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Crystallographic Data and Structural Refinements
Table S1. Crystallographic Data and Structural Refinement of [(Cp*,Gd)2(u-Bbim)] « x
toluene, 1-Ln (Ln = Gd, Th, x = 2; Ln = Dy, x =1).

1-Gd 1-Tb 1-Dy
Empirical formula C53H34Gd2N4 C58H84N4Tb2 C51H75Dy2N4
Formula weight (g/mol) 1271.89 1275.23 1190.25
Temperature (K) 99.99(10) 100.00(10) 173.15
Crystal system monoclinic monoclinic triclinic
Space group C2/m C2/m P-1
a (A) 15.5900(2) 27.9083(18) 10.5529(6)
b (A) 13.65900(10) 13.6251(2) 11.0230(6)
c(A) 15.5654(2) 15.5343(10) 12.4361(7)
a(°?) 90 90 67.7720(10)
8(°) 116.3370(10) 149.942(18) 87.5370(10)
v(°) 90 90 79.1990(10)
Volume (A3) 2970.50(6) 2958.7(8) 1314.78(13)
V4 2 2 1
Pealc (8/cm?3) 1.422 1.431 1.503
u (mm?) 14.601 11.915 2.862
F(000) 1296.0 1300.0 602.0
Crystal size (mm3)  0.122 x 0.1 x 0.035 0.113 x 0.055 x 0.055 0.277 x 0.157 x 0.153
Radiation CuK, (A =1.54184) CuKq (A =1.54184) MoK, (A = 0.71073)
20 range

for data collection (°)

Index ranges

6.336 to 154.026

-19<h<19,-14<k
<17,-19</<19

6.348 to 154.416

-355h<35,-17<k<

13,-19</<19

3.54t052.8

-13<h<13,-13<k<

13,-15</<15

Reflections collected 10923 11155 10374
Independent reflections 3184 [Rint = 0.0244, 3155 [Rint = 0.0256, 5366 [Rint = 0.0137,

Ry =0.0231] Re = 0.0230] R, =0.0191]

Data/restraints/parameters 3184/0/243 3155/0/243 5366/0/310
Goodness-of-fit on F2 1.103 1.100 1.074

Final R indexes R1=0.0240, wR; = R1=0.0251, wR; = R1=0.0194,

[I>=20 (/)] 0.0610 0.0617 WR, = 0.0464

. . R1=0.0246, wR; = R1=0.0258, wR; = R1 =0.0205,

Final R indexes [all data] 0.0613 0.0620 WR, = 0.0475

Largest diff. peak/hole (e A?) 0.40/-0.62 0.44/-0.85 1.38/-0.59

Figure S1. Structure of 1-Gd. Orange, gray, and blue spheres represent gadolinium, carbon,
and nitrogen atoms, respectively. All hydrogen atoms, toluene solvent molecules and disorder
parts on the Cp* ligands are omitted for clarity.



Figure S2. Structure of 1-Th. Dark red, grey, and blue spheres represent gadolinium, carbon,
and nitrogen atoms, respectively. All hydrogen atoms, toluene solvent molecules and disorder
parts on the Cp* ligands are omitted for clarity.

Table S2. Crystallographic Data and Structural Refinement of [K(crypt-222)][(Cp*.Ln)2(p-
Bbim*)] » 3 THF, 2-Ln (Ln = Gd, Tb, Dy).

2-Gd 2-Tb 2-Dy
Empirical formula C34H123Gd2KN509 C34H127KN509Tb2 C34H123DYZKN509
Formula weight (g/mol) 1719.52 1721.85 1730.02
Temperature (K) 100.15 100.00(10) 173(2)
Crystal system triclinic triclinic triclinic
Space group P-1 P-1 P-1
a (A) 13.00780(10) 12.99810(10) 13.0586(2)
b (A) 18.0377(2) 18.0236(2) 18.1083(3)
c(A) 18.9498(2) 18.9237(2) 18.9686(2)
a(°) 81.5150(10) 81.6460(10) 81.4010(10)
8(°) 81.5720(10) 81.5260(10) 80.9190(10)
v (°) 74.8530(10) 74.9200(10) 74.9370(10)
Volume (A3) 4217.51(8) 4207.27(8) 4249.30(11)
V4 2 2 2
Pealc (8/cm?3) 1.354 1.359 1.352
u (mm?) 1.665 1.773 1.850
F(000) 1786.0 1788.0 1794.0
Crystal size (mm3)  0.59 x 0.313 x 0.269 0.362 x 0.159 x 0.131 0.159 x 0.148 x 0.144
Radiation =~ MoKq (A = 0.71073) MoK, (A = 0.71073) MoK, (A =0.71073)
20 range

for data collection (°)

