NMR spectroscopic data agreed with those reported.¹⁶

1-Tosyl-1*H*-indole-3-carbaldehyde (S4b)

Procedure:¹⁷

To a solution of Indole-3-carboxaldehyde (617.6 mg, 4.255 mmol) in CH_2Cl_2 (10 mL) at 0 °C was added Et₃N (1.2 mL, 8.610 mmol), and the resulting mixture was stirred at the same temperature for 15 min. *p*-Toluenesulfonyl chloride (877.5 mg, 4.603 mmol) was then added in one portion, and the reaction mixture was stirred at rt for 70 h. The reaction mixture was then diluted with CH_2Cl_2 , washed sequentially with saturated aqueous NH_4Cl , $NaHCO_3$, and brine. The organic layer was then dried over MgSO₄, filtered, and concentrated *in vacuo* to give **S4b** (1.062 g, 83%) as a purple solid.

¹**H NMR** (400 MHz, CDCl₃): δ 10.10 (s, 1H), 8.25 (ddd, *J* = 7.6, 1.6, 0.7 Hz, 1H), 8.22 (s, 1H), 7.98 – 7.91 (m, 1H), 7.89 – 7.81 (m, 2H), 7.44 – 7.33 (m, 2H), 7.33 – 7.27 (m, 2H), 2.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 185.3, 146.2, 136.2, 135.3, 134.4, 130.3, 127.2, 126.3, 125.1, 122.6, 122.4, 113.3, 21.7.

The NMR spectroscopic data agreed with those reported.¹⁷

d. Synthesis of the 1-azadiene

General procedure C:18

A solution of 4-substituted-5*H*-1,2,3-oxathiazole 2,2-dioxide (1.0 equiv.), aldehyde (1.5 equiv.), and Lproline (10 mol%) in anhydrous DMF (0.5 M) was stirred at rt and monitored by TLC. Upon completion, water was added to stop the reaction, and the resulting mixture was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by either FCC or recrystallisation was then carried out to afford the desired product.

(Z)-5-benzylidene-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2a)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (1.375 g, 6.973 mmol), benzaldehyde (1.5 mL, 14.760 mmol), and L-proline (91.6 mg, 0.796 mmol) in DMF (15 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as an orange crystal (1.547 g, 78%).

 $R_{f} = 0.25$ (30% Et₂O in hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.90 – 7.81 (m, 2H), 7.79 (ddd, *J* = 5.3, 2.7, 1.4 Hz, 2H), 7.77 – 7.68 (m, 1H), 7.66 – 7.58 (m, 2H), 7.47 (tt, *J* = 3.8, 2.5 Hz, 3H), 6.67 (s, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 172.1, 143.5, 133.9, 131.8, 131.6, 131.1, 130.0, 129.6, 129.4, 128.2, 120.9.

The NMR spectroscopic data agreed with those reported.¹⁸

(Z)-5-benzylidene-4-(4-methoxyphenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2b)

The titled compound was prepared following the <u>General procedure C</u> using **S3b** (342.1 mg, 1.506 mmol), benzaldehyde (0.23 mL, 2.263 mmol), and L-proline (20.4 mg, 0.177 mmol) in DMF (3 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a brick-red

crystal (257.0 mg, 54%).

Mp: 184–186 °C.

 $R_f = 0.21$ (30% Et₂O in hexane).

IR (neat): 1600, 1499, 1365, 1253, 1197, 1170, 1130, 981, 845, 759, 660 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.90 – 7.81 (m, 2H), 7.83 – 7.74 (m, 2H), 7.52 – 7.42 (m, 3H), 7.16 – 7.05 (m, 2H), 6.68 (s, 1H), 3.94 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 171.0, 164.4, 143.3, 132.2, 131.3, 131.3, 131.1, 129.1, 120.2, 120.1, 114.9, 55.7.

HRESI-MS (ESI +ve): Found 316.0641, calc for C₁₆H₁₄NO₄S 316.0644 [M + H]⁺.

(Z)-5-benzylidene-4-(4-nitrophenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2c)

The titled compound was prepared following the <u>General procedure C</u> using **S3c** (499.2 mg, 1.511 mmol), benzaldehyde (0.30 mL, 2.951 mmol), and L-proline (27.4 mg, 0.238 mmol) in DMF (3 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a dark orange

solid (344.3 mg, 68%).

Mp: 198–202 °C.

R_f = 0.21 (15% EtOAc in hexane).

IR (neat): 1531, 1379, 1332, 1203, 1132, 985, 872, 850, 717, 655 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 8.58 − 8.34 (m, 2H), 8.17 − 7.93 (m, 2H), 7.86 − 7.73 (m, 2H), 7.57 − 7.39 (m, 3H), 6.57 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 168.9, 149.7, 141.7, 132.5, 131.2, 130.6, 129.9, 129.4, 128.3, 123.4, 120.2.

HRESI-MS (ESI –ve): Found 329.0236, calc for $C_{15}H_9N_2O_5S$ 329.0232 [M – H]⁻.

(Z)-5-benzylidene-4-(4-bromophenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2d)

The titled compound was prepared following the <u>General procedure C</u> using **S3d** (255.8 mg, 0.926 mmol), benzaldehyde (0.15 mL, 1.476 mmol), and L-proline (11.0 mg, 0.096 mmol) in DMF (2 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as an orange

crystal (232.6 mg, 69%).

Mp: 185–193 °C.

 \mathbf{R}_{f} = 0.24 (10% EtOAc in hexane).

IR (neat): 1635, 1568, 1397, 1331, 1199, 982, 868, 758, 656, , 652 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.81 – 7.75 (m, 4H), 7.75 – 7.69 (m, 2H), 7.54 – 7.39 (m, 3H), 6.62 (s,

1H).

¹³C NMR (100 MHz, CDCl₃): δ 170.9, 143.0, 132.8, 131.8, 131.5, 131.2, 130.8, 129.2, 129.0, 126.7, 120.7.

HRESI-MS (ESI -ve): Found 361.9486, calc for C₁₅H₉NO₃SBr 361.9487 [M - H]⁻.

(Z)-5-benzylidene-4-(3-bromophenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2e)

The titled compound was prepared following the <u>General procedure C</u> using **S3e** (165.9 mg, 0.601 mmol), benzaldehyde (0.10 mL, 0.984 mmol), and L-proline (14.0 mg, 0.124 mmol) in DMF (2 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as an orange

crystal (124.2 mg, 57%).

Mp: 166–172 °C.

R_f = 0.25 (15% EtOAc in hexane).

IR (neat): 1635, 1516, 1495, 1368, 1352, 1198, 1190, 1136, 991, 871, 761, 682 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.98 (t, *J* = 1.8 Hz, 1H), 7.93 – 7.70 (m, 4H), 7.59 – 7.37 (m, 4H), 6.62 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 170.4, 143.0, 136.5, 132.5, 131.8, 131.5, 130.8, 130.7, 129.8, 129.2, 128.3, 123.5, 120.8.

HRESI-MS (ESI -ve): Found 361.9474, calc for C₁₅H₉NO₃SBr 361.9487 [M - H]⁺.

(Z)-5-benzylidene-4-(2-bromophenyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2f)

The titled compound was prepared following the <u>General procedure C</u> using **S3f** (141.9 mg, 0.514 mmol), benzaldehyde (0.10 mL, 0.984 mmol), and L-proline (8.8 mg, 0.076 mmol) in DMF (1 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a dark orange crystal (80.8 mg,

57%).

Mp: 138–141 °C.

R_f = 0.17 (15% EtOAc in hexane).

IR (neat): 1644, 1535, 1379, 1333, 1196, 1145, 983, 868, 754, 652 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.88 – 7.76 (m, 1H), 7.76 – 7.70 (m, 2H), 7.61 – 7.38 (m, 6H), 6.23 (s,

1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 171.8, 143.4, 134.0, 133.1, 131.8, 131.5, 130.6, 130.5, 129.3, 129.2, 127.7, 121.7, 120.2.

HRESI-MS (ESI +ve): Found 363.9640, calc for C₁₅H₁₁NO₃SBr 363.9643 [M + H]⁺.

(Z)-5-benzylidene-4-(tert-butyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2g)

The titled compound was prepared following the <u>General procedure C</u> using **S3g** (174.5 mg, 0.985 mmol), benzaldehyde (0.15 mL, 1.476 mmol), and L-proline (10.4 mg, 0.090 mmol) in DMF (2 mL). Purification by FCC (10% EtOAc in hexane)

afforded the desired product as an off-white solid (106.3 mg, 41%).

Mp: 133–137 °C.

 \mathbf{R}_{f} = 0.16 (10% EtOAc in hexane).

IR (neat): 1638, 1527, 1366, 1198, 1164, 1002, 876, 758, 658, , 652 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.93 - 7.66 (m, 2H), 7.61 - 7.36 (m, 3H), 6.77 (s, 1H), 1.54 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃): δ 182.0, 142.0, 131.4, 131.2, 130.7, 129.1, 118.2, 37.5, 29.7.

HRESI-MS (ESI +ve): Found 288.0672, calc for C₁₃H₁₅NO₃SNa 288.0670 [M + Na]⁺.

(Z)-5-(4-methylbenzylidene)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2h)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (300.8 mg, 1.525 mmol), *p*-tolualdehyde (0.27 mL, 2.890 mmol), and L-proline (20.0 mg, 0.174 mmol) in DMF (3 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a dark-yellow

crystal (292.9 mg, 64%).

 \mathbf{R}_{f} = 0.36 (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 7.87 – 7.79 (m, 2H), 7.77 – 7.65 (m, 3H), 7.65 – 7.56 (m, 2H), 7.27 (d, *J* = 8.0 Hz, 3H), 6.64 (s, 1H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.9, 142.8, 142.6, 133.5, 131.5, 130.0, 129.8, 129.3, 128.2, 128.1, 121.0, 21.7.

The NMR spectroscopic data agreed with those reported.¹⁸

(Z)-5-(3-methylbenzylidene)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2i)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (318.7 mg, 1.616 mmol), *m*-tolualdehyde (0.27 mL, 2.290 mmol), and L-proline (25.1 mg, 0.218 mmol) in DMF (3 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a yellow crystal (287.6 mg, 59%).

Mp: 150–152 °C.

R_f = 0.27 (15% EtOAc in hexane).

IR (neat): 1637, 1516, 1487, 1367, 1348, 1200, 1176, 1130, 984, 869, 769, 666, , 652 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃): δ 7.89 – 7.78 (m, 2H), 7.78 – 7.68 (m, 1H), 7.66 – 7.55 (m, 4H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 7.7 Hz, 1H), 6.64 (s, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.9, 143.1, 139.0, 133.6, 132.5, 131.9, 130.9, 129.8, 129.3, 129.0, 128.7, 128.0, 121.0, 21.4.

HRESI-MS (ESI +ve): Found 300.0685, calc for $C_{16}H_{14}NO_3S$ 300.0694 [M + H]⁺.

(Z)-5-(2-methylbenzylidene)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2j)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (301.5 mg, 1.529 mmol), *o*-tolualdehyde (0.27 mL, 2.335 mmol), and L-proline (23.8 mg, 0.207 mmol) in DMF (3 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a yellow crystal (327.3 mg, 72%).

Mp: 145–150 °C.

 $R_f = 0.25$ (30% Et₂O in hexane).

IR (neat): 1595, 1507, 1485, 1360, 1176, 1128, 979, 823, 708, 664 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 8.17 – 8.04 (m, 1H), 7.97 – 7.80 (m, 2H), 7.79 – 7.68 (m, 1H), 7.70 – 7.54 (m, 2H), 7.40 – 7.29 (m, 2H), 7.29 – 7.19 (m, 1H), 6.92 (s, 1H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.9, 143.4, 138.8, 133.7, 131.4, 130.8, 130.6, 129.8, 129.6, 129.3, 128.1, 126.9, 117.6, 20.0.

HRESI-MS (ESI +ve): Found 322.0500, calc for C₁₆H₁₃NO₃SNa 322.0514 [M + Na]⁺.

(Z)-5-(4-fluorobenzylidene)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2k)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (299.9 mg, 1.521 mmol), 4-fluorobenzaldehyde (0.25 mL, 2.331 mmol), and L-proline (25.4 mg, 0.221 mmol) in DMF (3 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a yellow

crystal (253.0 mg, 55%).

Mp: 142–148 °C.

R_f = 0.45 (40% EtOAc in hexane).

IR (neat): 1597, 1526, 1487, 1368, 1194, 1130, 984, 869, 815, 708, 663 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.87 – 7.75 (m, 4H), 7.77 – 7.68 (m, 1H), 7.68 – 7.57 (m, 2H), 7.24 – 7.06 (m, 2H), 6.63 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 171.8, 165.6, 163.0, 143.0, 133.7, 133.7, 133.6, 129.8, 129.4, 127.9, 127.3, 127.3, 119.3, 116.7, 116.4.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -105.78 (t, *J* = 7.3 Hz).

HRESI-MS (ESI +ve): Found 304.0435, calc for C₁₅H₁₁NO₃SF 304.0444 [M + H]⁺.

(Z)-5-(2-bromobenzylidene)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2l)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (304.1 mg, 1.542 mmol), 2-bromobenzaldehyde (0.27 mL, 2.313 mmol), and L-proline (17.3 mg, 0.150 mmol) in DMF (3 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a light-orange crystal (344.8

mg, 61%).

Mp: 159–163 °C.

R_f = 0.42 (20% EtOAc in hexane).

IR (neat): 1595, 1518, 1386, 1197, 1109, 985, 872, 760, 702, 656 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃): δ 8.18 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.96 – 7.87 (m, 2H), 7.80 – 7.69 (m, 1H), 7.65 (qd, *J* = 7.8, 1.6 Hz, 3H), 7.46 (td, *J* = 7.7, 1.3 Hz, 1H), 7.30 (td, *J* = 7.7, 1.7 Hz, 1H), 7.22 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 171.9, 143.9, 134.0, 133.4, 132.3, 131.8, 130.8, 130.0, 129.4, 128.2, 127.7, 126.6, 118.2.

HRESI-MS (ESI –ve): Found 361.9500, calc for C₁₅H₉NO₃SBr 361.9487 [M – H]⁻.

Methyl (Z)-4-((2,2-dioxido-4-phenyl-5H-1,2,3-oxathiazol-5-ylidene)methyl)benzoate (2m)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (253.6 mg, 1.286 mmol), methyl 4-formylbenzoate (384.8 mg, 2.344 mmol), and L-proline (19.4 mg, 0.169 mmol) in DMF (3 mL). Trituration of the crude reaction mixture with warm THF followed by

vacuum filtration afforded the desired product as an off-white powder (260.6 mg, 59%).

