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Computational Details

Simulation Setup

All the model systems and ions were parametrized using the Generalized Amber Force Field

(GAFF).1 The partial charges for the atomistic models have been calculated using the RESP2
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method, computed at Hartree-Fock (HF) level of theory, with 6-31G basis set, as imple-

mented in Gaussian16.3 AmberTools214 package was used for the parametrization of the

systems. The solvents parameters were obtained from the virtualchemistry.org database.5,6

A proper amount of PF−
6 ions have been added to neutralize the total charge of the systems.

All the systems simulated herein have been minimized via steepest-descent and equilibrated

in NPT condition (constant N: number of particles, P: pressure, T: temperature). Produc-

tion runs were conducted in the NPT ensemble for up to 2 µs. Temperature and pressure are

kept constant (298 K and 1 bar), using the v-rescale thermostat7 and the Berendsen,8 and

Parrinello-Rahman9 barostats (see Table S1 for details). For each system we have chosen the

barostat algorithm allowing the most efficient system equilibration using 2 fs timesteps (i.e.,

reaching stable equilibrium MD in a convenient simulation time). Long-range electrostatic

interactions have been treated using the Particle-Mesh-Ewald (PME)10 and a cutoff of 1.0

nm. Van der Waals interactions were truncated at 1.0 nm. The LINCS algorithm11 has been

used to constrain all the bonds involving hydrogens. The leapfrog integrator was used to

propagate dynamics with a time step of 2 fs.

All the simulations were carried out using GROMACS12 2021.6, patched with PLUMED,13

version 2.7.14

Complete details on the molecular models developed herein and input files for simulations

conducted herein are available at: https://github.com/GMPavanLab/MIMs (this link will

be replaced with a definitive Zenodo archive upon acceptance of the final version of this

paper).

Switching rates estimation via infrequent Well-Tempered Metady-

namics

Switching rates are typically rare events at the timescale accessible to classical all-atom

simulations. It has been demonstrated that the kinetics of rare events can be properly
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reconstructed using infrequent Well-Tempered Metadynamics (WT-MetaD).15,16 With an

opportune choice of the collective variables (CVs) and setup of the WT-MetaD,16 the real

transition time t from basin A to B can be calculated from a biased WT-MetaD trajectory

as:

t = tWT−MetaD⟨eβ(V (s(R),t))⟩WT−MetaD (S1)

where s(R) is the CV, V(s(R), t) is the time-dependent bias, β is the inverse temperature,

and the exponential is averaged over the WT-MetaD run.

For the approach to work, it is essential that V(s(R), t) is added infrequently to minimize the

probability to add bias in portions of the CV space corresponding to the transition region.

From multiple infrequent WT-MetaD runs, one can build an empirical cumulative distri-

bution function (ECDF) that must fit well with the Poisson distribution expected for rare

events:17

Pn≥1 = 1− P0 = 1− e
t
τ (S2)

where τ is the characteristic timescale of the transition.

The kinetic rate constant (k) associated with the rare events can be estimated as the inverse

of the characteristic timescale τ :

k =
1

τ
(S3)

The barrier associated to the transition ∆G‡ can be calculated from the Eyring equation:

k =
κKBT

h
e

−∆G‡
RT (S4)

where κ is a transmission coefficient (equal to one in the no-recrossing assumption of tran-

sition state theory), KB is Boltzmann’s constant and h is Planck’s constant.

To quantitatively compare the theoretical and the empirical distribution, the Kolmogorov-

Smirnov (KS) test18 19 has been performed.
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System-specific simulation protocols.