Index ranges

4.932to061.91

-18<h<18,-26<k
<25,-27<1<27

4.136 to 62.004

-17<h<18,-24<k<
26,-27<1<23

3.256 to 52.744

-16<h<16,-22<k<
22,-23</<23

Reflections collected 78556 79545 73354
Independent reflections 21844 [Rint =0.0360, 21689 [Rint = 0.0359, R = 17324 [Rint = 0.0354, R, =
Re=0.0362] 0.0366] 0.0233]
Data/restraints/parameters 21844/42/978 21689/0/921 17324/33/856
Goodness-of-fit on F2 1.063 1.117 1.103
Final R indexes R1=0.0402, WR; = R1=0.0575, wR; = R1=0.0513, wR; =
[I>=20 (/)] 0.1003 0.1417 0.1308
Final R indexes [all data] R1=0.0483, wR; = R1=0.0698, wR; = R1=0.0561, wR; =
0.1047 0.1584 0.1338
Largest diff. peak/hole (e A?) 4.83/-2.51 9.65/-6.48 2.11/-0.80



Figure S3. Structure of the [(Cp*,Gd)2(u-Bbim*)]~ anion in a crystal of 2-Gd. Orange, gray, and
blue spheres represent gadolinium, carbon, and nitrogen atoms, respectively. All hydrogen
atoms, THF solvent molecules and the [K(crypt-222)]* counterion are omitted for clarity.

Figure S4. Structure of the [(Cp*,Tb)2(u-Bbim*)]~ anion in a crystal of 2-Th. Dark red, gray, and
blue spheres represent terbium, carbon, and nitrogen atoms, respectively. All hydrogen
atoms, THF solvent molecules and the [K(crypt-222)]* counterion are omitted for clarity.
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Figure S5. Packing diagram of the [(Cp*,Gd)2(p-Bbim*)]~ anions in a crystal of 2-Gd in front
(top) and top view (bottom). Orange, gray, and blue spheres represent gadolinium, carbon,
and nitrogen atoms, respectively. All hydrogen atoms, THF solvent molecules and the [K(crypt-
222)]* counterion are omitted for clarity.
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Figure S6. Packing diagram of the [(Cp*,Tb),(u-Bbim*)]~ anions in a crystal of 2-Tb in front
(top) and top view (bottom). Red, gray, and blue spheres represent terbium, carbon, and
nitrogen atoms, respectively. All hydrogen atoms, THF solvent molecules and the [K(crypt-
222)]* counterion are omitted for clarity.
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Figure S7. Packing diagram of the [(Cp*.Dy).(u-Bbim*)]~ anions in a crystal of 2-Dy in front
(top) and top view (bottom). Green, gray, and blue spheres represent dysprosium, carbon,
and nitrogen atoms, respectively. All hydrogen atoms, THF solvent molecules and the [K(crypt-
222)]* counterion are omitted for clarity.
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IR Spectroscopy
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Figure S8. FTIR spectra of [(Cp*,Gd)2(u-Bbim)], 1-Gd (blue) and [K(crypt-222)][(Cp*,Gd)2(u-
Bbim®)], 2-Gd, (red).
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Figure S9. FTIR spectra of [(Cp*,Tb)2(u-Bbim)], 1-Tb (blue) and [K(crypt-222)][(Cp*.Tb)2(u-
Bbim*)], 2-Th, (red).
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Figure S10. FTIR spectra of [(Cp*.Dy)2(u-Bbim)], 1-Dy (blue) and [K(crypt-222)][(Cp*:Dy)2(u-
Bbim®)], 2-Dy, (red).
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Figure S11. Stacked FTIR spectra of [(Cp*.Ln)2(u-Bbim)], 1-Ln (Ln =Y (gray),! Gd (turquoise),
Tb (pink), Dy (blue)).
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UV/Vis Spectroscopy

7(em) ¥(cm™)
?(I)?(?OI . ?O?OOI ' . : 10090 30000 20000 10000
35000 1 Gd 40000 sal a0 1 \ :
= —1-Tb
= 2¢cd ——2Tb
30000 -
€
O
5 20000
€
=
W
10000 —
04 K 0 -
T T I T L] T T I T L] T L I T T T L) T T I T T T T I T T T T I T T T T
400 600 800 1000 400 600 800 1000
A (nm) A (nm)