Mp: 236–237 °C.

R_f = 0.26 (20% EtOAc in hexane).

IR (neat): 1703, 1523, 1277, 1193, 1114, 983, 875, 768 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 8.16 – 8.06 (m, 2H), 7.92 – 7.80 (m, 4H), 7.80 – 7.69 (m, 1H), 7.69 – 7.55 (m, 2H), 6.68 (s, 1H), 3.95 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.8, 166.1, 144.2, 135.0, 133.9, 132.2, 131.1, 130.2, 129.9, 129.5, 127.7, 118.8, 52.5.

HRESI-MS (ESI +ve): Found 398.0670, calc for C₁₈H₁₇NO₆SNa 398.0674 [M + Na + MeOH]⁺.

(Z)-5-(4-methoxybenzylidene)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2n)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (415.4 mg, 2.106 mmol), *p*-anisaldehyde (0.38 mL, 3.126 mmol), and L-proline (26.4 mg, 0.229 mmol) in DMF (4 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a vibrant

yellow crystal (327.8 mg, 53%).

Mp: 143–147 °C.

 \mathbf{R}_{f} = 0.17 (20% EtOAc in hexane).

IR (neat): 1595, 1507, 1485, 1360, 1176, 1128, 979, 823, 708, 664 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): 7.84 − 7.80 (m, 2H), 7.79 − 7.74 (m, 3H), 7.74 − 7.68 (m, 1H), 7.65 − 7.56 (m, 2H), 7.01 − 6.89 (m, 2H), 6.63 (s, 1H), 3.88 (s, 4H).

¹³**C NMR** (125 MHz, CDCl₃): δ 171.9, 162.6, 142.3, 133.8, 133.6, 130.0, 129.5, 128.5, 123.9, 121.2, 115.0, 55.8.

HRESI-MS (ESI +ve): Found 316.0645, calc for C₁₆H₁₄NO₄S 316.0644 [M + H]⁺.

(Z)-4-phenyl-5-((1-tosyl-1H-indol-3-yl)methylene)-5H-1,2,3-oxathiazole 2,2-dioxide (2o)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (304.2 mg, 1.543 mmol), **S4b** (566.9 mg, 1.894 mmol), and L-proline (19.5 mg, 0.169 mmol) in DMF (3 mL). Recrystallisation from THF/hexane (1:2 v/v) at -20 °C afforded the desired product as a vibrant yellow crystal (613.8 mg, 76%).

Mp: 194–208 °C.

R_f = 0.18 (20% EtOAc in hexane).

IR (neat): 1639, 1514, 1487, 1370, 1352, 1273, 1186, 1171, 1138, 1124, 966, 879, 806, 757, 660, 568, 536 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 8.40 (d, *J* = 0.9 Hz, 1H), 8.03 (dt, *J* = 8.3, 0.8 Hz, 1H), 7.92 – 7.82 (m, 4H), 7.80 – 7.69 (m, 1H), 7.66 – 7.58 (m, 2H), 7.54 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.41 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.35 – 7.27 (m, 3H), 6.87 (d, *J* = 0.8 Hz, 1H), 2.37 (s, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 170.6, 145.9, 143.4, 134.6, 133.7, 130.5, 130.3, 129.7, 129.4, 128.7, 128.0, 127.2, 126.0, 124.2, 118.7, 114.0, 113.5, 110.1, 21.7.

HRESI-MS (ESI +ve): Found 479.0732, calc for C₂₄H₁₆N₂O₅S₂ 479.0735 [M + H]⁺.

(Z)-4-phenyl-5-(3-phenylprop-2-yn-1-ylidene)-5H-1,2,3-oxathiazole 2,2-dioxide (2p)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (501.1 mg, 2.541 mmol), **S4a** (415.2 mg, 3.189 mmol), and L-proline (35.7 mg, 0.310 mmol) in DMF (6 mL). Purification by FCC (20% EtOAc in hexane) followed by recrystallisation from EtOAc/hexane (9:1)

afforded the desired product as a dark orange crystal (91.1 mg, 11%).

Mp: 130–131 °C.

 $R_f = 0.18$ (30% Et₂O in hexane).

IR (neat): 2186, 1527, 1376, 1342, 1200, 1136, 981, 867, 703, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.91 − 7.78 (m, 2H), 7.71 (ddt, *J* = 8.3, 7.0, 1.3 Hz, 1H), 7.67 − 7.51 (m, 6H), 7.51 − 7.31 (m, 3H), 6.15 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 169.5, 150.6, 134.1, 132.4, 130.3, 129.8, 129.5, 128.7, 127.3, 121.5, 107.9, 101.0, 82.6.

HRESI-MS (ESI +ve): Found 310.0545, calc for C₁₇H₁₂NO₃S 480.1821 [M + H]⁺.

(Z)-4-phenyl-5-(3-phenylpropylidene)-5H-1,2,3-oxathiazole 2,2-dioxide (2q)

The titled compound was prepared following the <u>General procedure C</u> using **S3a** (302.4 mg, 1.533 mmol), hydrocinnamaldehyde (0.30 mL, 2.278 mmol), and L-proline (19.3 mg, 0.168 mmol) in DMF (3 mL). Purification by FCC (10% EtOAc in hexane) afforded the desired product as a dark orange oil (95.3 mg,

20%).

R_f = 0.12 (10% EtOAc in hexane).

IR (neat): 1690, 1377, 1197, 1179, 976, 696 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.74 – 7.63 (m, 3H), 7.56 – 7.48 (m, 3H), 7.32 (dd, *J* = 8.1, 6.7 Hz, 2H),

7.25 – 7.16 (m, 3H), 5.93 (t, J = 7.5 Hz, 1H), 2.90 – 2.81 (m, 2H), 2.77 (tdd, J = 8.4, 6.2, 1.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 170.4, 145.9, 139.8, 133.8, 129.8, 129.3, 128.8, 128.3, 126.7, 123.3, 34.2, 29.0.

HRESI-MS (ESI -ve): Found 312.0687, calc for C₁₇H₁₄NO₃S 312.0694 [M - H]⁻.

5. Synthesis of spirocyclic sulfamidate imines

General procedure D:

To a reaction vial charged with a magnetic stirrer containing Pd₂dba₃•CHCl₃ (2.5 mol%) and (*S*)-DM-Segphos (7.5 mol%) was added anhydrous PhMe (0.003 M wrt Pd₂dba₃•CHCl₃). The resulting mixture was sonicated for a few seconds to fully dissolve the solid material and then stirred for 15 min at rt, affording a vinous-coloured solution. The catalyst solution was then transferred via a cannula to the reaction vial containing neat VCP (1.5 equiv.) and 1-azadiene (1.0 equiv.), rinsing twice with anhydrous PhMe (0.034 M wrt 1-azadiene final concentration). The reaction mixture was then stirred at rt and monitored by TLC. Upon completion, the reaction mixture was concentrated *in vacuo*, then purified by FCC.

(Note: Racemate samples for HPLC were prepared following <u>General procedure D</u> using (*rac*)-BINAP as ligand.)

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4,6-diphenyl-9-vinyl-1-oxa-2-thia-3-azaspiro[4.4]non-3-ene-7,7dicarboxylate 2,2-dioxide (3aa)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (80.2 mg, 0.250 mmol), 1-azadiene **2a** (47.8 mg, 0.168 mmol), $Pd_2dba_3 \bullet CHCl_3$ (4.2 mg, 0.004 mmol), and (*S*)-DM-Segphos (10.8 mg, 0.015 mmol). Purification by FCC (20% Et₂O in hexane) afforded a mixture of **3aa** and

3aa' as a colourless oily residue (100.2 mg, 8.2 : 1 dr, 99%).

Chiral HPLC: Chiralpak[®] IG-3, 10% isopropanol/hexanes, 0.5 mL.min⁻¹, 254 nm, t_r (minor dia) = 18.8 & 20.9 min, t_r (major dia) = 22.4 & 34.6 min.

 $R_f = 0.14$ (30% Et₂O in hexane).

IR (neat): 1749, 1560, 1374, 1280, 1203, 1160, 1099, 939, 853, 762, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (8.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.14 – 8.05 (m, 2H), 7.79 – 7.69 (m, 1H), 7.66 – 7.57 (m, 2H), 7.31 – 7.18 (m, 4H), 7.15 – 7.06 (m, 2H), 5.89 (ddd, *J* = 16.9, 10.2, 7.6 Hz, 1H), 5.26 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.26 (s, 1H), 5.11 (dt, *J* = 17.0, 1.0 Hz, 1H), 4.71 (dq, *J* = 12.5, 8.2 Hz, 1H), 4.47 (ddq, *J* = 12.5, 9.4, 8.2 Hz, 2H), 3.54 – 3.45 (m, 1H), 3.44 (d, *J* = 13.2 Hz, 1H), 3.43 – 3.32 (m, 1H), 2.53 (dd, *J* = 13.2, 5.6 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃) (8.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 176.7, 170.4, 166.3, 134.9, 130.7, 130.5, 130.5, 129.9, 129.6, 129.3, 128.6,

127.3, 122.3 (q, *J* = 276.3 Hz), 122.0 (q, *J* = 275.0 Hz), 121.6, 106.2, 63.1, 62.2 (q, *J* = 37.4 Hz), 61.5 (q, *J* = 37.4 Hz), 58.2, 52.6, 39.4.

¹**H NMR** (400 MHz, CDCl₃) (8.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.87 – 7.78 (m, 2H), 7.51 (t, J = 7.8 Hz, 2H), 5.60 (ddd, *J* = 17.0, 10.3, 7.6 Hz, 1H), 5.22 – 5.14 (m, 1H), 5.10 (s, 1H), 5.02 (dt, *J* = 10.4, 1.0 Hz, 1H), 2.33 (dd, *J* = 14.2, 6.6 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃) (8.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 179.0, 169.2, 166.8, 134.3, 133.2, 130.6, 130.5, 129.2, 129.2, 128.6, 120.2, 106.1, 63.5, 56.9, 54.6, 38.6.

¹⁹**F NMR** (470 MHz, CDCl₃): δ -73.71 – -73.87 (m), -74.08 – -74.22 (m).

HRESI-MS (ESI +ve): Found 628.0849, calc for C₂₆H₂₁F₆NO₇SNa 628.0841 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4,6-diphenyl-9-((*E*)-styryl)-1-oxa-2-thia-3-azaspiro[4.4]non-3ene-7,7-dicarboxylate 2,2-dioxide (3ba)

The titled compound was prepared following <u>General procedure D</u> using VCP **1b** (65.6 mg, 0.166 mmol), 1-azadiene **2a** (32.4 mg, 0.114 mmol), Pd₂dba₃•CHCl₃ (2.9 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.5 mg, 0.008 mmol). Purification by FCC (20% Et₂O in hexane) afforded **3ba** as an ivory

colour semi-solid (51.1 mg, >20 : 1 *dr*, 66%) and **3ba'** as a beige oil (20.9 mg, >20 : 1 *dr*, 28%). **Chiral HPLC:** Chiralpak[®] IG-3, 20% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (major dia) = 27.2 & 64.6 min.

R_f = 0.16 (20% EtOAc in hexane).

IR (neat): 1750, 1559, 1373, 1281, 1246, 1201, 1155, 1100, 940, 762, 701, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 8.21 – 8.04 (m, 2H), 7.81 – 7.67 (m, 1H), 7.60 (dd, *J* = 8.5, 7.3 Hz, 2H), 7.38 – 7.19 (m, 8H), 7.13 (dq, *J* = 6.6, 2.3, 1.8 Hz, 2H), 6.39 (d, *J* = 15.9 Hz, 1H), 6.25 (dd, *J* = 15.8, 8.3 Hz, 1H), 5.31 (s, 1H), 4.71 (dq, *J* = 12.6, 8.2 Hz, 1H), 4.49 (ddq, *J* = 14.4, 12.5, 8.2 Hz, 2H), 3.79 – 3.60 (m, 1H), 3.51 (t, *J* = 13.6 Hz, 1H), 3.39 (dq, *J* = 12.5, 8.3 Hz, 1H), 2.59 (dd, *J* = 14.0, 6.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 176.8, 170.4, 166.3, 135.8, 135.8, 134.9, 130.8, 130.5, 129.9, 129.6, 129.3, 128.7, 128.6, 128.3, 127.2, 126.8, 122.3 (q, *J* = 277.5 Hz), 122.0 (q, *J* = 277.1), 121.7, 106.6, 63.2, 62.2 (q, *J* = 37.3 Hz), 61.5 (q, *J* = 37.3 Hz), 58.1, 52.4, 39.9.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.60 – -73.86 (m), -74.10 (q, J = 6.7, 6.2 Hz).

HRESI-MS (ESI +ve): Found 704.1157, calc for C₃₂H₂₅F₆NO₇SNa 704.1154 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*R*)-4,6-diphenyl-9-((*E*)-styryl)-1-oxa-2-thia-3-azaspiro[4.4]non-3ene-7,7-dicarboxylate 2,2-dioxide (3ba')

The titled compound was prepared following General procedure D using VCP

1b (65.6 mg, 0.166 mmol), 1-azadiene **2a** (32.4 mg, 0.114 mmol), Pd₂dba₃•CHCl₃ (2.9 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.5 mg, 0.008 mmol). Purification by FCC (20% Et₂O in hexane) afforded **3ba** as an ivory

colour semi-solid (51.1 mg, >20 : 1 dr, 66%) and **3ba'** as a beige oil (20.9 mg, >20 : 1 dr, 28%).

R_f = 0.25 (20% EtOAc in hexane).

IR (neat): 1749, 1560, 1368, 1283, 1234, 1203, 1156, 1107, 938, 753, 694, 664 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.82 – 7.73 (m, 2H), 7.53 – 7.44 (m, 1H), 7.43 – 7.35 (m, 4H), 7.31 (dt, *J* = 4.7, 1.9 Hz, 3H), 7.23 – 7.13 (m, 3H), 6.91 (td, *J* = 5.0, 4.4, 3.2 Hz, 2H), 6.38 (dd, *J* = 15.8, 1.1 Hz, 1H), 5.71 (dd, *J* = 15.8, 8.7 Hz, 1H), 5.29 (s, 1H), 4.71 (dq, *J* = 12.6, 8.1 Hz, 1H), 4.65 – 4.49 (m, 2H), 4.40 (dq, *J* = 12.7, 8.1 Hz, 1H), 3.89 (dddd, *J* = 8.8, 7.7, 4.7, 1.2 Hz, 1H), 3.76 – 3.55 (m, 2H), 2.36 (dd, J = 14.4, 4.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 179.3, 169.7, 166.6, 135.4, 134.8, 133.7, 130.8, 130.3, 130.1, 129.3, 129.3, 129.2, 128.9, 128.5, 128.3, 126.3, 124.3, 122.3 (q, J = 277.5 Hz)*, 122.10 (q, J = 277.3 Hz)*, 106.6, 63.6, 61.67 (two overlapping quartets, J = 35.5 Hz), 55.7, 54.2, 39.3.

