Electronic Supplementary Information

A Sustainable, Efficient, and Potentially Cost-effective Approach to the Antimalarial Drug MMV688533

Rahul D. Kavthe, Karthik S. Iyer, Juan C. Caravez, and Bruce H. Lipshutz*
Department of Chemistry \& Biochemistry, University of California, Santa Barbara, CA 93106 USA

Phone: 805-893-2521
Fax: 805-893-8265
Email: lipshutz@chem.ucsb.edu
website: https://lipshutz.chem.ucsb.edu/
Contents

1. General information 2
2. Synthetic schemes 4
3. General procedures 6
3.1 Optimization for amide bond formation 6
3.2 Optimization for Sonogashira coupling 8
3.3 Optimization for synthesis of Int-16. 10
3.4 Synthesis of Int-8 12
3.4 Synthesis of $\mathbf{9}$ from methyl 5-bromo-2-(trifluoromethyl)benzoate 17
3.5 Synthesis of $\mathbf{9}$ from carboxylic acid 11 18
3.6 Synthesis of $\mathbf{1 0}$ 20
3.7 N -Boc deprotection to afford MMV688533 (1) 21
4. PMI and E Factor calculations 22
5. ICP-MS data for residual palladium 32
6. Analytical data 33
7. References 36
8. HPLC data 37
9. NMR spectral data 38

1. General information

Reagents:

Reagents were purchased from Sigma-Aldrich, Combi-Blocks, TCI America, Inc., Ambeed, Inc., BLD Pharma, Fischer Scientific, and used without further purification unless noted otherwise.

Surfactant Solution Preparation:

The surfactant, TPGS-750-M, was prepared via a standard literature procedure, ${ }^{1}$ or can be purchased from Millipore-Sigma (catalog \#733857 as a $2 \mathrm{wt} \%$ solution of the wax dissolved in water). A standard $2 \mathrm{wt} \%$ aqueous solution of TPGS-750-M was typically prepared on a 100 g scale by dissolving 2 g of the wax in 98 g of thoroughly degassed (steady stream of argon, minimum of 1 h bubbling time with stirring) HPLC grade water in a 250 mL round-bottomed flask equipped with a stir bar and allowed to stir vigorously overnight under argon (NOTE: Do not attempt to degas the aqueous phase with surfactant wax submerged; vigorous foaming to the point of overflowing may occur). The $2 \mathrm{wt} \%$ TPGS- $750-\mathrm{M} / \mathrm{H}_{2} \mathrm{O}$ solution, once prepared, was kept under a positive argon pressure at all times.

Chromatography:

Silica gel TLC plates (UV 254 indicator, thickness 200 mm standard grade, glass backed and 230400 mesh from Merck) were used. The developed TLC plate was analyzed by a UV lamp (254 $\mathrm{nm})$. The plates were further analyzed with the use of an aqueous ceric ammonium molybdate stain or permanganate stain and developed with a heat gun. Flash chromatography was performed using Silicycle Silicaflash ${ }^{\circledR}$ P60 unbonded grade silica.

Nuclear Magnetic Resonance Spectroscopy (NMR):

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR were recorded at $25{ }^{\circ} \mathrm{C}$ on an Agilent Technologies 400 MHz , a Bruker Avance III HD 400 MHz and Bruker Avance NEO 500 MHz spectrometer in CDCl_{3} or DMSO-d ${ }_{6}$ with residual $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}=77.16 \mathrm{ppm}\right)$ or DMSO $\left({ }^{1} \mathrm{H}=2.54 \mathrm{ppm},{ }^{13} \mathrm{C}=40.45\right.$ ppm) as the internal standard. Deuterated solvents were purchased from Cambridge Isotope Laboratories. Chemical shifts are reported in parts per million (ppm). The data presented will be reported as follows; chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{bs}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$
doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet), coupling constant (if applicable), and integration.

Mass Spectrometry (MS):

HRMS analysis (ESI-MS or CI-MS) was performed by the UC Santa Barbara mass spectrometry facility or the UC Irvine mass spectrometry facility. ESI-MS analysis was performed on a Waters LCT Premier mass spectrometer equipped with an Alliance 2695 Separations module. EI-MS analysis was performed on a Waters GCT Premier mass spectrometer equipped with an Agilent 7890A GC oven and J\&W Scientific DB-5ms+DG narrow bore column using helium carrier gas.

Melting points (MP):

Melting points were determined using a MEL-TEMP II melting point apparatus with samples in Kimble Kimex 51 capillaries (1.5-1.8 x 90 mm).

High-Performance Liquid Chromatography (HPLC):

HPLC analysis was performed on an Agilent 1220 series HPLC with columns indicated for each compound. HPLC-grade solvents were obtained from Fischer Scientific. Column conditions are specified for each relevant substrate.

Inductively coupled plasma mass spectrometry (ICP-MS):

ICP-MS analysis was performed using a PerkinElmer NexION 2000 ICP-MS.

2. Synthetic schemes

Scheme S1: UCSB synthesis of MMV688533 via Route 1.

Scheme S2: UCSB synthesis of MMV688533 via Route 2.

3. General procedures

3.1 Optimization for amide bond formation

Table S1. Screening of activating agents for the amide coupling to afford $\mathbf{1 4 .}$

13
14

entry	activating reagents	time (h)	temp (${ }^{\circ} \mathrm{C}$)	base	yield (\%) ${ }^{\text {a }}$
1	DPDTC (1.05 equiv)	8	60	NMM (1.05 equiv)	73
$2^{\text {b }}$	DPDTC (1.05 equiv)	4	60	NMM (1.05 equiv)	85
3	COMU (1.05 equiv)	8	30	2,6-lutidine (3.1 equiv)	messy
$4^{\text {c }}$	$\mathrm{EDCI} \cdot \mathrm{HCl}$ (1.1 equiv)	18	45	-	45
	HOBt (1.2 equiv)				
5	DCC (1.5 equiv)	18	45	-	19
6	cyanuric Chloride (1 equiv)	8	rt	NMM (1 equiv)	trace
$7^{\text {d }}$	thionyl Chloride (7 equiv)	8	50	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv)	trace
$8^{\text {c }}$	$\mathrm{EDCI} \cdot \mathrm{HCl}$ (1.1 equiv)/	16	rt	-	61
	HOBt (1.2 equiv)				
$9^{\text {e }}$	T3P (1.2 equiv)	8	rt	DIPEA (3 equiv)	27
$10^{\text {f }}$	DPDTC (1.05 equiv)	8	60	NMM (1.05 equiv)	96
$11^{\text {e }}$	DPDTC (1.05 equiv)	8	60	NMM (1.05 equiv)	94

${ }^{\text {a }}$ Isolated yield; ${ }^{\text {b }} 10 \mathrm{~mol} \%$ DMAP was used; ${ }^{\mathrm{c}}$ reaction was run in DMF; ${ }^{\mathrm{d}}$ The acid chloride of $\mathbf{1 3}$ was pre-formed in neat thionyl chloride before addition to an aqueous solution of guanidine and $\mathrm{K}_{2} \mathrm{CO}_{3}$; ${ }^{\mathrm{e}}$ Reaction run in $\mathrm{EtOAc}(2 \mathrm{M})$; ${ }^{\mathrm{f}}$ Reaction was run in the absence of solvent (neat).