Figure S13. Left: UV/Vis spectra of [(Cp*.Gd):(u-Bbim)] (1-Gd, in blue) and [K(crypt-
222)][(Cp*2Gd)2(u-Bbim*®)] (2-Gd, in red), taken in THF. Right: UV/Vis spectra of [(Cp*,Tb)2(u-
Bbim*)] (1-Th, in blue) and [K(crypt-222)][(Cp*.Tb)2(u-Bbim*®)] (2-Th, in red), taken in THF.
Concentrations: 1-Gd: 2.636 x 10~ mol/L, 1-Tb: 1.389x 10~ mol/L, 2-Gd: 3.198 x 10~ mol/L,
2-Tb: 2.307 x 10~ mol/L.
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Figure S14. Left: Superimposed UV/Vis spectra of [(Cp*,Ln)z(u-Bbim)] (1-Ln, Y (red),! Gd
(green), Tb (purple), Dy(blue)). Right: Magnification of superimposed UV/Vis spectra of
[(Cp*2Ln)2(u-Bbim)] (1-Ln, Y (red), Gd (green), Tb (purple), Dy(blue)). Concentrations: 1-Y:
8.054 x 107° mol/L, 1-Gd: 2.636 x 10> mol/L, 1-Th: 1.389x 10~ mol/L, 1-Dy: 1.353 x 10> mol/L.
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Figure S15. Superimposed UV/Vis spectra of [K(crypt-222)][(Cp*2Ln)2(pu-Bbim*)] (2-Ln, Y (red),*
Gd (green), Tb (purple), Dy (blue)). Concentrations: 2-Y: 5.091 x 10~ mol/L, 2-Gd: 3.198 x 10~
mol/L, 2-Th: 2.307 x 10~ mol/L, 2-Dy: 1.114 x 10~* mol/L.
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Cyclic Voltammetry
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Figure S16. Top left: Full cyclic voltammogram of [K(crypt-222)][(Cp*.Dy)2(u-Bbim*)], 2-Dy,
measured in THF at 300 K with 0.25 M ("BusN)PFgs supporting electrolyte and 1.7 mmol/L
analyte concentration. The initial scan is depicted in blue, the second scan is depicted in
orange. Top right: Magnification of the area between -1.8 and 1.1 V for the first and second
scan. Bottom: Magnified scans superimposed with the reversible scan depicted in the main

text.
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Magnetism
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Figure S17. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline
samples of 2-Dy (dark red circles), 2-Tb (pink triangles) and 2-Gd (dark blue circles) collected
under a 1 T applied dc field. The black line represents a fit to the data for 2-Gd giving rise to J
=-1.85(4) cm!and g = 2.03(1).
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Figure S18. Variable-temperature dc magnetic susceptibility data for a restrained

polycrystalline sample of 2-Gd collected under a 0.1 T applied dc field (top and bottom). The
black line represents a fit to the data giving rise to J = 1.96(2) cm™ and g = 2.03(1).
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Figure S19. Variable-temperature dc magnetic susceptibility data for a restrained

polycrystalline sample of 2-Gd collected under a 0.5 T applied dc field (top and bottom). The
black line represents a fit to the data for 2-Gd giving rise to J = -1.88(2) cm™ and g = 2.037(1).
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Figure S20. Variable-temperature dc magnetic susceptibility data for a restrained

polycrystalline sample of 2-Gd collected under a 1 T applied dc field (top and bottom). The
black line represents a fit to the data for 2-Gd giving rise to J = -1.85(1) cm™ and g = 2.03(1).
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Figure S21. Superimposed variable-temperature dc susceptibility data of polycrystalline 2-Gd
collected under 0.1 T (green triangles), 0.5 T (purple squares), 1 T (blue circles) applied dc field.
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Figure S22. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 2-Dy collected under a 0.1 T applied dc field.
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Figure S23. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 2-Dy collected under a 0.5 T applied dc field.
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Figure S24. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 2-Dy collected under a 1 T applied dc field.
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Figure S25. Variable-temperature dc magnetic susceptibility data for a restrained

polycrystalline sample of 1-Gd collected under a 0.1 T applied dc field. The black line
represents a fit to the data for 1-Gd giving rise to J = -0.064(2) cm™ and g = 2.029(1).
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Figure S$26. Variable-temperature dc magnetic susceptibility data for a restrained

polycrystalline sample of 1-Gd collected under a 0.5 T applied dc field. The black line
represents a fit to the data for 1-Gd giving rise to J = -0.056(1) cm™ and g = 2.032(1).
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Figure S27. Variable-temperature dc magnetic susceptibility data for a restrained

