Electronic Supplementary Information

Macrocyclization via Remote meta-Selective C-H Olefination Using a Practical Indolyl Template
Pengfei Zhang, Zhiwei Jiang, Zhoulong Fan, Guoshuai Li, Qingxue Ma, Jun Huang, Jinghong Tang, Xiaohua Xu, * Jin-Quan Yu, * and Zhong Jin*
Table of Contents
1 General Information S2
2 Synthesis and Screening of Templates S3
2.1 Synthesis of Templates 3
2.2 Synthesis of Substrates S6
2.3 Screening of Templates S16
3 Pd-Catalyzed meta-C-H Olefination of Aryl Sulfonic Acids S18
3.1 Optimization of Reaction Conditions S18
3.2 Scope of Aryl Sulfonic Acids. S19
3.3 Scope of Olefins. S30
4 Macrocyclization via Intramolecular meta-C-H Olefination S38
4.1 Optimization of Reaction Conditions S38
4.2 Synthesis of Macrolactones via Intramolecular meta-C-H Olefination S38
5 Crystal Data for Compound 2d. S51
6 Synthetic Utility of meta-C-H Functionalization. S52
6.1 Synthesis of Coumarins via Intramolecular meta-C-H Olefination S52
6.2 Synthesis of HDAC-inhibitory Belinostat S54
6.3 Scale-up Reaction, Removal and Recovery of Template S55
7 Mechanistic Study S57
7.1 Pd-Catalyzed meta-C-H Olefination under the Variable Conditions S57
7.2 Kinetic Isotope Effect Experiment. S58
7.3 Kinetic Studies on the Reaction Orders S59
7.4 In situ FTIR experiments S65
7.5 ESI-MS analysis S66
8 Reference S67
NMR Spectra Data for All New Compounds S68

1 General Information

Unless otherwise noted, all solvents and chemicals were commercially available and used directly without further purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60 F254. Visualization was carried out with UV light. Preparative TLC was performed on 1.0 mm silica gel (Analtech). Columns for flash chromatography (FC) contained silica gel (32-63 μ, Dynamic Adsorbents, Inc.). The melting points were measured with Tektronix X 4 microscopic melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AV 400 instrument (400 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to 0.00 ppm for tetramethyl silane. The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $q u i n t=$ quintet, $\operatorname{sext}=$ sextet, sept $=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Coupling constants, J, were reported in Hertz unit $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV 400 instrument (100 MHz) and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet peak at 77.0 ppm of chloroform d and the center line of a septet peak at 40.0 ppm of $d_{6^{-}}$ DMSO. High resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). For the in situ IR kinetic experiments, the reaction spectra were recorded using a React IR 15 from Mettler-Toledo AutoChem fitted with a Silicon-tipped probe.

2 Synthesis and Screening of Templates

2.1 Synthesis of Templates

General procedure. According to the previously described procedure, ${ }^{1}$ 3-iodoindoles were generally prepared from the corresponding unsubstituted indoles: $\mathrm{KOH}(6.0 \mathrm{~g}, 106.9 \mathrm{mmol})$ was added to a solution of indole $(5.0 \mathrm{~g}, 42.7 \mathrm{mmol})$ in DMF at room temperature. The resulted mixture was stirred for 15 mins and then a solution of $\mathrm{I}_{2}(10.8 \mathrm{~g}, 42.7 \mathrm{mmol})$ dissolved in DMF $(30 \mathrm{~mL})$ was added by syringe. The reaction mixture was stirred at room temperature for another 4 h . After completion of reaction, the mixture was poured into the cooled $\left(0^{\circ} \mathrm{C}\right) a q . \mathrm{Na}_{2} \mathrm{SO}_{3}(500 \mathrm{~mL}, 0.1 \%)$ to give an orange precipitate. After filtration and dry in air, light orange solid (9.5 g) was obtained in 91.6% yield.

Template DT $\mathbf{1}_{1}$ was synthesized via an analogous Suzuki coupling reaction described by Russell and co-workers: ${ }^{2}$ To a solution of o-CN-PhBpin ($4.2 \mathrm{~g}, 18.3 \mathrm{mmol}$) in 1,4-dioxane (40 mL) was added the above crude 3-iodoindole $(2.5 \mathrm{~g}, 10.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.75 \mathrm{~g}, 1.0 \mathrm{mmol})$, and a solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(8.4 \mathrm{~g}, 25.7 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ at room temperature in turn. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h under argon. The solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) $(80 \mathrm{~mL})$ and then diluted with ethyl acetate $(100 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with ethyl acetate repeatedly ($2 \times 60 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulted residue was purified by silica gel column chromatography (eluent: petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right)$ /ethyl acetate $=20 / 1)$ to provide the $\mathbf{D T}_{\mathbf{1}}(1.7 \mathrm{~g}, 75.7 \%)$. In a similar manner, templates $\mathbf{D T}_{\mathbf{2}}, \mathbf{D T}_{3}$, $\mathbf{D T}_{4}$, and $\mathbf{D T}_{5}$ were successfully prepared from the starting 3-iodoindoles and ArBpin in good to excellent yields.

3-Iodoindole, 2-methyl-3-iodoindole, and 5-methyl-3-iodoindole are known compounds. The characteristic data for 2,5-dimethyl-3-iodoindole were listed as following:

3-iodo-2,5-dimethyl-1H-indole

Yield: 92%. Light orange solid, $R_{f}=0.61$ (petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right)$ /ethyl acetate $=20: 1$, V/V). m.p.: $134-135{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.32,134.11,130.93,129.90,123.81,119.92,110.29,58.47,21.38$, 14.36.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{INNa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$293.9750, found 293.9753.

2-(1H-indol-3-yl)benzonitrile (DT ${ }_{1}$)

Yield: 76%. White solid, $R_{f}=0.51$ (petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $=8: 1$, V/V). m.p.: $105-106^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}$, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.22(\mathrm{td}, J=7.5,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.98,136.25,134.00,132.74,129.96,126.22,125.83,124.43$, $122.90,120.81,119.59,119.25,113.92,111.68,110.90$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$241.0736, found 241.0732.

2-(5-methyl-1 H -indol-3-yl)benzonitrile (DT $\mathbf{2}_{2}$)

Yield: 80%. Gray solid, $R_{f}=0.42$ (petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $=10: 1$, V/V). m.p.: $112-113{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$, S4 / S146
$7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.22,134.60,133.99,132.73,130.18,129.97,126.09,126.07$, 124.61, 124.49, 119.67, 118.81, 113.37, 111.37, 110.82, 21.65.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$255.0893, found 255.0898.

2-(2-methyl-1H-indol-3-yl)benzonitrile (DT ${ }_{3}$)

Yield: 85%. White solid, $R_{f}=0.47$ (petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $\left.=9: 1, \mathrm{~V} / \mathrm{V}\right)$. m.p.: $135-136^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.62,135.27,133.62,133.43,132.58,131.81,127.80,126.74$, $121.95,120.25,119.26,118.31,113.25,111.38,110.66,12.96$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$255.0893, found 255.0895.

2-(2,5-dimethyl-1H-indol-3-yl)benzonitrile (DT4)

Yield: 82%. White solid, $R_{f}=0.44$ (petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $=8: 1$, V/V). m.p.: $158-159{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{td}$, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.78,133.69,133.52,133.32,132.49,131.77,129.41,127.96$, $126.56,123.34,119.24,117.89,113.13,110.84,110.29,21.51,12.88$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$269.1049, found 269.1046.

2,5-dimethyl-3-phenyl-1 H -indole (DT5)

Yield: 70%. Red oil, $R_{f}=0.50$ (petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $\left.=10: 1, \mathrm{~V} / \mathrm{V}\right)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.64,133.54,131.58,129.49,129.25,128.51,128.11,125.75$, 123.03, 118.53, 114.12, 110.01, 21.59, 12.57.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$244.1097, found 244.1095.

2.2 Synthesis of Substrates

General procedure. ${ }^{3}$ To a solution of DT $4(200.00 \mathrm{mg}, 0.81 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added sodium hydride (dispersed in mineral oil, $60 \% \mathrm{wt}, 97.6 \mathrm{mg}, 2.44 \mathrm{mmol}$) under ice bath ($0^{\circ} \mathrm{C}$). The resulted mixture was stirred for 15 mins and then benzenesulfonyl chloride ($286.81 \mathrm{mg}, 1.62 \mathrm{mmol}$) was added to the reaction mixture with stirring. After that, the mixture was gradually warmed up to room temperature and stirred overnight. After completion of reaction, the reaction was quenched with water $(40 \mathrm{~mL})$ and the mixture was then diluted with ethyl acetate $(30 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulted residue was purified by silica gel column chromatography (eluent: petroleum ether (60 $\left.{ }^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right)$ /ethyl acetate $\left.=40 / 1\right)$ to give the $\mathbf{1 a}(258 \mathrm{mg}, 82.2 \%)$. In a similar manner, arylsulfonate substrates ($\mathbf{1 b} \mathbf{- 1 u}$) were also prepared in good to excellent yields.

2-(2,5-dimethyl-1-(phenylsulfonyl)-1H-indol-3-yl)benzonitrile (1a)
Yield: 90%. White solid, $R_{f}=0.42$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $116-117{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{t}, J=7.7,1 \mathrm{H})$, $7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 138.72,137.12,135.46,134.43,133.73,133.65,133.33,132.70$, $131.58,129.64,129.36,128.17,126.40,126.11,119.48,118.67,117.94,114.42,114.19,21.25$, 14.26.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$409.0981, found 409.0978.

2-(1-((2-methoxyphenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (1b)

Yield: 82%. Yellow solid, $R_{f}=0.25$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $146-147{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.64,137.73,136.25,135.84,134.75,133.36,132.74,132.67$, $131.92,130.39,128.91,127.96,126.93,125.42,120.08,118.39,118.03,117.34,114.25,114.14$, 112.68, 56.08, 21.25, 13.49.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 439.1087$, found 439.1083.

2-(1-((3-methoxyphenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (1c)

Yield: 91%. Yellow oil, $R_{f}=0.55$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=$ $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}$, $1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.92,139.81,137.11,135.44,134.42,133.66,133.36,132.75$, $131.65,130.51,129.64,128.21,126.10,120.28,119.38,118.75,118.57,117.96,114.40,114.15$, 111.03, 55.67, 21.28, 14.29.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 439.1087$, found 439.1084.

2-(2,5-dimethyl-1-(m-tolylsulfonyl)-1 H-indol-3-yl)benzonitrile (1d)

Yield: 90%. White solid, $R_{f}=0.61$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $124-125^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=$ $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.83,138.65,137.20,135.49,134.64,134.40,133.53,133.32$, $132.69,131.60,129.57,129.15,128.13,126.59,126.03,123.63,119.27,118.62,117.96,114.38$, 114.22, 21.29, 21.24, 14.28.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 423.1138$, found 423.1134.

2-(1-((3-chlorophenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (1e)

Yield: 79%. Yellow solid, $R_{f}=0.32$ (hexane/ethyl acetate $=10: 1$, V/V). m.p.: $132-133{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}$, $1 \mathrm{H}), 7.70(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{q}, J=9.0,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=8.0$ S8 / S146
$\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.12,136.86,135.37,135.29,134.24,133.99,133.94,133.32$, $132.75,131.50,130.85,129.71,128.29,126.50,126.36,124.51,119.97,118.84,117.93,114.34$, 114.15, 21.25, 14.35.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 443.0591$, found 443.0593.

2-(2,5-dimethyl-1-((3-(trifluoromethoxy)phenyl)sulfonyl)-1 \boldsymbol{H}-indol-3-yl)benzonitrile (1f)

Yield: 80%. Yellow solid, $R_{f}=0.19$ (hexane/ethyl acetate $=6: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $79-80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.71$ (td, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.13,140.35,136.87,135.32,134.33,134.14,133.34,132.76$, $131.49,131.37,129.83,128.34,126.43,126.00,124.59,121.50,120.28,119.22,118.89,117.87$, 114.42, 114.23, 21.24, 14.29.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 493.0804$, found 493.0801 .

2-(2,5-dimethyl-1-((3-(trifluoromethyl)phenyl)sulfonyl)-1 \boldsymbol{H}-indol-3-yl)benzonitrile (1g)

Yield: 85%. Yellow oil, $R_{f}=0.49$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ $-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.61,136.80,135.30,134.24\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.3 \mathrm{~Hz}\right), 133.32,132.80$, $131.76\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=33.4 \mathrm{~Hz}\right), 131.46,130.55,130.42\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 129.83,129.56,128.38,126.48$, $124.30,123.65\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 121.59,120.36,118.93,117.90,114.38,114.20,21.25,14.38$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 477.0855$, found 477.0858.