Activating agent abbreviations:

- DPDTC: di-2-pyridyldithiocarbonate
- EDCI: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
- COMU: (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholinocarbenium hexafluorophosphate
- DCC: N, N '-dicyclohexylcarbodiimide
- HOBt: 1-hydroxybenzotriazole
- T3P: propanephosphonic acid anhydride
a. General procedure for amide couplings using DPDTC (Table S1; entries 1, 2, 10 and 11):

1. Procedure for amide bond formation under aqueous conditions (entries 1 and 2): To a 2-dram vial containing a PTFE-coated magnetic stir bar was added 3-bromo-5-(trifluoromethyl) benzoic acid 13 (1 equiv, 0.5 mmol) and DPDTC (1.05 equiv, $0.52 \mathrm{mmol}, 130.2 \mathrm{mg}$). The contents were stirred at $60^{\circ} \mathrm{C}$ until full consumption of the acid, as determined by TLC ($\sim 4-$ 6 h). Upon complete consumption of the acid, N-Boc-guanidine (1.00 equiv, 79.6 mg) was added followed by addition of N-methylmorpholine (1.00 equiv, $54 \mu \mathrm{~L}$) and an aqueous solution of $2 \mathrm{wt} \%$ TPGS-750-M ($0.5 \mathrm{M}, 1 \mathrm{~mL}$), and the contents were stirred at $60^{\circ} \mathrm{C}$ until complete consumption of the thioester was observed. The crude reaction mixture was extracted with EtOAc (1.5 mL) and concentrated in vacuo, after which it was subjected to flash chromatography ($10-30 \% \mathrm{EtOAc} /$ hexanes as eluent) to afford product $\mathbf{1 4}$ as a white solid.
2. Procedure for amide bond formation under neat conditions (entry 10): To a 2-dram vial containing a PTFE-coated magnetic stir bar was added 3-bromo-5-(trifluoromethyl) benzoic acid 13 (1 equiv, 1 mmol) and DPDTC (1.05 equiv, $1.05 \mathrm{mmol}, 260.4 \mathrm{mg}$). The contents were stirred at $60{ }^{\circ} \mathrm{C}$ until full consumption of the acid, as determined by TLC ($\sim 4-6 \mathrm{~h}$). Subsequently, the N-Boc-guanidine was added, in a 1-pot fashion to the vial followed by the addition of N-methylmorpholine (NMM, 1.00 equiv, $108 \mu \mathrm{~L}$) and stirred until complete consumption of the thioester. The crude reaction mixture was dissolved in EtOAc and concentrated in vacuo, after which it was subjected to flash chromatography ($10-30 \%$ $\mathrm{EtOAc} /$ hexanes as the eluent) to afford product $\mathbf{1 4}$ as a white solid.
3. Procedure for amide bond formation using EtOAc (2 M ; entry 11): To a 2-dram vial containing a PTFE-coated magnetic stir bar was added 3-bromo-5-(trifluoromethyl) benzoic acid $\mathbf{1 3}$ (1 equiv, 1 mmol) and DPDTC (1.05 equiv, $1.05 \mathrm{mmol}, 260 \mathrm{mg}$). The contents were stirred at 60 ${ }^{\circ} \mathrm{C}$ until full consumption of the acid, as determined by TLC ($\sim 4-6 \mathrm{~h}$). Upon complete consumption of the acid, the N-Boc-guanidine (1.00 equiv, 159.2 mg) was added followed by addition of EtOAc ($2 \mathrm{M}, 500 \mu \mathrm{~L}$) and N-methylmorpholine (1.00 equiv, $108 \mu \mathrm{~L}$), and the contents were stirred at $60^{\circ} \mathrm{C}$ until complete consumption of the thioester was observed. The crude reaction mixture was further diluted with EtOAc (1.5 mL) and concentrated in vacuo,
whereupon it was subjected to flash chromatography ($10-30 \% \mathrm{EtOAc} /$ hexanes as the eluent) to afford product $\mathbf{1 4}$ as a white solid.

b. General procedure for amide couplings using other coupling reagents:

To a 1-dram vial with a PTFE-coated magnetic stir-bar was added 3-bromo-5-(trifluoromethyl) benzoic acid 13 (1.00 equiv, 0.500 mmol), N-Boc-guanidine (1.2 equiv, 95.5 mg) and base. 2 wt \% TPGS-750-M in water ($0.5 \mathrm{M}, 1.00 \mathrm{~mL}$) was added followed by addition of the activating agent. The reaction mixture was stirred at the indicated temperature for the indicated amount of time. Upon, completion, the crude mixture was extracted with EtOAc (2.5 mL) and subjected to flash chromatography ($10-30 \% \mathrm{EtOAc} /$ hexanes as eluent) to afford product $\mathbf{1 4}$, as a white solid.

3.2 Optimization of the first Sonogashira coupling

Table S2. Catalyst screening for the first Sonogashira coupling to afford 15.

 14	15	$\begin{aligned} & \text { P1; } \mathrm{L}=\mathrm{PPh}_{3} \\ & \text { P2; L }=\text { SPhos } \\ & \text { P3; L }=\text { BrettPhos } \end{aligned}$
entry ${ }^{\text {a }}$	Pd catalyst / ligand	yield (\%) ${ }^{\text {b }}$
1	$\begin{gathered} {[\mathrm{Pd}(\text { cinnamyl }) \mathrm{Cl}]_{2}(1 \mathrm{~mol} \%)} \\ \text { cBRIDP }(2 \mathrm{~mol} \%) \end{gathered}$	2
2	$\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(1 \mathrm{~mol} \%)$	68
3	$\mathrm{Pd}(\mathrm{dtbpf}) \mathrm{Cl}_{2}(1 \mathrm{~mol} \%)$	20
4	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1 \mathrm{~mol} \%)$	41
5	Xantphos Pd G4 (1 mol \%)	61
6	SPhos Pd G3 (1 mol \%)	trace
7	FeNPs ($5 \mathrm{~mol} \%), \mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{~mol} \%)$, XPhos (3 mol \%)	15
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1 \mathrm{~mol} \%)$	60
$9^{\text {c }}$	$\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4} \mathbf{(2 . 5 ~ m o l ~ \%)}$	91(88)
$10^{\text {d }}$	$\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(2 \mathrm{~mol} \%)$	84
$11^{\text {d }}$	BrettPhos Pd G3 (2 mol \%)	12
$12^{\text {d }}$	N-XantPhos Pd G3 ($2 \mathrm{~mol} \%$)	74

 \(\mathbf{P 2}(1 \mathrm{~mol} \%) \quad 0\)
 P3 (1 mol \%)
${ }^{\text {a }}$ Reactions were carried out on a 0.25 mmol scale; ${ }^{\mathrm{b}}$ NMR yields using $1,3,5$-trimethoxybenzene as an internal standard; ${ }^{\mathrm{c}} 5 \mathrm{~mol}$ $\% \mathrm{CuI}$ was used; ${ }^{\mathrm{d}} 4 \mathrm{~mol} \% \mathrm{CuI}$ was used.

