Supplementary Information for

High-Throughput Determination of Enantiopurity in Atroposelective Synthesis of Aryl Triazoles

Jongdoo Lim,[†] Melody Guo,[‡] Sooyun Choi,[‡] Scott J. Miller,^{*, ‡} and Eric V. Anslyn^{*,†}

[†]Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

[‡]Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States

Table of Contents

General procedure	S2
CD data collection parameters	S2
Titration study	S2
Sample preparation protocol for HT <i>ee</i> determination	S2
Thin layer chromatography analysis	S3
Additional CD spectra	S4
Chiral HPLC spectra	S7
References	S11

General procedure

All reagents were purchased from commercial sources. Acetonitrile was spectrophotometric grade. All other solvents were ACS grade and used without further purification. Compounds 1, 2, and 3 were synthesized according to literature procedure.^{s1} Compound characterization for these samples may be found in reference s1. Chiral HPLC data were acquired using an Agilent 1100 series analytical chiral HPLC equipped with a photodiode array detector (254 nm) with a Daicel Chiralpak IA column (5 μ m particle size, 4.5 x 250 mm), flow rate of 1.0 mL/min, and either 18% EtOH/hexanes (for compound 2) or 20 % EtOH/hexanes (for compound 3). CD screening of the atropisomers **1**, **2**, and **3** were performed using either a Jasco J-815 spectropolarimeter in the Targeted Therapeutic Drug Discovery and Development Program facility at the University of Texas at Austin or an Ekko CD microplate reader manufactured by Hinds Instruments. Titration study was conducted by using a Cary 100 UV-Vis spectrophotometer from Agilent Technology. HyperSepTM silica cartridges (bed weight 50 mg, column capacity 1 mL) were used for a washelute step. All stock solutions for CD analysis were prepared using acetonitrile as the solvent: **1** (17.5 mM), **2** (17.5 mM), **3** (16 mM), and Cu(OTf)₂ (17.5 mM for complexation with **1** and **2**, 16 mM for complexation with **3**).

CD data collection parameters

Jasco J-815 with auto peltier 6-cell changer: Sample concentration in acetonitrile (1.75 mM for 1 and 2, 1.6 mM for 3), Type 21 macro cuvette with PTFE stopper (1 mm, UV quartz), sensitivity - standard, D.I.T. (integration time) - 1 sec, bandwidth - 1 nm, data pitch - 0.1 nm, scanning speed - 100 nm/min, accumulation - 2 times, temperature - measured at 20 °C

Ekko: Sample concentration in acetonitrile (1.75 mM for **2** and 1.6 mM for **3**), sample volume (40 μ L per well), quartz microplate with lid and sealing foil (96 wells, 6.6 mm diameter, well capacity 300 μ L, quartz glass, Hellma Analytics), 40 mdeg sensitivity, 2 s integration time, room temperature.

Titration study

The titration study was carried out using a Cary 100 UV-Vis spectrophotometer from Agilent Technology (10 mm cell, UV quartz). The spectra were obtained at 320 nm where only the complexes can absorb light. The concentration of copper(II) triflate in acetonitrile was set to 0.175 mM. The absorbance curve reached a plateau at approximately 3:1 ligand-metal molar ratio.

Sample preparation protocol for HT ee determination

Four atroposelective syntheses were performed using (*R*)-/(*S*)-TCYP as the catalyst: Two reactions for **2** (R_a and S_a) and two reactions for **3** (R_a and S_a), respectively. The two reaction solutions were mixed in the different ratios such as 19:1, 18:2, 17:3, 15:5, 14:6, 12:8, 11:9, 9:11, 8:12, 6:14, 5:15, 3:17, 2:18, and 1:19, affording a total of 14 samples. Calibration curves were constructed with the varied *ee* values of **2** (-78, -46, -23, 1, 25, 49, and 80%) and **3** (-82, -50, -26, -2, 22, 46, and 78%), respectively. A sample preparation protocol for CD analysis is as follows:

- A crude solution (0.5 mg/mL) in DCM (2 mL) was washed 2 times with 2 mL of 0.01 M HCl (aq).
- A solution (1mL) in DCM layer was loaded onto the silica cartridge.
- Wash the cartridge with either 1:3 EA:Hex (3 x 1mL) for 2 or 1:4 EA:Hex (4 x 1mL) for 3.
- Elute the product with 7:1 DCM:MeOH (200 µL).
- Dry the sample with N₂-blowing.
- Dissolve the dried sample in acetonitrile (2mL) and determine the concentration by measuring the UV absorbance (241 nm) of solution (200 μ L per well) with an Ekko microplate reader.