Methyl 3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)benzoate (1h)
Yield: 82%. Yellow oil, $R_{f}=0.25$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.15,139.22,136.94,135.36,134.56,134.29,133.95,133.34$, $132.74,131.54,131.44,130.25,129.94,129.75,128.28,127.68,126.34,119.97,118.83,117.88$, $114.44,114.20,52.65,21.25,14.37$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 467.1036$, found 467.1039.

2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)benzonitrile (1i)

Yield: 94\%. Yellow oil, $R_{f}=0.46$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}$, $3 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}$, $3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 144.82,137.22,135.84,135.52,134.41,133.53,133.36,132.74$, 131.64, 129.98, 129.64, 128.17, 126.51, 126.03, 119.31, 118.66, 118.04, 114.45, 114.19, 21.57, 21.28, 14.33.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 423.1138$, found 423.1139.

2-(1-((4-fluorophenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (1j)
Yield: 68%. Yellow solid, $R_{f}=0.26$ (hexane/ethyl acetate $=10: 1$, V/V). m.p.: $134-135{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{q}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.62\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=255.1 \mathrm{~Hz}\right), 136.99,135.44,134.53\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.1\right.$ Hz), $134.35,133.93,133.35,132.79,131.52,129.81,129.35\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.7 \mathrm{~Hz}\right), 128.30,126.27$, $119.98,118.81,118.03,116.87,116.64,114.44,114.19,21.27,14.41$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 427.0887$, found 427.0890.

2-(1-((4-chlorophenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (1k)

Yield: 66%. Yellow solid, $R_{f}=0.54$ (hexane/ethyl acetate $=8: 1$, V/V). m.p.: $118-119{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.67(\mathrm{~m}$, $3 \mathrm{H}), 7.51(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 2.57$ (s, 3H), $2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.39,136.94,136.89,135.45,134.31,134.01,133.36,132.81$, 131.52, 129.82, 129.73, 128.33, 127.91, 126.32, 120.09, 118.86, 118.05, 114.42, 114.19, 21.28, 14.43.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 443.0591$, found 443.0590 .

2-(2,5-dimethyl-1-((4-(trifluoromethoxy)phenyl)sulfonyl)-1H-indol-3-yl)benzonitrile (11)

Yield: 76%. Yellow oil, $R_{f}=0.69$ (petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $\left.=10: 1, \mathrm{~V} / \mathrm{V}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=8.1,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.82\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right), 136.89,136.65,135.41,134.33,134.05$, $133.32,132.78,131.48,129.82,128.70,128.33,126.36,121.39,121.01,120.15,118.87,118.00$, $114.41,114.21,21.25,14.41$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 493.0804$, found 493.0801 .

2-(1-((2,4-dimethoxyphenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (1m)
Yield: 84%. Orange oil, $R_{f}=0.21$ (hexane/ethyl acetate $=3: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, $6.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.77,159.28,137.87,136.35,134.60,133.35,132.70,132.48$, $132.26,131.96,128.92,127.89,125.26,119.22,118.33,118.09,117.03,114.20,114.15,104.65$, 99.30, 56.08, 55.72, 21.24, 13.49.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$469.1192, found 469.1194.

2-(1-((2-fluoro-5-methylphenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (1n)

Yield: 83%. Yellow solid, $R_{f}=0.35$ (hexane/ethyl acetate $=6: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $137-138^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2H), $7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 2 \mathrm{H}), 2.53$
$(\mathrm{s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.58\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=282.4 \mathrm{~Hz}\right), 137.23,136.69\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 136.02$, $134.60\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 134.03,133.44\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 132.71,131.79,129.61,129.31,128.15$, $126.45\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13.9 \mathrm{~Hz}\right), 125.84,118.72,118.53,117.82,117.51,117.30,114.18\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right)$, 106.77, 21.27, 20.67, 13.87.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 441.1043$, found 441.1047.

2-(1-((3-fluoro-4-methoxyphenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (10)
Yield: 72%. Yellow oil, $R_{f}=0.22$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.7$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.94$ (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.28\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 151.42\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=250.9 \mathrm{~Hz}\right), 137.05$, $135.39,134.29,133.82,133.35\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=17.0 \mathrm{~Hz}\right), 132.78\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=14.4 \mathrm{~Hz}\right), 131.56\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13.9\right.$ $\mathrm{Hz}), 130.26\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.6 \mathrm{~Hz}\right), 129.74,128.24\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=18.0 \mathrm{~Hz}\right), 126.23\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.5 \mathrm{~Hz}\right), 123.96$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=16.0 \mathrm{~Hz}\right), 119.75,118.76,118.05,114.76\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=19.5 \mathrm{~Hz}\right), 114.42\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=14.0 \mathrm{~Hz}\right)$, $114.15,113.24\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 56.39\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}\right), 21.28,14.40\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right)$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 457.0993$, found 457.0990.

2-(1-((4-fluoro-3-(trifluoromethyl)phenyl)sulfonyl)-2,5-dimethyl-1 H-indol-3-yl)benzonitrile (1p)

Yield: 62%. Yellow solid, $R_{f}=0.38$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $151-152{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.86(\mathrm{~m}$,
$1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.56\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=265.1 \mathrm{~Hz}\right), 136.71,135.29,134.93\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.9\right.$ $\mathrm{Hz}), 134.46,134.23,133.28,132.82,132.64,132.54,131.37,129.98,128.46,126.61,120.80$, $119.02,118.99,118.77,117.93,114.42,114.23,21.25,14.48$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 495.0761$, found 495.0764 .

2-(1-((3,4-dichlorophenyl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (1q)

Yield: 74%. White solid, $R_{f}=0.62$ (hexane/ethyl acetate $=5: 1$, V/V). m.p.: $150-151{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 2.57$ (s, 3H), $2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 138.83,137.97,136.78,135.32,134.27,134.18,133.93,133.35$, $132.82,131.67,131.46,129.87,128.40,126.53,125.45,120.44,118.99,118.01,114.38,114.20$, 21.28, 14.48.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 477.0202$, found 477.0204.

2-(1-((3-chloro-4-fluorophenyl)sulfonyl)-2,5-dimethyl-1 H-indol-3-yl)benzonitrile (1r)
Yield: 85%. White oil, $R_{f}=0.40$ (hexane/ethyl acetate $=7: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=6.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.98(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.21\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=257.2 \mathrm{~Hz}\right), 136.81,135.37,135.32,134.23,133.33$, $132.82,131.45,129.88,129.51,128.39,127.07\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.9 \mathrm{~Hz}\right), 126.50,122.79,122.60,120.40$, S14 / S146
$118.96,118.04\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.4 \mathrm{~Hz}\right), 117.85,114.39,114.21,21.28,14.48$.
HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{ClFN}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$461.0497, found 461.0499.

2-(1-((4-(benzyloxy)phenyl)sulfonyl)-2,5-dimethyl-1 \boldsymbol{H}-indol-3-yl)benzonitrile (1s)
Yield: 87%. White solid, $R_{f}=0.49$ (hexane/ethyl acetate $=5: 1$, V/V). m.p.: $129-130{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 162.84,137.29,135.65,135.49,134.39,133.48,133.34,132.68$, $131.64,130.57,129.64,128.77,128.71,128.37,128.10,127.55,126.00,119.24,118.61,118.03$, $115.33,114.44,114.21,70.37,21.27,14.32$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 515.1400$, found 515.1403.

2-(1-((4-hydroxyphenyl)sulfonyl)-2,5-dimethyl-1 \boldsymbol{H}-indol-3-yl)benzonitrile (1t)
Yield: 72%. Yellow solid, $R_{f}=0.21$ (hexane/ethyl acetate $=2: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $113-114{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.30$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.09,137.79,135.44,134.27,133.91,133.38,133.30,131.70$, $129.72,129.16,128.69,128.34,126.26,119.16,118.59,117.98,115.81,114.63,113.40,21.28$, 14.14.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 425.0930$, found 425.0935 .

2-(1-((3-hydroxyphenyl)sulfonyl)-2,5-dimethyl-1 \boldsymbol{H}-indol-3-yl)benzonitrile (1u)

Yield: 90%. White solid, $R_{f}=0.38$ (hexane/ethyl acetate $=5: 1$, V/V). m.p.: $136-137^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{td}, J=7.7$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.34,140.06,138.89,137.26,135.53,135.08,134.62,134.32$, $132.67,131.32,130.89,129.63,127.48,122.83,121.30,119.59,119.39,119.23,115.71,114.57$, 112.45, 22.31, 15.46.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 425.0930$, found 425.0933.

2.3 Screening of Templates

Based on the previous procedures for palladium-catalyzed meta-C-H olefination reactions, ${ }^{4,5}$ the directing of templates $\mathbf{D T}_{1}-\mathbf{D} \mathbf{T}_{5}$ in this reaction was evaluated

To a $15-\mathrm{mL}$ Schlenk tube equipped with a Teflon cap was charged with PhSO_{2}-DT $(0.1 \mathrm{mmol}$, 1.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, Ac-Gly-OH ($2.34 \mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$), AgOAc ($0.3 \mathrm{mmol}, 3.0$ equiv) in turn. Hexafluoro-2-propanol (HFIP, 1.0 mL) was added to the mixture via a syringe, followed by ethyl acrylate (2.0 equiv). The reaction tube was then capped and stirred at room temperature for 15 minutes. The tube was then placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 24 h and cooled to room temperature. The reaction mixture was diluted with EtOAc $(5 \mathrm{~mL})$ and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, and the residue was purified by flash column chromatography (silica gel) or preparative thin layer chromatography using petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}$ as the eluent to provide the olefinated products.

The results for the different directing templates were reported in the Table S1.

Table S1. Evaluation of directing template for meta-C-H functionalization of arylsulfonates.

3.1 Optimization of Reaction Conditions

Table S2. Condition screening for meta- $\mathrm{C}-\mathrm{H}$ olefination of aryl sulfonic acids ${ }^{a}$

Entry	Ligands	Ethyl acrylate $($ eq. $)$	AgOAc $(\mathbf{e q .)}$	Time (h)	Ratio (mono:di)	Yield $(\%)$
$\mathbf{1}$	N-Ac-Gly-OH	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 4}$	$\mathbf{1 : 1}$	$\mathbf{9 4}$
2	N-Ac-Val-OH	2.0	3.0	24	$1: 1.2$	55
3	N-Ac-Ala-OH	2.0	3.0	24	$1: 2$	46
4	N-Ac-Leu-OH	2.0	3.0	24	$1.3: 1$	33
5	N-Boc-Gly-OH	2.0	3.0	24	$1.1: 1$	46
6	N-Boc-Val-OH	2.0	3.0	24	$1: 1$	22
7	N-Boc-Phe-OH	2.0	3.0	24	$1.5: 1$	38
8	N-For-Gly-OH	2.0	3.0	24	$1: 1.4$	65
9	Gly-OH	2.0	3.0	24	$1.2: 1$	42
10	without ligand	2.0	3.0	24	n.d.	<30
11	N-Ac-Gly-OH	1.5	3.0	24	$1.3: 1$	90
12	N-Ac-Gly-OH	1.2	3.0	24	$1: 2$	40
13	N-Ac-Gly-OH	1.0	3.0	24	$1: 2.2$	28
14	N-Ac-Gly-OH	1.5	2.0	24	$1: 2.5$	60
15	N-Ac-Gly-OH	1.5	1.5	24	$1: 1.7$	64
16	N-Ac-Gly-OH	1.5	3.0	12	$1: 1$	80
$\mathbf{1 7}$	N-Ac-Gly-OH	$\mathbf{1 . 5}$	$\mathbf{3 . 0}$	$\mathbf{6}$	$\mathbf{1 . 4 : 1}$	$\mathbf{9 2}$
18	N-Ac-Gly-OH	1.5	3.0	2	$1.3: 1$	84

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), ethyl acrylate (x eq.$\left.\right), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), Ligands (20 mol\%), AgOAc (y equiv), reaction time (h). Yield and ratio of mono- and di-products were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude products with $\mathrm{Cl}_{2} \mathrm{CHCHCl}_{2}$ as an internal standard. N.d.: not detected.