*Note: outermost resonances of these quartets were not observed due to their low intensities. ¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.72 (t, *J* = 8.4 Hz), -73.80 (t, *J* = 8.3 Hz).

Diethyl (5*R*,6*S*,9*S*)-4,6-diphenyl-9-vinyl-1-oxa-2-thia-3-azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ca)

The titled compound was prepared following <u>General procedure D</u> using VCP **1c** (28.7 mg, 0.135 mmol), 1-azadiene **2a** (25.9 mg, 0.098 mmol), Pd₂dba₃•CHCl₃ (2.3 mg, 0.002 mmol), and (*S*)-DM-Segphos (4.7 mg, 0.007 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3ca** and **3ca'** as a beige semi-solid

residue (30.6 mg, 2.4 : 1 dr, 68%).

Chiral HPLC: Chiralpak[®] IG-3, 40% isopropanol/hexanes, 0.4 mL.min⁻¹, 274 nm, t_r (minor dia) = 22.8 & 23.7 min, t_r (major dia) = 21.2 & 418 min.

R_f = 0.15 (20% EtOAc in hexane).

IR (neat): 1716, 1556, 1369, 1263, 1201, 1184, 1089, 941, 858, 765 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (2.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.24 – 8.10 (m, 2H), 7.76 – 7.66 (m, 1H), 7.68 – 7.56 (m, 2H), 7.30 – 7.15 (m, 3H), 7.11 (dt, *J* = 6.7, 1.6 Hz, 2H), 5.89 (ddd, *J* = 16.9, 10.2, 7.6 Hz, 1H), 5.31 (s, 1H), 5.21 (dd, J = 10.2, 1.4 Hz, 1H), 5.06 (d, *J* = 17.1, 1.0 Hz, 1H), 4.36 (dq, J = 10.8, 7.1 Hz, 1H), 4.32 – 4.14 (m, 1H), 3.98 – 3.84 (m, 1H), 3.59 – 3.29 (m, 3H), 2.52 – 2.40 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 5H), 0.72 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) (2.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 177.2, 172.4, 168.4, 134.7, 131.9, 130.9, 130.1, 129.5, 128.6, 128.2, 127.5, 120.9, 107.0, 63.3, 62.7, 61.7, 58.1, 52.7, 39.6, 13.9, 13.2.

¹H NMR (400 MHz, CDCl₃) (2.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.90 – 7.81 (m, 2H), 7.55 – 7.45 (m, 2H), 5.63 (ddd, *J* = 17.0, 10.4, 7.5 Hz, 1H), 5.16 (dt, *J* = 17.0, 1.2 Hz, 1H), 5.05 (s, 1H), 4.98 (dt, *J* = 10.3, 1.2 Hz, 1H), 4.19 – 4.05 (m, 1H), 3.81 (dq, *J* = 10.7, 7.2 Hz, 1H), 2.23 (dd, *J* = 14.0, 7.1 Hz, 1H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (2.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 179.5, 171.3, 168.8, 134.0, 133.9, 131.5, 131.3, 131.1, 130.6, 129.0, 128.9, 128.6, 128.6, 128.1, 119.5, 106.9, 63.7, 62.3, 61.8, 57.0, 54.6, 38.7, 13.9, 13.5. HRESI-MS (ESI +ve): Found 520.1403, calc for C₂₆H₂₇NO₇SNa 520.1406 [M + Na]⁺.

(5R,6S,9R)-4,6-Diphenyl-9-vinyl-1-oxa-2-thia-3-azaspiro[4.4]non-3-ene-7,7-dicarbonitrile 2,2-

dioxide (3da')

The titled compound was prepared following <u>General procedure D</u> using VCP **1d** (18.0 mg, 0.152 mmol), 1-azadiene **2a** (29.2 mg, 0.102 mmol), Pd₂dba₃•CHCl₃ (2.5 mg, 0.002 mmol), and (*S*)-DM-Segphos (6.3 mg, 0.009 mmol). Purification by FCC (30% EtOAc in hexane) afforded a mixture of **3da** and **3da'** as a light yellow semi-solid (33.8

mg, 2.8 : 1 dr, 82%).

Chiral HPLC: Chiralpak[®] IG-3, 10% isopropanol/hexanes, 1.0 mL.min⁻¹, 273 nm, t_r (minor dia) = 28.9 & 30.8 min, t_r (major dia) = 34.0 & 35.1 min.

 \mathbf{R}_{f} = 0.17 (30% EtOAc in hexane).

IR (neat): 1591, 1558, 1366, 1203, 1182, 935, 836, 482 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (2.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 7.81 (dq, J = 7.2, 1.4 Hz, 2H), 7.79 – 7.69 (m, 1H), 7.65 – 7.49 (m, 2H), 7.49 – 7.28 (m, 5H), 5.79 (ddd, *J* = 16.8, 10.4, 6.2 Hz, 1H), 5.40 (dd, *J* = 17.1, 1.8 Hz, 1H), 5.26 (dd, *J* = 10.5, 1.7 Hz, 1H), 4.28 (s, 1H), 4.15 – 4.01 (m, 1H), 3.32 – 3.22 (m, 1H), 2.84 (dd, *J* = 13.8, 11.3 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (1.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 177.2, 172.4, 168.4, 134.7, 131.9, 130.9, 130.1, 129.5, 128.6, 128.2, 127.5, 120.9, 107.0, 63.3, 62.7, 61.7, 58.1, 52.7, 39.6, 13.9, 13.2.

¹**H NMR** (400 MHz, CDCl₃) (2.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 5.95 – 5.83 (m, 1H), 5.39 – 5.32 (m, 1H), 5.19 (d, J = 17.0 Hz, 1H), 4.34 (s, 1H), 3.78 (dt, J = 11.1, 8.5 Hz, 1H), 3.20 (ddd, J = 14.3, 8.6, 2.5 Hz, 1H), 3.00 (ddd, J = 14.3, 11.1, 1.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (1.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 179.5, 171.3, 168.8, 134.0, 133.9, 131.5, 131.3, 131.1, 130.6, 129.0, 128.9, 128.6, 128.6, 128.1, 119.5, 106.9, 63.7, 62.3, 61.8, 57.0, 54.6, 38.7, 13.9, 13.5.
HRESI-MS (ESI +ve): Found 426.0896, calc for C₂₂H₁₇N₃O₃SNa 426.0888 [M + Na]⁺.

(2'*S*,3'*R*,4'*S*)-2',4"-Diphenyl-4'-vinyldispiro[indene-2,1'-cyclopentane-3',5"-[1,2,3]oxathiazole]-1,3dione 2",2"-dioxide (3ea)

The titled compound was prepared following <u>General procedure D</u> using VCP **1e** (31.4 mg, 0.158 mmol), 1-azadiene **2a** (30.7 mg, 0.108 mmol), $Pd_2dba_3 \bullet CHCl_3$ (2.8 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.0 mg, 0.007 mmol). Purification by FCC (30% EtOAc in hexane) afforded a mixture of **3ea** and **3ea'** as a colourless oily

residue (44.6 mg, 1.1 : 1 dr, 86%).

Chiral HPLC: Chiralpak[®] IG-3, 25% isopropanol/hexanes, 1.5 mL.min⁻¹, 226 nm, t_r = 18.8, 20.9, 22.4 & 34.6 min.

R_f = 0.23 (30% EtOAc in hexane).

IR (neat): 1742, 1704, 1591, 1559, 1372, 1266, 1200, 916, 819 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (1.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 7.81 (dq, J = 7.2, 1.4 Hz, 2H), 7.79 – 7.69 (m, 1H), 7.65 – 7.49 (m, 2H), 7.49 – 7.28 (m, 5H), 5.79 (ddd, *J* = 16.8, 10.4, 6.2 Hz, 1H), 5.40 (dd, *J* = 17.1, 1.8 Hz, 1H), 5.26 (dd, *J* = 10.5, 1.7 Hz, 1H), 4.28 (s, 1H), 4.15 – 4.01 (m, 1H), 3.32 – 3.22 (m, 1H), 2.84 (dd, *J* = 13.8, 11.3 Hz, 1H).

¹**H NMR** (400 MHz, CDCl₃) (2.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 5.95 – 5.83 (m, 1H), 5.39 – 5.32 (m, 1H), 5.19 (d, J = 17.0 Hz, 1H), 4.34 (s, 1H), 3.78 (dt, J = 11.1, 8.5 Hz, 1H), 3.20 (ddd, J = 14.3, 8.6, 2.5 Hz, 1H), 3.00 (ddd, J = 14.3, 11.1, 1.7 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (1.1 : 1 mixture of two diastereoisomers, the resonances of the each diastereoisomer were undistinguishable): δ 204.0, 200.6, 200.5, 198.7, 179.0, 177.3, 142.9, 142.1, 141.1, 140.5, 136.6, 136.5, 135.9, 135.7, 134.7, 134.6, 133.3, 131.6, 131.1, 131.1, 130.6, 129.8, 129.7, 129.7, 129.6, 129.3, 128.9, 128.8, 128.4, 128.3, 127.8, 127.5, 123.7, 123.6, 123.3, 123.3, 121.1, 119.8, 107.5, 106.0, 63.9, 63.0, 61.6, 54.9, 54.1, 38.1, 37.0.

HRESI-MS (ESI +ve): Found 506.1021, calc for $C_{28}H_{21}NO_5SNa 506.1038 [M + Na]^+$.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-(4-methoxyphenyl)-6-phenyl-9-vinyl-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ab)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (51.0 mg, 0.159 mmol), 1-azadiene **2b** (33.1 mg, 0.105 mmol), Pd₂dba₃•CHCl₃ (2.7 mg, 0.003 mmol), and (*S*)-DM-Segphos (6.0 mg, 0.008 mmol). Purification by FCC (20% EtOAc in hexane)

afforded a mixture of **3ab** and **3ab'** as a light yellow oily residue (42.0 mg, 6.0 : 1 *dr*, 63%). **Chiral HPLC:** Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 300 nm, t_r (minor dia) = 20.8 & 22.1 min, t_r (major dia) = 24.5 & 42.7 min.

R_f = 0.12 (20% EtOAc in hexane).

IR (neat): 1749, 1605, 1541, 1369, 1276, 1243, 1201, 1171, 832 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (6.0 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.27 – 8.12 (m, 2H), 7.32 – 7.15 (m, 4H), 7.16 – 7.02 (m, 4H), 5.94 – 5.80 (m, 1H), 5.32 (s, 1H), 5.22 (dd, *J* = 10.2, 1.3 Hz, 1H), 5.06 (dt, *J* = 17.0, 0.9 Hz, 1H), 4.72 (dq, *J* = 12.6, 8.2 Hz, 1H), 4.49 (ddq, *J* = 18.5, 12.5, 8.2 Hz, 2H), 3.95 (s, 3H), 3.57 – 3.30 (m, 3H), 2.57 – 2.49 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) (6.0 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 175.1, 170.7, 166.4, 165.2, 132.8, 130.8, 130.6, 129.2, 128.5, 122.3 (q, J = 277.4 Hz), 122.0 (q, J = 277.0 Hz), 121.4, 119.1, 115.1, 105.8, 63.2, 61.82 (two overlapping quartets, J = 37.4 Hz). 58.8, 55.8, 53.0, 39.5.

¹**H NMR** (400 MHz, CDCl₃) (6.0 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.94 – 7.85 (m, 2H), 7.02 – 6.95 (m, 2H), 5.68 (ddd, *J* = 17.3, 10.4, 7.2 Hz, 1H), 5.06 (s, 1H), 3.91 (s, 3H), 2.38 (dd, *J* = 14.2, 7.1 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (6.0 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 177.2, 169.2, 166.8, 164.8, 133.4, 120.3, 119.9, 114.6, 105.9, 63.5, 57.9, 55.8, 54.3, 38.4.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.75 (dt, *J* = 23.1, 9.0 Hz), -74.06 – -74.16 (m).

HRESI-MS (ESI +ve): Found 658.0944, calc for C₂₇H₂₃F₆NO₈SNa 658.0946 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5R,6S,9S)-4-(4-nitrophenyl)-6-phenyl-9-vinyl-1-oxa-2-thia-3-

azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ac)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (61.1 mg, 0.191 mmol), 1-azadiene **2c** (42.5 mg, 0.129 mmol), Pd₂dba₃•CHCl₃ (3.3 mg, 0.003 mmol), and (*S*)-DM-Segphos (7.3 mg, 0.010 mmol). In a slight deviation from the <u>General procedure D</u>,

this reaction mixture was stirred at reflux for 24 h. Purification by FCC (10–30% EtOAc in hexane) afforded a mixture of **3ac** and **3ac'** as a light yellow oily residue (57.1 mg, 2.5 : 1 *dr*, 68%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (minor dia) = 13.0 & 13.4 min, t_r (major dia) = 15.8 & 23.7 min.

R_f = 0.21 (15% EtOAc in hexane).

IR (neat): 1750, 1530, 1382, 1281, 1242, 1205, 1165, 852 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (2.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.51 – 8.41 (m, 2H), 8.29 – 8.18 (m, 2H), 7.40 – 7.18 (m, 3H), 7.15 – 7.05 (m, 2H), 5.90 (dddd, J = 17.0, 10.3, 5.3, 2.1 Hz, 1H), 5.31 (dd, J = 10.3, 1.0 Hz, 1H), 5.15 (d, J = 17.2 Hz, 1H), 5.11 (s, 1H), 4.71 (dqd, J = 12.5, 8.1, 4.2 Hz, 1H), 4.62 – 4.31 (m, 3H), 3.50 – 3.32 (m, 3H), 2.62 – 2.47 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) (2.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 175.5, 170.4, 166.0, 151.0, 132.8, 131.4, 130.8, 130.4, 130.2, 128.9, 124.6, 122.2 (q, J = 277.3 Hz)*, 122.1, 121.9 (q, J = 277.1 Hz)*, 106.1, 63.2, 62.3 (q, J = 37.3 Hz), 61.6 (q, J = 37.4 Hz), 57.9, 52.4, 39.5.

*Note: outermost resonances of these quartets were not observed due to their low intensities.