- A solution of copper(II) triflate in acetonitrile (3 eq.) was added to the solution.
- The concentration was adjusted to 1.75 mM for 2 and 1.6 mM for 3 by adding acetonitrile.
- A solution of the complex (40 μ L) was added to a 96-well plate and analyzed by a CD microplate reader.

Thin layer chromatography analysis

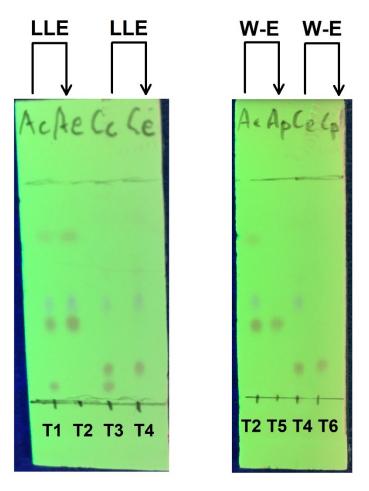


Figure S1. The sample purification process was monitored using thin layer chromatography (TLC). The TLC plates were developed in 1:1 EA:Hex: T1 (the crude mixture of 3), T2 (the crude mixture 3 after liquid-liquid extraction (LLE)), T3 (the crude mixture of 2), T4 (the crude mixture 2 after liquid-liquid extraction (LLE)), T5 (the pure 3 after a wash-elute (W-E) step), T6 (the pure 2 after a wash-elute (W-E) step).

Additional CD spectra

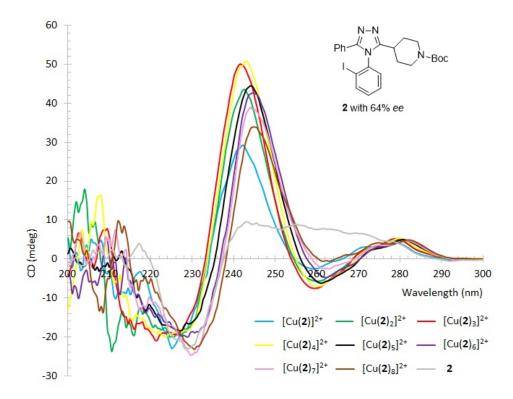
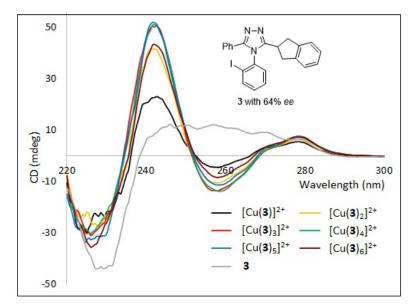
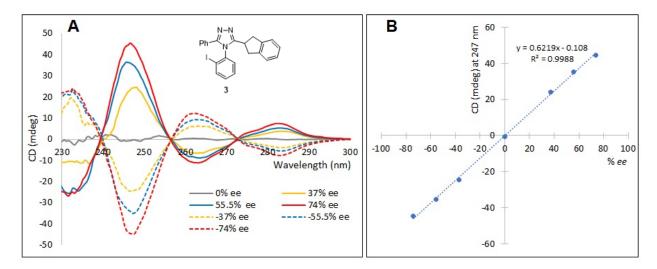




Figure S2. The CD spectra of 2 (64% *ee*) obtained with addition of copper(II) triflate (Jasco J-815, 1.75 mM in acetonitrile, 1 mm cell).

Figure S3. The CD spectra of **3** (64% *ee*) obtained with addition of copper(II) triflate (Jasco J-815, 1.6 mM in acetonitrile, 1 mm cell).

Figure S4. (A) CD spectra were recorded with $[Cu(3)_3]OTf_2$ having known *ee* values (Jasco J-815, 1.6 mM in acetonitrile, 1 mm cell). (B) The calibration curve was linear, exhibiting $R^2 = 0.9988$.