We will here discuss the choice of CVs and biasing approach adopted to study the shut-

tling dynamics in each of the studied systems. We underline that, for each case, WT-MetaD

parameters have been optimized to improve the convergence of free-energy differences and

kinetic quantities extracted for all the studied systems. For example, in WT-metaD simula-

tions we have adjusted the bias factor according to the characteristic free-energy differences

associated with the shuttling of each system. In the case of infrequent WT-metaD, we have

also modulated the deposition rate and initial height of the deposited Gaussians in order to

maximize the P-value of the KS test.16

Shuttling and kinetics of [R4 − H2]
2+ [2]Rotaxane

To study the translational dynamics of system 1, we employed WT-MetaD simulations,

biasing: 1) the difference d of the distance between the center of geometry of the ring and

the center of geometry of one benzimidazolium (d1) and between the center of geometry of

the ring and the second benzimidazolium (d2); 2) the distance dbenz−benz between the two

benzene rings of the dibenzo[24]crown-8 ether macrocycle (see the schematic representation

of CVs in Fig.S1). The bias has been updated every 500 time steps (1 ps of simulation time)

using Gaussians of initial height 1 kJ/mol, the width of 0.1 nm and 0.05 nm for CV1 and

CV2, respectively, and a bias factor of 20 in DMSO, 30 in ACN, and 40 in DCM and CHCl3.

For each system, we ran a minimum of 1.5 µs, allowing us to record multiple shuttling events

across stations. For the calculation of the shuttling rates in 1 from bound to unbound we

ran 25 infrequent WT-MetaD simulations, starting from the bounded state and biasing the

distance between the center of geometry of the ring and the center of geometry of the closest

benzimidazolium (d1, CV1) and the distance (dbenz−benz, CV2) between the two benzene

rings of the dibenzo[24]crown-8 ether macrocycle. Each run ends when CV1 falls in basin D

(see 2D-FES in Fig. 1d of the main paper). The resulting ECDF and the fitting with the

Poissonian distribution is showed in Fig. S3a. In ACN, the bias has been added every 20 ps
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Figure S1: Schematic representation of WT-MetaD simulation setup for system 1. The two
selected CVs d and dbenz−benz are displayed.

Figure S2: (a) Mapping of dbenz−benz along d. (b) Mapping of the number of contacts between
the axle and the ring along d . The mapping are obtained using the approach of Ref. 20.

using Gaussians of initial height 1 kJ/mol, width of 0.1 nm and 0.05 nm for CV1 and CV2,

respectively, and a bias factor of 20. From the WT-MetaD simulation of system 1 in ACN,

we mapped the dbenz−benz and the number of contacts between the axle and the ring along

the variable d (Fig. S2), as proposed in Ref. 20.

In CHCl3 and DCM, the bias has been added every 50 ps, using Gaussians of initial height

2 kJ/mol, a width of 0.1 nm and 0.05 nm for CV1 and CV2, respectively, and a bias factor
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Figure S3: (a) Top panel: atomistic molecular structure of 1, state A. The blue arrow
indicates the transition to state D. Bottom panel: Transition times estimated via multiple
infrequent metadynamics simulations starting from states A (red curve), B (blue), and C
(green) and reaching state D. The ECDF of the measured transition times are fitted by
Poissonian probability distributions (continuous curves). (b) Top panel: atomistic molecular
structure of 1, state D. The red and green arrows indicate the two possible directions of
motion of the macrocycle. Bottom: Transition times estimated via multiple MD simulations
(gray steps) and Poissonian probability distributions (red and green curves) for the D−→A
and D−→D’ motion of the macrocycle along the dumbbell. The vertical dashed red and green
lines represent the characteristic timescale τ associated with the events and are estimated
by fitting the ECDF with the Poissonian distributions.
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of 45. In DMSO, the bias has been added every 80 ps, using Gaussians of initial height 2.5

kJ/mol, width of 0.1 nm and 0.05 nm for CV1 and CV2, respectively, and a bias factor of

25.

The times for transitions D −→ A and D −→ D’ in ACN are collected via multiple classical MD

runs. Every 500 simulation steps, PLUMED checks whether CV1 is in basin A or D’ and,

eventually, stops the simulation. The ECDFs and the fitting with the Poissonian distribution

are displayed in Fig. S3b.