¹**H NMR** (400 MHz, CDCl₃) (2.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 8.40 – 8.31 (m, 2H), 7.99 – 7.89 (m, 2H), 7.15 – 7.03 (m, 5H), 5.51 (ddd, *J* = 16.9, 10.2, 8.2 Hz, 1H), 5.20 (d, *J* = 17.2 Hz, 1H), 5.07 (s, 1H), 5.04 (dt, *J* = 10.3, 0.9 Hz, 1H), 3.86 – 3.73 (m, 1H), 3.69 (dt, *J* = 12.5, 8.1 Hz, 1H), 3.57 (dd, *J* = 14.3, 7.7 Hz, 1H), 2.29 (dd, *J* = 14.4, 5.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (2.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 177.8, 169.4, 166.3, 150.5, 130.2, 130.1, 129.7, 129.1, 124.1, 121.1, 106.2, 63.4, 55.7, 54.8, 38.9.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.80 (dq, J = 19.1, 8.3, 7.8 Hz), -74.12 (t, J = 8.5 Hz). **HRESI-MS (ESI +ve):** Found 673.0681, calc for C₂₆H₂₀F₆N₂O₉SNa 673.0691 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-(4-bromophenyl)-6-phenyl-9-vinyl-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ad)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (51.6 mg, 0.161 mmol), 1-azadiene **2d** (40.2 mg, 0.110 mmol), $Pd_2dba_3 \bullet CHCl_3$ (2.8 mg, 0.003 mmol), and (*S*)-DM-Segphos (6.8 mg, 0.009 mmol). In a slight deviation from the <u>General procedure D</u>,

this reaction mixture was stirred at reflux for 24 h. Purification by FCC (10% EtOAc in hexane) afforded a mixture of **3ad** and **3ad'** as a colourless oily residue (33.9 mg, 4.2 : 1 *dr*, 45%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (minor dia) = 7.5 & 8.1 min, t_r (major dia) = 9.6 & 13.9 min.

R_f = 0.23 (10% EtOAc in hexane).

IR (neat): 1749, 1584, 1549, 1376, 1280, 1242, 1203, 1163, 1105, 660 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (4.2 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.06 – 7.95 (m, 2H), 7.82 – 7.73 (m, 2H), 7.31 – 7.19 (m, 3H), 7.13 – 7.01 (m, 2H), 5.87 (ddd, *J* = 16.8, 10.3, 1.6 Hz, 1H), 5.26 (dd, *J* = 10.3, 1.1 Hz, 1H), 5.21 (s, 1H), 5.09 (dd, *J* = 16.9, 1.1 Hz, 1H), 4.71 (dq, *J* = 12.6, 8.2 Hz, 1H), 4.47 (ddq, *J* = 14.6, 12.6, 8.2 Hz, 2H), 3.52 – 3.31 (m, 3H), 2.62 – 2.44 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) (4.2 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 175.7, 170.5, 166.2, 133.1, 132.6, 131.3, 130.7, 130.5, 128.7, 125.9, 122.3 (q, J = 277.5 Hz)*, 122.0 (q, J = 277.1 Hz)*, 121.8, 106.0, 63.1, 62.0 (two overlapping quartets, J = 36.7 Hz), 58.3, 52.7, 39.5.

*Note: outermost resonances of these quartets were not observed due to their low intensities.

¹**H NMR** (400 MHz, CDCl₃) (4.2 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): 7.73 − 7.64 (m, 4H), 5.58 (ddd, *J* = 17.0, 10.3, 7.7 Hz, 1H), 5.03 (s, 1H), 3.93 − 3.70 (m, 3H), 2.31 (dd, *J* = 14.3, 6.2 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (4.2 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 178.0, 169.3, 166.6, 131.8, 130.3, 129.4, 106.0, 39.5.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.77 (t, J = 8.3 Hz), -74.12 (t, J = 8.4 Hz).

HRESI-MS (ESI +ve): Found 705.9920, calc for C₂₆H₂₀F₆BrNO₃SNa 705.9946 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-(3-bromophenyl)-6-phenyl-9-vinyl-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ae)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (47.0 mg, 0.147 mmol), 1-azadiene **2e** (35.4 mg, 0.097 mmol), Pd₂dba₃•CHCl₃ (2.6 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.0 mg, 0.007 mmol). Purification by FCC (15% EtOAc in hexane) afforded a

mixture of **3ae** and **3ae'** as an off-white semi-solid (62.6 mg, 4.1 : 1 dr, 94%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (minor dia) = 7.4 & 8.0 min, t_r (major dia) = 8.6 & 13.2 min.

R_f = 0.19 (15% EtOAc in hexane).

IR (neat): 1749, 1587, 1554, 1379, 1280, 1240, 1201, 1158, 1101, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (4.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.25 (t, *J* = 1.9 Hz, 1H), 8.05 (ddd, *J* = 7.9, 1.9, 1.0 Hz, 1H), 7.87 (ddd, *J* = 8.1, 1.9, 0.9 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.34 – 7.19 (m, 3H), 7.13 – 7.05 (m, 2H), 5.87 (dddd, *J* = 16.9,

10.4, 6.3, 1.6 Hz, 1H), 5.28 (dd, *J* = 10.3, 1.1 Hz, 1H), 5.19 (s, 1H), 5.16 – 5.09 (m, 1H), 4.71 (dqd, *J* = 12.5, 8.1, 1.2 Hz, 1H), 4.61 – 4.33 (m, 2H), 3.45 – 3.31 (m, 3H), 2.62 – 2.44 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (4.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 175.6, 170.4, 166.2, 137.7, 132.8, 131.0, 130.5, 130.5, 130.3, 129.5, 128.7, 127.9, 123.9, 122.3 (q, J = 277.5 Hz), 122.0 (q, J = 277.1 Hz), 121.9, 106.1, 63.2, 62.89 – 60.78 (two overlapping quartets, J = 37.4 Hz), 58.1, 52.5, 39.4.

¹**H NMR** (400 MHz, CDCl₃) (4.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.97 (t, *J* = 1.9 Hz, 1H), 7.77 (ddd, *J* = 8.0, 2.0, 0.9 Hz, 1H), 7.69 (ddd, *J* = 7.9, 1.8, 1.0 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 5.55 (ddd, *J* = 16.9, 10.3, 7.8 Hz, 1H), 5.19 (ddd, *J* = 17.0, 1.4, 0.7 Hz, 1H), 5.06 (s, 1H), 5.06 (dt, *J* = 10.2, 1.0 Hz, 1H), 3.50 (dd, *J* = 14.3, 7.8 Hz, 1H), 2.30 (dd, *J* = 14.4, 5.9 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (4.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 177.9, 169.3, 166.6, 136.9, 133.3, 133.0, 130.6, 130.4, 129.4, 129.0, 128.8, 128.6, 63.5, 56.3, 54.6, 38.6.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.78 (q, J = 8.7, 8.0 Hz), -74.13 (t, J = 9.0 Hz).

HRESI-MS (ESI +ve): Found 705.9929, calc for C₂₆H₂₀ F₆NO₇BrSNa 705.9946 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-(2-bromophenyl)-6-phenyl-9-vinyl-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3af)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (47.8 mg, 0.149 mmol), 1-azadiene **2f** (36.3 mg, 0.100 mmol), Pd₂dba₃•CHCl₃ (2.6 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.4 mg, 0.007 mmol). Purification by FCC (20% EtOAc in hexane) afforded **3ab** as an of-

white semi-solid (49.1 mg, >20 : 1 dr, 72%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 214 nm, $t_r = 9.5 \& 10.9 min$.

 $R_{f} = 0.12$ (20% EtOAc in hexane).

IR (neat): 1753, 1616, 1380, 1281, 1240, 1203, 1149, 939, 758, 657 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.82 – 7.72 (m, 1H), 7.57 – 7.39 (m, 3H), 7.30 (s, 6H), 6.19 – 6.01 (m, 1H), 5.46 (dd, *J* = 10.6, 0.9 Hz, 1H), 5.41 (dt, *J* = 17.2, 0.9 Hz, 1H), 4.64 (s, 1H), 4.62 – 4.52 (m, 1H), 4.34 (dp, *J* = 12.5, 8.3 Hz, 2H), 3.42 – 3.28 (m, 2H), 3.21 (dq, *J* = 12.5, 8.3 Hz, 1H), 2.54 – 2.39 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 178.2, 169.4, 166.0, 135.1, 133.0, 131.1, 130.9, 130.6, 129.3, 128.8, 128.6, 128.3, 127.4, 122.4, 122.24 (q, *J* = 277.4 Hz)*, 121.6, 106.6, 63.5, 56.5, 50.0, 39.1.

*Note: outermost resonances of these quartets were not observed due to their low intensities.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.86 (t, J = 8.6 Hz), -74.10 (t, J = 8.3 Hz).

HRESI-MS (ESI +ve): Found 705.9934, calc for C₂₆H₂₀F₆BNO₇SNa 705.9946 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-(*tert*-butyl)-6-phenyl-9-vinyl-1-oxa-2-thia-3-azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ag).

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (51.1 mg, 0.160 mmol), 1-azadiene **2g** (30.0 mg, 0.113 mmol), $Pd_2dba_3 \bullet CHCl_3$ (3.0 mg, 0.003 mmol), and (*S*)-DM-Segphos (6.2 mg, 0.009 mmol). Purification by FCC (10–20% EtOAc in hexane) afforded a mixture of

3ag and **3ag'** as an off-white semi-solid (27.2 mg, 1.0 : 1 dr, 41%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 206 nm, t_r (minor dia, unresolved) = 6.0 min, t_r (major dia) = 6.6 & 7.3 min.

R_f = 0.12 (10% EtOAc in hexane).

IR (neat): 1749, 1591, 1375, 1281, 1205, 1158, 762, 702 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (4.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.25 (t, *J* = 1.9 Hz, 1H), 8.05 (ddd, *J* = 7.9, 1.9, 1.0 Hz, 1H), 7.87 (ddd, *J* = 8.1, 1.9, 0.9 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.34 – 7.19 (m, 3H), 7.13 – 7.05 (m, 2H), 5.87 (dddd, *J* = 16.9, 10.4, 6.3, 1.6 Hz, 1H), 5.28 (dd, *J* = 10.3, 1.1 Hz, 1H), 5.19 (s, 1H), 5.16 – 5.09 (m, 1H), 4.71 (dqd, *J* = 12.5, 8.1, 1.2 Hz, 1H), 4.61 – 4.33 (m, 2H), 3.45 – 3.31 (m, 3H), 2.62 – 2.44 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (4.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 175.6, 170.4, 166.2, 137.7, 132.8, 131.0, 130.5, 130.5, 130.3, 129.5, 128.7, 127.9, 123.9, 122.3 (q, *J* = 277.5 Hz), 122.0 (q, *J* = 277.1 Hz), 121.9, 106.1, 63.2, 62.89 – 60.78 (two overlapping quartets, *J* = 37.4 Hz), 58.1, 52.5, 39.4.

¹**H NMR** (400 MHz, CDCl₃) (4.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.97 (t, *J* = 1.9 Hz, 1H), 7.77 (ddd, *J* = 8.0, 2.0, 0.9 Hz, 1H), 7.69 (ddd, *J* = 7.9, 1.8, 1.0 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 5.55 (ddd, *J* = 16.9, 10.3, 7.8 Hz, 1H), 5.19 (ddd, *J* = 17.0, 1.4, 0.7 Hz, 1H), 5.06 (s, 1H), 5.06 (dt, *J* = 10.2, 1.0 Hz, 1H), 3.50 (dd, *J* = 14.3, 7.8 Hz, 1H), 2.30 (dd, *J* = 14.4, 5.9 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (4.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 177.9, 169.3, 166.6, 136.9, 133.3, 133.0, 130.6, 130.4, 129.4, 129.0, 128.8, 128.6, 63.5, 56.3, 54.6, 38.6.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.80 (d, *J* = 9.1 Hz), -74.12 (t, *J* = 9.0 Hz).

HRESI-MS (ESI +ve): Found 608.1145, calc for C₂₄H₂₅F₆NO₇SNa 608.1154 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-phenyl-6-(p-tolyl)-9-vinyl-1-oxa-2-thia-3-azaspiro[4.4]non-3ene-7,7-dicarboxylate 2,2-dioxide (3ah)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (54.0 mg, 0.169 mmol), 1-azadiene **2h** (33.1 mg, 0.111 mmol), Pd₂dba₃•CHCl₃ (2.7 mg, 0.003 mmol), and (*S*)-DM-Segphos (6.5 mg, 0.009 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3ah**

and **3ah'** as an off white semi-solid (72.0 mg, 7.6 : 1 dr, quant.).

Chiral HPLC: Chiralpak[®] IG-3, 2% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (minor dia) = 14.2 & 15.6 min, t_r (major dia) = 17.1 & 29.3 min.

R_f = 0.29 (20% EtOAc in hexane).

IR (neat): 1750, 1560, 1374, 1282, 1242, 1203, 1163, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (9.8 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.15 – 8.02 (m, 2H), 7.77 – 7.68 (m, 1H), 7.60 (dd, J = 8.5, 7.3 Hz, 2H), 7.03 (d, J = 8.2 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 5.89 (ddd, J = 17.0, 10.3, 7.6 Hz, 1H), 5.25 (dd, J = 10.2, 1.2 Hz, 1H), 5.22 (s, 1H), 5.10 (dt, J = 17.1, 0.9 Hz, 1H), 4.69 (dq, J = 12.6, 8.2 Hz, 1H), 4.47 (ddt, J = 15.6, 12.5, 8.2 Hz, 2H), 3.53 – 3.37 (m, 3H), 2.56 – 2.46 (m, 1H), 2.25 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) (9.8 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 176.9, 170.4, 166.4, 139.2, 134.8, 130.6, 130.4, 129.9, 129.6, 129.3, 127.5, 127.3, 122.3 (q, J = 277.5 Hz), 122.0 (q, J = 277.1 Hz), 121.6, 106.4, 63.1, 62.1 (q, J = 37.3 Hz), 61.5 (q, J = 37.3 Hz), 58.0, 52.6, 39.4, 21.1.

¹**H NMR** (400 MHz, CDCl₃) (9.8 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.85 – 7.78 (m, 2H), 7.69 – 7.61 (m, 1H), 7.55 – 7.47 (m, 2H), 7.15 – 7.06 (m, 2H), 5.60 (ddd, *J* = 17.0, 10.4, 7.6 Hz, 1H), 5.22 – 5.13 (m, 1H), 5.05 (s, 1H), 5.01 (dt, *J* = 10.3, 1.1 Hz, 1H), 3.99 – 3.77 (m, 2H), 2.32 (dd, *J* = 14.2, 6.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (9.8 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 179.0, 169.2, 166.8, 139.1, 134.3, 133.3, 130.6, 130.5, 129.2, 128.7, 127.2, 120.1, 106.3, 63.4, 56.8, 54.5, 38.6.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.71 – -73.85 (m), -74.13 (t, J = 9.4 Hz).