General procedure for Sonogashira coupling to arrive at 15:

To a 1-dram vial containing a PTFE-coated magnetic stir-bar was added the aryl bromide 14 (0.25 mmol, 102.5 mg), followed by addition of the Pd catalyst as indicated $\left(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right.$ was added inside the glovebox). The vial was evacuated and back-filled with argon three times and was taken inside the glovebox, wherein CuI was added. A solution of $2 \mathrm{wt} \%$ TPGS-750-M (0.45 mL), THF (0.05 mL) and $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv, $104.5 \mu \mathrm{~L}$) were added via a syringe under a positive flow of argon, followed by the addition of triethylsilylacetylene (1.2 equiv, $0.3 \mathrm{mmol}, 48 \mu \mathrm{~L}$) and the reaction mixture was allowed to stir vigorously at $55^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was extracted with EtOAc ($3 \times 0.5 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo. Subsequently, 0.5 $\mathrm{mLCDCl} l_{3}$ was added followed by the addition of $1,3,5$-trimethoxybenzene ($5-7 \mathrm{mg}$) as internal standard, and the samples were analyzed by ${ }^{1} \mathrm{H}$ NMR (20 sec relaxation delay; the aromatic peaks are well separated).

Fe/ppm Pd nanoparticle-mediated Sonogashira coupling (entry 7):

To a 1-dram vial containing a PTFE-coated magnetic stir bar were added pure $\mathrm{FeCl}_{3}(2.1 \mathrm{mg}, 5$ $\mathrm{mol} \%$) and XPhos ($3.56 \mathrm{mg}, 3 \mathrm{~mol} \%$) under anhydrous conditions. The reaction vial was closed with a rubber septum and the mixture was evacuated and backfilled with argon. Dry THF (0.5 mL) was added to the vial and $100 \mu \mathrm{~L}$ solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{~mol} \%)$ from a stock solution was then added (the stock solution was prepared by dissolving $5.6 \mathrm{mg} \mathrm{Pd}(\mathrm{OAc})_{2}$ in 1 mL dry THF). The mixture was stirred for 15 min at rt , after which dissolution and complexation of iron trichloride was clearly visualized by a color change to dark brown. While maintaining an inert atmosphere, THF was evaporated under reduced pressure at rt . MeMgBr in THF ($0.12 \mathrm{~mL}, 10 \mathrm{~mol} \%, 0.2 \mathrm{M}$) was added to the reaction mixture, which was then stirred at rt for 1 min . A freshly degassed aqueous solution of $2 \mathrm{wt} \%$ TPGS-750-M/ $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added to the vial and the mixture was stirred for 1 min . The aryl bromide $\mathbf{1 4}(0.25 \mathrm{mmol}, 102.5 \mathrm{mg})$, triethylsilylacetylene (1.2 equiv, $0.3 \mathrm{mmol}, 48 \mu \mathrm{~L})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{mmol}$, 2 equiv) were sequentially added to the reaction vial. The
vial was sealed with a rubber septum under argon and then stirred at $45^{\circ} \mathrm{C}$ for 24 h . After 24 h , the reaction mixture was cooled to rt . EtOAc $(1.0 \mathrm{~mL})$ was added to the reaction mixture and then stirred gently for 5 min at rt . Stirring was then stopped and the organic layer was decanted using a pipette. Subsequently, 0.5 mL of CDCl_{3} was added followed by the addition of $1,3,5-$ trimethoxybenzene ($5-7 \mathrm{mg}$) as the internal standard and the samples were analyzed by ${ }^{1} \mathrm{H}$ NMR.

3.3 Optimization for synthesis of Intermediate 16

Table S3. Optimization of reaction conditions for Sonogashira coupling.

entry $^{\mathrm{a}}$	Pd catalyst	yield $^{\mathrm{b}}$
1	$[\mathrm{Pd}(\text { cinnamyl }) \mathrm{Cl}]_{2}(0.25 \mathrm{~mol} \%)$	95
	cBRIDP $(1 \mathrm{~mol} \%)$	
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.5 \mathrm{~mol} \%) / \mathrm{CuI}(1 \mathrm{~mol} \%)$	94
$\mathbf{3}$	$[\mathbf{P d}(\mathbf{c i n n a m y l}) \mathbf{C l}]_{2}(\mathbf{0 . 1 2 5} \mathbf{~ m o l ~ \%)}$	$\mathbf{9 6}$
	$\mathbf{c B R I D P}(\mathbf{0 . 5 0} \mathbf{~ m o l ~ \%)}$	
4	$[\mathrm{Pd}(\text { cinnamyl }) \mathrm{Cl}]_{2}(0.05 \mathrm{~mol} \%)$	84

${ }^{\text {a }}$ Reactions were carried out on a 1 mmol scale; ${ }^{\mathrm{b}}$ Isolated yield.

Preparation of stock solution of catalyst: In a 1-dram vial containing a PTFE coated magnetic stir bar, cBRIDP ($17.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $[(\text { cinnamyl }) \mathrm{PdCl}]_{2}(6.5 \mathrm{mg}, 0.0025 \mathrm{mmol})$ were added in a glove box. The reaction vial was sealed with a rubber septum and degassed, after which anhydrous THF (2 mL) was added via syringe. The mixture was stirred for 5 min at rt . A yellow stock solution was obtained for subsequent Sonogashira reactions (Note: always use fresh stock solution because it is unstable at rt, as indicated by the color change from yellow to orange to black within one week).

Procedure for Sonogashira coupling (entry 3):

To a 2-dram vial containing a PTFE coated magnetic stir-bar was added aryl bromide $2(1 \mathrm{mmol}$, 1 equiv, 283 mg) and the vial was evacuated and backfilled with argon three times. An aqueous solution of $2 \mathrm{wt} \%$ TPGS-750-M ($0.5 \mathrm{M}, 1.8 \mathrm{~mL}$) was added followed by the addition of the catalyst stock solution ($200 \mu \mathrm{~L}$ for 2500 ppm of Pd) and $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv, $2 \mathrm{mmol}, 279 \mu \mathrm{~L}$). Lastly, triethylsilyl-acetylene (1.2 equiv, $1.2 \mathrm{mmol}, 192 \mu \mathrm{~L}$) was added under a positive flow of argon and the reaction was vigorously stirred at $70^{\circ} \mathrm{C}$ for 24 h . After complete consumption of starting material, as monitored by TLC, the reaction mixture was extracted with EtOAc ($1.0 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography over silica gel ($1 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford 16 as light-yellow thick liquid ($327.2 \mathrm{mg}, 96 \%$ yield).

Gram-scale synthesis of intermediate 16

Scheme S3: Gram-scale synthesis of intermediate 16

Procedure For Gram-Scale Reactions

To a 25 mL cylindrical Schlenk flask equipped with a PTFE-coated magnetic stir bar was added methyl 3-bromo-5-(trifluoromethyl) benzoate ($\mathbf{2}, 1$ equiv, $5 \mathrm{mmol}, 1.41 \mathrm{~g}$) and the flask was then transferred to a glove box where $\operatorname{Pd}[(\text { cinnamyl }) \mathrm{Cl}]_{2}(0.125 \mathrm{~mol} \%, 3.23 \mathrm{mg}, 0.006 \mathrm{mmol})$ and cBRIDP ($0.5 \mathrm{~mol} \%, 0.012 \mathrm{mmol}, 8.8 \mathrm{mg}$) were added under argon. The side-arm of the tube was sealed with a rubber septum and the flask was removed from the glove box, after which a solution of $2 \mathrm{wt} \%$ TPGS-750-M/ $\mathrm{H}_{2} \mathrm{O}(9 \mathrm{~mL})$, THF (1 mL), and $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv, $1.39 \mathrm{~mL}, 10 \mathrm{mmol}$) were added under a flow of argon and the mixture allowed to stir for 10 min at rt . The triethylsilylacetylene (1.2 equiv, $6 \mathrm{mmol}, 0.89 \mathrm{~mL}$) was added slowly via syringe and the flask was sealed and allowed to stir at $70^{\circ} \mathrm{C}$ for 24 h . Upon completion, the reaction mixture was extracted with EtOAc
($3 \times 5.0 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography over silica gel (1% $\mathrm{EtOAc} /$ hexanes) to afford product $\mathbf{1 6}$ as light-yellow thick liquid ($1.62 \mathrm{~g}, 95 \%$ yield).