3.2 Scope of Aryl Sulfonic Acids.

General procedure for meta-C-H olefination.

Condition A: To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathrm{ArSO}_{2}-\mathrm{DT}_{4} 1(0.1 \mathrm{mmol}, 1.0$ equiv $), \mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, Ac-Gly-OH (2.3 $\mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{AgOAc}(0.3 \mathrm{mmol}, 3.0$ equiv) in turn. Hexafluoro-2-propanol (HFIP, 1.5 mL) was added to the mixture along the inside wall of the tube via a syringe, followed by ethyl acrylate $(21.74 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv). The reaction tube was then capped and stirred at room temperature for 15 minutes. The tube was then placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 24 h and cooled to room temperature.

Condition B: To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathrm{ArSO}_{2}-\mathrm{DT}_{4} 1$ ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, Ac-Gly-OH (2.3 $\mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.5$ equiv) in turn. Hexafluoro-2propanol (HFIP, 1.5 mL) was added to the mixture along the inside wall of the tube via a syringe, followed by ethyl acrylate ($21.74 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv). The reaction tube was capped, then evacuated briefly under vacuum and charged with $\mathrm{O}_{2}(1 \mathrm{~atm}$, balloon, $\times 3)$. The tube was stirred at room temperature for 15 minutes, and then placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 24 h and cooled to room temperature.

Work up: The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, and the resulting residue was purified by flash column chromatography (silica gel) or preparative thin layer chromatography using petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) / E t O A c$ as the eluent to provide the olefinated products 2. Isolated yields for compounds 2 were reported in Scheme 2. of Main Text. The characterization data of new compounds are shown below:

Ethyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenyl)acrylate (2a)
Yellow oil, $R_{f}=0.45$ (hexane/ethyl acetate $=7: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{dt}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.1,6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.25,142.11,139.60,137.00,135.91,135.44,134.35,133.92$, $133.30,132.72,132.47,131.52,130.13,129.74,128.25,127.49,126.31,125.77,121.05,119.88$, $118.81,117.91,114.38,114.26,60.82,21.25,14.40,14.28$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 507.1349$, found 507.1346.

Ethyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-4-

methoxyphenyl)acrylate (2b)
Yellow solid, $R_{f}=0.34$ (hexane/ethyl acetate $=10: 1$, V/V). m.p.: $169-170{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H})$, $6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.64,158.68,142.12,137.60,136.03,134.98,134.74,133.34$, $132.90,132.78,131.86,130.05,129.01,128.06,127.60,126.94,125.60,118.51,118.48,117.98$, $117.75,114.22,114.16,113.20,60.67,56.45,21.24,14.33,13.50$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$537.1455, found 537.1451.

Ethyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-5-
methoxyphenyl)acrylate (2c)
Yellow oil, $R_{f}=0.43$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=$ $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.99(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.26,160.34,142.21,140.55,137.14,136.99,135.36,134.27$, 133.87, 133.31, 132.72, 131.57, 129.67, 128.23, 126.25, 121.15, 119.67, 118.85, 118.77, 118.14, $117.90,114.30,114.20,112.24,60.83,55.87,21.27,14.43,14.28$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 537.1455$, found 537.1453.

Ethyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-5-
methylphenyl)acrylate (2d)
White solid, $R_{f}=0.40$ (hexane/ethyl acetate $=7: 1$, V/V). m.p.: $122-123{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.70$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.35$ $(\mathrm{s}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.35,142.35,140.75,139.43,137.04,135.65,135.44,134.23$, $133.77,133.42,133.28,132.70,131.52,129.63,128.20,127.84,126.22,123.19,120.71,119.63$, $118.75,117.96,114.29,114.25,60.77,21.26,14.47,14.28$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 521.1505$, found 521.1501.

Ethyl (E)-3-(3-chloro-5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-

yl)sulfonyl)phenyl)acrylate (2e)

Yellow solid, $R_{f}=0.52$ (hexane/ethyl acetate $=7: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $71-72^{\circ} \mathrm{C}$. This compound was obtained as a mixture of isomers $(m$:others $=4: 1)$. The characteristic data for major isomer:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H})$, $7.60-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.37(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.60-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.85,140.74,138.33,137.76,136.78,136.12,135.27,134.23$, $133.27,132.73,132.22,131.44,129.80,128.77,128.34,127.27,126.52,124.74,123.95,122.34$, $120.28,118.99,117.86,114.29,60.95,21.26,14.49,14.24$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 541.0959$, found 541.0955.

Ethyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-5-

(trifluoromethoxy)phenyl)acrylate (2f)

Yellow solid, $R_{f}=0.37$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $73-74{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.71$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.77,149.55,141.07,140.63,138.40,136.70,135.24,134.36$, $134.17,133.26,132.74,131.39,129.88,128.38,126.57,124.17,123.89,122.65,121.43,120.54$,

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$591.1172, found 591.1175.

Ethyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-5-
(trifluoromethyl)phenyl)acrylate (2g)
Yellow oil, $R_{f}=0.49$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.79$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.72,140.57,140.49,137.47,136.67,135.25,134.43,134.14$, $133.24,132.75,132.43,131.37,129.89,128.78\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 128.62,128.40,126.61,124.27$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 124.00,122.89,120.61,119.07,117.77,114.30,114.28,61.02,21.24,14.54$, 14.23.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 575.1223$, found 575.1227.

Methyl (\boldsymbol{E})-3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-5-(3-ethoxy-3-oxoprop-1-en-1-yl)benzoate (2h)

Yellow oil, $R_{f}=0.19$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$). This compound was obtained as a mixture of isomers (m :others $=7.6: 1$). The characteristic data for major isomer:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.78$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$,
$2.60(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.98,164.67,141.10,140.06,136.78,136.73,135.29,134.16$, $134.13,133.27,132.92,132.72,132.24,131.45,129.80,129.36,128.35,128.32,126.48,122.17$, $120.24,118.95,117.80,114.32,114.24,60.92,52.85,21.25,14.51,14.25$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 565.1404$, found 565.1408.

Ethyl (E)-3-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-2-
methylphenyl)acrylate ($2 \mathbf{i}_{\text {mono }}$)
Yellow oil, $R_{f}=0.21$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}$, $2 \mathrm{H}), 7.70(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.35,143.70,140.14,137.08,136.85,135.46,134.74,134.34$, $133.78,133.32,132.69,131.99,131.56,129.73,128.19,126.92,126.17,124.50,122.24,119.65$, $118.75,117.93,114.41,114.21,60.82,21.25,20.03,14.40,14.30$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 521.1505$, found 521.1502.

Diethyl 3,3'-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-2-methyl-1,3phenylene)(2E, $\left.\mathbf{2}^{\prime} E\right)$-diacrylate ($\mathbf{2 i}_{\text {di }}$)

Yellow oil, $R_{f}=0.12$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H})$,
$6.22(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.09,142.16,140.49,136.90,136.52,135.40,134.32,134.06$, $133.27,132.66,131.49,129.92,128.22,126.28,125.16,123.60,119.98,118.89,117.71,114.51$, $114.24,60.88,21.25,16.33,14.54,14.29$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 619.1873$, found 619.1875.

Ethyl (E)-3-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-2-

fluorophenyl)acrylate (2j)

White solid, $R_{f}=0.46$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $61-62^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.64(\mathrm{~m}$, $3 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.11,162.40,136.86,135.39,135.05,134.25,134.13,133.28$, $132.76,131.43,129.86,129.70,129.59,128.33,128.04\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.6 \mathrm{~Hz}\right), 126.41,123.90\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $13.4 \mathrm{~Hz}), 123.67\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.7 \mathrm{~Hz}\right), 120.26,118.90,117.95,117.71,114.37,114.21,60.94,21.25$, 14.53, 14.26.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$525.1255, found 525.1252.

Ethyl (E)-3-(2-chloro-5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-

yl)sulfonyl)phenyl)acrylate (2k)

White oil, $R_{f}=0.36$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=16.0$
$\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.83,140.19,138.37,137.50,136.79,135.40,134.24,134.21$, $134.12,133.30,132.76,131.52,131.43,129.90,128.34,127.86,126.42,125.66,123.64,120.35$, $118.95,117.93,114.39,114.18,61.00,21.25,14.53,14.27$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 541.0959$, found 541.0962.

Ethyl (E)-3-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-2-
(trifluoromethoxy)phenyl)acrylate (21)
Yellow oil, $R_{f}=0.50$ (hexane/ethyl acetate $=7: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.67(\mathrm{~m}$, 4H), $7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.46$ $(\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.79,150.55,137.14,136.79,135.40,135.26,134.33,134.29$, $133.29,132.76,131.42,129.93,128.85,128.64,128.38,126.70,126.51,123.98,121.37,120.45$, $118.99,117.89,114.43,114.27,61.02,21.25,14.52,14.25$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$591.1172, found 591.1169.

Ethyl (E)-3-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-2,4-
dimethoxyphenyl)acrylate (2m)
White solid, $R_{f}=0.43$ (hexane/ethyl acetate $=3: 1$, V/V). m.p.: $104-105^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$
$(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}$, $3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.28,163.93,160.37,138.04,137.74,136.15,134.60,133.35$, $132.81,132.69,131.93,131.52,128.98,128.01,125.46,119.16,118.70,118.44,118.12,117.37$, $115.98,114.15,114.10,95.75,60.52,56.42,56.09,21.27,14.39,13.50$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 567.1560$, found 567.1565 .

Ethyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-2-fluoro-5methylphenyl)acrylate (2n)

White oil, $R_{f}=0.39$ (hexane/ethyl acetate $=7: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (ddd, J $=7.8,6.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.09,157.04,154.43,137.08,135.91,134.98\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right)$, $134.81\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 134.68\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}\right), 134.01,133.64,133.38,132.71,131.76,130.89$, $129.34,128.21,127.64\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=14.7 \mathrm{~Hz}\right), 126.00,124.47\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=11.9 \mathrm{~Hz}\right), 122.98\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.9\right.$ $\mathrm{Hz}), 118.84,117.79,114.27,114.14,60.86,21.26,20.75,14.25,13.91\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right)$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$539.1411, found 539.1415.

Ethyl (E)-3-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-3-fluoro-2methoxyphenyl)acrylate (20)

White solid, $R_{f}=0.38$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $59-60^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{td}, J=7.7,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.38,155.43,152.91,150.43\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.7 \mathrm{~Hz}\right), 136.85\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $3.0 \mathrm{~Hz}), 135.29,134.29,134.11,133.28,132.72,132.64\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.3 \mathrm{~Hz}\right), 131.45,129.88,129.66$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 128.29,126.41,122.63,122.02\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 120.13,118.89,117.84,116.42$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=23.4 \mathrm{~Hz}\right), 114.43,114.27,61.58\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right), 60.83,21.26,14.45,14.29$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$555.1360, found 555.1366.

Ethyl (E)-3-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-2-fluoro-3(trifluoromethyl)phenyl)acrylate (2p)

Yellow oil, $R_{f}=0.35$ (hexane/ethyl acetate $=15: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=7.7,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, $6.51(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.61,136.57,135.23\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 134.67,134.14,133.45$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 133.20,132.78,131.27,130.90\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.9 \mathrm{~Hz}\right), 130.07,129.90,128.47,126.71$, $126.63\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 126.18,126.05,125.46\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.9 \mathrm{~Hz}\right), 122.56,120.98,119.84,119.17$, $117.75,114.39,114.28,61.15,21.25,14.66,14.22$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$593.1129, found 593.1131.

Ethyl (E)-3-(2,3-dichloro-5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-

yl)sulfonyl)phenyl)acrylate (2q)

Yellow oil, $R_{f}=0.37$ (hexane/ethyl acetate $\left.=8: 1, \mathrm{~V} / \mathrm{V}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.79$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.56,138.56,138.49,137.83,136.65,136.51,135.48,135.24$, $134.48,134.18,133.28,132.74,131.39,130.00,128.40,128.17,126.59,124.81,123.41,120.64$, $119.11,117.79,114.40,114.27,61.11,21.26,14.59,14.26$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$575.0570, found 575.0574.