HRESI-MS (ESI +ve): Found 642.0977, calc for C₂₇H₂₃F₆NO₇SNa 642.0997 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-phenyl-6-(m-tolyl)-9-vinyl-1-oxa-2-thia-3-azaspiro[4.4]non-3ene-7,7-dicarboxylate 2,2-dioxide (3ai)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (49.4 mg, 0.154 mmol), 1-azadiene **2i** (31.7 mg, 0.106 mmol), Pd₂dba₃•CHCl₃ (2.6 mg, 0.003 mmol), and (*S*)-DM-Segphos (7.0 mg, 0.010 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3aib** and **3ai'** as a light-yellow oily residue (65.7 mg, 10.0 : 1 *dr*, 97%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (minor dia, overlapping peaks) = 8.5 min, t_r (major dia) = 9.8 & 12.9 min.

R_f = 0.14 (15% EtOAc in hexane).

IR (neat): 1750, 1591, 1560, 1374, 1282, 1241, 1202, 1162, 1103, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (16.7 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.15 – 8.03 (m, 2H), 7.79 – 7.69 (m, 1H), 7.66 – 7.56 (m, 2H), 7.14 – 7.03 (m, 2H), 6.96 – 6.84 (m, 2H), 5.88 (ddd, *J* = 17.0, 10.2, 7.6 Hz, 1H), 5.25 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.20 (s, 1H), 5.10 (dt, *J* = 17.0, 1.0 Hz, 1H), 4.69 (dq, J = 12.6, 8.1 Hz, 1H), 4.47 (ddq, *J* = 17.8, 12.5, 8.2 Hz, 2H), 3.55 – 3.28 (m, 3H), 2.58 – 2.45 (m, 1H), 2.23 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) (16.7 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 176.9, 170.4, 166.4, 138.4, 134.8, 131.2, 130.6, 130.5, 130.0, 129.9, 129.6, 128.4, 127.6, 127.3, 122.3 (q, *J* = 277.4 Hz), 122.04 (q, *J* = 277.1 Hz), 121.6, 106.3, 63.1, 62.2 (q, *J* = 37.4 Hz), 61.5 (q, *J* = 37.3 Hz), 58.2, 52.6, 39.4, 21.2.

¹**H NMR** (400 MHz, CDCl₃) (16.7 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.84 – 7.78 (m, 2H), 7.67 – 7.63 (m, 1H), 7.52 – 7.48 (m, 2H), 5.58 (ddd, *J* = 17.1, 10.3, 7.7 Hz, 1H), 5.16 (dt, *J* = 17.2, 1.0 Hz, 1H), 5.06 (s, 1H), 5.00 (dt, *J* = 10.3, 1.0 Hz, 1H), 2.35 – 2.29 (m, 1H), 2.25 (s, 4H).

¹³C NMR (100 MHz, CDCl₃) (16.7 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 179.0, 169.3, 166.8, 134.2, 133.2, 129.2, 128.8, 120.1, 106.3, 63.5, 56.7, 54.6, 38.7, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.80 (t, *J* = 9.0 Hz), -74.12 (t, *J* = 8.0 Hz).

HRESI-MS (ESI +ve): Found 642.0977, calc for C₂₇H₂₃F₆NO₇SNa 642.0997 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-phenyl-6-(o-tolyl)-9-vinyl-1-oxa-2-thia-3-azaspiro[4.4]non-3ene-7,7-dicarboxylate 2,2-dioxide (3aj)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (50.5 mg, 0.158 mmol), 1-azadiene **2j** (31.1 mg, 0.104 mmol), Pd₂dba₃•CHCl₃ (2.6 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.3 mg, 0.007 mmol). Purification by FCC (20% EtOAc in hexane) afforded **3aj** as an off-white semi-solid (52.6 mg,

>20 : 1 dr, 82%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 266 nm, t_r (minor dia) = 9.6 & 19.6 min, t_r (major dia) = 10.9 & 24.6 min.

R_f = 0.15 (15% EtOAc in hexane).

IR (neat): 1747, 1561, 1373, 1283, 1202, 1162, 661 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (16.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.38 – 8.16 (m, 2H), 7.80 – 7.72 (m, 1H), 7.62 (dd, *J* = 8.5, 7.3 Hz, 2H), 7.33 – 7.28 (m, 1H), 7.18 – 7.07 (m, 2H), 7.03 – 6.91 (m, 1H), 5.89 (ddd, *J* = 17.1, 10.3, 7.9 Hz, 1H), 5.71 (s, 1H), 5.25 (dd, *J* = 10.3, 1.2 Hz, 1H), 5.12 (dt, *J* = 17.1, 1.0 Hz, 1H), 4.80 – 4.64 (m, 1H), 4.62 – 4.47 (m, 1H), 4.45 – 4.30 (m, 1H), 3.62 (ddd, *J* = 13.8, 7.9, 6.0 Hz, 1H), 3.44 (t, *J* = 13.8 Hz, 1H), 3.18 (dq, *J* = 12.5, 8.3 Hz, 1H), 2.55 (dd, *J* = 13.9, 6.0 Hz, 1H), 1.80 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) (16.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 176.3, 171.0, 166.2, 137.6, 135.3, 131.1, 130.7, 130.4, 130.4, 129.7, 129.5, 128.9, 127.1, 125.9, 122.3 (q, *J* = 277.6 Hz), 122.0 (q, *J* = 276.9 Hz), 121.6, 106.2, 64.0, 62.2 (q, *J* = 37.4 Hz), 61.4 (q, *J* = 37.3 Hz), 52.9, 52.5, 39.9, 19.9.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.61 – -73.90 (m), -74.20 (t, J = 8.0 Hz).

HRESI-MS (ESI +ve): Found 642.0986, calc for C₂₇H₂₃F₆NO₇SNa 642.0997 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5R,6S,9S)-6-(4-fluorophenyl)-4-phenyl-9-vinyl-1-oxa-2-thia-3-

azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ak)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (50.7 mg, 0.158 mmol), 1-azadiene **2k** (32.6 mg, 0.107 mmol), $Pd_2dba_3 \bullet CHCl_3$ (2.8 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.9 mg, 0.008 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3ak**

and **3ak'** as an off-white semi-solid (64.7 mg, 6.9 : 1 dr, 97%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (minor dia) = 9.3 & 12.7 min, t_r (major dia) = 11.0 & 21.3 min.

R_f = 0.17 (20% EtOAc in hexane).

IR (neat): 1745, 1559, 1380, 1199, 1150, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (9.7 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.13 – 8.05 (m, 2H), 7.79 – 7.70 (m, 1H), 7.61 (t, *J* = 7.9 Hz, 2H), 7.15 – 7.03 (m, 2H), 6.99 – 6.86 (m, 2H), 5.87 (ddd, *J* = 17.0, 10.3, 7.8 Hz, 1H), 5.26 (s, 1H), 5.26 (dd, *J* = 10.2, 1.1 Hz, 1H), 5.11 (d, *J* = 17.1 Hz, 1H), 4.69 (dq, *J* = 12.6, 8.2 Hz, 1H), 4.48 (ddq, *J* = 32.4, 12.6, 8.2 Hz, 2H), 3.63 – 3.46 (m, 2H), 3.42 (t, *J* = 13.5 Hz, 1H), 2.55 (dd, *J* = 13.6, 6.1 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (9.7.1 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 176.7, 170.2, 166.3, 163.2 (d, J = 249.5 Hz), 135.1, 132.4 (d, J = 8.4 Hz),

130.3, 129.8 (d, *J* = 12.8 Hz), 127.1, 126.5 (d, *J* = 3.4 Hz), 122.3 (q, *J* = 277.5 Hz), 120.0 (q, *J* = 277.0 Hz), 121.8, 115.7 (d, *J* = 21.5 Hz), 106.2, 63.1, 57.5, 52.5, 62.2 (q, *J* = 37.3 Hz), 61.6 (q, *J* = 37.4 Hz), 39.4.

¹**H NMR** (400 MHz, CDCl₃) (9.7 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.85 – 7.79 (m, 2H), 7.70 – 7.65 (m, 1H), 7.53 (t, J = 7.9 Hz, 2H), 7.25 – 7.18 (m, 2H), 5.63 (ddd, J = 17.4, 10.3, 7.3 Hz, 1H), 5.21 (dd, J = 17.0, 1.6 Hz, 1H), 5.08 – 5.04 (m, 1H), 5.04 (s, 1H), 4.05 – 3.88 (m, 2H), 2.41 – 2.27 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (9.7 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 178.7, 169.0, 166.7, 134.6, 133.1, 130.6, 129.3, 120.3, 106.0, 63.4, 56.6, 54.3, 38.5.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.81 (t, J = 8.3 Hz), -74.08 – -74.23 (m), -111.75 (q, J = 6.9 Hz). **HRESI-MS (ESI +ve):** Found 646.0745, calc for C₂₆H₂₀F₇NO₇SNa 646.0746 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5R,6R,9S)-6-(2-bromophenyl)-4-phenyl-9-vinyl-1-oxa-2-thia-3-

azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3al)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (49.7 mg, 0.155 mmol), 1-azadiene **2l** (38.2 mg, 0.105 mmol), $Pd_2dba_3 \bullet CHCl_3$ (2.7 mg, 0.003 mmol), and (*S*)-DM-Segphos (6.0 mg, 0.008 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3al** and **3al'** as a colourless

semi-solid (70.3 mg, 10.7 : 1 dr, 97%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 266 nm, t_r (minor dia) = 10.6 & 21.2 min, t_r (major dia) = 9.6 & 23.4 min.

R_f = 0.26 (20% EtOAc in hexane).

IR (neat): 1751, 1559, 1374, 1283, 1202, 1161, 760, 657 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (13.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.46 – 8.28 (m, 2H), 7.79 – 7.70 (m, 1H), 7.65 – 7.57 (m, 2H), 7.44 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.38 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.34 – 7.26 (m, 1H), 7.11 (ddd, *J* = 8.1, 7.3, 1.7 Hz, 1H), 6.22 (s, 1H), 5.89 – 5.77 (m, 1H), 5.24 (dd, *J* = 10.2, 1.1 Hz, 1H), 5.07 (dt, *J* = 17.1, 1.0 Hz, 1H), 4.73 (dq, *J* = 12.6, 8.2 Hz, 1H), 4.59 (dq, *J* = 12.6, 8.2 Hz, 1H), 4.37 (dq, *J* = 12.5, 8.2 Hz, 1H), 3.62 (ddd, *J* = 13.7, 7.9, 5.9 Hz, 1H), 3.47 – 3.33 (m, 2H), 2.55 (dd, *J* = 13.9, 5.9 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (13.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 176.2, 170.2, 166.1, 135.4, 133.3, 132.8, 131.1, 131.0, 130.5, 130.1, 129.5, 127.1, 127.0, 126.3, 122.3 (q, *J* = 277.5 Hz)*, 121.9 (q, *J* = 277.1 Hz)*, 121.9, 105.6, 63.9, 62.3 (q, *J* = 37.4 Hz), 61.6 (q, *J* = 37.4 Hz), 55.5, 52.7, 40.0.
¹**H NMR** (400 MHz, CDCl₃) (13.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.99 – 7.94 (m, 2H), 7.70 – 7.65 (m, 1H), 7.54 (t, *J* = 7.9 Hz, 2H), 5.58 (s, 1H), 5.33 (dd, *J* = 17.3, 1.7 Hz, 1H), 5.17 (dd, *J* = 10.7, 1.7 Hz, 1H), 4.20 – 4.11 (m, 1H), 3.13 (dd, *J* = 14.2, 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (13.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 178.0, 167.8, 167.5, 134.8, 133.4, 132.4, 131.3, 129.2, 105.0, 64.0, 56.2, 54.3, 38.4.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.80 (t, *J* = 8.4 Hz), -74.09 (t, *J* = 8.4 Hz).

HRESI-MS (ESI +ve): Found 705.9941, calc for C₂₆H₂₀F₆NBrO₇SNa 705.9946 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-6-(4-(methoxycarbonyl)phenyl)-4-phenyl-9-vinyl-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3am)

CO₂Me N Ph CO₂CH₂CF₃ CO₂CH₂CF₃ The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (50.5 mg, 0.158 mmol), 1-azadiene **2m** (36.5 mg, 0.106 mmol), $Pd_2dba_3 \bullet CHCl_3$ (2.6 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.2 mg, 0.007 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3am**

and **3am'** as a colourless oily residue (67.4 mg, 5.1 : 1 dr, 96%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (minor dia) = 31.5 & 35.4 min, t_r (major dia) = 38.0 & 62.3 min.

R_f = 0.26 (20% EtOAc in hexane).

IR (neat): 1752, 1724, 1560, 1377, 1203, 1167, 768, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (11.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.12 – 8.07 (m, 2H), 7.92 – 7.88 (m, 2H), 7.78 – 7.73 (m, 1H), 7.65 – 7.57 (m, 2H), 7.21 – 7.15 (m, 2H), 5.88 (ddd, *J* = 17.1, 10.3, 7.8 Hz, 1H), 5.31 (s, 1H), 5.27 (dd, *J* = 10.3, 1.1 Hz, 1H), 5.13 (dt, *J* = 17.1, 1.0 Hz, 1H), 4.71 (dq, *J* = 12.6, 8.2 Hz, 1H), 4.48 (ddq, *J* = 27.1, 12.4, 8.1 Hz, 2H), 3.87 (s, 3H), 3.60 – 3.39 (m, 3H), 2.57 (dd, *J* = 13.7, 6.1 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (11.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 176.4, 170.2, 166.3, 166.1, 135.6, 135.2, 131.0, 130.6, 130.2, 129.9, 129.8, 129.8, 127.0, 122.3 (q, J = 277.4 Hz), 121.9 (q, J = 277.1 Hz), 121.9, 105.9, 63.0, 61.9 (two overlapping quartets, J = 37.4 Hz), 58.0, 52.6, 52.2, 39.5.

