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Crystallographic Data and Structural Refinements 
Table S1. Crystallographic Data and Structural Refinement of [(Cp*2Gd)2(μ-Bbim)] ⦁ x 
toluene, 1-Ln (Ln = Gd, Tb, x = 2; Ln = Dy, x =1). 

 1-Gd 1-Tb 1-Dy 
Empirical formula C68H84Gd2N4 C68H84N4Tb2 C61H76Dy2N4 

Formula weight (g/mol) 1271.89 1275.23 1190.25 
Temperature (K) 99.99(10) 100.00(10) 173.15 

Crystal system monoclinic monoclinic triclinic 
Space group C2/m C2/m P−1 

a (Å) 15.5900(2) 27.9083(18) 10.5529(6) 
b (Å) 13.65900(10) 13.6251(2) 11.0230(6) 
c (Å) 15.5654(2) 15.5343(10) 12.4361(7) 
α (°) 90 90 67.7720(10) 
β (°) 116.3370(10) 149.942(18) 87.5370(10) 
γ (°) 90 90 79.1990(10) 

Volume (Å3) 2970.50(6) 2958.7(8) 1314.78(13) 
Z 2 2 1 

ρcalc (g/cm3) 1.422 1.431 1.503 
μ (mm-1) 14.601 11.915 2.862 

F(000) 1296.0 1300.0 602.0 
Crystal size (mm3) 0.122 × 0.1 × 0.035 0.113 × 0.055 × 0.055 0.277 × 0.157 × 0.153 

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54184) MoKα (λ = 0.71073) 
2Θ range  

for data collection (°) 6.336 to 154.026 6.348 to 154.416 3.54 to 52.8 

Index ranges −19 ≤ h ≤ 19, −14 ≤ k 
≤ 17, −19 ≤ l ≤ 19 

−35 ≤ h ≤ 35, −17 ≤ k ≤ 
13, −19 ≤ l ≤ 19 

−13 ≤ h ≤ 13, −13 ≤ k ≤ 
13, −15 ≤ l ≤ 15 

Reflections collected 10923 11155 10374 

Independent reflections 3184 [Rint = 0.0244, 
Rσ = 0.0231] 

3155 [Rint = 0.0256, 
Rσ = 0.0230] 

5366 [Rint = 0.0137, 
Rσ = 0.0191] 

Data/restraints/parameters 3184/0/243 3155/0/243 5366/0/310 
Goodness-of-fit on F2 1.103 1.100 1.074 

Final R indexes  
[I>=2σ (I)] 

R1 = 0.0240, wR2 = 
0.0610 

R1 = 0.0251, wR2 = 
0.0617 

R1 = 0.0194,  
wR2 = 0.0464 

Final R indexes [all data] R1 = 0.0246, wR2 = 
0.0613 

R1 = 0.0258, wR2 = 
0.0620 

R1 = 0.0205,  
wR2 = 0.0475 

Largest diff. peak/hole (e Å-3) 0.40/-0.62 0.44/-0.85 1.38/−0.59 

 
 

Figure S1. Structure of 1-Gd. Orange, gray, and blue spheres represent gadolinium, carbon, 
and nitrogen atoms, respectively. All hydrogen atoms, toluene solvent molecules and disorder 
parts on the Cp* ligands are omitted for clarity.  
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Figure S2. Structure of 1-Tb. Dark red, grey, and blue spheres represent gadolinium, carbon, 
and nitrogen atoms, respectively. All hydrogen atoms, toluene solvent molecules and disorder 
parts on the Cp* ligands are omitted for clarity. 
 

Table S2. Crystallographic Data and Structural Refinement of [K(crypt-222)][(Cp*2Ln)2(μ-
Bbim⦁)] ⦁ 3 THF, 2-Ln (Ln = Gd, Tb, Dy). 

 2-Gd 2-Tb 2-Dy 
Empirical formula C84H128Gd2KN6O9 C84H127KN6O9Tb2 C84H128Dy2KN6O9 

Formula weight (g/mol) 1719.52 1721.85 1730.02 
Temperature (K) 100.15 100.00(10) 173(2) 

Crystal system triclinic triclinic triclinic 
Space group P−1 P−1 P−1 

a (Å) 13.00780(10) 12.99810(10) 13.0586(2) 
b (Å) 18.0377(2) 18.0236(2) 18.1083(3) 
c (Å) 18.9498(2) 18.9237(2) 18.9686(2) 
α (°) 81.5150(10) 81.6460(10) 81.4010(10) 
β (°) 81.5720(10) 81.5260(10) 80.9190(10) 
γ (°) 74.8530(10) 74.9200(10) 74.9370(10) 