Ethyl (E)-3-(3-chloro-5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-2-

fluorophenyl)acrylate (2r)

Yellow oil, $R_{f}=0.40$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{td}, J=7.7,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.50$ $(\mathrm{d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.80,160.66,158.03,136.69,135.43\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.5 \mathrm{~Hz}\right), 135.25$, $134.37\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.8 \mathrm{~Hz}\right), 134.13,133.26,132.77,131.37,129.94,129.49,128.40,126.60,125.78$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=4.1 \mathrm{~Hz}\right), 125.37\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13.1 \mathrm{~Hz}\right), 124.83\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.9 \mathrm{~Hz}\right), 123.85\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=19.5 \mathrm{~Hz}\right)$, $120.59,119.08,117.87,114.33,114.27,61.08,21.26,14.62,14.24$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClFN}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$559.0865, found 559.0868.

3.3 Scope of Olefins.

General procedure for meta-C-H olefination. To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathrm{PhSO}_{2}-\mathrm{DT}_{4} 1 \mathbf{1 a}\left(0.1 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%$), Ac-Gly-OH ($2.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{AgOAc}(0.3 \mathrm{mmol}, 3.0$ equiv) in turn. Hexafluoro-2-propanol (HFIP, 1.5 mL) was added to the mixture along the inside wall of the tube via a syringe, followed by olefin (2.0 equiv). The reaction tube was then capped and stirred at room temperature for 15 minutes. The tube was then placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 24 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc $(5 \mathrm{~mL})$ and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, and the resulting residue was purified by flash column chromatography (silica gel) or preparative thin layer chromatography using petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}$ as the eluent to provide the olefinated products 3. Isolated yields for compounds 3 were reported in Scheme 3. of Main Text. The characterization data of new compounds are shown below:

Benzyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenyl)acrylate
(3a)
White oil, $R_{f}=0.28$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.04,142.68,139.62,136.99,135.81,135.78,135.44,134.33$, $133.93,133.28,132.71,132.49,131.51,130.14,129.73,128.63,128.35,128.32,128.25,127.61$, $126.32,125.81,120.66,119.90,118.80,117.90,114.37,114.25,66.63,21.24,14.41$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 569.1505$, found 569.1508.

(E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenyl)- N, N -

dimethylacrylamide (3b)

White oil, $R_{f}=0.23$ (hexane/ethyl acetate $=1: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$, $3.06(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.93,139.83,139.46,137.00,136.88,135.46,134.37,133.84$, $133.29,132.98,132.72,131.54,129.99,129.69,128.22,126.81,126.23,124.83,120.39,119.74$, $118.81,117.90,114.37,114.19,37.46,35.99,21.25,14.43$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 506.1509$, found 506.1513.

(E)-2-(2,5-dimethyl-1-((3-(2-(methylsulfonyl)vinyl)phenyl)sulfonyl)-1H-indol-3-

yl)benzonitrile (3c)

White solid, $R_{f}=0.29$ (hexane/ethyl acetate $=2: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $108-109^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.81$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}$, $4 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.09,139.83,136.92,135.49,134.10,134.07,133.92,133.58$, 133.26, 132.88, 131.47, 130.21, 129.73, 129.48, 128.77, 128.36, 126.38, 125.39, 120.03, 118.88, $118.04,114.25,114.08,43.04,21.25,14.57$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 513.0913$, found 513.0910.

(E)-2-(2,5-dimethyl-1-((3-(2-(phenylsulfonyl)vinyl)phenyl)sulfonyl)-1H-indol-3-

yl)benzonitrile (3d)

White solid, $R_{f}=0.41$ (hexane/ethyl acetate $=3: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $91-92^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{td}$, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.50(\mathrm{~m}, 7 \mathrm{H}), 7.46(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.06,139.92,139.71,136.87,135.47,134.17,134.05,133.95$, $133.65,133.23,133.07,132.79,131.43,130.23,129.74,129.39,128.51,128.32,127.91,126.36$, $126.04,120.08,118.86,117.91,114.29,114.17,21.25,14.55$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$575.1070, found 575.1073.

Methyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1 H-indol-1-yl)sulfonyl)phenyl)but-2enoate (3e)

White oil, $R_{f}=0.32$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$). This compound was obtained as a mixture of Z / E isomers $(Z / E=1 / 25)$. The characteristic data for E-isomer:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~d}, J=1.3$ Hz, 3H), 2.36 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.69,153.28,143.35,139.06,136.97,135.41,134.40,133.90$, $133.32,132.71,131.52,129.87,129.75,128.23,126.47,126.23,124.21,119.82,118.78,117.86$,
$114.45,114.17,110.80,51.34,21.25,17.82,14.37$.
HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$507.1349, found 507.1352.

Methyl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenyl)-3phenylacrylate (3f)

White oil, $R_{f}=0.21$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.75$ $-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}$, $1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.90,154.43,142.10,138.93,137.48,136.99,135.28,134.29$, $133.79,133.32,133.23,132.70,131.54,129.73,129.69,129.04,128.66,128.22,128.13,126.87$, $126.28,126.10,119.79,118.86,118.74,117.84,114.37,114.16,51.47,21.28,14.27$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 569.1505$, found 569.1501.

Methyl (R)-5-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenyl)cyclopent-

1-ene-1-carboxylate (3g)

Yellow oil, $R_{f}=0.22$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dd}, J=12.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=27.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.54$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.64,146.88,146.10,138.84,138.32,137.19,135.47,134.49$, $133.51,133.34,132.71,132.66,131.69,129.63,129.53,128.11,126.03,124.91,124.21,119.27$,

HR-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 533.1505$, found 533.1506.

Methyl (R)-3'-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-1,4,5,6-tetrahydro-

[1,1'-biphenyl]-2-carboxylate (3h)

White oil, $R_{f}=0.36$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{dd}, J=17.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ $(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 7.12(\mathrm{dt}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.89(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=28.7$ $\mathrm{Hz}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.52-1.31(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.93,146.83,142.94,138.53,137.19,135.44,134.51,133.48$, $133.41,133.35,132.65,131.68,130.64,129.64,129.48,128.11,126.03,125.44,124.04,119.26$, $118.60,117.90,114.48,114.16,51.54,39.30,31.04,25.72,21.25,16.70,14.16$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$547.1662, found 547.1665.

($8 R, 9 S, 13 S, 14 S$)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl (E)-3-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1yl)sulfonyl)phenyl)acrylate (3i)

White solid, $R_{f}=0.39$ (hexane/ethyl acetate $=4: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $121-122^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H})$, S34/S146
$6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, $2.56-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.68$ $-1.43(\mathrm{~m}, 7 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 220.80,164.96,148.50,143.86,139.64,138.07,137.51,136.92$, $135.58,135.41,134.30,133.96,133.28,132.75,131.48,130.24,129.74,128.28,127.87,126.45$, $126.33,125.94,121.53,120.18,119.95,118.82,118.70,117.93,114.36,114.19,110.29,50.42$, $47.94,44.16,37.99,35.86,31.54,29.42,26.34,25.75,21.59,21.26,14.44,13.83$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 731.2550$, found 731.2545 .

2-(1-((3,5-bis(($E)-3,3,4,4,5,5,6,6,7,7,8,8,8-t r i d e c a f l u o r o o c t-1-e n-1-y l) p h e n y l) s u l f o n y l)-2,5-$

dimethyl-1H-indol-3-yl)benzonitrile (3j)

White solid, $R_{f}=0.79$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $114-115^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=16.1,11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.40,137.21\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.4 \mathrm{~Hz}\right), 136.71,135.87,135.63,134.40$, $134.19,133.17,132.78,131.27,130.70,129.96,128.41,126.35\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.9 \mathrm{~Hz}\right), 120.62,118.99$, $118.27\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.3 \mathrm{~Hz}\right), 117.81,114.38,114.24,21.13,14.77$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{39} \mathrm{H}_{20} \mathrm{~F}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$1097.0723, found 1097.0720.

$\operatorname{Bis}((1 R, 2 S, 5 R)$-2-isopropyl-5-methylcyclohexyl) 3,3'-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-1,3-phenylene)(2E,2'E)-diacrylate (3k)

Yellow solid, $R_{f}=0.55$ (hexane/ethyl acetate $=6: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $93-94{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{dd}, J=10.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~s}$, 2H), $7.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=16.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=16.0,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{ddt}, J=13.8,7.0,3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.71(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.89(\mathrm{~m}, 14 \mathrm{H}), 0.79(\mathrm{~s}$, $3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.62,141.24,140.48,140.32,136.78,135.45,134.24,134.13$, $134.10,133.22,132.70,131.45,130.85,129.76,128.29,126.58,126.43,122.25,120.09,118.94$, $117.83,114.29,74.82,47.13,40.91,34.25,31.42,26.28,23.46,22.04,21.25,20.82,16.37,14.62$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{49} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$825.3908, found 825.3913.

$\operatorname{Bis}((5 S, 8 S, 9 S, 10 S, 13 R, 14 R, 17 R)-10,13$-dimethyl-3-oxohexadecahydro-1 H -
cyclopenta[a]phenanthren-17-yl) 3,3'-(5-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)-1,3-phenylene)(2E, $\mathbf{2}^{\prime} E$)-diacrylate (31)

Yellow solid, $R_{f}=0.15$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $167-168^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.77(\mathrm{~m}$, 2H), $7.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=16.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.76-4.69(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H})$, $2.44-2.18(\mathrm{~m}, 13 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.48(\mathrm{~m}, 16 \mathrm{H}), \quad 1.40-$ $1.30(\mathrm{~m}, 12 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.92,166.05,141.23,140.43,136.78,135.45,134.20,134.12$, $133.20,132.73,131.42,130.93,129.75,128.30,126.45,122.08,120.11,118.93,117.86,114.26$, $83.28,83.26,53.72,50.61,46.61,44.65,42.93,42.91,38.50,38.11,36.87,35.73,35.20,31.23$, 28.76, 27.63, 23.60, 21.26, 20.93, 14.60, 12.27, 11.49.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{67} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$1093.5371, found 1093.5376.

4 Macrocyclization via Intramolecular meta-C-H Olefination

4.1 Optimization of Reaction Conditions

Table S3. Condition screening for Macrocyclization via Intramolecular meta-C-H Olefination ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{4 c}(0.05 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{x}$ mol\%), Ac-Gly-OH (2x mol\%), oxidant (3 equiv), concentration ($\mathrm{mmol} / \mathrm{L}$), temperature $\left({ }^{\circ} \mathrm{C}\right)$, reaction (h), isolated yield.

4.2 Synthesis of Macrolactones via Intramolecular meta-C-H Olefination

General procedure for preparation of substrates 4 . To a solution of $\mathbf{1 c}(700 \mathrm{mg}, 1.68 \mathrm{mmol})$ in DCM (20 mL) was added BBr_{3} dissolved in $\mathrm{DCM}(4.2 \mathrm{~mL}, 4.2 \mathrm{mmol}, 1 \mathrm{~mol} / \mathrm{L})$, the mixture was stirred overnight from $-78{ }^{\circ} \mathrm{C}$ to room temperature gradually under argon. After completion of reaction, the reaction was quenched with water $(40 \mathrm{~mL})$ and the mixture was then diluted with DCM
$(30 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with DCM (2×20 $\mathrm{mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulted residue was purified by silica gel column chromatography (eluent: petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $\left.=5 / 1\right)$ to give the intermediate $\mathbf{1 u}(610 \mathrm{mg}$, 90.2\%).

To a solution of $\mathbf{1 u}(200 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{DMF}(10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(103 \mathrm{mg}, 0.75 \mathrm{mmol})$ at room temperature under argon. The mixture was stirred for 15 mins and then bromoalkyl acrylate (1.5 equiv) was added to the reaction mixture with stirring overnight at $70^{\circ} \mathrm{C}$. After completion of reaction, the reaction was quenched with water $(50 \mathrm{~mL})$ and the mixture was then diluted with ethyl acetate $(30 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulted residue was purified by silica gel column chromatography (eluent: petroleum ether /ethyl acetate $=10 / 1$) to give the desired products 4 . The characterization data of new compounds are shown below:

6-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)hexyl acrylate (4a)
Yield: 91%. White oil, $R_{f}=0.55$ (hexane/ethyl acetate $\left.=10: 1, \mathrm{~V} / \mathrm{V}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=$ $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-$ $7.00(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ $(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $1.79-1.65(\mathrm{dt}, J=14.1,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.32,159.39,139.77,137.13,135.45,134.41,133.58,133.35$, $132.71,131.64,130.55,130.46,129.60,128.59,128.17,126.05,120.81,119.28,118.71,118.39$, $117.91,114.38,114.16,111.42,68.29,64.50,28.84,28.53,25.69,25.61,21.26,14.26$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$579.1924, found 579.1927.