¹**H NMR** (400 MHz, CDCl₃) (11.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.85 – 7.77 (m, 2H), 7.72 – 7.63 (m, 1H), 7.57 – 7.48 (m, 2H), 7.34 – 7.26 (m, 2H), 5.88 (ddd, *J* = 17.1, 10.3, 7.8 Hz, 11H), 5.65 (ddd, *J* = 17.0, 10.4, 7.4 Hz, 1H), 5.27 – 5.18 (m, 1H), 5.08 (s, 1H), 5.08 (ddd, *J* = 10.5, 1.4, 0.7 Hz, 1H), 2.42 – 2.33 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) (11.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 178.5, 168.9, 166.6, 166.4, 135.3, 134.6, 133.0, 130.8, 129.7, 129.3, 120.4, 105.7, 63.5, 57.1, 54.5, 38.5.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.80 (t, J = 8.9 Hz), -74.07 – -74.16 (m).

HRESI-MS (ESI +ve): Found 686.0883, calc for C₂₈H₂₃F₆NO₉SNa 686.0895 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-6-(4-methoxyphenyl)-4-phenyl-9-vinyl-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3an)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (51.9 mg, 0.162 mmol), 1-azadiene **2n** (34.4 mg, 0.109 mmol), Pd₂dba₃•CHCl₃ (2.8 mg, 0.003 mmol), and (*S*)-DM-Segphos (6.4 mg, 0.009 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3an**

and **3an'** as a light yellow oil (61.5 mg, 9.1 : 1 dr, 89%).

Chiral HPLC: Chiralpak[®] IG-3, 5% isopropanol/hexanes, 1.5 mL.min⁻¹, 266 nm, t_r (minor dia) = 15.5 & 17.6 min, t_r (major dia) = 16.3 & 33.0 min.

R_f = 0.15 (20% EtOAc in hexane).

IR (neat): 1748, 1560, 1515, 1377, 1279, 1242, 1201, 1165, 764, 659 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (12.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.18 – 7.98 (m, 2H), 7.78 – 7.69 (m, 1H), 7.68 – 7.55 (m, 2H), 7.10 – 6.97 (m, 2H), 6.78 – 6.69 (m, 2H), 5.89 (ddd, *J* = 17.0, 10.3, 7.7 Hz, 1H), 5.25 (dd, *J* = 10.3, 1.1 Hz, 1H), 5.22 (s, 1H), 5.10 (dt, *J* = 17.1, 0.9 Hz, 1H), 4.70 (dq, *J* = 12.5, 8.2 Hz, 1H), 4.55 – 4.41 (m, 2H), 3.72 (s, 3H), 3.61 – 3.33 (m, 3H), 2.52 (dd, *J* = 13.2, 5.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (12.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 177.0, 170.4, 166.5, 160.2, 134.9, 131.7, 130.6, 129.8, 129.6, 127.3, 122.4, 122.3 (q, *J* = 277.3 Hz), 122.1 (q, *J* = 276.9 Hz), 121.5, 114.0, 106.6, 63.1, 62.1 (q, *J* = 37.3 Hz), 61.5 (q, *J* = 37.3 Hz), 57.7, 55.2, 52.5, 39.3.

¹**H NMR** (400 MHz, CDCl₃) (12.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.85 – 7.79 (m, 2H), 7.54 – 7.48 (m, 2H), 7.19 – 7.13 (m, 2H), 5.60 (ddd, *J* = 17.0, 10.3, 7.5 Hz, 1H), 5.06 – 4.99 (m, 2H), 3.94 – 3.84 (m, 2H), 3.73 (s, 3H), 2.32 (dd, J = 14.2, 6.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (12.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 179.1, 169.2, 166.9, 160.1, 134.3, 133.3, 131.9, 130.5, 129.2, 122.0, 120.1, 106.4, 63.4, 56.5, 54.3, 38.5.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.79 (t, *J* = 8.3 Hz), -74.06 (t, *J* = 8.8 Hz).

HRESI-MS (ESI +ve): Found 658.0937, calc for C₂₇H₂₃F₆NO₈SNa 658.0946 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-phenyl-6-(1-tosyl-1*H*-indol-3-yl)-9-vinyl-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ao)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (49.9 mg, 0.156 mmol), 1-azadiene **2o** (49.6 mg, 0.104 mmol), Pd₂dba₃•CHCl₃ (2.8 mg, 0.003 mmol), and (*S*)-DM-Segphos (5.3 mg, 0.007 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3ao**

and **3ao'** as a colourless oily residue (66.3 mg, 10.6 : 1 dr, 80%).

Chiral HPLC: Chiralpak[®] IG-3, 10% isopropanol/hexanes, 0.75 mL.min⁻¹, 206 nm, t_r (minor dia) = 18.3 min, t_r (major dia plus one unresolved peak of minor dia) = 19.5 & 50.5 min.

R_f = 0.11 (20% EtOAc in hexane).

IR (neat): 1750, 1559, 1448, 1371, 1281, 1243, 1203, 1166, 672, 577 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (14.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.04 – 7.96 (m, 2H), 7.94 (d, *J* = 8.1 Hz, 2H), 7.88 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.79 (s, 1H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.32 – 7.15 (m, 4H), 7.14 – 7.03 (m, 1H), 5.91 (ddd, *J* = 17.0, 10.2, 7.7 Hz, 1H), 5.71 (s, 1H), 5.27 (dd, *J* = 10.2, 1.1 Hz, 1H), 5.12 (dt, *J* = 17.0, 0.9 Hz, 1H), 4.72 (dq, *J* = 12.5, 8.1 Hz, 1H), 4.48 (dq, *J* = 12.6, 8.2 Hz, 1H), 4.25 (dq, *J* = 12.5, 8.2 Hz, 1H), 3.60 – 3.39 (m, 2H), 3.17 (dq, *J* = 12.4, 8.1 Hz, 1H), 2.56 (dd, *J* = 13.2, 5.7 Hz, 1H), 2.32 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) (14.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 176.7, 170.5, 166.1, 145.4, 135.0, 134.7, 130.4, 130.1, 130.0, 129.7, 129.6, 127.7, 127.1, 126.9, 125.0, 123.3, 122.3 (q, *J* = 277.4 Hz), 121.8 (q, *J* = 277.3 Hz), 121.8, 118.4, 113.2, 105.9, 63.9, 62.3 (q, *J* = 37.4 Hz), 61.1 (q, *J* = 37.3 Hz), 52.9, 48.4, 39.3, 21.5.

¹**H NMR** (400 MHz, CDCl₃) (14.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.87 – 7.82 (m, 2H), 7.76 (s, 1H), 7.42 (dd, *J* = 8.4, 7.5 Hz, 2H), 5.62 (ddd, *J* = 17.0, 10.3, 7.7 Hz, 1H), 5.45 (s, 1H), 5.25 – 5.19 (m, 1H), 5.04 (dt, *J* = 10.3, 1.0 Hz, 1H), 3.96 – 3.85 (m, 1H), 3.74 (dq, *J* = 12.6, 8.2 Hz, 1H), 2.41 (dd, *J* = 14.2, 6.6 Hz, 1H), 2.26 (s, 3H).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.79 (t, *J* = 8.3 Hz), -74.06 (t, *J* = 8.8 Hz).

HRESI-MS (ESI +ve): Found 797.1094, calc for C₃₅H₂₇F₆N₂O₉S₂ 797.1062 [M – H]⁻.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-4-phenyl-6-(phenylethynyl)-9-vinyl-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3ap)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (53.9 mg, 0.168 mmol), 1-azadiene **2p** (34.3 mg, 0.111 mmol), Pd₂dba₃•CHCl₃ (2.8 mg, 0.003 mmol), and (*S*)-DM-Segphos (6.0 mg, 0.008 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3ap**

and **3ap'** as an orange oily residue (43.2 mg, 5.0 : 1 dr, 62%).

Chiral HPLC: Chiralpak[®] IG-3, 4% isopropanol/hexanes, 0.75 mL.min⁻¹, 254 nm, t_r (minor dia) = 24.0 & 25.6 min, t_r (major dia) = 22.6 & 27.5 min.

R_f = 0.11 (20% EtOAc in hexane).

IR (neat): 1745, 1560, 1373, 1284, 1238, 1200, 1152, 934, 756, 657 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (10.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 8.16 – 8.06 (m, 2H), 7.77 – 7.67 (m, 1H), 7.65 – 7.55 (m, 2H), 7.48 – 7.40 (m, 2H), 7.33 – 7.21 (m, 3H), 5.82 (ddd, *J* = 17.0, 10.2, 7.6 Hz, 1H), 5.24 (dd, *J* = 10.3, 1.1 Hz, 1H), 5.15 (s, 1H), 5.05 (dt, *J* = 17.0, 1.0 Hz, 1H), 4.74 (dqd, *J* = 12.8, 8.2, 6.3 Hz, 2H), 4.59 (dq, *J* = 12.5, 8.1 Hz, 1H), 4.23 (dq, *J* = 12.6, 8.2 Hz, 1H), 3.43 – 3.27 (m, 2H), 2.52 – 2.41 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) (10.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 175.4, 169.6, 165.5, 135.0, 132.0, 130.0, 129.8, 129.7, 129.1, 128.3, 126.9, 122.4 (q, *J* = 277.2 Hz), δ 122.3 (q, *J* = 277.7 Hz), 121.9, 121.4, 104.6, 89.8, 77.9, 62.4, 62.3 (q, *J* = 37.4 Hz), 62.1 (q, *J* = 37.2 Hz), 52.0, 47.4, 39.0.

¹**H NMR** (400 MHz, CDCl₃) (10.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.90 – 7.85 (m, 2H), 7.69 – 7.65 (m, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 5.57 (ddd, *J* = 17.2, 10.3, 7.1 Hz, 1H), 4.83 (s, 1H), 4.44 (dq, *J* = 12.6, 8.2 Hz, 1H), 3.94 (dt, *J* = 9.7, 7.9 Hz, 1H), 2.27 (dd, *J* = 13.9, 9.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (10.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 177.1, 167.7, 165.9, 134.7, 132.8, 130.6, 129.4, 128.2, 127.7, 120.3, 104.2, 89.9, 62.7, 53.6, 47.9, 38.2.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.59 (t, *J* = 8.5 Hz), -73.74 (t, *J* = 8.4 Hz).

HRESI-MS (ESI +ve): Found 652.0839, calc for C₂₈H₂₁F₆NO₇SNa 652.0841 [M + Na]⁺.

Bis(2,2,2-trifluoroethyl) (5*R*,6*S*,9*S*)-6-phenethyl-4-phenyl-9-vinyl-1-oxa-2-thia-3-azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (3aq)

The titled compound was prepared following <u>General procedure D</u> using VCP **1a** (46.9 mg, 0.146 mmol), 1-azadiene **2q** (28.4 mg, 0.091 mmol), Pd₂dba₃•CHCl₃ (2.0 mg, 0.002 mmol), and (*S*)-DM-Segphos (5.0 mg, 0.007 mmol). Purification by FCC (20% EtOAc in hexane) afforded a mixture of **3aq** and **3aq'** as a light yellow oily residue (7.1 mg, 9.6 : 1 *dr*, 12%).

Chiral HPLC: Chiralpak[®] IG-3, 2.5% isopropanol/hexanes, 1.5 mL.min⁻¹, 254 nm, t_r (minor dia) = 15.2 & 24.6 min, t_r (major dia) = 16.4 & 23.0 min.

R_f = 0.16 (15% EtOAc in hexane).

IR (neat): 2922, 2852, 1751, 1558, 1373, 1283, 1238, 1200, 1165, 1093, 658 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (10.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 7.97 – 7.88 (m, 2H), 7.65 (ddt, *J* = 8.6, 7.2, 1.2 Hz, 1H), 7.54 – 7.41 (m, 2H), 7.18 – 6.88 (m, 6H), 5.73 (ddd, *J* = 17.0, 10.2, 7.9 Hz, 1H), 5.15 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.09 (s, 0H), 4.87 (dt, *J* = 17.1, 1.0 Hz, 1H), 4.76 – 4.44 (m, 4H), 4.04 (t, *J* = 6.5 Hz, 1H), 3.32 – 3.10 (m, 2H), 2.57 – 2.39 (m, 3H), 1.98 – 1.83 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) (10.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 177.1, 170.4, 166.6, 139.8, 135.0, 130.4, 130.0, 129.6, 128.4, 128.3, 126.9, 126.3, 122.4* (d, *J* = 277.4 Hz), 121.5, 106.8, 61.9, 61.6 (two overlapping q, *J* = 37.3 Hz). 52.7, 52.4, 39.5, 33.1, 28.1.

*Note: outermost resonances of this quartet were not observed due to their low intensities. The second quartet was not observed.

¹**H NMR** (400 MHz, CDCl₃) (10.6 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.89 – 7.84 (m, 2H), 7.51 (t, J = 7.9 Hz, 3H), 5.67 – 5.57 (m, 1H), 5.28 – 5.22 (m, 1H), 5.10 – 5.04 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) (10.4 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 177.1, 167.7, 165.9, 134.7, 132.8, 130.5, 129.4, 128.9, 128.3, 128.2, 121.6, 120.3, 104.2, 89.9, 77.2, 53.6, 47.9, 38.2..

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.47 (t, *J* = 8.2 Hz), -73.74 (t, *J* = 8.2 Hz).

HRESI-MS (ESI +ve): Found 656.1131, calc for C₂₈H₂₅F₆NO₇SNa 656.1154 [M + Na]⁺.

6. Post-synthetic modifications

a. Olefin cross-metathesis

Procedure:

A mixture of **3aa** (651.1 mg, 1.075 mmol), styrene (25 mL, 218.2 mmol), and Grubbs catalyst 2^{nd} generation (31.7 mg) in anhydrous CH₂Cl₂ (30 mL) was stirred at reflux overnight. The reaction mixture was then allowed to cool to rt, then concentrated *in vacuo*. Purification by FCC (15–30% EtOAc in hexane) afforded the major diastereoisomeric product **3ba** as a white foam (529.4 mg, 72%). For the characterisation data of **3ba**, vide supra.

b. Regioselective transesterification/amidation

Procedure (40 °C):1

Ammonia solution (7N in MeOH, 2.0 mL) was added to **3ba** (31.9 mg, 0.047 mmol) at rt. The resulting solution was then stirred at 40 °C for 88 h, before being concentrated *in vacuo*. Purification by FCC (50% EtOAc in hexane) afforded **4** as a colourless residue (24.2 mg, 97%).

Procedure (0 °C to rt):1

Ammonia solution (7N in MeOH, 2.5 mL) was added to **3ba** (35.6 mg, 0.052 mmol) at 0 °C. The resulting solution was then allowed to slowly warm to rt, and stirred for 90 h, before being concentrated *in vacuo*. Purification by FCC (50% EtOAc in hexane) afforded **4** as a colourless residue (10.4 mg, 37%), **7** as a white semi-solid (5.5 mg, 19%), and **9** as a colourless residue (8.0 mg, 11.0 : 1 *dr*, 25%).