Volume (Å3) 4217.51(8) 4207.27(8) 4249.30(11) 
Z 2 2 2 

ρcalc (g/cm3) 1.354 1.359 1.352 
μ (mm-1) 1.665 1.773 1.850 

F(000) 1786.0 1788.0 1794.0 
Crystal size (mm3) 0.59 × 0.313 × 0.269 0.362 × 0.159 × 0.131 0.159 × 0.148 × 0.144 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range  

for data collection (°) 4.932 to 61.91 4.136 to 62.004 3.256 to 52.744 

Index ranges −18 ≤ h ≤ 18, −26 ≤ k 
≤ 25, −27 ≤ l ≤ 27 

−17 ≤ h ≤ 18, −24 ≤ k ≤ 
26, −27 ≤ l ≤ 23 

−16 ≤ h ≤ 16, −22 ≤ k ≤ 
22, −23 ≤ l ≤ 23 

Reflections collected 78556 79545 73354 

Independent reflections 21844 [Rint = 0.0360, 
Rσ = 0.0362] 

21689 [Rint = 0.0359, Rσ = 
0.0366] 

17324 [Rint = 0.0354, Rσ = 
0.0233] 

Data/restraints/parameters 21844/42/978 21689/0/921 17324/33/856 
Goodness-of-fit on F2 1.063 1.117 1.103 

Final R indexes  
[I>=2σ (I)] 

R1 = 0.0402, wR2 = 
0.1003 

R1 = 0.0575, wR2 = 
0.1417 

R1 = 0.0513, wR2 = 
0.1308 

Final R indexes [all data] R1 = 0.0483, wR2 = 
0.1047 

R1 = 0.0698, wR2 = 
0.1584 

R1 = 0.0561, wR2 = 
0.1338 

Largest diff. peak/hole (e Å-3) 4.83/−2.51 9.65/−6.48 2.11/−0.80 
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Figure S3. Structure of the [(Cp*2Gd)2(μ-Bbim⦁)]— anion in a crystal of 2-Gd. Orange, gray, and 
blue spheres represent gadolinium, carbon, and nitrogen atoms, respectively. All hydrogen 
atoms, THF solvent molecules and the [K(crypt-222)]+ counterion are omitted for clarity. 

 
 
 
 
 
 
 
 

 

Figure S4. Structure of the [(Cp*2Tb)2(μ-Bbim⦁)]— anion in a crystal of 2-Tb. Dark red, gray, and 
blue spheres represent terbium, carbon, and nitrogen atoms, respectively. All hydrogen 
atoms, THF solvent molecules and the [K(crypt-222)]+ counterion are omitted for clarity. 
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Figure S5. Packing diagram of the [(Cp*2Gd)2(μ-Bbim⦁)]— anions in a crystal of 2-Gd in front 
(top) and top view (bottom). Orange, gray, and blue spheres represent gadolinium, carbon, 
and nitrogen atoms, respectively. All hydrogen atoms, THF solvent molecules and the [K(crypt-
222)]+ counterion are omitted for clarity. 
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Figure S6. Packing diagram of the [(Cp*2Tb)2(μ-Bbim⦁)]— anions in a crystal of 2-Tb in front 
(top) and top view (bottom). Red, gray, and blue spheres represent terbium, carbon, and 
nitrogen atoms, respectively. All hydrogen atoms, THF solvent molecules and the [K(crypt-
222)]+ counterion are omitted for clarity. 
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Figure S7. Packing diagram of the [(Cp*2Dy)2(μ-Bbim⦁)]— anions in a crystal of 2-Dy in front 
(top) and top view (bottom). Green, gray, and blue spheres represent dysprosium, carbon, 
and nitrogen atoms, respectively. All hydrogen atoms, THF solvent molecules and the [K(crypt-
222)]+ counterion are omitted for clarity. 
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IR Spectroscopy 

 
Figure S8. FTIR spectra of [(Cp*2Gd)2(μ-Bbim)], 1-Gd (blue) and [K(crypt-222)][(Cp*2Gd)2(μ-
Bbim•)], 2-Gd, (red). 

 
 
 
 
 

 
Figure S9. FTIR spectra of [(Cp*2Tb)2(μ-Bbim)], 1-Tb (blue) and [K(crypt-222)][(Cp*2Tb)2(μ-
Bbim•)], 2-Tb, (red). 
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Figure S10. FTIR spectra of [(Cp*2Dy)2(μ-Bbim)], 1-Dy (blue) and [K(crypt-222)][(Cp*2Dy)2(μ-
Bbim•)], 2-Dy, (red). 

 
 
 
 
 

 

 
Figure S11. Stacked FTIR spectra of [(Cp*2Ln)2(μ-Bbim)], 1-Ln (Ln = Y (gray),1 Gd (turquoise), 
Tb (pink), Dy (blue)). 
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Figure S12. Stacked FTIR spectra [K(crypt-222)][(Cp*2Ln)2(μ-Bbim•)], 2-Ln (Ln = Y (gray),1 Gd 
(turquoise), Tb (pink), Dy (blue)). 
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UV/Vis Spectroscopy 

 
Figure S13. Left: UV/Vis spectra of [(Cp*2Gd)2(μ-Bbim)] (1-Gd, in blue) and [K(crypt-
222)][(Cp*2Gd)2(μ-Bbim•)] (2-Gd, in red), taken in THF. Right: UV/Vis spectra of [(Cp*2Tb)2(μ-
Bbim⦁)] (1-Tb, in blue) and [K(crypt-222)][(Cp*2Tb)2(μ-Bbim•)] (2-Tb, in red), taken in THF. 
Concentrations: 1-Gd: 2.636 x 10−5 mol/L, 1-Tb: 1.389x 10−5 mol/L, 2-Gd: 3.198 x 10−5 mol/L, 
2-Tb: 2.307 x 10−5 mol/L.  