polycrystalline sample of 1-Gd collected under a 1 T applied dc field. The black line represents
a fit to the data for 1-Gd giving rise to J = -0.058(1) cm™* and g = 2.031(1).
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Figure S28. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 1-Gd collected under 0.1, 0.5, and 1 T applied dc fields.
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Figure S29. Enlarged plot of variable-temperature dc magnetic susceptibility data for a
restrained polycrystalline sample of 1-Gd collected under 0.1, 0.5, and 1 T applied dc fields.
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Figure $30. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline
samples of 1-Gd and 2-Gd collected under a 0.1 T applied dc field.
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Figure S31. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline
samples of 1-Dy, 1-Tb, 1-Gd, 2-Dy, 2-Th, and 2-Gd collected under a 0.1 T applied dc field.
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Figure S32. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 1-Th collected under a 0.1 T applied dc field.
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Figure S$33. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 1-Th collected under a 0.5 T applied dc field.
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Figure S34. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 1-Th collected under a 1 T applied dc field.
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Figure S35. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 1-Tb collected under 0.1, 0.5, and 1 T applied dc fields.
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Figure S36. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline
samples of 1-Tb and 2-Tb collected under a 0.1 T applied dc field.
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Figure S37. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 1-Dy collected under a 0.1 T applied dc field.
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Figure S38. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 1-Dy collected under a 0.5 T applied dc field.
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Figure S$39. Variable-temperature dc magnetic susceptibility data for a restrained
polycrystalline sample of 1-Dy collected under 0.1 and 0.5 T applied dc fields.
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Figure S40. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline
samples of 1-Dy and 2-Dy collected under a 0.5 T applied dc field.
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Data derived from Ac Susceptibility Measurements
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Figure S41. Variable-temperature, variable-frequency in-phase (ym’) (top) and out-of-phase
(xm") (bottom) ac magnetic susceptibility data collected for 2-Dy under a zero applied dc field
from 5.5 to 11.5 K. Solid lines represent fits to the data, as described in the main text. A non-
zero ym" out-of-phase signal indicates the presence of an energy barrier to spin reversal.
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Figure S42. Cole-Cole (Argand) plots for ac susceptibility collected from 4.5 to 11.5 K under
zero applied dc field for 2-Dy. Symbols represent the experimental data points and the points
representing the fits are connected by black solid lines.
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Figure S43. Arrhenius plots of relaxation time data for 2-Dy obtained between 4.5 and 11.5 K
(see Figure 6 in the main text). The black line corresponds to a linear fit to the Arrhenius

equation, as described in the main text, yielding Ueff = 48.9(1) cm™ and 7o = 3.2(1) x 1077 s (all
data points between 4.5 and 5.5 K were fitted).
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Figure S44. Cole-Cole (Argand) plots for ac susceptibility collected from 5.5 to 11.5 K under

zero applied dc field for 2-Dy. Symbols represent the experimental data points and the points
representing the fits are connected by black solid lines.
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Figure S45. Arrhenius plot of relaxation time data for 2-Dy obtained between 5.5 and 11.5 K
(see Figure S24). The black line corresponds to a linear fit to the Arrhenius equation, as
described in the main text, yielding Uett = 51.9(1) cm™ and 7o = 1.91(1) x 10”7 s. Data points
between 5.5 K and 11.5 K were fitted due to the slight curvature in Figure S23 indicating a
deviation from linearity of the temperature-dependent 7 at the lowest measured
temperatures. The obtained values for Uetf and 7o are similar to those shown in Figure S23
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Figure S46. Variable-temperature, variable-frequency in-phase (ym’) ac magnetic susceptibility
data collected for 1-Dy under a zero applied dc field from 5.5 to 24.5 K. Solid lines represent
fits to the data, as described in the main text. A non-zero ym" out-of-phase signal indicates the
presence of an energy barrier to spin reversal.
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Figure S47. Cole-Cole (Argand) plots for ac susceptibility collected from 5.5 to 24.5 K under
zero applied dc field for 1-Dy. Symbols represent the experimental data points and the points
representing the fits are connected by black solid lines.
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Figure S48. Arrhenius plots of relaxation time data for 1-Dy obtained between 5.5 and 11.5 K
(see Figure 7 in the main text) through ac magnetic susceptibility measurements. The black
line corresponds to a fit to Orbach and Raman relaxation processes. as described in the main
text, yielding Uefr = 185.0(1) cm™ and 70 = 1.0(1) x 1078 s.
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Figure S49. Individual contributions of the multiple magnetic relaxation pathways to the
Arrhenius plot of 1-Dy at 0 Oe shown in Figure S48. The best fit yielded Uest = 185.0(1) cm™
and 70 = 1.0(1) x 1078 s. The red line represents a fit to one Orbach relaxation process and a

Raman process. Individual parameters used to calculate the contributions are given in Table
S6.
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Data derived from Dc Relaxation Experiments
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Figure S50. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 1.8 K.
The data (pale blue circles) were fit to a function of the formy = a - exp (=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 1.8 K,
and then removing the magnetic field.
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Figure S51. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 2.0 K.
The data (pale blue circles) were fit to a function of the formy = a - exp (=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 2.0 K,
and then removing the magnetic field.
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Figure S52. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 2.5 K.
The data (pale blue circles) were fit to a function of the formy = a - exp (=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 2.5 K,
and then removing the magnetic field.
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Figure S53. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 3.0 K.
The data (pale blue circles) were fit to a function of the form y = a - exp (-((t/7)®)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 3.0 K,
and then removing the magnetic field.
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Figure S54. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 3.5 K.
The data (pale blue circles) were fit to a function of the formy = a - exp (=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 3.5 K,
and then removing the magnetic field.

M (ug)

TTTT T I T T T T I T T T T T T T T T T I I T T TT]
0 5 10 15 20 25 30

t(s)
Figure S55. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 4.0 K.
The data (pale blue circles) were fit to a function of the formy = a - exp (=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 4.0 K,

and then removing the magnetic field.
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Figure S56. Plot of magnetization (normalized) vs. time used to derive relaxation times for 2-
Dy at different temperatures. The data were fit to a function of the formy = a - exp (-((t/7)?))
where b is a stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained
by applying a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample
to a given temperature, and then removing the magnetic field.