8-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)octyl acrylate (4b)
Yield: 94\%. Yellow oil, $R_{f}=0.45$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.96-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{dt}, J=22.6,7.0 \mathrm{~Hz}$, 4H), $1.45-1.31(\mathrm{~s}, 6 \mathrm{H}), 0.91-0.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.35,159.41,139.76,137.17,135.46,134.42,133.55,133.35$, $132.66,131.65,130.47,130.44,129.59,128.64,128.13,126.03,120.82,119.23,118.68,118.32$, $117.90,114.38,114.20,111.43,68.44,64.65,29.19,29.13,28.91,28.59,25.86,25.83,21.26,14.24$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$607.2237, found 607.2239.

10-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)decyl acrylate (4c)
Yield: 88%. White oil, $R_{f}=0.51$ (hexane/ethyl acetate $=9: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H})$, $6.98(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{dt}, J=22.9,7.1$ $\mathrm{Hz}, 4 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 10 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.38,159.42,139.73,137.16,135.46,134.41,133.56,133.35$, $132.67,131.65,130.48,130.45,129.58,128.65,128.13,126.04,120.80,119.23,118.68,118.29$,
$117.91,114.38,114.18,111.45,68.50,64.71,31.94,29.43,29.30,29.23,28.94,28.61,25.92,25.89$, 21.26, 14.26.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 635.2550$, found 635.2555 .

12-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)dodecyl acrylate (4d)

Yield: 92%. Yellow oil, $R_{f}=0.44$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}$, $1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 4 \mathrm{H})$, $1.41-1.26(\mathrm{~m}, 16 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.36,159.43,139.75,137.17,135.46,134.43,133.55,133.34$, $132.66,131.65,130.43,129.59,128.67,128.13,126.03,120.80,119.23,118.68,118.28,117.90$, $114.39,114.20,111.47,68.53,64.72,29.54,29.52,29.51,29.33,29.25,28.95,28.62,25.93$, 25.90, 21.26, 14.24.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 663.2863$, found 663.2866.

14-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)tetradecyl acrylate (4e)

Yield: 86%. Yellow oil, $R_{f}=0.39$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J$ $=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dt}, J=$
$6.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.81(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.84(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.26(\mathrm{~m}, 20 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.38,159.43,139.73,137.16,135.47,134.42,133.56,133.36$, $132.68,131.66,130.46,129.59,128.67,128.14,126.04,120.81,119.24,118.69,118.28,117.92$, $114.39,114.19,111.47,68.53,64.75,29.65,29.61,29.59,29.56,29.54,29.36,29.28,28.96$, 28.63, 25.95, 25.92, 21.28, 14.27.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$691.3176, found 691.3178 .

10-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)decyl methacrylate (4f)

Yield: 80%. Yellow oil, $R_{f}=0.45$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J$ $=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dt}, J=$ 7.6, 2.4 Hz, 1H), $6.98(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.56-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-$ $3.84(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{ddd}, J=20.7,8.2,6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.43-$ $1.29(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.56,159.43,139.73,137.12,136.56,135.45,134.41,133.56$, $133.35,132.71,131.65,130.46,129.60,128.17,126.05,125.19,120.78,119.26,118.71,118.29$, $117.93,114.38,114.16,111.47,68.50,64.83,29.73,29.45,29.32,29.25,28.95,28.62,25.99$, 25.91, 21.28, 18.37, 14.29.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$649.2707, found 649.2711.

10-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)decyl (E)-but-2-

enoate (4g)

Yield: 95%. White oil, $R_{f}=0.38$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}$, $1 \mathrm{H}), 7.00-6.92(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 2 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{dt}, J=31.5,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.41-1.29(\mathrm{~m}$, 12H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.71,159.43,144.42,139.74,137.17,135.47,134.42,133.56$, $133.35,132.67,131.66,130.45,129.59,128.14,126.04,122.83,120.81,119.23,118.69,118.30$, $117.91,114.39,114.19,111.46,68.51,64.33,29.45,29.31,29.26,28.95,28.70,25.96,25.90$, $21.28,17.98,14.27$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$649.2707, found 649.2709.

10-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)decyl cinnamate (4h) Yield: 87%. Yellow oil, $R_{f}=0.36$ (hexane/ethyl acetate $=6: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}$, 2H), $7.54-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ $-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.11,159.43,144.58,139.75,137.17,135.46,134.48,134.43$, $133.55,133.35,132.66,131.65,130.45,130.24,129.59,128.89,128.13,128.06,126.04,120.81$, $119.23,118.68,118.31,117.90,114.39,114.20,111.47,68.51,64.72,29.45,29.31,29.27,28.95$, 28.74, 25.98, 25.90, 21.26, 14.25.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 711.2863$, found 711.2866.

10-(3-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenoxy)decyl (E)-3-(3(trifluoromethyl)phenyl)acrylate (4i)

Yield: 92%. White oil, $R_{f}=0.30$ (hexane/ethyl acetate $=7: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 3 \mathrm{H})$,
$7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$
$(\mathrm{dt}, J=7.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-$ $3.84(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.54,159.40,142.72,139.71,137.13,135.44,135.24,134.39$, $133.54,133.33,132.66,131.60\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.9 \mathrm{~Hz}\right), 131.07,130.44,129.57,129.45,128.12,126.60$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 126.02,125.13,124.54\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 122.43,120.77,120.26,119.22$, $118.67,118.28,117.90,114.36,114.16,111.44,68.47,64.96,29.44,29.30,29.25,28.93,28.68$, 25.95, 25.89, 21.25, 14.25.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{43} \mathrm{H}_{43} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 779.2737$, found 779.2738.

General procedure for synthesis of macrolactones via intramolecular meta-C-H olefination.
To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathbf{4 c}(30.6 \mathrm{mg}, 0.05$ mmol, 1.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Ac}-\mathrm{Gly}-\mathrm{OH}(1.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), $\mathrm{AgOAc}(25.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv) in turn. Hexafluoro-2-propanol (HFIP, 2 mL) was then added to the mixture along the inside wall of the tube via a syringe as follows. The reaction tube was then capped and then placed onto a preheated $\left(60^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 1.5 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, and the
resulting residue was purified by preparative thin layer chromatography (eluent: hexane/ethyl acetate $=8 / 1$) to provide the olefinated products $\mathbf{5 c}(20.8 \mathrm{mg}, 68 \%)$. Isolatedyields for compounds $\mathbf{5}$ were reported in the Scheme 4 of main text. The characterization data of new compounds are shown below:

(E)-2-(2,5-dimethyl-1-((10-oxo-2,9-dioxa-1(1,3)-benzenacyclododecaphan-11-en-15-yl)sulfonyl)-1 \boldsymbol{H}-indol-3-yl)benzonitrile (5a)

White oil, $R_{f}=0.44$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=$ 7.7, 1.4 Hz, 1H), $7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J$ $=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.44,158.77,139.47,138.79,138.52,137.03,135.58,134.27$, $133.75,133.35,132.74,131.56,129.66,128.23,126.17,123.50,122.63,119.65,118.75,118.56$, $118.01,114.42,114.38,114.16,69.61,64.33,27.33,26.74,24.29,24.08,21.26,14.50$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 577.1768$, found 577.1772.

(E)-2-(2,5-dimethyl-1-((12-oxo-2,11-dioxa-1(1,3)-benzenacyclotetradecaphan-13-en-15-

yl)sulfonyl)-1H-indol-3-yl)benzonitrile (5b)

White oil, $R_{f}=0.50$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.48(\mathrm{dt}, J=7.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ ($\mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.97(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.32$ $-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.07-0.97(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.23,158.34,139.59,139.36,138.63,137.06,135.52,134.22$, $133.70,133.37,132.71,131.60,129.59,128.19,126.15,123.28,121.62,119.42,118.76,118.43$, $117.97,114.30,114.16,111.14,67.81,64.52,27.80,26.18,26.04,25.93,23.99,22.69,21.27,14.48$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 605.2081$, found 605.2084.

(E)-2-(2,5-dimethyl-1-((14-oxo-2,13-dioxa-1(1,3)-benzenacyclohexadecaphan-15-en-15-

yl)sulfonyl)-1 \boldsymbol{H}-indol-3-yl)benzonitrile (5c)

Yellow oil, $R_{f}=0.38$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 6.37(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.36$ $(\mathrm{s}, 3 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.69,158.97$, 142.36, 141.05, 137.16, 137.03, 135.29, 134.27, $133.79,133.32,132.69,131.58,129.60,128.20,126.31,121.52,119.55,118.79,117.87,117.56$, $116.74,115.49,114.31,114.26,67.58,66.59,30.36,29.74,29.63,28.70,28.57,26.40,25.53,24.61$, $21.28,14.32$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 633.2394$, found 633.2399.

(E)-2-(2,5-dimethyl-1-((16-oxo-2,15-dioxa-1(1,3)-benzenacyclooctadecaphan-17-en-1 ${ }^{5}$ -yl)sulfonyl)-1 \boldsymbol{H}-indol-3-yl)benzonitrile (5d)

White oil, $R_{f}=0.33$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=$ $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=6.1,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{dt}, J=10.6,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.28$ (m, 14H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.92,159.32,142.23,140.93,137.18,137.04,135.31,134.28$, $133.79,133.30,132.66,131.58,129.61,128.18,126.30,121.17,119.56,118.78,117.84,117.59$, $117.31,116.32,114.31,114.28,68.77,65.41,29.66,29.34,28.86,28.71,28.43,28.28,27.37$, $26.88,26.05,24.88,21.26,14.32$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 661.2707$, found 661.2708.

(E)-2-(2,5-dimethyl-1-((18-oxo-2,17-dioxa-1(1,3)-benzenacycloicosaphan-19-en-15-
yl)sulfonyl)-1 \boldsymbol{H}-indol-3-yl)benzonitrile (5e)
Yellow oil, $R_{f}=0.45$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.78-$ $1.64(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.23(\mathrm{~m}, 20 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.01,159.66,142.07,140.68,137.08,137.00,135.35,134.23$, $133.81,133.30,132.66,131.57,129.63,128.19,126.26,121.23,119.58,119.08,118.81,117.96$, $117.87,114.27,114.23,113.73,69.22,65.15,29.84,29.74,29.71,28.99,28.88,28.48,28.02$, 27.83, 27.39, 26.06, 25.62, 21.26, 14.41.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 689.3020$, found 689.3023.

2-(2,5-dimethyl-1-((15-methylene-14-oxo-2,13-dioxa-1(1,3)-benzenacyclohexadecaphane-15-yl)sulfonyl)-1H-indol-3-yl)benzonitrile (5f)

Yellow oil, $R_{f}=0.38$ (hexane/ethyl acetate $=8: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J$ $=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.6$,
$1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.06-3.94(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.39(\mathrm{~m}$, $2 H), 1.34-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.22-0.96(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.37,159.23,142.89,139.55,138.28,137.17,135.51,134.23$, $133.47,133.34,132.65,131.67,129.49,128.34,128.09,126.00,121.24,119.13,118.62,118.24$, $117.94,114.29,114.13,108.60,67.32,64.60,38.03,28.42,27.69,27.38,27.22,27.09,26.25$, 25.21, 23.42, 21.26, 14.37.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 647.2550$, found 647.2554 .

(E)-2-(2,5-dimethyl-1-((16-methyl-14-oxo-2,13-dioxa-1(1,3)-benzenacyclohexadecaphan-15-en-15-yl)sulfonyl)-1H-indol-3-yl)benzonitrile (5g)

Yellow oil, $R_{f}=0.43$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=$ 8.7, 1.7 Hz, 1H), $7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.11(\mathrm{~m}, 4 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.32(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.01,158.78,153.66,144.42,140.55,137.06,135.25,134.38$, $133.72,133.34,132.64,131.61,129.61,128.15,126.20,119.43,118.76,118.72,117.79,116.98$, $115.90,114.40,114.37,114.23,67.98,65.90,29.86,28.94,28.84,28.75,28.26,26.80,26.29$, 24.79, 21.26, 17.00, 14.24.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 647.2550$, found 647.2555 .