 
 
 
 
 

 
Figure S14. Left: Superimposed UV/Vis spectra of [(Cp*2Ln)2(μ-Bbim)] (1-Ln, Y (red),1 Gd 
(green), Tb (purple), Dy(blue)). Right: Magnification of superimposed UV/Vis spectra of 
[(Cp*2Ln)2(μ-Bbim)] (1-Ln, Y (red), Gd (green), Tb (purple), Dy(blue)). Concentrations: 1-Y: 
8.054 x 10–6 mol/L, 1-Gd: 2.636 x 10−5 mol/L, 1-Tb: 1.389x 10−5 mol/L, 1-Dy: 1.353 x 10-5 mol/L.  
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Figure S15. Superimposed UV/Vis spectra of [K(crypt-222)][(Cp*2Ln)2(μ-Bbim⦁)] (2-Ln, Y (red),1 
Gd (green), Tb (purple), Dy (blue)). Concentrations: 2-Y: 5.091 x 10–5 mol/L, 2-Gd: 3.198 x 10−5 
mol/L, 2-Tb: 2.307 x 10−5 mol/L, 2-Dy: 1.114 x 10–4 mol/L.  
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Cyclic Voltammetry 
 
 
 

 
 
 
 
 

 
Figure S16. Top left: Full cyclic voltammogram of [K(crypt-222)][(Cp*2Dy)2(μ-Bbim⦁)], 2-Dy, 
measured in THF at 300 K with 0.25 M (nBu4N)PF6 supporting electrolyte and 1.7 mmol/L 
analyte concentration. The initial scan is depicted in blue, the second scan is depicted in 
orange. Top right: Magnification of the area between −1.8 and 1.1 V for the first and second 
scan. Bottom: Magnified scans superimposed with the reversible scan depicted in the main 
text. 
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Magnetism 
 
 
 

 
Figure S17. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline 
samples of 2-Dy (dark red circles), 2-Tb (pink triangles) and 2-Gd (dark blue circles) collected 
under a 1 T applied dc field. The black line represents a fit to the data for 2-Gd giving rise to J 
= −1.85(4) cm−1 and g = 2.03(1). 
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Figure S18. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 2-Gd collected under a 0.1 T applied dc field (top and bottom). The 
black line represents a fit to the data giving rise to J = 1.96(2) cm−1 and g = 2.03(1). 
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Figure S19. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 2-Gd collected under a 0.5 T applied dc field (top and bottom). The 
black line represents a fit to the data for 2-Gd giving rise to J = −1.88(2) cm−1 and g = 2.037(1). 
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Figure S20. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 2-Gd collected under a 1 T applied dc field (top and bottom). The 
black line represents a fit to the data for 2-Gd giving rise to J = −1.85(1) cm−1 and g = 2.03(1). 
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Figure S21. Superimposed variable-temperature dc susceptibility data of polycrystalline 2-Gd 
collected under 0.1 T (green triangles), 0.5 T (purple squares), 1 T (blue circles) applied dc field.  

 
 

 
Figure S22. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 2-Dy collected under a 0.1 T applied dc field. 
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Figure S23. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 2-Dy collected under a 0.5 T applied dc field. 

 
 

 
Figure S24. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 2-Dy collected under a 1 T applied dc field. 
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Figure S25. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Gd collected under a 0.1 T applied dc field. The black line 
represents a fit to the data for 1-Gd giving rise to J = −0.064(2) cm−1 and g = 2.029(1). 
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Figure S26. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Gd collected under a 0.5 T applied dc field. The black line 
represents a fit to the data for 1-Gd giving rise to J = −0.056(1) cm−1 and g = 2.032(1). 
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Figure S27. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Gd collected under a 1 T applied dc field. The black line represents 
a fit to the data for 1-Gd giving rise to J = −0.058(1) cm−1 and g = 2.031(1). 
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Figure S28. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Gd collected under 0.1, 0.5, and 1 T applied dc fields. 

 
Figure S29. Enlarged plot of variable-temperature dc magnetic susceptibility data for a 
restrained polycrystalline sample of 1-Gd collected under 0.1, 0.5, and 1 T applied dc fields. 
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Figure S30. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline 
samples of 1-Gd and 2-Gd collected under a 0.1 T applied dc field. 

 
 

 
Figure S31. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline 
samples of 1-Dy, 1-Tb, 1-Gd, 2-Dy, 2-Tb, and 2-Gd collected under a 0.1 T applied dc field. 
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Figure S32. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Tb collected under a 0.1 T applied dc field. 

 

 
Figure S33. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Tb collected under a 0.5 T applied dc field. 
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Figure S34. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Tb collected under a 1 T applied dc field. 

 
Figure S35. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Tb collected under 0.1, 0.5, and 1 T applied dc fields. 
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Figure S36. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline 
samples of 1-Tb and 2-Tb collected under a 0.1 T applied dc field. 