Table S3. Relaxation times, 7 (s), and stretch factors, b, at various temperatures, T (K) for 2-
Dy.

T (K) 7 (s) stretch factor
1.8 68.87740572 0.828653282
2.0 65.61476463 0.825878046
2.5 34.00662524 1.388001075
3.0 28.31669823 1.107648596
3.5 20.95021698 1.213686665
4.0 12.89217026 1.148894262
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Figure S57. Individual contributions of the multiple magnetic relaxation pathways to the
Arrhenius plot of 2-Dy at 0 Oe shown in Figure 7 of the main text. The best fit yielded Ues =
49.2(1) cm™ and 70 = 3.1(1) x 1077 s. The red line represents a fit to one Orbach relaxation
process and a tunneling pathway. Individual parameters used to calculate the contributions
are given in Table S4.
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Figure S58. Arrhenius plots of relaxation time data derived from ac magnetic susceptibility
measurements at temperatures from 4.5 to 11.5 K (pale blue to red circles) and dc relaxation
experiments within the temperature range of 1.8 to 4 K (dark blue circles) for 2-Dy. The black
solid line (top) corresponds to a fit to one Orbach, one Raman, and one QTM process giving
rise to Uett = 49.9(1) cm™ and 70 = 2.7(1) x 1077 s, where the corresponding individual
contributions of the multiple magnetic relaxation pathways are shown on the bottom.
Individual parameters used to calculate the contributions are given in Table S4. The inclusion
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of a Raman process did not improve the quality of the fit.
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Table S4. Best-fit parameters for the Arrhenius plot of 2-Dy at Hyc = 0 Oe. Data from 4.5 to
11.5 K and from 5.5 K to 11.5 K were extracted from ac susceptibility measurements. Data
from 1.8 to 11.5 K was extracted from ac and dc susceptibility measurements.

TQTM (s) C (s7K™) n w0 (s) Uesf (cm™)
45t011.5K - - - 3.2(1)x 107 48.9(1)
55t011.5K - - - 1.91(1) x 1077 51.9(1)
1.8t0115K  41.7(1) - - 3.1(1) x 1077 49.2(1)

1.8t011.5K 993.8(2) 4.9(1)x 1073 1.73(2) 2.7(1)x 1077 49.9(1)
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Figure S59. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 1.8 K.
The data (pale pink circles) were fit to a function of the form y = a - exp (-=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 1.8 K,
and then removing the magnetic field.
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Figure S60. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 2 K. The
data (pale pink circles) were fit to a function of the form y = a - exp (—((t/7)°)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 2 K, and
then removing the magnetic field.
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Figure S61. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 2.2 K.
The data (pale pink circles) were fit to a function of the form y = a - exp (-=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 2.2 K,
and then removing the magnetic field.
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Figure S62. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 2.5 K.
The data (pale pink circles) were fit to a function of the form y = a - exp (-=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 2.5 K,

and then removing the magnetic field.
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Figure S63. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 2.75 K.
The data (pale pink circles) were fit to a function of the form y = a - exp (-=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 2.75 K,
and then removing the magnetic field.
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Figure S64. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 3 K. The
data (pale pink circles) were fit to a function of the form y = a - exp (-((t/7)°)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 3 K, and
then removing the magnetic field.
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Figure S65. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 3.25 K.
The data (pale pink circles) were fit to a function of the form y = a - exp (-=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 3.25 K,
and then removing the magnetic field.
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Figure S66. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 3.5 K.
The data (pale pink circles) were fit to a function of the form y = a - exp (-=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 3.5 K,
and then removing the magnetic field.
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Figure S67. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 4 K. The
data (pale pink circles) were fit to a function of the form y = a - exp (-((t/7)°)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 4 K, and
then removing the magnetic field.
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Figure S68. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 4.5 K.
The data (pale pink circles) were fit to a function of the form y = a - exp (-=((t/7)?)) where b is a
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 4.5 K,
and then removing the magnetic field.
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Figure S69. Plot of magnetization (normalized) vs. time used to derive relaxation times for 1-
Dy at different temperatures. The data were fit to a function of the formy = a - exp (-((t/7)?))
where b is a stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained
by applying a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample
to a given temperature, and then removing the magnetic field.
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Table S5. Relaxation times, 7 (s), and stretch factors, b, at various temperatures, T (K) for 1-
Dy.