Fig. S5 shows the FESs as a function of the two CVs biased during the WT-MetaD sim-

ulations in all the for solvents investigated in this study. Fig. S6 shows the height of the

barriers of unbinding from the recognition site in the four solvents, estimated via infrequent

metadynamics simulations.

Figure S4: On the left, free-energy (black), enthalpy (red) and entropy (blue) profiles of the
1 immersed in DCM solvent (β = 0.10) as a function of d. On the right, number of HBs
between the axle and the macrocycle (green) and between the axle and the solvent molecules
(purple line), as a function of d.

Shuttling and kinetics of formamidinium [2]Rotaxane

In system 2, we run 1µs of classical MD simulation, in NPT conditions. The 2D-FES has

been computed along the difference between the distance between the center of geometry

of the macrocycle and the center of geometry of one stopper and the distance between the

center of geometry of the macrocycle and the second stopper (d), as showed in Fig. S7a.
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Figure S5: FESs of 1 as a function of the two CVs biased during WT-MetaD simulations
in all the four solvents investigated in this study. The free-energy profiles are symmetrized
with respect to d = 0, exploiting the symmetry of the system.

ECDF obtained via multiple MD simulations and Poissonian probability distributions for

the shuttling motion of the ether crown of 2 are showed in Fig. S7b.

Shuttling and kinetics of [10]CPP Fullerene Pseudorotaxane and [10]CPP Fullerene

[2]Rotaxane

The rates for the decomplexation of [10]CPP-Fullerene Pseudorotaxane21 have been calcu-

lated running 20 infrequent WT-MetaD using the distance between the center of geometry of

[10]CPP and the center of geometry of the fullerene as CV, depositing Gaussians every 40 ps,

0.5 kJ/mol of initial height, 0.1 nm width and a bias factor of 10. The obtained ECDF and

the fitting with the Poissonian distribution for [10]CPP-Fullerene Pseudorotaxane is showed

in Fig. S9a.

For system 3, we used a WT-MetaD bias acting on the difference d between the distance
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Figure S6: Barrier heights of unbinding from the recognition site of 1 in various solvents,
estimated from infrequent metadynamics.

Figure S7: (a) Schematic representation of 2. The CV d used for reweighting the free-energy
surfaces is displayed. (b) Transition times are estimated via multiple MD simulations (blue
steps) and Poissonian probability distributions (red curve) for the shuttling motion of the
ether crown of 2. The vertical dashed gray lines represent the characteristic timescale τ
associated with the event, estimated from fitting the ECDF with a Poissonian distribution.

between the center of geometry of the [10]CPP and the center of geometry of one stopper

(d1) and the distance between the center of geometry of the [10]CPP and the second stopper

(d2); Gaussians have been added every ps, with an initial height of 1 kJ/mol, gaussian width

of 0.3 nm, a bias factor of 25. To prevent the trans-3 fullerene bisadduct from closing under

the effect of the metadynamics bias, we imposed an external wall potential that acted on

the center of geometry of the two fullerene hexakis-adduct stoppers when their displacement

from reference is greater than 1 nm, with a force constant equal to 200 (kJ/mol)/nm2. For
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Figure S8: Schematic representation of WT-MetaD simulation setup for system 3. The
selected CVs (CV1, CV2, CV3) are displayed.

a quantitative estimation of the characteristic timescale associated with a transition from

“bound” to “unbound” states in 3, three CVs were used: 1) The distance between the

center of geometry of [10]CPP and the center of geometry of the central fullerene (CV1); 2)

The distance between the center of geometry of [10]CPP and the first carbon atom of the

substituent Cy (CV2); 3) The relative rotation between [10]CPP and the central fullerene

(CV3). A schematic representation of the CVs used for the WT-MetaD simulation of 3 is

showed in Fig. S8. The bias has been added every 40 ps using Gaussians of initial height 0.5

kJ/mol, width of 0.1 nm for CV1 and CV2 and 0.3 radians for CV3, and a bias factor of 10.