 
 

 
Figure S37. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Dy collected under a 0.1 T applied dc field. 
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Figure S38. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Dy collected under a 0.5 T applied dc field. 

 
Figure S39. Variable-temperature dc magnetic susceptibility data for a restrained 
polycrystalline sample of 1-Dy collected under 0.1 and 0.5 T applied dc fields. 
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Figure S40. Variable-temperature dc magnetic susceptibility data for restrained polycrystalline 
samples of 1-Dy and 2-Dy collected under a 0.5 T applied dc field. 
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Data derived from Ac Susceptibility Measurements 

 
Figure S41. Variable-temperature, variable-frequency in-phase (χM’) (top) and out-of-phase 
(χM") (bottom) ac magnetic susceptibility data collected for 2-Dy under a zero applied dc field 
from 5.5 to 11.5 K. Solid lines represent fits to the data, as described in the main text. A non-
zero χM" out-of-phase signal indicates the presence of an energy barrier to spin reversal. 
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Figure S42. Cole-Cole (Argand) plots for ac susceptibility collected from 4.5 to 11.5 K under 
zero applied dc field for 2-Dy. Symbols represent the experimental data points and the points 
representing the fits are connected by black solid lines. 

 

 
 

Figure S43. Arrhenius plots of relaxation time data for 2-Dy obtained between 4.5 and 11.5 K 
(see Figure 6 in the main text). The black line corresponds to a linear fit to the Arrhenius 
equation, as described in the main text, yielding Ueff = 48.9(1) cm−1 and τ0 = 3.2(1) × 10−7 s (all 
data points between 4.5 and 5.5 K were fitted). 
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Figure S44. Cole-Cole (Argand) plots for ac susceptibility collected from 5.5 to 11.5 K under 
zero applied dc field for 2-Dy. Symbols represent the experimental data points and the points 
representing the fits are connected by black solid lines.  

 
Figure S45. Arrhenius plot of relaxation time data for 2-Dy obtained between 5.5 and 11.5 K 
(see Figure S24). The black line corresponds to a linear fit to the Arrhenius equation, as 
described in the main text, yielding Ueff = 51.9(1) cm−1 and τ0 = 1.91(1) × 10−7 s. Data points 
between 5.5 K and 11.5 K were fitted due to the slight curvature in Figure S23 indicating a 
deviation from linearity of the temperature-dependent τ at the lowest measured 
temperatures. The obtained values for Ueff and τ0 are similar to those shown in Figure S23 
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Figure S46. Variable-temperature, variable-frequency in-phase (χM’) ac magnetic susceptibility 
data collected for 1-Dy under a zero applied dc field from 5.5 to 24.5 K. Solid lines represent 
fits to the data, as described in the main text. A non-zero χM" out-of-phase signal indicates the 
presence of an energy barrier to spin reversal. 

 
Figure S47. Cole-Cole (Argand) plots for ac susceptibility collected from 5.5 to 24.5 K under 
zero applied dc field for 1-Dy. Symbols represent the experimental data points and the points 
representing the fits are connected by black solid lines. 
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Figure S48. Arrhenius plots of relaxation time data for 1-Dy obtained between 5.5 and 11.5 K 
(see Figure 7 in the main text) through ac magnetic susceptibility measurements. The black 
line corresponds to a fit to Orbach and Raman relaxation processes. as described in the main 
text, yielding Ueff = 185.0(1) cm−1 and τ0 = 1.0(1) × 10−8 s. 

 
Figure S49. Individual contributions of the multiple magnetic relaxation pathways to the 
Arrhenius plot of 1-Dy at 0 Oe shown in Figure S48. The best fit yielded Ueff = 185.0(1) cm−1 
and τ0 = 1.0(1) × 10−8 s. The red line represents a fit to one Orbach relaxation process and a 
Raman process. Individual parameters used to calculate the contributions are given in Table 
S6. 
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Data derived from Dc Relaxation Experiments 
 

 
Figure S50. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 1.8 K. 
The data (pale blue circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying 
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 1.8 K, 
and then removing the magnetic field. 
 

 
Figure S51. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 2.0 K. 
The data (pale blue circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying 
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 2.0 K, 
and then removing the magnetic field. 
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Figure S52. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 2.5 K. 
The data (pale blue circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying 
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 2.5 K, 
and then removing the magnetic field. 
 

 

 
Figure S53. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 3.0 K. 
The data (pale blue circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying 
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 3.0 K, 
and then removing the magnetic field. 
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Figure S54. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 3.5 K. 
The data (pale blue circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying 
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 3.5 K, 
and then removing the magnetic field. 

 
 

 
Figure S55. Plot of magnetization vs. time used to derive relaxation times for 2-Dy at 4.0 K. 
The data (pale blue circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained by applying 
a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample to 4.0 K, 
and then removing the magnetic field. 
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Figure S56. Plot of magnetization (normalized) vs. time used to derive relaxation times for 2-
Dy at different temperatures. The data were fit to a function of the form y = a · exp (−((t/τ)b)) 
where b is a stretch factor (black line). Decay of the magnetization vs. time for 2-Dy, obtained 
by applying a magnetic field of 0.1 T to the sample at a temperature of 50 K, cooling the sample 
to a given temperature, and then removing the magnetic field. 