(E)-2-(2,5-dimethyl-1-((14-oxo-16-phenyl-2,13-dioxa-1(1,3)-benzenacyclohexadecaphan-15-en-1 ${ }^{5}$-yl)sulfonyl)-1H-indol-3-yl)benzonitrile (5h)

Yellow oil, $R_{f}=0.35$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J$ $=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.80(\mathrm{dt}, J=10.9,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 2 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.78,158.91,155.81,143.71,140.28,137.14,136.53,134.99$, $134.18,133.47,133.36,132.61,131.68,129.41,128.83,128.13,127.96,126.26,119.41,119.28$, $118.64,118.52,117.75,117.21,114.99,114.18,68.12,66.05,29.86,29.02,28.88,28.78,28.13$, 26.84, 26.43, 24.83, 21.30, 13.89.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 709.2707$, found 709.2710.

(E)-2-(2,5-dimethyl-1-((14-0xo-16-(3-(trifluoromethyl)phenyl)-2,13-dioxa-1(1,3)-benzenacyclohexadecaphan-15-en-1 ${ }^{5}$-yl)sulfonyl)-1H-indol-3-yl)benzonitrile (5i)

White oil, $R_{f}=0.42$ (hexane/ethyl acetate $=7: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.32-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.18$ $(\mathrm{m}, 2 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dq}, J=12.4,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~s}$, $2 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 164.37,159.07,154.08,142.94,140.66,137.28,137.00,134.88$, $134.28,133.60,133.29,132.78,132.64,131.53,130.44,130.11,129.42,128.43,128.17,126.28$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 126.23,125.43\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.9 \mathrm{~Hz}\right), 119.70,119.44,118.76,118.65,117.74$, $117.53,114.86,114.20,114.08,68.12,66.30,29.88,29.00,28.89,28.81,28.14,26.82,26.35$, 24.82, 21.24, 13.81.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 777.2580$, found 777.2586.

5 Crystal Data for Compound 2d

The single crystals of compound 2d suitable for X-ray diffraction analysis were obtained by recrystallization in methanol. Crystallographic parameters for compound 2d is available free of charge from the Cambridge Crystallographic Data Centre (CCDC) (www.ccdc.cam.ac.uk/data_request/cif) under CCDC 2142546.

Crystal data for compound 2d: $\mathrm{C}_{29.5} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4.5} \mathrm{~S}$, Monoclinic, $P 2_{1} / c$, $\mathrm{a}=21.8311$ (11) $\AA \AA, \mathrm{b}=8.2255$ (4) $\AA, \mathrm{c}=29.1754$ (14) $\AA, \alpha=\gamma=90^{\circ}, \beta=93.759(4)^{\circ}$, Mo $K \alpha$ radiation, $\lambda=0.71073 \AA, \mu=0.164$ $\mathrm{mm}^{-1} . \mathrm{V}=5227.8(4) \AA^{3}, \mathrm{Z}=8, \mathrm{~F}(000)=2168$

6 Synthetic Utility of meta-C-H Functionalization.

6.1 Synthesis of Coumarins via Intramolecular meta-C-H Olefination

General procedure for synthesis of coumarins via meta-C-H olefination. To a solution of $1 \mathbf{s}$ ($500 \mathrm{mg}, 1.02 \mathrm{mmol}$) in THF (15 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$, the mixture was stirred for 24 h at room temperature under 1 atm of hydrogen pressure. The crude reaction mixture was filtered through a short pad of celite. The filtrate was concentrated in vacuo, and the resulting residue was purified by flash column chromatography (silica gel) using petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=$ $5: 1$ as the eluent to provide the white products $1 \mathrm{t}(294 \mathrm{mg}, 72 \%)$.

To a solution of $\mathbf{1 t}(200 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added triethylamine $(101 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ under ice bath $\left(0^{\circ} \mathrm{C}\right)$. The mixture was stirred for 15 mins and then 3-Ethoxyacryloyl chloride (1.2 equiv) was added to the reaction mixture with stirring. After completion of reaction, the reaction was quenched with water $(40 \mathrm{~mL})$ and the mixture was then diluted with ethyl acetate $(30 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (2 x 20 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulted residue was purified by silica gel column chromatography (eluent: petroleum ether /ethyl acetate $=5 / 1)$ to give the desired product $\mathbf{6}(230 \mathrm{mg}$, 92\%).

To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathbf{6}(0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, Ac-Gly-OH ($2.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{AgOAc}(0.3 \mathrm{mmol}, 3.0$ equiv) in turn. Hexafluoro-2-propanol (HFIP, 1.5 mL) was then added to the mixture along the inside wall of the tube via a syringe as follows. The reaction tube was then capped and stirred at room temperature for 15 minutes. The tube was then placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 24 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc $(5 \mathrm{~mL})$ and filtered through a short pad of Celite. The filtrate was
concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using hexane/ ethyl acetate as the eluent to provide the olefinated products 7 (22.9 $\mathrm{mg}, 46 \%)$. The characterization data of new compounds are shown below:

4-((3-(2-cyanophenyl)-2,5-dimethyl-1H-indol-1-yl)sulfonyl)phenyl (E)-3-ethoxyacrylate (6)
White oil, $R_{f}=0.39$ (hexane/ethyl acetate $=5: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.18,164.83,154.93,137.11,135.40,134.36,133.73,133.32$, $132.69,131.62,129.70,128.17,128.09,126.20,122.72,119.60,118.75,117.97,114.40,114.22$, 95.11, 67.49, 21.25, 14.41, 14.32.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$523.1298, found 523.1300.

2-(1-((4-ethoxy-2-oxo-2H-chromen-6-yl)sulfonyl)-2,5-dimethyl-1H-indol-3-yl)benzonitrile (7)
Yellow oil, $R_{f}=0.31$ (hexane/ethyl acetate $=10: 1, \mathrm{~V} / \mathrm{V}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.9$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.30$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.27,161.43,156.19,136.85,135.34,134.35,134.23,134.07$, $133.33,132.74,131.48,129.87,129.69,128.32,126.32,122.78,120.16,118.91,118.39,117.85$, $116.30,114.44,114.20,91.43,65.75,21.26,14.39,14.00$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$521.1142, found 521.1148.

6.2 Synthesis of HDAC-inhibitory Belinostat

Compound 1a ($2.5 \mathrm{~g}, 6.5 \mathrm{mmol}$) was prepared from $\mathrm{PhSO}_{2} \mathrm{Cl}$ in 90% yield according the abovementioned procedure, which was subsequently subjected to meta-C-H olefination using the optimized conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)\right.$, ethyl acrylate (1.5 eq), $\operatorname{AgOAc}(3 \mathrm{eq}), \mathrm{Ac}-\mathrm{Gly}-\mathrm{OH}(20$ $\mathrm{mol} \%$), HFIP, $80^{\circ} \mathrm{C}, 6 \mathrm{~h}$). The olefinated product $\mathbf{2} \mathbf{a}_{\text {mono }}$ was obtained in 54% yield ($1.7 \mathrm{~g}, 3.5$ mmol), together with the corresponding diolefinated product $\mathbf{2} \mathbf{a}_{\mathrm{di}}$ in $\mathbf{3 8 \%}$ yield.

To a solution of above product $\mathbf{2} \mathbf{a}_{\text {mono }}(1.7 \mathrm{~g}, 3.5 \mathrm{mmol})$ in methanol $(50 \mathrm{ml})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.97 \mathrm{~g}, 7.0 \mathrm{mmol}, 2.0$ equiv), the reaction mixture was then stirred at $70^{\circ} \mathrm{C}$ overnight. The solvent was removed in vacuo and the mixture was partitioned between water (50 mL) and ethyl acetate (50 $\mathrm{mL})$. The water layer was adjusted to $\mathrm{pH} 2-3$ with 1 M HCl (aq.), and water then removed in vacuo. Next, to a solution of the resulted residue in DMF (20 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.45 \mathrm{~g}, 10.5 \mathrm{mmol}$, 3.0 equiv) and MeI ($0.44 \mathrm{~mL}, 7 \mathrm{mmol}, 2.0$ equiv) dropwise at room temperature. The reaction mixture was stirred overnight at room temperature. After that, the volatile solvent was removed in vacuo to give the crude intermediated salt, which was directly used in next reaction without further purification.

Subsequently, the chlorination and amidation procedure described by Helgea and coworker ${ }^{7}$ was adopted, and the intermediate 8 afforded in an overall yield of 70% ($780 \mathrm{mg}, 2.45 \mathrm{mmol}$) from
$\mathbf{2 a} \mathbf{a m o n o}^{\text {. And then, hydroxamic acid moiety was successfully incorporated to provide the target drug }}$ belinostat in an isolated yield of 65% from compound 8 . Finally, belinostat 9 was synthesized in a five-step sequence with an overall yield of 22% from the inexpensively readily available $\mathrm{PhSO}_{2} \mathrm{Cl}$.

Methyl (E)-3-(3-(N-phenylsulfamoyl)phenyl)acrylate (8)
Yellow solid, $R_{f}=0.21$ (hexane/ ethyl acetate $=4: 1, \mathrm{~V} / \mathrm{V}$). m.p.: $144-145{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.89,142.62,139.98,136.16,135.51,132.24,129.70,129.45$, $128.40,126.35,125.80,121.99,120.28,52.01$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 340.0614$ found 340.0617.

(E)-N-hydroxy-3-(3-(N-phenylsulfamoyl)phenyl)acrylamide (9)

Light orange solid, m.p.: $172-173^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.75-10.42(\mathrm{~m}, 2 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.10-7.01 (m, 3H), $6.51(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 341.0566$ found 341.0569 .

6.3 Scale-up Reaction, Removal and Recovery of Template

To a solution of $\mathbf{1 d}(700 \mathrm{mg}, 1.75 \mathrm{mmol})$ in HFIP $(25 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(39.3 \mathrm{mg}, 0.175$ mmol, $10 \mathrm{~mol} \%$), Ac-Gly-OH ($41.0 \mathrm{mg}, 0.35 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{AgOAc}(5.25 \mathrm{mmol}, 3.0$ equiv) in turn. The resulted mixture was stirred at room temperature for 15 mins . Then, ethyl acrylate (0.38 $\mathrm{mL}, 3.5 \mathrm{mmol}, 2.0$ equiv) was added dropwise by syringe. The reaction mixture was then stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooled to room temperature, the mixture was filtered through a short pad of Celite, and the filtrate was concentrated in vacuo, and the resulting residue was purified by flash column chromatography (eluent: petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $\left.=10 / 1\right)$ to provide the white solid 2d (498 mg, 57\%).

The previously described procedure ${ }^{6}$ was adopted for removal of template $\mathbf{D T}_{4}$: To a solution of above product $\mathbf{2 d}(498 \mathrm{mg}, 1.0 \mathrm{mmol})$ in methanol $(15 \mathrm{ml})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.0 \mathrm{mmol})$, the reaction mixture was then stirred at $70^{\circ} \mathrm{C}$ overnight. After completion of reaction, the mixture was cooled to room temperature and concentrated under reduced pressure. Then the residue was partitioned between ethyl acetate $(30 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The organic layer was separated off and the aqueous layer was extracted with ethyl acetate twice times $(2 \times 20 \mathrm{~mL})$. The organic phase was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulted residue was purified by silica gel column chromatography (eluent: petroleum ether (60 $\left.{ }^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $\left.=20 / 1\right)$ to provide the white solid $\mathbf{D T}_{4}(217 \mathrm{mg}, 88 \%)$

7 Mechanistic Study

7.1 Pd-Catalyzed meta-C-H Olefination under the Variable Conditions

General procedure for meta-C-H olefination without silver acetate. To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathbf{1 a}(38.65 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(22.45 \mathrm{mg}$, $0.1 \mathrm{mmol}, 1.0$ equiv), Ac-Gly-OH ($2.34 \mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in turn. Hexafluoro-2-propanol (HFIP, 1.5 mL) was added to the mixture along the inside wall of the tube via a syringe, followed by ethyl acrylate $(21.74 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$. The reaction tube was then capped and stirred at room temperature for 15 minutes. The tube was then placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 24 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=10: 1$ as the eluent to provide the olefinated products $\mathbf{2 a}$ (yield $=94 \%$, mono : $\mathrm{di}=1: 1.1$).

General procedure for meta-C-H olefination using catalytic $\mathrm{Cu}(\mathrm{OAc})_{2}$ and O_{2} as the oxidants.
To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathbf{1 a}$ ($38.65 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, Ac-Gly-OH$(2.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, $\mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.5$ equiv) in turn. Hexafluoro-2-propanol (HFIP, 1.5 mL) was added to the mixture along the inside wall of the tube via a syringe, followed by ethyl acrylate $(21.74 \mu \mathrm{~L}$, 0.2 mmol). The reaction tube was capped, then evacuated briefly under vacuum and charged with $\mathrm{O}_{2}(1 \mathrm{~atm}$, balloon, $\times 3)$. The tube was stirred at room temperature for 15 minutes, and then placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 24 h and cooled to room
temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=10: 1$ as the eluent to provide the olefinated products $\mathbf{2 a}$ (yield $=90 \%$, mono : $\mathrm{di}=1: 1.16$).