The obtained ECDF and the fitting with the Poissonian distribution for 3 is showed in Fig.

S9b.

In Fig. S10, we show the free-energy profile of CPP rotation in the polar plane having

ϕ as angular phase and ψ as magnitude of the vector. While this representation is more

straightforward than the PCA-based plot in Fig. 4e of the main manuscript, and successfully

reproduces the periodicity features of the CPP rotation, it distorts the appearance of the

free-energy minima associated to the different ϕ angles. Instead, the usage of PCA allows

to conveniently represent the free-energy basins associated to different rotation angles ϕ as

symmetric (see Fig. 4e).
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Figure S9: (a) Transition times for [10]CPP Fullerene Pseudorotaxane decomplexation (jump
in solution) estimated via multiple infrequent WT-MetaD (blue steps), and Poissonian prob-
ability distributions (red curve). (b) Estimated times in 3 for [10]CPP to leave the central
Fullerene (“bound” state) and jump on one lateral stopper (“unbound” state), collected via
multiple infrequent WT-MetaD (blue steps), and Poissonian probability distributions (red
curve). In both panels, the vertical dashed lines represent the characteristic timescale τ
associated with the events and are estimated by fitting the ECDF with the Poissonian dis-
tributions.

Figure S10: Free Energy Surface of CPP angular configuration as a function of ϕ and ψ
angles.
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Shuttling and kinetics of rigid bistable [2]Rotaxane

Figure S11: Schematic representation of WT-MetaD simulation setup for system 4. The two
selected CVs d and ψ are displayed.

The WT-MetaD simulation of system 4 has been run using the difference between the dis-

tance between the center of geometry of CBPQT4+ and the oxygen atom of the last PEG

of one lateral chain and the distance between the center of geometry of the ring and the

oxygen atom of the last PEG of the other lateral chain (CV1) and the torsional angle ψ

between the two naphthalenes (CV2) as CVs. A schematic representation of the CVs used

for the WT-MetaD simulation of 4 is showed in Fig. S11. The bias has been added every 2

ps, using Gaussians with an initial height of 1 kJ/mol, a width of 0.2 nm for CV1 and 0.2

rad for CV2, and a bias factor of 20.

For estimating the kinetic rates, forty-five infrequent WT-MetaD have been run, using the

distance between the center of geometry of CBPQT4+ and the center of geometry of the

closest naphthalene (CV1) and the torsional angle between the two naphthalenes (CV2) as

collective variables. The bias has been added every 20 ps, using Gaussians with an initial

height of 0.239 kJ/mol, a width of 0.1 nm for CV1 and 0.2 rad for CV2, and a bias factor

of 20. The simulations ended when CBPQT4+ jumped from station 1 to station 2. The

obtained ECDF and the fitting with the Poissonian distribution for 4 is showed in Fig. S12.
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Figure S12: Transition times estimated via multiple infrequent metadynamics simula-
tions (blue steps) and Poissonian probability distribution (red curve) for the transition of
CBPQT4+ from one naphthalene to the other in system 4. The vertical dashed line repre-
sents the characteristic timescale τ associated with the event and is estimated by fitting the
ECDF with the Poissonian distribution.

Table S1: Details of Molecular Systems simulated in this work

System Solvent Number of
atoms

Size of the
box (Å)

Barostat Simulation
time (µs)

1 ACN 26162 8.2x7.4x6.7 Parr-Rahm 2

1 CHCl3 26621 10.6x9.1x7.6 Parr-Rahm 2

1 DCM 22676 9.5x8.1x6.8 Berendsen 2

1 DMSO 21732 7.5x6.4x5.3 Parr-Rahm 1.6

2 DCM 5495 5.6x4.8x4.5 Berendsen 1

3 CHCl3 21849 9.7x7.8x7.8 Berendsen 2

4 ACE 11724 8.9x6.9x6.9 Parr-Rahm 2

Mapping auxiliary variables in CV space with conditional proba-

bility

In this paper, we used the approach described by Gimondi et Al.20 to build maps of auxiliary

variables in CV space (e.g. number of hydrogen bonds, SASA, enthalpy and entropy).