 
 
Table S3. Relaxation times, τ (s), and stretch factors, b, at various temperatures, T (K) for 2-
Dy. 

T (K) τ (s) stretch factor 
1.8 68.87740572 0.828653282 
2.0 65.61476463 0.825878046 
2.5 34.00662524 1.388001075 
3.0 28.31669823 1.107648596 
3.5 20.95021698 1.213686665 
4.0 12.89217026 1.148894262 
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Figure S57. Individual contributions of the multiple magnetic relaxation pathways to the 
Arrhenius plot of 2-Dy at 0 Oe shown in Figure 7 of the main text. The best fit yielded Ueff = 
49.2(1) cm−1 and τ0 = 3.1(1) × 10−7 s. The red line represents a fit to one Orbach relaxation 
process and a tunneling pathway. Individual parameters used to calculate the contributions 
are given in Table S4. 
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Figure S58. Arrhenius plots of relaxation time data derived from ac magnetic susceptibility 
measurements at temperatures from 4.5 to 11.5 K (pale blue to red circles) and dc relaxation 
experiments within the temperature range of 1.8 to 4 K (dark blue circles) for 2-Dy. The black 
solid line (top) corresponds to a fit to one Orbach, one Raman, and one QTM process giving 
rise to Ueff = 49.9(1) cm−1 and τ0 = 2.7(1) × 10−7 s, where the corresponding individual 
contributions of the multiple magnetic relaxation pathways are shown on the bottom. 
Individual parameters used to calculate the contributions are given in Table S4. The inclusion 
of a Raman process did not improve the quality of the fit. 
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Table S4. Best-fit parameters for the Arrhenius plot of 2-Dy at Hdc = 0 Oe. Data from 4.5 to 
11.5 K and from 5.5 K to 11.5 K were extracted from ac susceptibility measurements. Data 
from 1.8 to 11.5 K was extracted from ac and dc susceptibility measurements. 

 τQTM (s) C (s–1K–n) n t0 (s) Ueff (cm–1) 
4.5 to 11.5 K - - - 3.2 (1) × 10−7 48.9(1) 
5.5 to 11.5 K - - - 1.91(1) x 10−7 51.9(1) 
1.8 to 11.5 K 41.7(1) - - 3.1(1) ´ 10–7 49.2(1) 
1.8 to 11.5 K 993.8(2) 4.9(1) x 10−3 1.73(2) 2.7(1) x 10−7 49.9(1) 

 
 

 
Figure S59. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 1.8 K. 
The data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 1.8 K, 
and then removing the magnetic field. 
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Figure S60. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 2 K. The 
data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 2 K, and 
then removing the magnetic field. 

 
Figure S61. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 2.2 K. 
The data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 2.2 K, 
and then removing the magnetic field. 
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Figure S62. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 2.5 K. 
The data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 2.5 K, 
and then removing the magnetic field. 

 
Figure S63. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 2.75 K. 
The data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 2.75 K, 
and then removing the magnetic field. 
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Figure S64. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 3 K. The 
data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 3 K, and 
then removing the magnetic field. 

 
Figure S65. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 3.25 K. 
The data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 3.25 K, 
and then removing the magnetic field. 
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Figure S66. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 3.5 K. 
The data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 3.5 K, 
and then removing the magnetic field. 
 

 
Figure S67. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 4 K. The 
data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 4 K, and 
then removing the magnetic field. 
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Figure S68. Plot of magnetization vs. time used to derive relaxation times for 1-Dy at 4.5 K. 
The data (pale pink circles) were fit to a function of the form y = a · exp (−((t/τ)b)) where b is a 
stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained by applying 
a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample to 4.5 K, 
and then removing the magnetic field. 
 

 

Figure S69. Plot of magnetization (normalized) vs. time used to derive relaxation times for 1-
Dy at different temperatures. The data were fit to a function of the form y = a · exp (−((t/τ)b)) 
where b is a stretch factor (black line). Decay of the magnetization vs. time for 1-Dy, obtained 
by applying a magnetic field of 1 T to the sample at a temperature of 50 K, cooling the sample 
to a given temperature, and then removing the magnetic field. 
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Table S5. Relaxation times, τ (s), and stretch factors, b, at various temperatures, T (K) for 1-
Dy. 

T (K) τ (s) stretch factor 
1.8 146.1907 0.84552 
2.0 130.2492 0.84555 
2.2 111.7248 0.841136 
2.5 86.93023 0.858337 

2.75 65.26766 0.879887 
3.0 49.3119 0.939921 

3.25 34.76398 0.960858 
3.5 24.93626 1.024986 
4.0 12.09809 1.10035 
4.5 5.240397 1.246521 
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Figure S70. Individual contributions of the multiple magnetic relaxation pathways to the 
Arrhenius plot of 1-Dy at 0 Oe shown in Figure 7 of the main text. The best fit yielded Ueff = 
182.1(1) cm−1 and τ0 = 3.0(1) × 10−8 s. The red line represents a fit to one Orbach relaxation 
process, a Raman process and a tunneling pathway. Individual parameters used to calculate 
the contributions are given in Table S6. 