Methyl (5*R*,6*S*,7*S*,9*S*)-7-carbamoyl-4,6-diphenyl-9-((*E*)-styryl)-1-oxa-2-thia-3-azaspiro[4.4]non-3ene-7-carboxylate 2,2-dioxide (4)

R_f = 0.24 (50% EtOAc in hexane).

IR (neat): 1734, 1678, 1557, 1368, 1200, 1186, 939, 887, 765, 700 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 8.36 – 8.07 (m, 2H), 7.77 – 7.65 (m, 1H), 7.68 – 7.49 (m, 2H), 7.38 – 7.30 (m, 2H), 7.31 – 7.14 (m, 5H), 7.14 – 7.05 (m, 2H), 6.61 (s,

1H), 6.39 (d, *J* = 15.9 Hz, 1H), 6.34 – 6.19 (m, 1H), 5.23 (s, 1H), 3.98 (dt, *J* = 12.7, 7.6 Hz, 1H), 3.51 (s, 3H), 3.35 (t, *J* = 13.1 Hz, 1H), 2.72 – 2.52 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 177.6, 174.0, 171.0, 136.2, 135.2, 134.8, 131.6, 130.5, 130.2, 129.5, 129.0, 128.6, 128.4, 128.1, 127.3, 126.7, 123.0, 107.6, 63.5, 60.3, 53.5, 53.0, 40.6.

HRESI-MS (ESI +ve): Found 533.1365, calc for $C_{29}H_{26}N_2O_6SNa$ 533.1409 [M + Na]⁺.

Dimethyl (5*R*,6*S*,9*S*)-4,6-diphenyl-9-((*E*)-styryl)-1-oxa-2-thia-3-azaspiro[4.4]non-3-ene-7,7dicarboxylate 2,2-dioxide (7)

R_f = 0.25 (20% EtOAc in hexane).

IR (neat): 1728, 1589, 1558, 1366, 1259, 1200, 1173, 893, 764, 700 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃): δ 8.22 – 8.13 (m, 2H), 7.78 – 7.68 (m, 1H), 7.67 – 7.56 (m, 2H), 7.36 – 7.17 (m, 8H), 7.17 – 7.07 (m, 2H), 6.36 (d, *J* = 15.9 Hz, 1H), 6.26

(dd, *J* = 15.9, 8.1 Hz, 1H), 5.36 (s, 1H), 3.84 (s, 3H), 3.64 (ddd, *J* = 14.1, 8.1, 6.4 Hz, 1H), 3.48 (t, *J* = 13.6 Hz, 1H), 3.27 (s, 3H), 2.53 (dd, *J* = 13.8, 6.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 177.2, 173.0, 168.8, 136.1, 135.2, 134.7, 131.7, 130.7, 130.1, 130.1, 129.5, 128.8, 128.6, 128.3, 128.1, 127.5, 126.7, 122.6, 107.2, 63.4, 58.2, 53.8, 52.6, 52.5, 40.1.
HRESI-MS (ESI +ve): Found 568.1382, calc for C₃₀H₂₇NO₇SNa 568.1406 [M + Na]⁺.

7-methyl 7-(2,2,2-trifluoroethyl) (5*R*,6*S*,7*S*,9*S*)-4,6-diphenyl-9-((*E*)-styryl)-1-oxa-2-thia-3-

azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (9)

R_f = 0.30 (20% EtOAc in hexane).

IR (neat): 1734, 1559, 1373, 1255, 1182, 1163, 896, 762, 701 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) (11.0 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): $\delta 8.28 - 8.12$ (m,

2H), 7.81 – 7.66 (m, 1H), 7.71 – 7.55 (m, 2H), 7.40 – 7.16 (m, 7H), 7.16 – 7.05 (m, 2H), 6.37 (d, *J* = 15.9 Hz, 1H), 6.25 (dd, *J* = 15.9, 8.3 Hz, 1H), 5.38 (s, 1H), 4.57 (dq, *J* = 12.4, 8.3 Hz, 1H), 3.85 (s, 4H), 3.68 (ddd, *J* = 14.2, 8.3, 6.5 Hz, 1H), 3.45 (t, *J* = 13.9 Hz, 1H), 3.26 (dq, *J* = 12.5, 8.3 Hz, 1H), 2.62 – 2.46 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) (11.0 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 177.0, 172.1, 167.2, 135.9, 135.5, 134.8, 131.3, 130.6, 130.1, 129.6,

129.0, 128.6, 128.5, 128.5, 128.2, 127.3, 126.8, 122.2, 122.1* (d, *J* = 277.4 Hz), 106.9, 63.2, 61.0 (q, *J* = 37.2 Hz), 58.2, 53.8, 52.5, 40.0.

*Note: outermost resonances of this quartet were not observed due to their low intensities.

¹**H NMR** (400 MHz, CDCl₃) (11.0 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 5.88 (ddd, *J* = 17.0, 10.2, 7.9 Hz, 1H), 5.38 (s, 11H), 5.33 (s, 1H), 5.24 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.08 (dt, *J* = 17.1, 1.0 Hz, 1H), 3.83 (s, 3H), 3.37 (t, *J* = 13.6 Hz, 1H), 2.52 – 2.45 (m, 1H).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -74.13 (t, *J* = 8.2 Hz).

HRESI-MS (ESI +ve): Found 614.1487, calc for C₃₁H₂₇NO₇SF₃ 614.1460 [M + H]⁺.

c. Regioselective amidation

Procedure:

A solution of **3ba** (32.8 mg, 0.048 mmol) and benzylamine (0.01 mL, 0.092 mmol) in anhydrous THF (0.6 mL) was stirred at reflux for 24 h. Upon completion, indicated by TLC, the reaction mixture was allowed to cool to rt and then quenched with saturated aqueous NH_4Cl . The mixture was extracted with EtOAc, then the combined extracts were then washed with brine. The organic layer was dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by FCC (40% Et₂O in hexane) afforded **5** as an orange oil (17.2 mg, 9.5 : 1 *dr*, 50%).

2,2,2-Trifluoroethyl (5*R*,6*S*,9*S*)-7-(benzylcarbamoyl)-4,6-diphenyl-9-((*E*)-styryl)-1-oxa-2-thia-3azaspiro[4.4]non-3-ene-7-carboxylate 2,2-dioxide (5)

 $R_{f} = 0.13$ (40% Et₂O in hexane).

IR (neat): 1751, 1672, 1558, 1373, 1284, 1201, 1184, 1167, 763, 699 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): (9.5 : 1 mixture of two diastereoisomers,

distinguishable resonances of the major diastereoisomer): δ 8.19 – 8.07 (m,

2H), 7.35 - 7.26 (m, 4H), 7.12 - 6.86 (m, 14H), 6.52 (dd, J = 15.8, 8.7 Hz, 1H), 6.13 (d, J = 15.8 Hz, 1H), 5.92 (t, J = 5.8 Hz, 1H), 5.89 (s, 1H), 4.46 (dd, J = 14.7, 6.3 Hz, 1H), 4.14 - 4.01 (m, 2H), 3.89 (ddd, J = 12.8, 8.7, 6.8 Hz, 1H), 3.46 (t, J = 13.1 Hz, 1H), 3.16 (dq, J = 12.7, 8.5 Hz, 1H), 2.43 - 2.34 (m, 1H). ¹³C NMR (100 MHz, C_6D_6) (9.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the

major diastereoisomer): δ 177.0, 170.0, 169.0, 137.6, 136.2, 135.3, 134.1, 132.2, 130.6, 130.1, 129.1,

128.7, 128.6, 128.6, 128.6, 128.5, 128.5, 128.0, 127.9, 127.9, 127.7, 127.6, 127.5, 127.4, 126.9, 122.8, 122.5 (d, *J* = 277.5 Hz), 107.1, 64.1, 60.93 (q, *J* = 36.8 Hz), 59.1, 53.4, 44.6, 41.1.

¹**H NMR** (400 MHz, C₆D₆) (9.5 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 5.79 (s, 1H), 4.94 (dd, J = 10.2, 1.4 Hz, 1H), 4.75 (d, J = 16.5 Hz, 1H), 4.42 – 4.35 (m, 1H), 3.68 (dt, J = 14.4, 7.2 Hz, 1H), 3.39 – 3.28 (m, 3H), 2.27 (dd, J = 13.4, 6.7 Hz, 1H). ¹⁹**F NMR** (376 MHz, C₆D₆): δ -73.30 (t, J = 8.2 Hz).

HRESI-MS (ESI +ve): Found 687.1777, calc for C₃₇H₃₀F₃N₂O₆S 687.1777 [M – H]⁻.

d. Regioselective transesterification

Procedure:

To a solution of **3ba** (81.1 mg, 0.119 mmol) in anhydrous allyl alcohol (8 mL) was added anhydrous K_2CO_3 (50.4 mg, 0.365 mmol), and the reaction mixture was stirred at rt for 66 h. Upon the complete consumption of **3ba**, as indicated by ESI-MS, the reaction mixture was quenched with water, and the resulting mixture was extracted with EtOAc. The combined extracts were then washed with brine, then the organic layer was dried over MgSO₄, filtered, before being concentrated *in vacuo*. Purification by FCC (20% EtOAc in hexane) afforded **6** as a colourless oil (52.0 mg, 68%).

7-Allyl 7-(2,2,2-trifluoroethyl) (5R,6S,7S,9S)-4,6-diphenyl-9-((E)-styryl)-1-oxa-2-thia-3-

azaspiro[4.4]non-3-ene-7,7-dicarboxylate 2,2-dioxide (6)

 $R_{f} = 0.25$ (20% EtOAc in hexane).

IR (neat): 1732, 1591, 1559, 1373, 1250, 1201, 1164, 1100, 939, 762, 658 cm⁻¹.

^{Ph} ^O ¹**H NMR** (400 MHz, CDCl₃): δ 8.17 (d, *J* = 7.9 Hz, 2H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 2H), 7.39 – 7.17 (m, 8H), 7.17 – 7.08 (m, 2H), 6.37 (d, *J* = 15.9 Hz, 1H), 6.25 (dd, *J* = 15.8, 8.3 Hz, 1H), 5.87 (ddt, *J* = 16.7, 10.3, 6.1 Hz, 1H), 5.39 (s, 1H), 5.37 – 5.31 (m, 1H), 5.28 (d, *J* = 10.3 Hz, 1H), 4.71 (dt, *J* = 9.1, 4.8 Hz, 2H), 4.51 (dq, *J* = 12.5, 8.3 Hz, 1H), 3.69 (ddd, *J* = 14.3, 8.4, 6.6 Hz, 1H), 3.47 (t, *J* = 13.6 Hz, 1H), 3.29 (dq, *J* = 12.1, 8.1 Hz, 1H), 2.57 (dd, *J* = 13.9, 6.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 177.0, 171.3, 167.2, 136.0, 135.5, 134.8, 131.4, 130.6, 130.6, 130.1, 129.6, 129.1, 128.6, 128.5, 128.2, 127.3, 126.8, 122.2, 122.1 (q, *J* = 277.4 Hz), 120.1, 107.0, 67.9, 63.3, 61.1 (q, *J* = 37.2 Hz), 58.1, 52.4, 40.1.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -73.82 (t, *J* = 8.2 Hz).

HRESI-MS (ESI +ve): Found 662.1432, calc for C₃₃H₂₈F₃NO₇SNa 622.1436 [M + Na]⁺.

e. Double transesterification

Procedure:

To a reaction vessel containing anhydrous MeOH (3 mL) was added Na_(s) (16.3 mg, 0.709 mmol) at rt, and the mixture was stirred at the rt for 15 min. A solution of **3ba** (199.1 mg, 0.292 mmol) in anhydrous MeOH (4 mL) was then transferred via a cannula to the NaOMe solution, rinsed twice with MeOH (2 x 4 mL). The reaction mixture was then stirred at rt and monitored by TLC. Upon completion, the reaction was quenched with saturated aqueous NaHCO₃ and extracted with EtOAc. The combined extracts were then washed with brine, then the organic layer was dried over MgSO₄, filtered, before being concentrated *in vacuo*. The desired product **7** (135.5 mg, 85%) was then used without further purification.

For the characterisation data of 7, vide supra.

f. Diastereoselective imine reduction

Procedure:

To a solution of **7** (18.9 mg, 0.035 mmol) in a 1:1 MeOH/CH₂Cl₂ (4 mL) at 0 °C was added NaBH₃CN (18.3 mg) in one portion. The resulting mixture was allowed to warm to rt, and stirred for 65 h. Upon completion, indicated by TLC, the reaction mixture was concentrated *in vacuo*. The crude residue was then dissolved in EtOAc and washed with water and brine. The organic layer was dried over MgSO₄, filtered, then concentrated *in vacuo*. Purification by FCC (25% EtOAc in hexane, alumina column) afforded **8** as a colourless oil (14.4 mg, 4.3 : 1 *dr*, 65%).

Dimethyl (4*S*,5*R*,6*S*,9*S*)-4,6-diphenyl-9-((*E*)-styryl)-1-oxa-2-thia-3-azaspiro[4.4]nonane-7,7dicarboxylate 2,2-dioxide (8)

R_f = 0.16 (15% EtOAc in hexane).

IR (neat): 2953, 2922, 2852, 1726, 1346, 1266, 1191, 1162, 889, 760, 698 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) (4.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 7.59 – 7.27 (m,

15H), 6.60 (dd, *J* = 16.0, 9.0 Hz, 1H), 6.23 (d, *J* = 16.0 Hz, 1H), 4.82 (d, *J* = 8.5 Hz, 1H), 4.68 (d, *J* = 8.5 Hz, 1H), 4.52 (s, 1H), 3.67 (s, 3H), 3.26 – 3.16 (m, 4H), 2.40 (ddd, *J* = 13.3, 9.1, 7.3 Hz, 1H), 2.12 (dd, *J* = 14.0, 7.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (4.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the major diastereoisomer): δ 172.4, 169.2, 136.5, 134.7, 133.2, 130.7, 129.7, 128.9, 128.8, 128.6, 128.6, 128.1, 127.5, 126.6, 125.0, 104.4, 62.9, 62.2, 55.8, 53.3, 52.5, 47.5, 38.8.