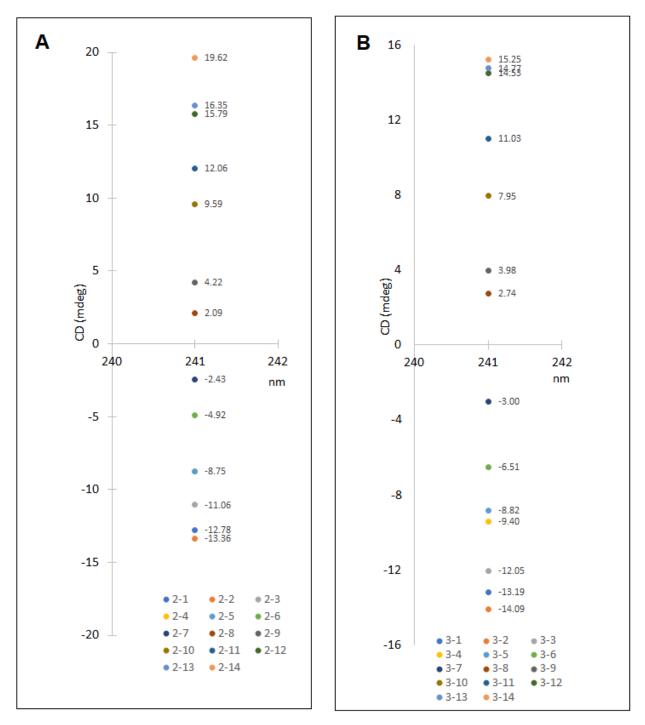
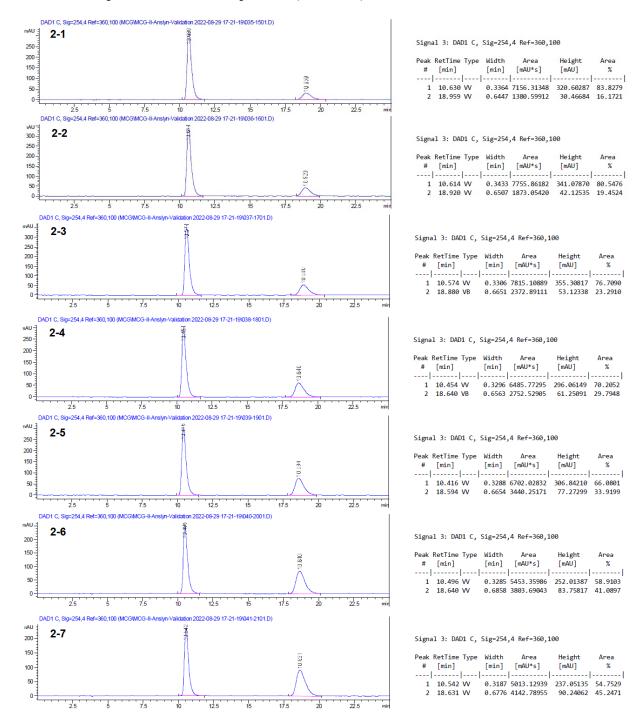
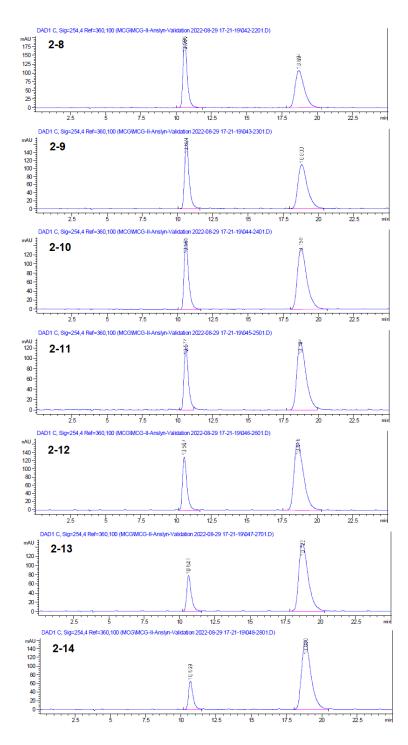




Figure S5. (A) CD spectra in the HT *ee* determination of 2 (14 samples). (B) CD spectra in the HT *ee* determination of 3 (14 samples).

Chiral HPLC spectra for the 14 samples of 2 (2-1 ~ 2-14)

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

#	RetTime Type [min]	[min]		Height [mAU]	Area %
1	10.596 VB	0.3126	4075.61206	194.39854	45.8098
2	18.694 VB	0.6715	4821.19727	106.22992	54.1902