T (K) T (s) stretch factor
1.8 146.1907 0.84552
2.0 130.2492 0.84555
2.2 111.7248 0.841136
2.5 86.93023 0.858337

2.75 65.26766 0.879887
3.0 49.3119 0.939921

3.25 34.76398 0.960858
3.5 24.93626 1.024986
4.0 12.09809 1.10035
4.5 5.240397 1.246521
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Figure S70. Individual contributions of the multiple magnetic relaxation pathways to the
Arrhenius plot of 1-Dy at 0 Oe shown in Figure 7 of the main text. The best fit yielded Ues =
182.1(1) cm™ and 10 = 3.0(1) x 107% s. The red line represents a fit to one Orbach relaxation
process, a Raman process and a tunneling pathway. Individual parameters used to calculate
the contributions are given in Table S6.

Table S6. Best-fit parameters for the Arrhenius plot of 1-Dy at Hyc = 0 Oe. Data from 5.5 to
24.5 K was extracted from ac susceptibility measurements. Data from 1.8 to 24.5 K was
extracted from ac and dc susceptibility measurements.

TQT™m (S) C (S_lK_n) n 70 (S) Uest (cm‘l)
5.5t024.5K - 1.6(1) x 10 4.92(2) 1.0(1)x10®  185.0(1)
1.8t024.5K 208.0(1) 5.5(2) x 10~ 5.36(3) 3.0(1) x 1078 182.1(1)
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Figure S71. Comparison of all relaxation times data derived from ac magnetic susceptibility
measurements and dc relaxation experiments for 1-Dy and 2-Dy, respectively.
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CASSCF Calculations

Table S7. Computed energy levels (the ground state is set at zero) and main components
(>10%) of the wavefunction for each m; state of the ground-state multiplet “F¢ for first
individual Tb center of 2-Tb at the CAS(8,7)SCF — RASSI-SO level.

Energy (cm™) Wavefunction
1 0.0 98.6% | £ 1>
2 2.0 76.9% | £ 0> +21.4% | £ 2>
3 51.4 95.2% | £ 1>
4 56.5 95.2% | + 2>
5 66.6 72.4% |+ 2>+ 18.7% | £ 0>
6 100.4 92.8% | + 3>
7 122.9 91.2% | £ 3>
8 198.6 85.8% | + 4> + 12.4% | + 6>
9 207.0 80.2% | £ 4>+ 12.8% | + 6>
10 325.6 87.9% | + 5>
11 326.9 86.0% | £ 5>
12 364.8 81.8% |+£6>+11.0% |+ 4>
13 365.3 81.7% |+£6>+11.6% |+ 4>

Table S8. Computed energy levels (the ground state is set at zero) and main components
(>10%) of the wavefunction for each m; state of the ground-state multiplet ’F¢ for second
individual Tb center of 2-Tb at the CAS(8,7)SCF — RASSI-SO level.

Energy (cm™) Wavefunction
1 0 97.0% | + 1>
2 1.9 74.0% | £ 0>+ 22.6% | £ 2>
3 57.1 84.1% |£1>+12.4% | £ 2>
4 60.8 87.7% |+£2>+10.5% |+ 1>
5 76.3 69.6% | £ 2>+ 20.9% | £ 0>
6 107.2 93.4% | + 3>
7 130 93.1% | + 3>
8 208.4 89.1% |+£4>+10.1% | £ 6>
9 2154 84.5% |+4>+10.3% | £ 6>
10 339.1 92.0% | £ 5>
11 340.2 90.9% | £ 5>
12 384 86.8% | £ 6>
13 384.5 86.5% | + 6>
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Figure S72. Variable-temperature dc magnetic susceptibility data of 2-Tb (black squares) and
calculated ymT data (coloured lines) for a screening of the Je't value from -1.5 cm™ to -0.5
cm™,
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Figure S73. Variable-temperature dc magnetic susceptibility data of 2-Tb (blue squares) with
the best fit (black solid line) for Jex't = -0.9 cm™.
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Table S9. Computed energy levels (the ground state is set at zero) and composition of the g-
tensor (g, gy, g:) of the low-lying exchange energy levels for 2-Tbh.

Energy (cm™) g
1 0.0 0.0 0.0 31.0
2 23.8 0.0 0.0 3.3
3 25.3 0.0 0.0 1.5
4 46.9 0.0 0.0 32.1

Figure S74. Isosurfaces (+0.045) of computed active molecular orbitals of the sextet state of
2-Tb at the CAS(9,8)SCF level. Colour codes: Th, purple; Y, pink; N, blue; C, black. Hydrogen
atoms are not represented for clarity.
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Table S10. Computed energy levels (the ground state is set at zero), composition of the g-
tensor (gx, gy, gz) and main components (>10%) of the wavefunction for each mj state of the
ground-state multiplet ®His/> for first individual Dy center of 2-Dy at the CAS(9,7)SCF — RASSI-