7.2 Kinetic Isotope Effect Experiment

General procedure for kinetic isotope effect experiment. To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\left[\mathrm{H}_{5}\right]-\mathbf{1 a}(19.32 \mathrm{mg}, 0.05 \mathrm{mmol}),\left[\mathrm{D}_{5}\right] \mathbf{- 1 a}(19.58 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{Ac}-\mathrm{Gly}-\mathrm{OH}(2.34 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{AgOAc}(50.07 \mathrm{mg}$, 0.3 mmol) in turn. Hexafluoro-2-propanol (HFIP, 1.5 mL) was added to the mixture along the inside wall of the tube via a syringe, followed by ethyl acrylate $(21.74 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$. The reaction tube was then capped and stirred at room temperature for 15 minutes. The tube was then placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 0.5 h and cooled to room temperature. The crude reaction mixture was diluted with $\operatorname{EtOAc}(5 \mathrm{~mL})$ and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using petroleum ether $\left(60^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=10: 1$ as the eluent to provide the olefinated products $\left[\mathrm{H}_{4} / \mathrm{D}_{4}\right]$-2a and analyzed for its isotopic distribution. The KIE value for the meta-C-H olefination reaction was measured to be $\boldsymbol{k}_{\mathbf{H}} / \boldsymbol{k}_{\mathbf{D}}=\mathbf{3 . 1 7}$ by ${ }^{1} \mathrm{H}$ NMR analysis of the products.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{H}_{4} / \mathrm{D}_{4}\right]$-2a

7.3 Kinetic Studies on the Reaction Orders

General procedure for order measurements. To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathbf{1 d}, \mathrm{Pd}(\mathrm{OAc})_{2}(1.12 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{Ac}-\mathrm{Gly}-\mathrm{OH}(1.17 \mathrm{mg}, 0.01$ $\mathrm{mmol}), \mathrm{AgOAc}(25.04 \mathrm{mg}, 0.15 \mathrm{mmol})$ in turn. Hexafluoro-2-propanol (HFIP, 1 mL) was added to the mixture along the inside wall of the tube via a syringe, followed by ethyl acrylate. The reaction tube was then capped and placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for a definite amount of time and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, diluted with $0.5 \mathrm{~mL} \mathrm{CDCl}_{3}$, and equivalent amount of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$ was added to the reaction mixture. All yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$ as an internal standard.

Table S4. Kinetic Studies to Determine the Reaction Order

Entry	1d (mmol)	Ethyl Acrylate (mmol)	$\mathrm{Pd}(\mathrm{OAc})_{2}$ (mmol)	Ac-Gly-OH (mmol)	AgOAc (mmol)	HFIP (mL)
1	0.1	0.1	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	0.3	1
2	0.05	0.1	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	0.3	1
3	0.025	0.1	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	0.3	1
4	0.0125	0.1	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	0.3	1
5	0.05	0.2	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	0.3	1
6	0.05	0.3	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	0.3	1
7	0.05	0.4	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	0.3	1

Determination of order with respect to substrate: ${ }^{8}$ Comparing Entry 1, Entry 2, Entry 3 and

Entry 4

Entry 1: 0.1 mmol

$\mathrm{x}_{1}=0.6606, \mathrm{y}_{1}=0.0920$
$\mathrm{x}_{2}=5.1251, \mathrm{y}_{2}=0.0752$
$d x=x_{2}-x_{1}=(5.1251-0.6606)=4.4645$
$d y=y_{2}-y_{1}=(0.0752-0.0920)=-0.0168$
$\mathrm{R}_{1}=\mathrm{dy} / \mathrm{dx}=-0.0168 / 4.4645=-0.0038$

Entry 2: 0.05 mmol

$\mathrm{X}_{1}=1.7057, \mathrm{Y}_{1}=0.0459$
$\mathrm{X}_{2}=5.4894, \mathrm{Y}_{2}=0.0400$
$D x=X_{2}-X_{1}=(5.4894-1.7057)=3.7837$
$D y=Y_{2}-Y_{1}=(0.0400-0.0459)=-0.0059$
$R_{2}=\mathrm{Dy} / \mathrm{Dx}=-0.0059 / 3.7837=-0.0016$

Entry 3: 0.025 mmol

$\mathrm{x}_{1}{ }^{\prime}=0.8108, \mathrm{y}_{1}{ }^{\prime}=0.0238$
$\mathrm{x}_{2}{ }^{\prime}=7.3173, \mathrm{y}_{2}{ }^{\prime}=0.0189$
$\mathrm{dx}^{\prime}=\mathrm{x}_{2}{ }^{\prime}-\mathrm{x}_{1}{ }^{\prime}=(7.3173-0.8108)=6.5065$
$d y^{\prime}=y_{2}{ }^{\prime}-y_{1}{ }^{\prime}=(0.0189-0.0238)=-0.0049$
$R_{3}=d y^{\prime} / d x^{\prime}=-0.0049 / 6.5065=-0.00075$
Entry 4: 0.0125 mmol
$\mathrm{X}_{1}{ }^{\prime}=0.8588, \mathrm{Y}_{1}{ }^{\prime}=0.0122$
$\mathrm{X}_{2}{ }^{\prime}=4.4504, \mathrm{Y}_{2}{ }^{\prime}=0.0110$
$\mathrm{Dx}^{\prime}=\mathrm{X}_{2}{ }^{\prime}-\mathrm{X}_{1}{ }^{\prime}=(4.4504-0.8588)=3.5916$
$D y^{\prime}=Y_{2}{ }^{\prime}-Y_{1}{ }^{\prime}=(0.0110-0.0122)=-0.0012$
$\mathrm{R}_{4}=\mathrm{Dy}^{\prime} / \mathrm{Dx}^{\prime}=-0.0012 / 3.5916=-0.00033$

We know
Rate $=\mathrm{dy} / \mathrm{dx}=\mathrm{k}[\text { substrate }]^{\mathrm{a}}[\text { olefin }]^{\mathrm{b}}$

[olefin] ${ }^{\mathrm{b}}{ }^{\text {entry }}$ 2 $\}$
At $t=0 ;$ [olefin $_{\text {entry } 1}=$ [olefin $_{\text {entry } 2}$
$\Rightarrow R_{1} / R_{2}=[\text { substrate }]^{a}{ }_{\text {entry1 }} /[\text { substrate }]^{a}{ }_{\text {entry }}{ }^{2}$
$\Rightarrow-0.0038 /-0.0016=\left[\right.$ substrate ${ }^{a}{ }^{\mathrm{e}}{ }^{\text {antry }} 1 /[\text { substrate }]^{\mathrm{a}}{ }_{\text {entry2 }}$
$\Rightarrow 2.38=[\text { substrate }]^{\mathrm{a}}{ }^{\mathrm{e}}{ }{ }^{2} 1 /[\text { substrate }]^{\mathrm{a}}{ }^{\mathrm{entry}}{ }^{2}$
At $t=0 ;[\text { substrate }]^{a}{ }^{\text {entry }} 1 /[\text { substrate }]^{a}{ }_{\text {entry } 2}=[0.1 / 0.05]^{a}=2^{a}$
So, $2.38=2^{\text {a }}$
$\log (2.38)=\operatorname{alog}(2)$
$0.3766=a * 0.3010$
So, $\mathrm{a}=1.25$

[olefin] $\left.{ }^{\mathrm{b}}{ }^{\text {entry }} 3\right\}$
At $\mathrm{t}=0$; [olefin $]_{\text {entry } 2}=$ [olefin $^{\text {entry } 3}$
$\Rightarrow R_{2} / R_{3}=[\text { substrate }]^{\mathrm{a}}{ }_{\text {entry }} /[\text { substrate }]^{\mathrm{a}}{ }_{\text {entry }}$
$\Rightarrow-0.0016 /-0.00075=[\text { substrate }]^{\mathrm{a}}{ }^{\mathrm{e}} \mathrm{entry} 2 /[\text { substrate }]^{\mathrm{a}}{ }^{\mathrm{entry}} 3$
$\Rightarrow 2.13=[\text { substrate }]^{a_{e n t r y}} 2 /[\text { substrate }]^{a_{\text {entry }}}$
At $t=0 ;[\text { substrate }]^{a}{ }^{\text {entry }} 2 /[\text { substrate }]^{a}{ }_{\text {entry }}=[0.05 / 0.025]^{a}=2^{a}$
So, $2.13=2^{\text {a }}$
$\log (2.13)=\operatorname{alog}(2)$
$0.3284=a^{*} 0.3010$

So, $a=1.09$

[olefin] ${ }^{\mathrm{b}}{ }^{\text {entry } 4\}}$
At $\mathrm{t}=0$; [olefin $]_{\text {entry }}=\left[\right.$ olefin $_{\text {entry }}$
$\Rightarrow R_{3} / R_{4}=[\text { substrate }]^{a}{ }_{\text {entry }} /[\text { substrate }]^{a}{ }_{\text {entry }}{ }^{2}$
$\Rightarrow-0.00075 /-0.00033=[\text { substrate }]^{\mathrm{a}}{ }^{\text {entry }} 3 /[\text { substrate }]^{\mathrm{a}}{ }^{\mathrm{e}} \mathrm{entry} 4$
$\Rightarrow 2.27=[\text { substrate }]^{\mathrm{a}}{ }^{\mathrm{e}} \mathrm{entry} 3 /[\text { substrate }]^{\mathrm{a}}{ }^{\mathrm{entry}}{ }^{4}$
At $t=0 ;[\text { substrate }]^{a}{ }_{\text {entry }} /[\text { substrate }]^{a}{ }_{\text {entry } 4}=[0.025 / 0.0125]^{a}=2^{a}$
So, $2.27=2^{\text {a }}$
$\log (2.27)=\operatorname{alog}(2)$
$0.3560=a^{*} 0.3010$
So, $\mathrm{a}=1.18$
Which indicates that the reaction rate with respect to substrate is one, and the $\mathrm{C}-\mathrm{H}$ activation step is evidently the rate-limiting step in the overall reactions.

Fig. S2 Order determination with respect to substrate.

Determination of order with respect to olefin: Comparing Entry 2, Entry 5, Entry 6 and

Entry 7

From Entry 2 we have seen that
$\mathrm{R}_{2}=\mathrm{Dy} / \mathrm{Dx}=-0.0059 / 3.7837=-0.0016$

From Entry 5 :

$\mathrm{x}_{1}{ }^{\prime \prime}=1.1891, \mathrm{y}_{1}{ }^{\prime}=0.0455$
$\mathrm{x}_{2}{ }^{\prime \prime}=3.6516, \mathrm{y}_{2}{ }^{\prime \prime}=0.0415$
$\mathrm{dx}^{\prime \prime}=\mathrm{x}_{2} "-\mathrm{x}_{1} "=(3.6516-1.1891)=2.4625$
$d y "=y_{2} "-y_{1} "=(0.0415-0.0455)=-0.004$
$R_{5}=d y " / d x "=-0.004 / 2.4625=-0.0016$

From Entry 6 :

$\mathrm{X}_{1}{ }^{\prime \prime}=1.5515, \mathrm{Y}_{1}{ }^{\prime \prime}=0.0463$
$\mathrm{X}_{2}{ }^{\prime \prime}=4.8648, \mathrm{Y}_{2}{ }^{\prime \prime}=0.0409$
$D x "=X_{2} "-X_{1} "=(4.8648-1.5515)=3.3133$
$D y "=Y_{2} "-Y_{1} "=(0.0409-0.0463)=-0.0054$
$R_{6}=D y " / D x "=-0.0054 / 3.3133=-0.0016$

From Entry 7 :

$\mathrm{x}_{1}{ }^{\prime \prime}=1.2122, \mathrm{y}_{1}{ }^{\prime} "=0.0471$
$\mathrm{x}_{2}{ }^{\prime \prime}=4.9649, \mathrm{y}_{2}{ }^{\prime} "=0.0410$
$\mathrm{dx}{ }^{\prime} "=\mathrm{x}_{2}{ }^{\prime} "-\mathrm{x}_{1}{ }^{\prime} ">=(4.9649-1.2122)=3.7527$
$d y " "=y_{2}{ }^{\prime} "-y_{1}{ }^{\prime} "=(0.0410-0.0471)=-0.0061$
$R_{7}=d y " ' / d x " "=-0.0061 / 3.7527=-0.0016$