S13



Adopting the notation of the reference paper, s is the set of CVs where the system is

mapped, and s̄ is the auxiliary variable. Each point in s represents an ensemble of degenerate

configurations. One can define a local probability density for s̄, for any values of s, namely

the conditional probability density of s̄ under a constraint on the value of s:

p(s̄|s) =

∫
e−βF (s|s̄)δ(s− s')δs'∫∫
e−βF (s|s̄)δ(s− s')ds̄ds

(S5)

From the probability density, p(s̄|s) one can compute the ensemble average of s̄ over the

ensemble of configurations degenerates in s:

⟨s̄⟩s =
∫
s̄p(s̄|s)ds̄ (S6)

Enthalphic and entropic contribution to FES

The WT-MetaD simulations allow us to compute the projection of the free-energy surface

on the space of the collective variables. The Gibbs free-energy can be written as the sum of

the enthalpic and the entropic part:

∆G(s) = ∆H(s)− T∆S(s) (S7)

The approach proposed in Ref. 20 and recently applied for studying the early stage of

nucleation of metal organic frameworks22 was employed here for a systematic breakdown of

the free energy surface. The enthalpic contribution to the free energy is:

∆H(s) = ∆U(s) + P∆V (s) (S8)

where P is the pressure and V(s) is the volume, and U(s) is the sum of the ensemble averages
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of the potential and kinetic energy:

U(s) = ⟨EP ⟩s + ⟨EK⟩s (S9)

At this point, it is worth noting that for negligible variations of the volume mapped on the

CV space, the term P∆V(s) is constant, and the enthalpy reduces to the ensemble average

of the internal energy on s U(s). Moreover, at constant temperature, the kinetic energy

does not depend on s, and the internal energy reduces to the potential energy of the system

∆EP (s).

For systems immersed in explicit solvent the potential energy of the system can be further

decomposed as follows:

∆EP (s) = ∆⟨ESolute
P ⟩s +∆⟨ESolvent

P ⟩s +∆⟨ESolute−Solvent
P ⟩s (S10)

The equation S10 can be reduced, noting that the term ∆⟨ESolvent
P ⟩s is independent from the

value of the CV, s.

In conclusion, the enthalpy mapped on the CV space reduces to the ensemble average of the

potential energy of the system along the CV, and the entropy can be obtained by difference.

Calculation of the rotation in [10]CPP-Fullerene [2]Rotaxane

The analysis of the dynamics of the [10]CPP over the central Fullerene was done by decom-

posing its rotation (ϕ – rotation axis of the [10]CPP parallel to cylindrical symmetry axis of

the molecule itself) from the tilting (ψ – tilting axis orthogonal to the cylindrical symmetry

axis of [10]CPP) (see Fig. 4d in main text). Performing principal component analysis (PCA)

over cos (ϕ), sin (ϕ), cos (ψ) and sin (ψ) sampled during unbiased MD, the first two principal

components, PC1 and PC2 (the new coordinates obtained from the analysis), transform the

displacement of the measured values into ten blobs over a circle (see Fig. 4e in main text the

−KBT log (ρ) map, where ρ is the density map of the configurations). The position along
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the circle is directly related to ϕ as shown in Fig. 4e, while the radial position correlates

with ψ. By performing cluster analysis by the means of Probabilistic Analysis of Molecular

Motifs (PAMM),23 it clearly identifies ten ensembles, and by analysing the dynamics time

evolution of the labelling of each data-point, we can measure the ∼ 0.1ns residence time in

each cluster (configurations), and then moving to one of the next neighbour clusters. From

this analysis it is clear that the most relevant movement of [10]CPP is the rotation, while

the tilting mainly fluctuates about its equilibrium position.
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