3.4 Synthesis of Intermediate 8

1. Deprotection of the triethylsilyl group to afford 4.

Scheme S4: Deprotection of the triethylsilyl group

Procedure: To a 6-dram vial containing a PTFE coated magnetic stir bar was added compound 16 ($1.9 \mathrm{mmol}, 650 \mathrm{mg}$) followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%, 52 \mathrm{mg})$ and a $1: 1$ mixture of THF and $\mathrm{MeOH}(2 \mathrm{~mL}$ each $)$ to adjust the global concentration to 0.4 M . The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 8 h , whereupon full removal of the TES group was observed by TLC (2% EtOAc/hexanes). Upon completion, the reaction mixture was concentrated in vacuo and subjected to flash chromatography using silica gel ($1-2 \% \mathrm{EtOAc} /$ hexanes as eluent) to afford product $\mathbf{4}$ as a light-yellow color oil ($363.4 \mathrm{mg}, 84 \%$ yield).
2. Ester hydrolysis to afford acid 5

Scheme S5: Ester hydrolysis of 4

Procedure: In a 2-dram vial containing a PTFE coated magnetic stir bar, methyl ester 4 (1.27 $\mathrm{mmol}, 290 \mathrm{mg}$) was added followed by the addition of LiOH (3 equiv, 91.6 mg). A mixture of THF (6 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ were added via syringe and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$
for 5 h . Upon completion, the crude mixture was concentrated in vacuo to remove THF and the residue was acidified to $\mathrm{pH} 2-3$ using a 1 M aqueous HCl . The light brown precipitate of product was collected via centrifugation and washed with water three times by repeated resuspension in DI water and centrifugation, then dried under vacuum at $50^{\circ} \mathrm{C}$ for 16 h to afford product 5 as a light brown - buff colored solid ($250.3 \mathrm{mg}, 92 \%$ yield).
3. Amide coupling to afford 8:

Scheme S6: Amide bond formation to afford $\mathbf{8}$

Procedure: To a 1-dram vial containing a PTFE-coated magnetic stir bar was added the carboxylic acid 5 (107 mg , 1 equiv, 0.5 mmol) and DPDTC ($129 \mathrm{mg}, 1.05$ equiv, 0.52 mmol). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h . Upon complete consumption of the acid, the reaction mixture was cooled to rt and N-Boc-guanidine (1.05 equiv, 87.6 mg) was added followed by addition of EtOAc ($2 \mathrm{M}, 250 \mu \mathrm{~L}$) and N-methylmorpholine ($\mathrm{NMM}, 47 \mu \mathrm{~L}, 1.0$ equiv, 0.5 mmol). The reaction was stirred at $60^{\circ} \mathrm{C}$ for 2 h , until complete consumption of the thioester. Upon completion, the reaction mixture was first diluted with 1.5 mL of EtOAc, then washed with 1 M $\mathrm{NaOH}(2 \times 0.5 \mathrm{~mL})$ to remove 2-mercaptopyridine. The organic layer was concentrated to afford crude product. The crude product was purified by silica gel flash chromatography ($5-20 \%$ $\mathrm{EtOAc} /$ hexanes as eluent) to give the pure product $\mathbf{8}$ as a white solid ($154 \mathrm{mg}, 87 \%$ yield).
4. 2-Step, 1-pot deprotection of the triethylsilyl group/ester hydrolysis to afford 5:

Scheme S7. 2-Step, 1-pot synthesis of 5

Procedure: To a 2-dram vial containing a PTFE coated magnetic stir bar was added compound $16(325 \mathrm{mg}, 0.95 \mathrm{mmol})$ followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%, 26.2 \mathrm{mg})$ and a $1: 1$ mixture of THF and $\mathrm{MeOH}\left(1 \mathrm{~mL}\right.$ each). The reaction mixture was stirred at $45^{\circ} \mathrm{C}$ for 8 h , whereupon full deprotection of the TES group was observed by TLC. The mixture was cooled to rt and LiOH (3 equiv, 68 mg) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ were added and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . Upon completion of ester hydrolysis, the crude mixture was concentrated in vacuo to remove THF and MeOH and the resulting residue was acidified to $\mathrm{pH} 3-4$ using 1 M aqueous HCl . The light brown precipitate of product was collected via centrifugation and washed with water three times by repeated resuspension in DI water and centrifugation, then dried under vacuum at $50{ }^{\circ} \mathrm{C}$ for overnight to afford the product 5 light brown - buff colored solid ($190.1 \mathrm{mg}, 89 \%$ yield).
5. 4-Step, 1-pot sequence to afford carboxylic acid $\mathbf{8}$:

Scheme S8. 4-Step, 1-pot synthesis of $\mathbf{8}$

Procedure for 4-step, 1-pot synthesis of 8

Step 1 - Sonogashira coupling to afford 16: To a 2-dram vial equipped with a PTFE-coated magnetic stir bar was added methyl 3-bromo-5-(trifluoromethyl) benzoate 2 (1 mmol , 1 equiv, 283 mg) and the vial was evacuated and backfilled with argon three times. An aqueous solution of 2 wt \% TPGS-750-M ($0.5 \mathrm{M}, 1.8 \mathrm{~mL}$) was added followed by the addition of the catalyst stock solution ($200 \mu \mathrm{~L}$ for 2500 ppm of Pd , ($0.125 \mathrm{~mol} \%$ of dimer), see ESI, section 3.3) and $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv, $2 \mathrm{mmol}, 279 \mu \mathrm{~L}$). Lastly, triethylsilylacetylene (1.2 equiv, $1.2 \mathrm{mmol}, 192 \mu \mathrm{~L}$) was added under a positive flow of argon and the reaction was vigorously stirred at $70{ }^{\circ} \mathrm{C}$ for 24 h . Upon completion (by TLC), the reaction mixture was extracted with EtOAc (3.0 mL) and brine (1 mL), and the layers were allowed to separate. The aqueous layer was removed using a syringe and the resulting organic layer was concentrated, in the same vial to afford crude 16. This material was used in the next step without further purification.

Step 2 - Triethylsilyl deprotection to afford terminal alkyne 4: The crude material from the previous step was subjected to $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%, 27.6 \mathrm{mg})$ and a $1: 1$ mixture of THF and MeOH
(1 mL each). The reaction was stirred at $50^{\circ} \mathrm{C}$ for 8 h , until complete deprotection of the TES group was observed (by TLC or GC-MS). the reaction mixture was cooled to rt and was used in the next step without further purification.