 
Table S6. Best-fit parameters for the Arrhenius plot of 1-Dy at Hdc = 0 Oe. Data from 5.5 to 
24.5 K was extracted from ac susceptibility measurements. Data from 1.8 to 24.5 K was 
extracted from ac and dc susceptibility measurements. 

 τQTM (s) C (s–1K–n) n t0 (s) Ueff (cm–1) 
5.5 to 24.5 K - 1.6(1) x 10-4 4.92(2) 1.0 (1) × 10−8 185.0(1) 
1.8 to 24.5 K 208.0(1) 5.5(2) x 10-5 5.36(3) 3.0(1) ´ 10–8 182.1(1) 
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Figure S71. Comparison of all relaxation times data derived from ac magnetic susceptibility 
measurements and dc relaxation experiments for 1-Dy and 2-Dy, respectively. 
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CASSCF Calculations 
 
Table S7. Computed energy levels (the ground state is set at zero) and main components 
(>10%) of the wavefunction for each mj state of the ground-state multiplet 7F6 for first 
individual Tb center of 2-Tb at the CAS(8,7)SCF – RASSI-SO level. 

 Energy (cm−1) Wavefunction  
1 0.0     98.6% | ± 1>  
2 2.0     76.9% | ± 0> + 21.4% | ± 2>  

3 51.4   95.2% | ± 1>  

4 56.5   95.2% | ± 2>  

5 66.6   72.4% | ± 2> + 18.7% | ± 0>  

6 100.4 92.8% | ± 3>  

7 122.9 91.2% | ± 3>  

8 198.6 85.8% | ± 4> + 12.4% | ± 6>  

9 207.0 80.2% | ± 4> + 12.8% | ± 6>  

10 325.6 87.9% | ± 5>  

11 326.9 86.0% | ± 5>  

12 364.8 81.8% | ± 6> + 11.0% | ± 4>  

13 365.3      81.7% | ± 6> + 11.6% | ± 4> 
Table S8. Computed energy levels (the ground state is set at zero) and main components 
(>10%) of the wavefunction for each mj state of the ground-state multiplet 7F6 for second 
individual Tb center of 2-Tb at the CAS(8,7)SCF – RASSI-SO level. 

 Energy (cm−1) Wavefunction  
1 0 97.0% | ± 1>  
2 1.9 74.0% | ± 0> + 22.6% | ± 2>  

3 57.1 84.1% | ± 1> + 12.4% | ± 2>  

4 60.8 87.7% | ± 2> + 10.5% | ± 1>  

5 76.3 69.6% | ± 2> + 20.9% | ± 0>  

6 107.2 93.4% | ± 3>  

7 130 93.1% | ± 3>  

8 208.4 89.1% | ± 4> + 10.1% | ± 6>  

9 215.4 84.5% | ± 4> + 10.3% | ± 6>  

10 339.1 92.0% | ± 5>  

11 340.2 90.9% | ± 5>  

12 384 86.8% | ± 6>  

13 384.5 86.5% | ± 6>  
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Figure S72. Variable-temperature dc magnetic susceptibility data of 2-Tb (black squares) and 
calculated χMT data (coloured lines) for a screening of the Jex

fit value from −1.5 cm−1 to −0.5 
cm−1. 

 
 

 
Figure S73. Variable-temperature dc magnetic susceptibility data of 2-Tb (blue squares) with 
the best fit (black solid line) for Jex

fit = −0.9 cm−1. 
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Table S9. Computed energy levels (the ground state is set at zero) and composition of the g-
tensor (gx, gy, gz) of the low-lying exchange energy levels for 2-Tb. 

 Energy (cm−1) g 
1 0.0 0.0 0.0 31.0 

2 23.8 0.0 0.0 3.3 

3 25.3 0.0 0.0 1.5 

4 46.9 0.0 0.0 32.1 
 

 
Figure S74. Isosurfaces (±0.045) of computed active molecular orbitals of the sextet state of 
2-Tb at the CAS(9,8)SCF level. Colour codes: Tb, purple; Y, pink; N, blue; C, black. Hydrogen 
atoms are not represented for clarity. 
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Table S10. Computed energy levels (the ground state is set at zero), composition of the g-
tensor (gx, gy, gz) and main components (>10%) of the wavefunction for each mj state of the 
ground-state multiplet 6H15/2 for first individual Dy center of 2-Dy at the CAS(9,7)SCF – RASSI-
SO level. 