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

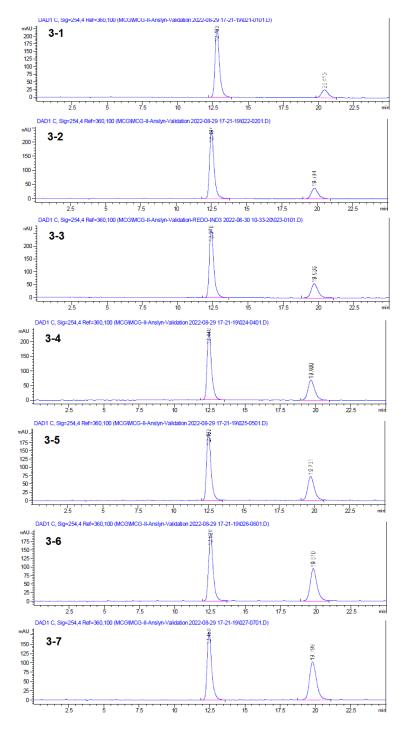
Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	10.624 W	0.3359	3731.73120	168.81984	42.3044
2	18.800 VV	0.7072	5089.40430	109.71995	57.6956

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

	RetTime			Area	Height	Area
	[min]				[mAU]	%
1	10.585	W	0.3374	3371.53174	150.50046	35.1043
2	18,759	w	0.7143	6232,79053	133,59401	64.8957

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.577	W	0.3281	2651.54883	122.70514	30.6872
2	18.707	w	0.6901	5989.02490	131.81387	69.3128


Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
	10.567			2818.53369		
2	18.616	w	0.7039	7812.89063	165.75615	73.4887

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
	10.669			1454.25061	65.56335	16.4900
2	18.830	W	0.7211	7364.73340	156.48276	83.5100

Chiral HPLC spectra for the 14 samples of 3 (3-1 ~ 3-14)

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
_	12.783 W 20.415 W		4974.80762 922.60400	224.47734 26.44824	

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.497	VB	0.3327	5366.66064	241.99092	80.2191
2	19.794	w	0.5102	1323.34253	38.00810	19.7809

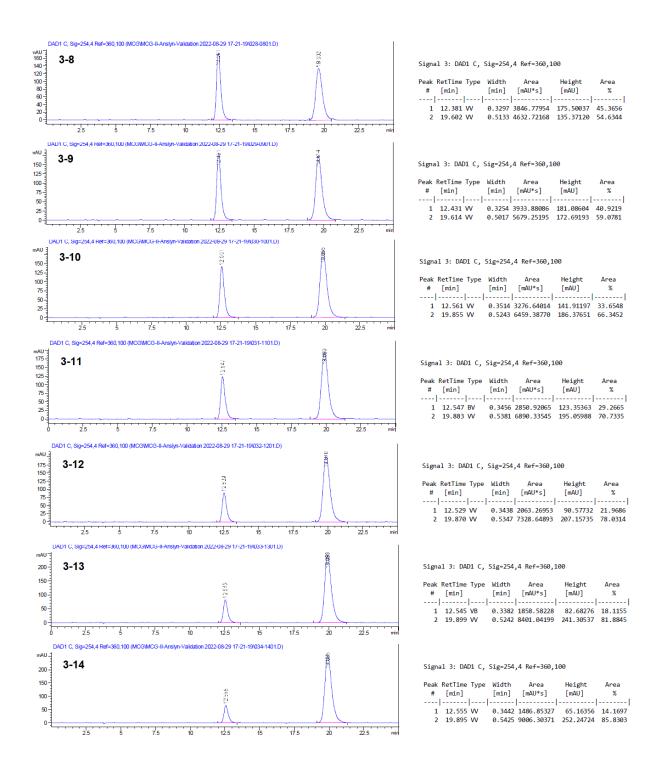
Signal 3: DAD1 C, Sig=254,4 Ref=360,100

	RetTime	Туре		Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.378	W	0.3370	6018.86816	269.01251	75.5999
2	19.686	w	0.5311	1942.60852	55.95198	24.4001

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

#	RetTime Type [min] 	[min]	Area [mAU*s]	Height [mAU]	Area %
1	12.448 BB 19.680 VB	0.3302	5110.28271 2352.73145	232.70819	68.4748

Signal 3: DAD1 C, Sig=254,4 Ref=360,100


Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
							l
1	12.483	W	0.3360	4529.24658	204.79390	64.8512	
2	19.731	w	0.5128	2454.81421	72.54388	35.1488	

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	12.529	VB	0.3348	4450.49268	199.09212	57.9989	
2	19.810	w	0.5062	3222,92041	95.38564	42,0011	

Signal 3: DAD1 C, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.459	W	0.3398	4152.57324	183.62100	53.5099
2	19.799	w	0.5347	3607.80298	102.99853	46.4901

References

s1. Choi, S.; Guo, M. C.; Coombs, G. M.; Miller, S. J., Catalytic Asymmetric Synthesis of Atropisomeric N-Aryl 1,2,4-Triazoles. *J. Org. Chem.* 2023, DOI: 10.1021/acs.joc.1022c02727.