Step 3 - Ester hydrolysis to afford carboxylic acid 5: The material from the previous step was subjected to LiOH (3 equiv, $3 \mathrm{mmol}, 72 \mathrm{mg}$), followed by addition of water (1 mL). The reaction vial was capped and stirred for 5 h at $50^{\circ} \mathrm{C}$. Upon completion, the reaction mixture was concentrated in vacuo to remove most of the THF and MeOH , then acidified to pH 2 using a 1 M aqueous solution of HCl . The aqueous phase was extracted with EtOAc (3 mL), brine (1 mL), and the layers were allowed to separate. The aqueous layer was removed using a syringe and the resulting organic layer was concentrated in vacuo to afford the crude carboxylic acid 5. This material was used in the subsequent step without further purification.
(Step 4) Amide bond formation to afford 8: To the crude material from the previous step was added DPDTC (1.05 equiv, $1.05 \mathrm{mmol}, 260.4 \mathrm{mg}$). The contents were stirred at $60^{\circ} \mathrm{C}$ until full consumption of the acid was observed, as determined by TLC ($\sim 3 \mathrm{~h})$. Upon complete consumption of the acid, N-Boc-guanidine (1.05 equiv, 175.1 mg) was added followed by addition of EtOAc (2 $\mathrm{M}, 0.5 \mathrm{~mL}$) and N-methylmorpholine (1.05 equiv, $115 \mu \mathrm{~L}$), and the contents were stirred at $60^{\circ} \mathrm{C}$ until complete consumption of the thioester was observed ($\sim 2 \mathrm{~h}$). The crude reaction mixture was further diluted with EtOAc (1.5 mL) and concentrated in vacuo, whereupon it was subjected to flash chromatography ($10-20 \% \mathrm{EtOAc} /$ hexanes as eluent) to afford product $\mathbf{8}$ as a white solid ($216 \mathrm{mg}, 61 \%$ yield).

3.4 Synthesis of 9 from methyl 5-bromo-2-(trifluoromethyl)benzoate

Table S3. Optimization of amide bond formation from ester $\mathbf{1 1}$

entry	solvent	temp (${ }^{\circ} \mathbf{C}$)	Time (h)	yield (\%) ${ }^{\text {b }}$
1	2 wt \% TPGS-750-M / $\mathrm{H}_{2} \mathrm{O}$	rt	16	-
2	2 wt \% TPGS-750-M / $\mathrm{H}_{2} \mathrm{O}$	80	16	15
3	neat	rt	2	59
4	neat	rt	6	66
5	neat	60	4	96
$6{ }^{\text {c }}$	2-MeTHF	55	14	95
$7^{\text {c,d }}$	2-MeTHF	55	14	98
$8^{\text {c,e }}$	2-MeTHF	55	14	>99

${ }^{\text {a }}$ Reaction condition: $\mathbf{1 3}(0.25 \mathrm{mmol}), \mathbf{1 1}(0.37 \mathrm{mmol})$, solvent $(0.5 \mathrm{M}) ;{ }^{\mathrm{b}}$ Isolated yield; ${ }^{\mathrm{c}}$ solvent (2 M) was used; ${ }^{\mathrm{d}} \mathbf{1 1}(0.3 \mathrm{mmol})$ was used; ${ }^{\mathrm{e}} \mathbf{1 1}(0.27 \mathrm{mmol})$ was used.

General procedure for direct amidation to afford 9:

2-Aminopyridine 13 (1 equiv, $0.25 \mathrm{mmol}, 23.5 \mathrm{mg}$) and methyl 5-bromo-2-(trifluoromethyl) benzoate ($\mathbf{1 1}, 1.5$ equiv, $0.37 \mathrm{mmol}, 106.1 \mathrm{mg}$) were placed in a 1 -dram vial with a PTFE-coated magnetic stir bar which was covered with a rubber septum. The vial was taken into the glovebox, in which $\mathrm{NaO}^{t} \mathrm{Bu}$ (1.5 equiv, 36.0 mg) was added. The indicated solvent (0.5 M) was added via syringe and the reaction mixture was allowed to stir at the indicated temperature for the indicated amount of time. Upon completion of the reaction, as monitored by TLC, the crude mixture was diluted (in the case of neat reactions) or extracted with EtOAc ($3 \times 0.5 \mathrm{~mL}$) in the case of reactions in aqueous 2 wt \% TPGS-750-M as the medium. Reactions run with 2-MeTHF were directly concentrated in vacuo and subjected to flash chromatography with silica gel (5-20\% $\mathrm{EtOAc} /$ hexanes as eluent) to afford $\mathbf{9}$ as a white solid.

Gram-scale reaction to afford 9:

Scheme S9. Gram-scale reaction for the synthesis of 9

Procedure: 2-Aminoppyridine 13 (1 equiv, $2 \mathrm{mmol}, 188 \mathrm{mg}$) and methyl 5-bromo-2(trifluoromethyl) benzoate (11, 1.1 equiv, $2.2 \mathrm{mmol}, 622.6 \mathrm{mg}$) were placed in a 1-dram vial with a PTFE-coated magnetic stir bar and then covered with a rubber septum. The vial was taken into the glovebox and $\mathrm{NaO}^{t} \mathrm{Bu}$ (1.5 equiv, 288 mg) was added and the flask was sealed with a rubber septum, and then removed from the glove box. The mixture was dissolved in 2-MeTHF ($2 \mathrm{M}, 1$ ml) and stirred at $50^{\circ} \mathrm{C}$ for 12 h . Upon completion (as monitored by TLC), water (1 mL) was added dropwise to quench the reaction and the resulting mixture was stirred for another 10 min and extracted with EtOAc ($3 \times 1 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo and subjected to flash chromatography ($5-20 \%$ EtOAc/hexanes as eluent) to afford 9 (669.4 mg , 97% yield as a white color solid.

3.5 Synthesis of 9 from carboxylic acid 11

Table S4. Optimization of amide bond formation from carboxylic acid 11

Entry ${ }^{\text {a }}$	reaction condition	yield of 9 (\%) ${ }^{\text {b }}$
1	DPDTC (1.1 equiv), DMAP ($10 \mathrm{~mol} \%$), $60^{\circ} \mathrm{C}, 3 \mathrm{~h}$, then EtOAc (2 M), NMM (1.1 equiv), $60^{\circ} \mathrm{C}$, 12 h	15
2	T3P (1.2 equiv), EtOAc (2 M), rt, 12 h	47
3	HATU (1.1 equiv), DIPEA (3 equiv), DMF, rt, 16 h	18
4	HATU (1.1 equiv), DIPEA (3 equiv), DMF, rt, 4 h	trace
5	EDCI (1.2 equiv), HOBt (1.2 equiv), DMF, rt, 8 h	12

[^0]Procedure (entry 2): To a 1-dram vial equipped with a PTFE-coated magnetic stir bar, were added carboxylic acid $\mathbf{1 1}$ (1.0 equiv, $0.25 \mathrm{mmol}, 23.5 \mathrm{mg}$), 2-aminopyridine $\mathbf{1 3}$ (1.1 equiv, 0.275 mmol, 26 mg), and DIPEA (3 equiv, $0.75 \mathrm{mmol}, 130.6 \mu \mathrm{~L}$) followed by the addition of anhydrous EtOAc (0.125 mL). The resulting solution was cooled to $-10{ }^{\circ} \mathrm{C}$ using an acetone-ice bath. The mixture was stirred for 5 min at this temperature after which a $50 \mathrm{w} / \mathrm{w} \%$ solution of propanephosphonic acid anhydride (T3P) in EtOAc (1.2 equiv, $0.3 \mathrm{mmol}, 179 \mu \mathrm{~L}$) was added dropwise with stirring and the resulting reaction mixture was stirred for 30 min at this temperature, at which time it was allowed to warm to rt and further stirred for 3 h . On completion of the reaction (as monitored by TLC), the mixture was diluted with EtOAc (0.5 mL) and quenched by addition of water $(0.5 \mathrm{~mL})$ and the aqueous layer was extracted 3 times with EtOAc $(0.5 \mathrm{~mL})$. The combined organic layers were concentrated in vacuo to give crude material which was then purified by flash chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give pure product $9(40.3 \mathrm{mg}, 47 \%$) as a white solid.