KD Energy 
(cm−1) g Wavefunction  

1 0.0 0.0 0.1 18.6 76.7% | ± 15/2> + 22.3% | ± 11/2>  
2 73.4 1.4 3.5 13.3 64.3% | ± 13/2> + 15.4% | ± 9/2> + 11.8% | ± 1/2>  

3 95.1 1.7 2.4 14.8 42.5% | ± 1/2> + 31.5% | ± 3/2> + 17.6% | ± 13/2>  

4 161.6 0.3 0.5 15.7 36.7% | ± 5/2> + 24.7% | ± 3/2> + 21.7% | ± 7/2>  

5 186.7 3.3 6.7 10.4 33.8% | ± 7/2> + 31.8% | ± 11/2> + 11.8% | ± 5/2>  

6 214.4 0.7 4.1 11.0 39.1% | ± 9/2> + 24.4% | ± 11/2>  

7 268.2 0.4 0.9 16.2 26.7% | ± 7/2> + 26.5% | ± 9/2> + 17.3% | ± 11/2> + 
13.7% | ± 5/2>  

8 465.6 0.0 0.0 19.8 34.1% | ± 1/2> + 28.5% | ± 3/2> + 19.6% | ± 5/2> + 
10.6% | ± 7/2> 

 
 
 
 
Table S11. Computed energy levels (the ground state is set at zero), composition of the g-
tensor (gx, gy, gz) and main components (>10%) of the wavefunction for each mj state of the 
ground-state multiplet 6H15/2 for second individual Dy center of 2-Dy at the CAS(9,7)SCF – 
RASSI-SO level. 

KD Energy 
(cm−1) g Wavefunction  

1 0.0 0.0 0.1 18.5 75.5% | ± 15/2> + 23.7% | ± 11/2>  
2 71.5 1.7 4.3 12.5 58.9% | ± 13/2> + 15.9% | ± 9/2> + 15.6% | ± 1/2>  

3 93.5 2.0 3.1 13.7 40.6% | ± 1/2> + 30.2% | ± 3/2> + 23.0% | ± 13/2>  

4 159.4 0.1 0.3 15.7 41.0% | ± 5/2> + 28.2% | ± 3/2> + 18.7% | ± 7/2>  

5 185.4 3.6 6.6 10.9 41.4% | ± 7/2> + 25.8% | ± 11/2> + 12.5% | ± 5/2>  

6 212.0 0.3 3.8 11.0 41.2% | ± 9/2> + 28.4% | ± 11/2>  

7 262.8 0.5 1.2 16.0 26.1% | ± 7/2> + 25.8% | ± 9/2> + 18.5% | ± 11/2> + 
13.5% | ± 5/2>  

8 459.8 0.0 0.0 19.8 34.4% | ± 1/2> + 28.7% | ± 3/2> + 19.5% | ± 5/2> + 
10.4% | ± 7/2>  
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Figure S75. Variable-temperature dc magnetic susceptibility data of 2-Dy (black circles) and 
calculated χMT data (coloured lines) for a screening of the Jex

fit value from −4.5 cm−1 to −2.5 
cm−1. 

  
 

 
Figure S76. Variable-temperature dc magnetic susceptibility data of 2-Dy (red circles) with the 
best fit (black solid line) for Jex

fit = −3.5 cm−1. 
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Table S12. Computed energy levels (the ground state is set at zero) and composition of the g-
tensor (gx, gy, gz) of the low-lying exchange energy levels for 2-Dy. 

KD Energy (cm−1) g 

1 0.0 0.0 0.0 35.1 

2 72.5 0.0 0.3 5.7 

3 75.2 0.0 0.6 29.3 

4 76.2 0.0 2.0 4.3 
 

 
Figure S77. Isosurfaces (±0.045) of computed active molecular orbitals of the quintet state of 
2-Dy at the CAS(10,8)SCF level. Colour codes: Dy, purple; Y, pink; N, blue; C, black. Hydrogen 
atoms are not represented for clarity.  
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Table S13. Computed energy levels (the ground state is set at zero) and composition of the g-
tensor (gx, gy, gz) of the low-lying exchange energy levels for 2-Dy. 

 DE (cm−1) Jex
calc (cm−1) 

2-Gd -71.53 -8.9 
2-Tb −33.8 −4.8 
2-Dy −10.7 −1.8 

 

 
Figure S78. Low-lying exchange spectra calculated in 2-Tb (top) and 2-Dy (bottom). Energies 
of the exchange states (in cm−1) in function of their magnetic moments (in µB) are in bold black 
lines. The red lines correspond to the most probable relaxation pathways. The intensity of the 
red lines indicates the amplitude of the matrix elements connecting each exchange doublet. 



S61 
 

 

 
Figure S79. Isosurfaces (±0.045) of computed active molecular orbitals of the sextet state of 
2-Gd at the CAS(8,8)SCF level. Color codes: Gd, purple; Y, pink; N, blue; C, black. Hydrogen 
atoms are not represented for clarity. 
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Figure S80. Ground state magnetic anisotropy axes representation projected on molecular 
structures for 2-Dy at the CAS(9,7)SCF level. Colour codes: Dy, purple; Y, pink; N, blue; C, black. 
Hydrogen atoms are not represented for clarity. 
 
Table S14. Computed energy levels (the ground state is set at zero), composition of the g-
tensor (gx, gy, gz) and main components (>10%) of the wavefunction for each mj state of the 
ground-state multiplet 6H15/2 for first individual Dy center of 1-Dy at the CAS(9,7)SCF – RASSI-
SO level. 