SO level.
KD I%:;rg;( g Wavefunction
1 0.0 0.0 0.1 186 76.7% | £ 15/2> + 22.3% | £ 11/2>
2 73.4 14 3.5 133 64.3%|+£13/2>+15.4% |+ 9/2> + 11.8% | + 1/2>
3 95.1 1.7 24 148 425%|+1/2>+31.5% |£3/2>+17.6% | £ 13/2>
4| 1616 0.3 05 157 36.7% |x5/2>+24.7% |+3/2>+21.7% |+ 7/2>
5| 186.7 33 6.7 104 338%|x£7/2>+31.8% |+ 11/2>+ 11.8% | £ 5/2>
6| 2144 07 41 110 39.1% | £ 9/2> + 24.4% | £ 11/2>
v 268.2 04 09 16.2 26.7% |£7/2>+26.5% | £9/2>+17.3% | £ 11/2> +
13.7% | £ 5/2>
8 4656 0.0 0.0 198 34.1% | +£1/2>+28.5% | +3/2> + 19.6% | £ 5/2> +
10.6% | £ 7/2>

Table S11. Computed energy levels (the ground state is set at zero), composition of the g-
tensor (gx, gy, gz) and main components (>10%) of the wavefunction for each mj state of the
ground-state multiplet ®His/; for second individual Dy center of 2-Dy at the CAS(9,7)SCF —

RASSI-SO level.
KD 32;"_91;’ g Wavefunction
1 0.0 0.0 0.1 185 75.5% | £15/2> + 23.7% | + 11/2>
2 715 1.7 43 125 58.9%|+£13/2>+15.9% | £9/2> +15.6% | £ 1/2>
3| 935 20 31 13.7 40.6%|%1/2>+30.2% | +3/2> + 23.0% | £ 13/2>
4| 1594 01 0.3 157 41.0% |£5/2>+282% | +3/2>+18.7% |+ 7/2>
5| 1854 36 6.6 109 414% |x7/2>+258% |+ 11/2>+12.5% | + 5/2>
6| 2120 03 38 11.0 41.2% | £9/2> + 28.4% | + 11/2>
- 2628 05 1.2 16.0 26.1% |£7/2>+25.8% | +9/2> + 18.5% | £ 11/2> +
13.5% | £ 5/2>
8 459.8 0.0 0.0 198 344%|+1/2>+28.7% |+ 3/2>+19.5% | + 5/2> +
10.4% | £ 7/2>
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Figure S75. Variable-temperature dc magnetic susceptibility data of 2-Dy (black circles) and
calculated ymT data (coloured lines) for a screening of the Je't value from -4.5 cm™ to -2.5
cm™,
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Figure S76. Variable-temperature dc magnetic susceptibility data of 2-Dy (red circles) with the
best fit (black solid line) for Jex't = =3.5 cm™.
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Table S12. Computed energy levels (the ground state is set at zero) and composition of the g-
tensor (g, gy, g-) of the low-lying exchange energy levels for 2-Dy.

KD Energy (cm™) g

1 0.0 0.0 0.0 35.1
2 72.5 0.0 0.3 5.7
3 75.2 0.0 0.6 29.3
4 76.2 0.0 2.0 4.3
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Figure S77. Isosurfaces (+0.045) of computed active molecular orbitals of the quintet state of
2-Dy at the CAS(10,8)SCF level. Colour codes: Dy, purple; Y, pink; N, blue; C, black. Hydrogen
atoms are not represented for clarity.
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Table S13. Computed energy levels (the ground state is set at zero) and composition of the g-
tensor (g, gy, g-) of the low-lying exchange energy levels for 2-Dy.

AE (cm™) Jex®¢ (cm™?)
2-Gd -71.53 -8.9
2-Tb -33.8 -4.8
2-Dy -10.7 -1.8
- 2
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B p :
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Figure S78. Low-lying exchange spectra calculated in 2-Tb (top) and 2-Dy (bottom). Energies
of the exchange states (in cm™) in function of their magnetic moments (in ps) are in bold black
lines. The red lines correspond to the most probable relaxation pathways. The intensity of the
red lines indicates the amplitude of the matrix elements connecting each exchange doublet.
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Figure S79. Isosurfaces (+0.045) of computed active molecular orbitals of the sextet state of
2-Gd at the CAS(8,8)SCF level. Color codes: Gd, purple; Y, pink; N, blue; C, black. Hydrogen
atoms are not represented for clarity.
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Figure S80. Ground state magnetic anisotropy axes representation projected on molecular
structures for 2-Dy at the CAS(9,7)SCF level. Colour codes: Dy, purple; Y, pink; N, blue; C, black.
Hydrogen atoms are not represented for clarity.

Table S14. Computed energy levels (the ground state is set at zero), composition of the g-
tensor (gx, gy, gz) and main components (>10%) of the wavefunction for each mj state of the
ground-state multiplet ®His/, for first individual Dy center of 1-Dy at the CAS(9,7)SCF — RASSI-
SO level.