Procedure (entries 3-5): In a 1-dram vial, carboxylic acid 11 (1.0 equiv, $0.25 \mathrm{mmol}, 23.5 \mathrm{mg}$), amine 13 (1.1 equiv, $0.275 \mathrm{mmol}, 26 \mathrm{mg}$), and base were added followed by the addition of DMF $(0.5 \mathrm{~mL})$. The vial was capped and stirred at rt for $\sim 5 \mathrm{~min}$, after which the coupling reagent (1.2 equiv) was added. The reaction was stirred at rt for the indicated amount of time. The reaction mixture was first concentrated to remove most of the DMF and then diluted with $\mathrm{H}_{2} \mathrm{O}$, followed by extraction with EtOAc ($3 \times 1 \mathrm{~mL}$). The organic was concentrated in vacuo to give crude material which was then purified by flash chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give pure product 9 .

Procedure (entry 1): To a 1-dram vial equipped with a PTFE-coated magnetic stir bar, were added carboxylic acid 11 (1.0 equiv, $0.25 \mathrm{mmol}, 23.5 \mathrm{mg}$) and DPDTC (1.1 equiv, $275 \mathrm{mmol}, 68.2$ mg). The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 3 h until complete consumption of the carboxylic acid was observed. After 3 h , the reaction mixture was cooled to rt and amine $\mathbf{1 3}$ (1.1 equiv, 26 mg) was added followed by addition of EtOAc ($2 \mathrm{M}, 125 \mu \mathrm{~L}$) and N-methylmorpholine (NMM, $30 \mu \mathrm{~L}, 1.1$ equiv, 0.275 mmol). The reaction was stirred at $60^{\circ} \mathrm{C}$ for 2 h , until complete consumption of the thioester. Upon completion, the reaction mixture was first diluted with 1.5 mL of EtOAc, then washed with $1 \mathrm{M} \mathrm{NaOH}(2 \times 0.5 \mathrm{~mL})$ to remove 2-mercaptopyridine. The organic layer was concentrated to afford crude product. The crude product was purified by silica gel flash chromatography ($10 \% \mathrm{EtOAc} /$ hexanes as eluent) to give the pure product 9.

3.6 Synthesis of 10

Table S5. Optimization of reaction conditions for Sonogashira coupling to $\mathbf{1 0}$.

entry	Pd catalyst	time	yield (\%) ${ }^{\text {a }}$
$1^{\text {b }}$	$\mathrm{Pd}[(\text { cinnamyl }) \mathrm{Cl}]_{2}(0.25 \mathrm{~mol} \%)$	24	19
	cBRIDP (1 mol \%)		
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	24	47
3	$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \bullet$ DCM	24	29
4	$\mathrm{Pd}(\mathrm{dtbpf}) \mathrm{Cl}_{2}$	24	51
5	XantPhosPd G4	24	93
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	24	96
$7{ }^{\text {c }}$	$\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4}$	16	94
$8^{\text {d }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	24	68
$9{ }^{\text {e }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	16	87
10	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	24	34
$11^{\text {f }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$	24	30

Reaction conditions: $9(0.25 \mathrm{mmol}), \mathbf{8}(0.30 \mathrm{mmol}), \mathrm{Et} 3 \mathrm{~N}\left(3\right.$ equiv), solvent $(0.5 \mathrm{M}) ;{ }^{\text {a }}$ Isolated yield; ${ }^{\mathrm{b}}$ The reaction was run in the absance of CuI ; ${ }^{\mathrm{c}}$ Reaction performed on 0.5 mmol scale; ${ }^{\mathrm{d}} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4(2500 \mathrm{ppm} ; 0.25 \mathrm{~mol} \%)$ was used; ${ }^{\mathrm{e}}$ Reaction run in absence of co-solvent; ${ }^{\mathrm{f}}$ Reaction was performed in EtOAc (0.5 M).

General procedure for Sonogashira coupling to afford 10:

To a 1-dram vial with a PTFE coated magnetic stir bar were added compounds 9 (1.0 equiv, 0.25 $\mathrm{mmol}, 86.3 \mathrm{mg}$) and $\mathbf{8}(1.2$ equiv, $0.3 \mathrm{mmol}, 106.5 \mathrm{mg})$ and the vial was taken into a glovebox. The indicated Pd catalyst ($0.5 \mathrm{~mol} \%$), along with $\mathrm{CuI}(1 \mathrm{~mol} \%)$ were added. The flask was then sealed with a rubber septum and subsequently, $2 \mathrm{wt} \%$ TPGS-750-M aqueous solution (0.45 mL) was added followed by the addition of THF ($10 \mathrm{v} / \mathrm{v} \%, 0.05 \mathrm{~mL}$) and $\mathrm{Et}_{3} \mathrm{~N}(3$ equiv, $105 \mu \mathrm{~L})$ and the reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h . Upon completion, the crude mixture was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$; due to moderate solubility of the product in EtOAc, more volume was needed for carrying out the extractions) and the combined organic layers were concentrated
in vacuo and subjected to flash chromatography using silica gel ($30 \% \mathrm{EtOAc} /$ hexanes as eluent) to afford $\mathbf{1 0}$ as an off white colored solid.

Procedure for Sonogashira coupling to afford 10 (entry 7):

To a 2-dram vial with a PTFE coated magnetic stir bar were added compounds 9 ($0.5 \mathrm{mmol}, 172.5$ mg) and $\mathbf{8}$ (1.2 equiv, $0.6 \mathrm{mmol}, 213 \mathrm{mg}$). The vial was taken into the glovebox, where $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($0.5 \mathrm{~mol} \%, 2.88 \mathrm{mg}, 0.0025 \mathrm{mmol}$) and $\mathrm{CuI}(1 \mathrm{~mol} \%, 1 \mathrm{mg}, 0.005 \mathrm{mmol})$ were added and the flask was then sealed with a rubber septum, after which it was removed from the glove box. Subsequently, $2 \mathrm{wt} \%$ TPGS-750-M aqueous solution (0.9 mL) was added followed by the addition of THF ($10 \mathrm{v} / \mathrm{v} \%, 0.1 \mathrm{~mL}$) and $\mathrm{Et}_{3} \mathrm{~N}(3$ equiv, $210 \mu \mathrm{~L}$) and the reaction mixture was stirred at 70 ${ }^{\circ} \mathrm{C}$ for 16 h . Upon completion, the crude mixture was extracted with EtOAc (3 x 5 mL) and the combined organic layers were concentrated in vacuo and subjected to flash chromatography using silica gel ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$ as eluent) to afford $\mathbf{1 0}$ ($290.5 \mathrm{mg}, 94 \%$ yield) as an off-white solid.