¹**H NMR** (400 MHz, CDCl₃) (4.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 7.03 – 6.99 (m, 2H), 6.76 (d, *J* = 15.9 Hz, 1H), 6.51 (dd, *J* = 15.9, 9.1 Hz, 1H), 5.14 (d, *J* = 9.6 Hz, 1H), 4.34 (d, *J* = 9.6 Hz, 1H), 3.96 (s, 1H), 3.66 (s, 3H), 3.08 (s, 3H), 3.03 – 2.88 (m, 1H), 2.33 (dd, *J* = 13.8, 6.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) (4.3 : 1 mixture of two diastereoisomers, distinguishable resonances of the minor diastereoisomer): δ 169.2, 136.4, 135.7, 133.8, 131.7, 129.5, 128.8, 128.1, 127.0, 126.8, 124.6, 104.1, 63.3, 62.5, 54.5, 53.3, 52.3, 51.0, 38.4.

HRESI-MS (ESI +ve): Found 570.1565, calc for C₃₀H₂₉NO₇SNa 570.1562 [M + Na]⁺.

7. Crystallographic data

Crystal data and structure refinement	
Formula	$C_{36.5}H_{31}N_2O_9F_6S_2CI_3$
$D_{calc.}$ /g cm ⁻³	1.437
₪/mm-1	0.390
Formula Weight	926.10
Colour	colourless
Shape	prism-shaped
Size/mm ³	0.21×0.20×0.15
Т/К	230.00(10)
Crystal System	orthorhombic
Flack Parameter	0.00(3)
Hooft Parameter	0.00(3)
Space Group	P21212
a/Å	10.4362(4)
b/Å	22.4430(8)
c/Å	18.2762(7)
α/°	90
<i>β</i> /°	90
γ/°	90
V/Å ³	4280.7(3)
Ζ	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	Μο Κα
$\Theta_{\min}/^{\circ}$	2.247
⊖ _{max} /°	25.348
Measured Refl's.	88507
Indep't Refl's	7833
Refl's I≥2 σ(I)	5572
R _{int}	0.0570
Parameters	747
Restraints	1034
Largest Peak	0.344
Deepest Hole	-0.267
GooF	1.032
wR ₂ (all data)	0.1937
wR ₂	0.1717
R_1 (all data)	0.0876
<i>R</i> ₁	0.0636

Single colourless prism-shaped crystals **3ao** were used as supplied. A suitable crystal with dimensions $0.21 \times 0.20 \times 0.15$ mm³ was selected and mounted on a SuperNova, Dual, Cu at home/near, EosS2 diffractometer. The crystal was kept at a steady *T* = 230.00(10) K during data collection. The structure was solved with the ShelXT¹⁹ solution program using dual methods and by using Olex2 1.5^{20} as the graphical interface. The model was refined with ShelXL $2019/2^{21}$ using full matrix least squares minimisation on *F*².

Figure S1. X-ray crystal structure of (5R,6S,9S)-3ao

Initial data collection on this sample at 130 K revealed an incommensurately modulated structure with a similar orthorhombic unit cell to this structure refinement presented here with q vector of approximately 0.2 along the a axis. With our currently available radiation source (Mo only) and detector technology (CCD) we were unable to collect suitable data for either handling as an incommensurately modulated structure or the supercell approach given the closeness and relative weakness of the 1st order satellites to the main reflections (only first order satellites could be seen). As such, we have presented this refinement at 230 K on a higher temperature non-modulated phase (phase change occur around 190 K).

Preliminary investigation of a refinement at 130 K by the super cell approach aided our understanding of the zones of the structure with the largest modulated features and helped to develop a disorder model to approximate these features in the 230 K dataset. The worst affected zones are the Tossubstituted indolyl, the Ph substituent and the dichloromethane solvent molecules that line a channel. Both the indolyl and Ph substituents were treated with three and two site positional disorder models, respectively. For the indolyl group, the occupancies were fixed on the basis of the ADP appearances, whereas for the Ph group these were refined. Both of these groups required the used of rigid body restraints implemented via the OLEX2 FragmentDB tool. For the minor components of the indolyl groups isotropic ADPs were used (with the exception of the heavier S atoms that allowed for stable anisotropic refinement). For the CF3 groups, the large ADPs showed signs of more moderate modulation effects and gave the appearance of suitable disorder models being achievable, but we could not develop models for these and they are presented with no restraints applied. Two sites for the dichloromethane solvent could be refined reasonably with refined occupancies, while the remaining sites along the solvent channel were treated with a solvent mask.

Further details are provided in the _refine_special_details field of the CIF file.

8. References

- 1 Y. S. Gee, D. J. Rivinoja, S. M. Wales, M. G. Gardiner, J. H. Ryan and C. J. T. Hyland, *J. Org. Chem.*, 2017, **82**, 13517–13529.
- 2 A. P. Dieskau, M. S. Holzwarth and B. Plietker, J. Am. Chem. Soc., 2012, 134, 5048–5051.
- 3 D. Nečas and M. Kotora, *Org. Lett.*, 2008, **10**, 5261–5263.
- 4 W. Zhang, E. Baudouin, M. Cordier, G. Frison and B. Nay, *Chem. Eur. J.*, 2019, **25**, 8643–8648.
- 5 B. M. Trost, P. J. Morris and S. J. Sprague, J. Am. Chem. Soc., 2012, **134**, 17823–17831.
- 6 R. M. Moriarty, B. A. Berglund and R. Penmasta, *Tetrahedron Lett.*, 1992, **33**, 6065–6068.
- 7 N. Yoshikawa, T. Suzuki and M. Shibasaki, J. Org. Chem., 2002, 67, 2556–2565.
- 8 X. Wu, Q. Gao, M. Lian, S. Liu and A. Wu, *RSC Adv.*, 2014, **4**, 51180–51183.
- 9 A. K. Ghorpade and K. G. Akamanchi, *ChemistrySelect*, 2017, **2**, 2457–2461.
- 10 M. Mclaughlin, K. M. Belyk, G. Qian, R. A. Reamer and C. Chen, J. Org. Chem., 2012, 77, 5144.
- 11 G. Crank and H. Khan, *Aust. J. Chem.*, 1985, **38**, 447.
- F. F. Wong, P. W. Chang, H. C. Lin, B. J. You, J. J. Huang and S. K. Lin, *J. Organomet. Chem.*, 2009,
 694, 3452–3455.
- 13 S. Kang, J. Han, E. S. Lee, E. B. Choi and H. K. Lee, *Org. Lett.*, 2010, **12**, 4184–4187.
- 14 Y. Liu, Y. Huang, Z. Yi, G. Liu, X. Q. Dong and X. Zhang, *Adv. Synth. Catal.*, 2019, **361**, 1582–1586.
- 15 A. A. Golovanov, D. R. Latypova, V. V. Bekin, V. S. Pisareva, A. V. Vologzhanina and V. A. Dokichev, *Russ. J. Org. Chem.*, 2013, **49**, 1264–1269.
- 16 S. Belot, A. Quintard, N. Krause and A. Alexakis, *Adv. Synth. Catal.*, 2010, **352**, 667–695.
- B. T. Jones, J. García-Cárceles, L. Caiger, I. R. Hazelden, R. J. Lewis, T. Langer and J. F. Bower, J. Am. Chem. Soc., 2021, 143, 15593–15598.
- 18 D. Majee, A. Srivastava, S. M. Mobin and S. Samanta, *RSC Adv.*, 2013, **3**, 11502–11506.
- 19 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 20 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, **42**, 339–341.
- 21 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2015, 71, 3–8.

9. NMR spectra of novel compounds

Figure S4. ¹³C NMR spectrum (CDCl₃, 100 MHz) of S3f.

Figure S8. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 2c.

Figure S58. 2D NOESY spectrum (CDCl₃, 400 MHz) of 3ab.

Figure S60. ¹³C NMR spectrum (CDCl₃, 100 MHz) of **3ac**.

-71.6 -71.8 -72.0 -72.2 -72.4 -72.6 -72.8 -73.0 -73.2 -73.4 -73.6 -73.8 -74.0 -74.2 -74.4 -74.6 -74.8 -75.0 -75.2 -75.4 -75.6 -75.8 -76.0 -76.2 -76.4 -76.t f1 (ppm) **Figure S77.** ¹⁹F NMR spectrum (CDCl₃, 376 MHz) of **3ag.**

.48.5.2

{8.10,5.22}

5

-71.4 -71.6 -71.8 -72.0 -72.2 -72.4 -72.6 -72.8 -73.0 -73.2 -73.4 -73.6 -73.8 -74.0 -74.2 -74.4 -74.6 -74.8 -75.0 -75.2 -75.4 -75.6 -75.8 -76.0 -76.2 -76.4 f1 (ppm) **Figure S84.** ¹⁹F NMR spectrum (CDCl₃, 376 MHz) of **3ai.**

Figure S103. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3an.

Figure S107. ¹³C NMR spectrum (CDCl₃, 100 MHz) of **3ao**.

Figure S111. ¹³C NMR spectrum (CDCl₃, 100 MHz) of **3ap**.

Figure S135. 2D NOESY spectrum (CDCl₃, 400 MHz) of 6.

Figure S137. $^{\rm 13}{\rm C}$ NMR spectrum (CDCl₃, 100 MHz) of 8.

10. HPLC chromatograms

Peak#	Ret. Time	Area%	Name
1	17.682	24.082	Minor dia
2	19.773	23.752	Minor dia
3	20.928	25.986	Major dia
4	32.033	26.180	Major dia
Total		100.000	

(5R,6S,9S)-3aa

Peak#	Ret. Time	Area%	Name
1	19.627	3.481	Minor dia
2	21.935	5.739	Minor dia
3	23.509	85.992	Major dia
4	36.908	4.788	Major dia
Total		100.000	

Реак#	Ret. Time	Area%	Name
1	26.306	6.231	
2	61.170	93.769	
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	21.182	30.285	Major dia
2	22.811	18.985	Minor dia
3	23.737	19.763	Minor dia
4	41.774	30.966	Major dia
Total		100.000	

(5R,6S,9S)-3ca

13.236

100.000

Major dia

42.013

4

124

(rac)-3da'

(5R,6S,9R)-3da'

Peak#	Ret. Time	Area%	Name
1	28.445	5.622	Minor dia
2	29.341	21.274	Minor dia
3	32.707	8.769	Major dia
4	36.071	64.335	Major dia
Total		100.000	

(rac)-3ea

(2'S,3'R,4'S)-3ea

5.810 100.000

39.917

4

1	26	

Peak#	Ret. Time	Area%	Name
1	20.838	2.071	Minor dia
2	22.055	2.805	Minor dia
3	24.526	39.514	Major dia
4	36.208	16.705	SM
5	42.690	38.905	Major dia
Total		100.000	

(5R,6S,9S)-3ab

Peak#	Ret. Time	Area%	Name
1	21.162	4.057	Minor dia
2	24.521	7.605	Minor dia
3	26.147	87.659	Major dia
4	39.432	0.679	Major dia
Total		100.000	

I Cak#	Ret. Hille	Alcum	Name
1	13.006	14.910	Minor dia
2	13.405	15.453	Minor dia
3	15.783	34.640	Major dia
4	23.716	34.998	Major dia
Total		100.000	

(5R,6S,9S)-3ac

reak#	Ret. Time	Alea/0	Nairie
1	11.990	5.952	Minor dia
2	14.766	84.131	Major dia
3	22.100	9.917	Major dia
Total		100.000	

(5R,6S,9S)-3ad

6.605 100.000 Major dia

14.169

4

129

(*rac*)-3ae

Peak#	Ret. Time	Area%	Name
1	7.358	9.131	Minor dia
2	7.996	8.959	Minor dia
3	8.608	41.194	Major dia
4	13.215	40.716	Major dia
Total		100.000	

(5*R*,6*S*,9*S*)-3ae

Peak#	Ret. Time	Area%	Name
1	7.887	3.557	Minor dia
2	8.533	14.404	Minor dia
3	9.237	75.166	Major dia
4	14.804	6.874	Major dia
Total		100.000	

(rac)-3ah

Peak#	Ret. Time	Area%	Name
1	14.175	2.691	Minor dia
2	15.560	2.453	Minor dia
3	17.159	46.529	Major dia
4	29.318	48.327	Major dia
Total		100.000	

(5R,6S,9S)-3ah

1	8.521	4.869	Overlapping peaks of the minor dia
2	9.838	47.120	Major dia
3	12.922	48.011	Major dia
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	8.345	7.346	Overlapping peaks of the minor dia
2	9.430	88.490	Major dia
3	12.451	4.164	Major dia
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	11.416	49.044	Major dia
2	25.523	50.956	Major dia
Total		100.000	

(5R,6S,9S)-3aj

100.000

Peak#	Ret. Time	Area%	Name
1	9.289	4.118	Minor dia
2	10.968	46.041	Major dia
3	12.694	3.977	Minor dia
4	21.379	45.864	Major dia
Total		100.000	

(5R,6S,9S)-3ak

Peak#	Ret. Time	Area%	Name
1	9.318	3.376	Minor dia
2	10.873	83.688	Major dia
3	13.000	7.185	Minor dia
4	21.733	5.751	Major dia
Total		100.000	

(5*R*,6*R*,9*S*)-3al

100.000

Peak#	Ret. Time	Area%	Name
1	9.198	87.726	Major dia
2	10.129	2.755	Minor dia
3	20.591	4.583	Minor dia
4	22.492	4.937	Major dia
Total		100.000	

1	31.538	3.331	Minor dia
2	35.443	2.776	Minor dia
3	37.964	46.839	Major dia
4	62.295	47.055	Major dia
Total		100.000	

(5*R*,6*S*,9*S*)-3am

Peak#	Ret. Time	Area%	Name
1	27.568	1.003	Minor dia
2	32.021	3.447	Minor dia
3	36.706	88.330	Major dia
4	62.024	7.220	Major dia
Total		100.000	

(5*R*,6*S*,9*S*)-3an

100.000

139)
-----	---

Peak#	Ret. Time	Area%	Name
1	18.333	3.295	Minor dia
2	19.487	46.222	Major dia
3	21.228	50.483	Major dia
Total		100.000	

r can n	Net. Time	Alea/0	Name
1	17.965	6.004	Minor dia
2	18.943	89.667	Major dia
3	21.173	4.329	Major dia
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	22.640	46.005	Major dia
2	23.967	4.150	Minor dia
3	25.617	3.655	Minor dia
4	27.532	46.190	Major dia
Total		100.000	

(5R,6S,9S)-3ap

9.182

16.255

100.000

Minor dia

Major dia

25.484

27.671

3

4

1	15.234	4.182	Minor dia
2	16.355	46.165	Major dia
3	23.038	45.756	Major dia
4	24.587	3.897	Minor dia
Total		100.000	

(5R,6S,9S)-3aq

Peak#	Ret. Time	Area%	Name
1	16.232	4.739	Minor dia
2	17.341	63.375	Major dia
3	22.071	9.096	Major dia
4	24.893	22.790	Minor dia
Total		100.000	