KD I:::‘tgl;l g Wavefunction
1 0.0 00 00 195 91.7% |+15/2>
2 | 160.3 0.0 0.0 16.7 91.0% |+13/2>
3| 2983 104 69 1.8 55.5% |+11/2> + 15.5% |+7/2> + 10.0% |+1/2>
4| 3090 20 38 127 30.3% |+1/2> + 26.2% |+11/2> + 25.7% |+3/2> +

13.4% |+5/2>
5| 3632 30 39 97 69.7% |£9/2> + 12.3% |+5/2>
3879 34 59 11.8 47.9% |£7/2> + 16.0% |£5/2> + 13.5% |+1/2> +

6 11.3% |+3/2>

| 4660 01 02 172 34.4%125/2>+26.6% |£7/2> +19.2% |£3/2> +
10.6% |+9/2>

8| 7251 00 00 198 40.6% |£1/2> + 30.8% |+3/2> + 17.5% | +5/2>
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Table S15. Computed energy levels (the ground state is set at zero), composition of the g-
tensor (gx, gy, gz) and main components (>10%) of the wavefunction for each mj state of the
ground-state multiplet ®His/; for second individual Dy center of 1-Dy at the CAS(9,7)SCF —
RASSI-SO level.

Energy .
KD (cm™) g Wavefunction
1 0.0 0.0 00 194 91.2% |+15/2>
2 157.5 0.0 0.0 16.6 90.0% |+13/2>
3 289.3 1.9 50 142 25.4% |+11/2>+ 23.4% |+1/2> + 18.0% |+3/2> +
16.2% |+7/2>+13.1% |+5/2>
4 300.8 89 5.6 2.2 53.5% |+11/2>+ 16.9% |+1/2> + 14.0% |+3/2>
5 355.9 46 55 8.9 62.7% |+9/2> + 15.4% |+5/2>
6 381.9 2.7 4.0 13.1 43.4% |+7/2>+14.6% |+1/2>+ 13.6% |£5/2>+ 11.0%
|+9/2> +10.3% |+3/2>
7 462.7 0.2 0.2 17.2  33.3% |+5/2>+26.8% |+7/2> + 18.5% |+3/2>+ 11.5%
|£9/2>
8 721.9 0.0 0.0 198 40.3% |+£1/2>+30.7% |+3/2> + 17.5% |+5/2>
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Figure S81. Variable-temperature dc magnetic susceptibility data of 1-Dy (green diamonds)
with the simulated curve (black solid line) for Jex = 0.0 cm™.
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Figure S82. Schematic representation of the first two magnetic exchange energy levels of 2-
Dy. Arrows represent the orientation of the magnetic moments of each individual contribution

for the three magnetic centres.
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Variable-Field Magnetization Measurements
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Figure S83. Magnification of variable-field magnetization data for 2-Dy at an average sweep
rate of 100 Oe/s.

0.06
i ~-35K
~-4.0K
0.05 - ~-45K
- ~-50K
0.04 - ~-55K
’—?'D -
20.03 -
=
0.02 -
0.01 -
0.00 rrrvrrrrrrrrerrrrrrrerrrrrrl

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
H (T)
Figure S84. Magnification of variable-field magnetization data for 2-Dy at an average sweep
rate of 100 Oe/s.
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Figure S86. Variable temperature M(H) curves for 2-Tb collected from0to 7 T.
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Figure S87. Variable temperature M(H) curves for 2-Dy collected from0to 7 T.
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Figure S88. Variable-field magnetization (M) data for compound 1-Tb collected at 1.8 K at an
average sweep rate of 0.01 T/s.
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Figure S89. Variable-field magnetization (M) data for compound 1-Dy collected from 1.8 to
5.0 K at an average sweep rate of 0.01 T/s.
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Figure S90. Magnification of variable-field magnetization data for 1-Dy at an average sweep
rate of 100 Oe/s.
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Figure S91. Magnification of variable-field magnetization data for 1-Dy at an average sweep
rate of 100 Oe/s.
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Figure $92. Variable temperature M(H) curves for 1-Gd collected from Oto 7 T.
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H (T)
Figure S93. Variable temperature M(H) curves for 1-Tb collected from0to 7 T.
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H (T)
Figure S94. Variable temperature M(H) curves for 1-Dy collected fromO0to 7 T.
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Additional Structural Comparison

Table S16. Comparison of bond metrics of [(Cp*:Ln)a(pu-bpym?®)]BPh4,? [(Cp*2Ln)2(p-

tppz®)]BPhs® and 2-Dy.

Dy bpym Dy tppz 2-Dy

c2-C2' (A) 1.40(1) n.a. 1.403(7)

Av. Dy-N (A) | 2.420(5) 2.471(4) 2.369(4)

Dy-Dy (A) | 6.425(1) 7.705(3) 6.060(1)

Av. Cnt—-Dy-Cnt (°) | 138.6(1) 138.6(1) 135.3(2)

69.7(13)/ | 15.5(5)/

Dy1-N1-N2-Dy2 (°) 16.8(7)
69.4(13) 22.8(5)
75.4(1)/
N1-Dy-N1'(°) 68.4(2) n.a.
75.6(1)
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