3.7 N -Boc deprotection to afford MMV688533 (1)

Table S6. Optimization of N-Boc deprotection of $\mathbf{1 0}$ to afford 1.

entry ${ }^{\text {a }}$	conditions	yield (\%) ${ }^{\text {b }}$
1	TFA (20 equiv), neat, rt, 6 h	89
2	$4 \mathrm{M} \mathrm{HCl} /$ dioxane (5 equiv), $\mathrm{MeCN}(0.5 \mathrm{M}) \mathrm{rt}, 6 \mathrm{~h}$	trace ${ }^{\text {c }}$
3	$1 \mathrm{M} \mathrm{HCl} / E t O A c$ (3 equiv), rt, 18 h	trace ${ }^{\text {c }}$
4	$3 \mathrm{M} \mathrm{HCl} / \mathrm{MeOH}$ (3 equiv), rt, 6 h	trace ${ }^{\text {c }}$
$5^{\text {d }}$	$4 \mathrm{M} \mathrm{HCl}\left(5\right.$ equiv), $\mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{v} / \mathrm{v} \mathrm{MeCN}$	96

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 0}(0.06 \mathrm{mmol})$, solvent $(0.5 \mathrm{M}) ;{ }^{\mathrm{b}}$ Isolated yield; ${ }^{\mathrm{c}}$ Unreacted starting material (10) was observed; ${ }^{\text {d }}$ Reaction performed on 0.125 mmol scale.

General procedure for optimizing N-Boc deprotection (Table S6; entries 1 - 4).

To a 1-dram vial with a PTFE coated magnetic stir bar was added the N-Boc-protected compound 10 ($37.1 \mathrm{mg}, 0.06 \mathrm{mmol}$) followed by the addition of the indicated solvent and hydrochloric acid (4 M in solvent, 5 equiv). Stirring was initiated and the reaction was allowed to stir at rt for the indicated time whereupon the product precipitated as a white solid and solvent was removed in vacuo. The resulting white solid was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$ and collected via centrifugation and removal of the supernatant via syringe. The obtained white powder was analyzed by ${ }^{1} \mathrm{H}$ NMR.

Procedure for N-Boc deprotection of 10 to afford 1 (Table S6; entry 5).

Compound 10 ($0.12 \mathrm{mmol}, 77.4 \mathrm{mg}, 1.00$ equiv), water (0.25 mL), acetonitrile ($10 \mathrm{v} / \mathrm{v} \%, 25 \mu \mathrm{~L}$) and hydrochloric acid (4 M in water, 3.00 equiv, $156 \mu \mathrm{~L}$) were added to a 1-dram vial containing a magnetic stir bar. Stirring was initiated and the resulting solution was heated to $50{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 5 h . Upon complete consumption of N -Boc-protected starting material 10, the reaction mixture was cooled to rt and the pH of the mixture was adjusted to approximately $11-12$ by addition of sodium hydroxide (4 M in water, 0.3 mL) at rt . The slurry was then centrifuged and the solid residue was washed twice with water (2 x 1 mL) and then decanted. The isolated solids were dried under high vacuum at $55^{\circ} \mathrm{C}$ for 12 h to afford compound $\mathbf{1}$ ($62.1 \mathrm{mg}, 96 \%$ yield) as a white solid.

4. PMI and E Factor calculations

Process mass intensity (PMI calculations)

$$
\text { PMI }=\frac{\text { Total Mass of Material Inputs }(\mathrm{kg})}{\text { Mass of Product }(\mathrm{kg})}
$$

Note: Calculations regarding column chromatographic purifications have not been considered.

A. Literature route: Sanofi ${ }^{2}$

Sanofi route to MMV688533

Scheme 1. Discovery route used by Sanofi en route to MMV688533 (1).

1. Preparation of intermediate 3:

	Material	Amount (g)
Limiting Reagent Input	aryl bromide 2	20
Product Output	compound 3	14
reagents	TMS acetylene	17.40
	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	4.96
	Cul	1.34
	triethylamine	21.45
solvents	acetonitrile	78.6
water	N / A	143.75
totals	all materials	26.15
	reagents	78.6
	solvents	0

Step PMI	$:$	10.3
Step PMI solvents	$:$	5.6
Step PMI water $:$	0.0	

2. Preparation of intermediate 4:

	Material	Amount (g)
Limiting Reagent Input	compound 3	14
Product Output	compound 4	11
Reagents	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.58
Solvents	methanol	39.6
	ethyl acetate	90.2
Aqueous	brine	100
	water	100
Totals	all materials	344.4
	reagents	0.58
	solvents	129.8
	water	200

Note: Due to unavailability of data for volume of water used for washing, an amount equal to brine was considered for the calculations.

Step PMI	:	31.3
Step PMI solvents	$:$	11.8
Step PMI water $:$	18.2	

3. Preparation of intermediate 5:

	Material	Amount (g)
Limiting Reagent Input	compound 4	11
Product Output	compound 5	9.2
Reagents	Llthium hydroxide	6.0
Solvents	tetrahydrofuran	44.4
Aqueous	water	25
	aq. citric acid solution	50
Totals	all materials	136.4
	reagents	6.0
	solvents	44.4
	water	75

Note: Due to unavailability of data for volume of citric acid solution used for the acidification process, 50 mL was considered owing to the scale of the reaction.

Step PMI	$:$	14.8
Step PMI solvents $:$	4.8	
Step PMI water $:$	8.2	

4. Preparation of intermediate 7:

	Material	Amount (g)
Limiting Reagent Input	compound 5	9.2
Product Output	compound 7	13.6
Reagents	DCC	13.3
	Pentafluorophenol (6)	11.8
Solvents	tetrahydrofuran	44.4
Aqueous	N/A	0

Totals		all materials reagents solvents	69.5
		water	25.1
			44.4
Step PMI	$:$	5.8	0
Step PMI solvents $:$	3.3		
Step PMI water $:$	0		

5. Preparation of intermediate 8 :

	Material	Amount (g)
Limiting Reagent Input	compound 7	13.6
Product Output	compound 8	8.2
Reagents	N-Boc-guanidine	6.8
Solvents	tetrahydrofuran	44.4
Aqueous	$\mathrm{N} /$ A	0
Totals	all materials	14
	reagents	7
	solvents	44.4
	water	0

Note: Due to unavailability of data for volume of THF used, 50 mL was considered owing to the scale of the reaction.

Step PMI	$:$	7.9
Step PMI solvents	$:$	5.4
Step PMI water	$:$	0

6. Preparation of intermediate 10.

	Material	Amount (g)
Limiting Reagent Input	compound 9	25
Product Output	compound 10	18
Reagents	compound 8	28.3
	Cul	0.68
	triethylamine	22.0
	${\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}}^{5}$5.08 Solvents ethyl acetate Aqueous Totals N / A	225.5
	all materials	0
	reagents	307
	solvents	56
	water	226

Step PMI	$:$	17
Step PMI solvents	$:$	12.5
Step PMI water	$:$	0

7. Preparation of intermediate 1:

	Material	Amount (g)
Limiting Reagent Input	compound 10	18
Product Output	compound 1	14.6
Reagents	trifluoroacetic acid	66.3
Solvents	dichloromethane	199.5
	diethyl ether	71.3
Aqueous	10% aq. NaHCO_{3} solution	150
Totals	all materials	505
	reagents	66
	solvents	271

Note: Due to unavailability of data for volume of diethyl ether used, 100 mL was assumed considering the scale of the reaction. 150 mL of NaHCO_{3} solution was also used.