So slope of Entry 2, Entry 5, Entry 6 and Entry 7 is same following the same route to calculate the order with respect to olefin;

Rate $=\mathrm{dy} / \mathrm{dx}=\mathrm{k}[\text { substrate }]^{\mathrm{a}}[\text { olefin }]^{\mathrm{b}}$
Now, $\mathrm{R}_{5} / \mathrm{R}_{2}=\left\{\mathrm{dy}{ }^{\prime \prime} / \mathrm{dx}{ }^{\prime \prime}\right\}_{\text {entry }} /\{\mathrm{Dy} / \mathrm{Dx}\}_{\text {entry } 2}=\left\{\mathrm{k}[\text { substrate }]^{\mathrm{a}}{ }_{\text {entry }}[\text { [olefin }]^{\mathrm{b}}{ }_{\text {entry } 5}\right\} /\left\{\mathrm{k}[\text { substrate }]^{\mathrm{a}}{ }^{\text {entry }}{ }^{2}\right.$
[olefin] ${ }^{\mathrm{b}}{ }^{\text {entry }}$ 2 $\}$
At $\mathfrak{t = 0 ;}$ [substrate] ${ }_{\text {entry }}=$ [substrate $^{\text {entry } 2}$
$\Rightarrow \mathrm{R}_{5} / \mathrm{R}_{2}=[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry } 5} /[\text { olefin }]^{\mathrm{b}}{ }^{\text {entry } 2}$
$\Rightarrow-0.0016 /-0.0016=[\text { olefin }]^{\mathrm{b}}{ }^{\mathrm{entry}} /[\text { olefin }]^{\mathrm{b}}{ }^{\text {entry2 }}$
$\Rightarrow 1=[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry }} /\left[\right.$ olefin $^{\mathrm{b}}{ }_{\text {entry } 2}$
At $t=0 ;$ olefin $^{b}{ }^{\mathrm{b}}{ }^{\text {entry }} /[\text { olefin }]^{\mathrm{b}}{ }^{\text {entry } 2}=2^{\mathrm{b}}$
So, $1=2^{\text {b }}$
$\log (1)=b \log (2)$
$0=b * 0.3010$
So, $b=0$

[olefin] $\left.{ }^{\mathrm{b}}{ }_{\text {entry } 2}\right\}$
At $t=0 ;$ [substrate] ${ }_{\text {entry } 6}=$ [substrate] entry2
$\Rightarrow \mathrm{R}_{6} / \mathrm{R}_{2}=[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry } 6} /[\text { olefin }]^{\mathrm{b}}{ }^{\text {entry } 2}$
$\Rightarrow-0.0016 /-0.0016=[\text { olefin }]^{\mathrm{b}}{ }^{\mathrm{entry}} 6 /[\text { olefin }]^{\mathrm{b}}{ }^{\text {entry }}{ }^{2}$
$\Rightarrow 1=[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry }} /[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry } 2}$
At $t=0 ;[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry } 6} /[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry } 2}=3^{\mathrm{b}}$
So, $1=3^{\text {b }}$
$\log (1)=b \log (3)$
$0=b^{*} 0.4771$
So, $b=0$

[olefin] ${ }^{\mathrm{b}}{ }^{\text {entry } 2\}}$
At $\mathbf{t}=0$; [substrate $]_{\text {entry }}=[\text { substrate }]_{\text {entry }}$
$\Rightarrow \mathrm{R}_{7} / \mathrm{R}_{2}=[\text { olefin }]^{\mathrm{b}}{ }^{\mathrm{b}}{ }^{\text {entry }} 7[\text { olefin }]^{\mathrm{b}}{ }^{\text {entry } 2}$
$\Rightarrow-0.0016 /-0.0016=[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry }} /[\text { olefin }]^{\mathrm{b}}{ }^{\text {entry } 2}$
$\Rightarrow 1=[\text { olefin }]^{\mathrm{b}}{ }_{\text {entry }} /[\text { olefin }]^{\mathrm{b}}{ }^{\text {entry }}{ }^{2}$
At $t=0 ;$ olefin $^{b}{ }^{\mathrm{b}}{ }_{\text {entry }} /\left[\right.$ olefin $^{\mathrm{b}}{ }^{\mathrm{b}}{ }^{\text {entry } 2}=4^{\mathrm{b}}$
So, $1=4^{\text {b }}$
$\log (1)=b \log (4)$
$0=b^{*} 0.6021$
So, $b=0$

Which indicates that the reaction rate with respect to olefin is zero, i.e. the rate is independent on the amount of olefin.

Fig. S3 Order determination with respect to olefin.

7.4 In situ FTIR experiments

Ceneral procedure for in situ FTIR experiments. Initially, the IR probe was inserted to a $15-\mathrm{mL}$ two necked Schlenk sealed tube to subtract the air background, followed by 3 mL HFIP was charged to the reaction vessel, in order to subtract the solvent background. And then, aryl sulfonate $\mathbf{1 d}$ (400.5 $\mathrm{mg}, 1 \mathrm{mmol}$), whose absorbance is at peak $2248 \mathrm{~cm}^{-1}$, was added to the HFIP in the tube. When its
absorbance intensity value tended to stabilized, $\mathrm{Pd}(\mathrm{OAc})_{2}(224.5 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv $)$ and Ac-Gly-OH ($234.2 \mathrm{mg}, 2 \mathrm{mmol}, 2.0$ equiv) were then added to the mixture at 1074 s , aryl sulfonate $\mathbf{1 d}$ was consumed promptly and a new intermediate (A) generated (absorbance at peak $2278 \mathrm{~cm}^{-1}$) during no more than 30 minutes. Subsequently, after the introduction of ethyl acrylate ($0.22 \mathrm{~mL}, 2$ mmol, 2.0 equiv) at 2649 s , the absorbance at peak $2278 \mathrm{~cm}^{-1}$ subsided instantly, accompanied by the rapid formation of $\mathrm{C}-\mathrm{H}$ olefination products $\mathbf{2 d}$ (also absorbance peak at $2248 \mathrm{~cm}^{-1}$).

Fig. S4 In situ IR reaction kinetic profiles

7.5 ESI-MS analysis

General procedure for synthesis of intermediate (A). To a $15-\mathrm{mL}$ Schlenk sealed tube equipped with a Teflon cap was charged with $\mathbf{1 d}(40.05 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(22.45 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Ac}-$ Gly-OH ($23.42 \mathrm{mg}, 0.2 \mathrm{mmol}$) in turn. Hexafluoro-2-propanol (HFIP, 1.5 mL) was added to the mixture along the inside wall of the tube via a syringe. The reaction tube was then capped and placed onto a preheated $\left(80^{\circ} \mathrm{C}\right)$ heating block. The reaction was stirred for 0.5 h and cooled to room
temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The filtrate was concentrated in vacuo, and the resulting residue was then recorded the ESI-MS.

Fig. S5 ESI-MS analysis to detect the $\mathbf{P d L}_{\mathbf{n}}$-arene complex with substrate $\mathbf{1 d}$

8 Reference

1. A. Mandal, S. M. Mandal, S. Jana, S. S. Bag, A. K. Das, A. Basak, Tetrahedron. 2018, 74, 3543.
2. M. G. N. Russell, R. W. Carling, L. J. Street, D. J. Hallett, S. Goodacre, E. Mezzogori, M. Reader, S. M. Cook, F. A. Bromidge, R. Newman, A. J. Smith, K. A. Wafford, G. R. Marshall, D. S. Reynolds, R. Dias, P. Ferris, J. Stanley, R. Lincoln, S. J. Tye, W. F. A. Sheppard, B. Sohal, A. Pike, M. Dominguez, J. R. Atack, J. L. Castro, J. Med. Chem. 2006, 49, 1235.
3. X. Zhou, Y. Luo, L. Kong, Y. Xu, G. Zheng, Y. Lan, X. Li, ACS Catalysis. 2017, 7, 7296.
4. G. Li, Y. Yan, P. Zhang, X. Xu, Z. Jin, ACS Catalysis. 2021, 11, 10460.
5. J. Xu, J. Chen, F. Gao, S. Xie, X. Xu, Z. Jin, J.-Q. Yu, J. Am. Chem. Soc. 2019, 141, 1903.
6. T. C. Leboho, J. P. Michael, W. A. L. van Otterlo, S. F. van Vuuren, C. B. de Koning, Bioorg Med Chem Lett, 2009, 19, 4948.
7. H. A. Reisch, P. Leeming, P. S. Raje, PCT Int. Appl. 2009, WO2009040517.
8. U. Dutta, A. Modak, B. Bhaskararao, M. Bera, S. Bag, A. Mondal, D. W. Lupton, R. B. Sunoj, D. Maiti, ACS Catal. 2017, 7, 3162.

NMR Spectra Data for All New Compounds

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{D T} \mathbf{T}_{\mathbf{1}}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{DT}_{\mathbf{1}}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{D T}_{\mathbf{2}}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{D T}_{4}$
$\stackrel{\stackrel{\sim}{\sim}}{\stackrel{\infty}{\sim}}$

${ }^{13} \mathrm{C}$ NMR spectra of DT $_{4}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{D T} 5$

-

${ }^{13} \mathrm{C}$ NMR spectra of DT $_{5}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 a}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 b}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 c}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 c}$

${ }^{1}$ H NMR spectra of $1 \mathbf{d}$

$\stackrel{\sim}{N} \stackrel{0}{\sim}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 d}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 e}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 f}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 f}$

${ }^{1}$ H NMR spectra of $\mathbf{1 g}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 g}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 h}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 h}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 i}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 i}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 k}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 k}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 1}$

${ }^{1}$ H NMR spectra of $\mathbf{1 m}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 m}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 n}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 n}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 0}$

 f1 (ppm)
${ }^{13}$ C NMR spectra of $\mathbf{1 o}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 p}$

$\begin{array}{lllllllllllllllllllllllllllllllllllll}110 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 p}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 q}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 q}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 s}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 s}$

 (\|\|\|f \mid

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 t}$

${ }^{13} \mathrm{C}$ NMR spectra of 1 t

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 u}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 u}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 a}$

${ }^{1}$ H NMR spectra of $\mathbf{2 b}$

 f1 (ppm)
${ }^{13}$ C NMR spectra of 2b

${ }^{1} \mathrm{H}$ NMR spectra of 2c

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | f1 (ppm)

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 c}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 d}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 d}$

${ }^{13} \mathrm{C}$ NMR spectra of 2e

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 f}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 g}$

-61.0226

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & (\mathrm{ppm})\end{array}$
${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 g}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 h}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 h}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2} \mathbf{i}_{\text {mono }}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2} \mathbf{i}_{\text {di }}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2} \mathbf{i}_{\mathbf{d i}}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2} \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 k}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 k}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 l}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 I}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 m}$

쓴

an
0
0
0
\vdots
\vdots

N N
N
Oin
0

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 m}$

${ }^{1} H$ NMR spectra of $\mathbf{2 n}$

${ }^{13}$ C NMR spectra of $\mathbf{2 n}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 o}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 0}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 p}$

 f1 (ppm)
${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 p}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 q}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 q}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 r}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 r}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b}$

${ }^{13} \mathrm{C}$ NMR spectra of 3b

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 d}$

${ }^{13} \mathrm{C}$ NMR spectra of 3d

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 k}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 1}$

${ }^{13} \mathrm{C}$ NMR spectra of 31

あing ion oi

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 b}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 c}$

 f1 (ppm)
${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR spectra of 4 e

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 e}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 h}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 i}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 i}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 b}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 b}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 d}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 f}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 f}$

${ }^{1}$ H NMR spectra of $\mathbf{5 g}$

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

${ }^{13} \mathrm{C}$ NMR spectra of 5 g

${ }^{1}$ H NMR spectra of $\mathbf{5 h}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 h}$
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 i}$
®

Hirtrurd

$\begin{array}{lllllllllllllllllllllllllll}11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}$ f1 (ppm)

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 i}$

 f1 (ppm)
${ }^{13} \mathrm{C}$ NMR spectra of 6

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{8}$

 f1 (ppm)
${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8}$