KD Energy 
(cm−1) g Wavefunction  

1   0.0  0.0 0.0 19.5 91.7% |±15/2> 

2 160.3  0.0 0.0 16.7 91.0% |±13/2> 

3 298.3 10.4 6.9  1.8 55.5% |±11/2> + 15.5% |±7/2> + 10.0% |±1/2> 

4 309.0  2.0 3.8 12.7 30.3% |±1/2> + 26.2% |±11/2> + 25.7% |±3/2> + 
13.4% |±5/2> 

5 363.2  3.0 3.9  9.7 69.7% |±9/2> + 12.3% |±5/2> 

6 387.9  3.4 5.9 11.8 47.9% |±7/2> + 16.0% |±5/2> + 13.5% |±1/2> + 
11.3% |±3/2> 

7 466.0  0.1 0.2 17.2 34.4% |±5/2> + 26.6% |±7/2> + 19.2% |±3/2> + 
10.6% |±9/2> 

8 725.1  0.0 0.0 19.8 40.6% |±1/2> + 30.8% |±3/2> + 17.5% |±5/2> 
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Table S15. Computed energy levels (the ground state is set at zero), composition of the g-
tensor (gx, gy, gz) and main components (>10%) of the wavefunction for each mj state of the 
ground-state multiplet 6H15/2 for second individual Dy center of 1-Dy at the CAS(9,7)SCF – 
RASSI-SO level. 

KD Energy 
(cm−1) g Wavefunction 

1   0.0 0.0 0.0 19.4 91.2% |±15/2>  

2 157.5 0.0 0.0 16.6 90.0% |±13/2>  

3 289.3 1.9 5.0 14.2 25.4% |±11/2> + 23.4% |±1/2> + 18.0% |±3/2> + 
16.2% |±7/2> + 13.1% |±5/2> 

4 300.8 8.9 5.6  2.2 53.5% |±11/2> + 16.9% |±1/2> + 14.0% |±3/2>  

5 355.9 4.6 5.5  8.9 62.7% |±9/2> + 15.4% |±5/2>  

6 381.9 2.7 4.0 13.1 43.4% |±7/2> + 14.6% |±1/2> + 13.6% |±5/2> + 11.0% 
|±9/2> + 10.3% |±3/2>  

7 462.7 0.2 0.2 17.2 33.3% |±5/2> + 26.8% |±7/2> + 18.5% |±3/2> + 11.5% 
|±9/2>  

8 721.9 0.0 0.0 19.8 40.3% |±1/2> + 30.7% |±3/2> + 17.5% |±5/2>  

 

 
Figure S81. Variable-temperature dc magnetic susceptibility data of 1-Dy (green diamonds) 
with the simulated curve (black solid line) for Jex

fit = 0.0 cm−1. 
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Figure S82. Schematic representation of the first two magnetic exchange energy levels of 2-
Dy. Arrows represent the orientation of the magnetic moments of each individual contribution 
for the three magnetic centres. 
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Variable-Field Magnetization Measurements 
 
 

 
Figure S83. Magnification of variable-field magnetization data for 2-Dy at an average sweep 
rate of 100 Oe/s. 

 
 
 

 
Figure S84. Magnification of variable-field magnetization data for 2-Dy at an average sweep 
rate of 100 Oe/s. 
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Figure S85. Variable temperature M(H) curves for 2-Gd collected from 0 to 7 T. 

 
 
 

 
Figure S86. Variable temperature M(H) curves for 2-Tb collected from 0 to 7 T. 
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Figure S87. Variable temperature M(H) curves for 2-Dy collected from 0 to 7 T. 

 

 
Figure S88. Variable-field magnetization (M) data for compound 1-Tb collected at 1.8 K at an 
average sweep rate of 0.01 T/s. 
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Figure S89. Variable-field magnetization (M) data for compound 1-Dy collected from 1.8 to 
5.0 K at an average sweep rate of 0.01 T/s. 

 
Figure S90. Magnification of variable-field magnetization data for 1-Dy at an average sweep 
rate of 100 Oe/s. 
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Figure S91. Magnification of variable-field magnetization data for 1-Dy at an average sweep 
rate of 100 Oe/s. 

 

 
Figure S92. Variable temperature M(H) curves for 1-Gd collected from 0 to 7 T. 
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Figure S93. Variable temperature M(H) curves for 1-Tb collected from 0 to 7 T. 

 

 
Figure S94. Variable temperature M(H) curves for 1-Dy collected from 0 to 7 T. 
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Additional Structural Comparison 
 
 
Table S16. Comparison of bond metrics of [(Cp*2Ln)2(μ-bpym•)]BPh4,2 [(Cp*2Ln)2(μ-
tppz•)]BPh4

3
 and 2-Dy. 

  Dy bpym Dy tppz 2-Dy 

 C2–C2' (Å) 1.40(1) n.a. 1.403(7) 
 Av. Dy–N (Å) 2.420(5) 2.471(4) 2.369(4) 
 Dy–Dy (Å) 6.425(1) 7.705(3) 6.060(1) 
 Av. Cnt–Dy–Cnt (°) 138.6(1) 138.6(1) 135.3(2) 
 

Dy1–N1–N2–Dy2 (°) 16.8(7) 
69.7(13)/ 
69.4(13) 

15.5(5)/ 
22.8(5) 

 
N1–Dy–N1' (°) 68.4(2) n.a. 

75.4(1)/ 
75.6(1) 
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