Step PMI	$:$	34.6
Step PMI solvents	$:$	18.5
Step PMI water	$:$	10.3

8. Calculation of cumulative PMI

Step	Step product	MW	Yield (\%)	Usage factor $(\boldsymbol{g})^{*}$	Step PMI	Cumulative PMI contribution	Step PMI solvents	Cumulative PMI contribution solvents	Step PMI water	Cumulative PMI contribution water
1	$\mathbf{3}$	300.35	66	6.36	10.3	65.51	5.6	35.62	0	0
2	$\mathbf{4}$	228.17	61	2.95	31.3	92.34	11.8	34.81	18.2	53.7
3	$\mathbf{5}$	214.14	78	2.16	14.8	38.48	4.8	10.37	8.2	17.71
4	$\mathbf{7}$	380.19	83	3.18	5.8	18.44	3.3	10.49	0	0
5	$\mathbf{8}$	355.31	64	1.90	7.9	15.01	5.4	10.26	0	0
6	$\mathbf{1 0}$	619.52	40	1.33	17	22.61	12.5	16.63	0	0
7	$\mathbf{1}$	519.40	96	1.00	34.6	34.6	18.5	18.5	10.3	10.3

*Usage factor = amount of compound required to synthesize 1 g of MMV688533 (1).

Cumulative PMI	$:$	287
Cumulative PMI solvents	$:$	136.7
Cumulative PMI water	$:$	81.7

This work:

1. Preparation of intermediate $\mathbf{1 6}$:

	Material	Amount (g)
Limiting Reagent Input	compound 2	0.28
Product Output	compound 16	0.32
Reagents	triethylsilyl)acetylene	0.16
	$\mathrm{Et}_{3} \mathrm{~N}$	0.20
	$\left[\left(\right.\right.$ cinnamyl)PdCl] ${ }_{2}$	0.65
	cBRIDP	1.76

Solvents	terahydrofuran	1.77
	ethyl acetate	1.35
Aqueous	2 wt \% TPGS-750-M/H2O	1.8
Totals	all materials	7.97
	reagents	2.77
	solvents	3.12
	water	1.8

Step PMI	$:$	24.9
Step PMI solvents $:$	9.8	
Step PMI water :	5.6	

2. Preparation of intermediate 4:

	Material	Amount (g)
Limiting Reagent Input	compound 16	0.65
Product Output	compound 4	0.36
Reagents	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.52
Solvents	methanol	1.54
	tetrahydrofuran	1.77
Totals	all materials	4.48
	reagents	0.52
	solvents	3.31

Step PMI	$:$	12.4
Step PMI solvents $:$	9.2	
Step PMI water $:$	0	

3. Preparation of intermediate 5:

	Material	Amount (g)
Limiting Reagent Input	compound 4	0.29
Product Output	compound 5	0.25
Reagents	lithium hydroxide	0.91
Solvents	tetrahydrofuran	1.33
Aqueous	water	2.0
	$1 \mathrm{M} \mathrm{aq} HCl$.	0.5
Totals	all materials	5.03
	reagents	0.91
	solvents	1.33
	water	2.5

Step PMI	$:$	20.1
Step PMI solvents	$:$	5.3
Step PMI water	$:$	10

4. Preparation of intermediate 8:

	Material	Amount (g)
Limiting Reagent Input	compound 5	0.107
Product Output	compound 8	0.153
Reagents	DPDTC	0.129
	N-Boc guanidine	0.876
Solvents	ethyl acetate	1.58
Aqueous	1 M aq. NaOH	0.5
Totals	all materials	3.19
	reagents	1.05
	solvents	1.58
	water	0.5

Step PMI	$:$	20.8
Step PMI solvents	$:$	10.3
Step PMI water	$:$	3.3

5. Preparation of intermediate $\mathbf{1 0}:$

	Material	Amount (g)
Limiting Reagent Input	compound 9	0.172
Product Output	compound 10	0.290
Reagents	compound 8	0.213
	Cul	0.001
	triethylamine	0.152
	Pd(PPh $)_{4}$	0.0028
Solvents	tetrahydrofuran	0.088
	ethyl acetate	2.7
Aqueous	2 wt \% TPGS-750-M / $\mathrm{H}_{2} \mathrm{O}$	0.9

Totals	all materials	4.2288
	reagents	0.3688
	solvents	2.78
	water	0.9

Step PMI	$:$	14.6
Step PMI solvents	$:$	9.6
Step PMI water $:$	3.1	

6. Preparation of intermediate 1:

	Material	Amount (g)
Limiting Reagent Input	compound 10	0.0774
Product Output	compound 1	0.0621
Reagents	N / A	--
Solvents	acetonitrile	0.019
Aqueous	$4 \mathrm{M} \mathrm{aq} HCl$.	0.156
	H 2 O	1.25
	4 M NaOH	0.3
Totals	all materials	1.8
	reagents	0.0
	solvents	0.019
	water	1.706

Step PMI	$:$	29
Step PMI solvents	$:$	0.3
Step PMI water $:$	27.5	

7. Calculation of Cumulative PMI

Step	Step product	MW	Yield (\%)	Usage factor ()*	Step PMI	Cumulative PMI contribution	Step PMI solvents	Cumulative PMI contribution solvents	Step PMI water	Cumulative PMI contribution water
1	$\mathbf{1 4}$	353.33	96	1.1	24.9	28.84	9.8	10.78	5.6	6.16
2	$\mathbf{4}$	228.17	84	0.62	12.4	7.79	9.2	5.7	0	0
3	$\mathbf{5}$	214.14	92	0.54	20.1	10.9	5.3	2.86	10	5.4
4	$\mathbf{8}$	355.31	86	0.77	20.8	16.1	10.3	7.93	3.3	2.54
5	$\mathbf{1 0}$	619.52	94	1.27	14.6	18.5	9.6	12.19	3.1	3.94
6	$\mathbf{1}$	519.40	94	1.00	29	29	0.3	0.3	27.5	27.5

Cumulative PMI	$:$	111
Cumulative PMI solvents	$:$	40
Cumulative PMI water	$:$	46

Sequence used in synthesis of intermediate 9

Literature route: Sanofi

Step 1:

	Material	Amount (g)
Limiting Reagent Input	compound 11	9.1
Product Output	compound 12	8.0
Reagents	LiOH	4.4
Solvents	tetrahydrofuran	17.6
Aqueous	$\mathrm{H}_{2} \mathrm{O}$	
	aq. citric acid	10
	water wash	30
Totals	all materials	30
	reagents	92
	solvents	4
	water	18
		70

Step PMI	$:$
Step PMI solvents	$:$
Step PMI water $:$	12.6

Step 2/Step3:

	Material	Amount (g)
Limiting Reagent Input	compound 12	8.0
Product Output	compound 9	5.1
Reagents	thionyl chloride	65.6
	2-aminopyridine (13)	3.2
	triethylamine	9.03
Solvents	ethyl acetate	433
Aqueous	water	400
	brine	200

Totals	all materials	1118.8
	reagents	77.83
	solvents	433
	water	600

Step PMI	$:$	219
Step PMI solvents	$:$	85
Step PMI water	$:$	118

This work: synthesis of Intermediate 9

	Material	Amount (g)
Limiting Reagent Input	compound 13	0.188
Product Output	compound 9	0.669
Reagents	compound 11	0.622
	$\mathrm{NaO}^{\text {Bu }}$	0.192
Solvents	2-MeTHF	0.854
	ethyl acetate	1.66
Aqueous	water	0.5
Totals	all materials	3.824
	reagents	0.622
	solvents	2.514
	water	0.5

Step PMI	$:$	6
Step PMI solvents	$:$	3.8
Step PMI water	$:$	0.7

Step	Step product	MW	Yield (\%)	Usage factor $(\boldsymbol{g})^{*}$	Step PMI	Cumulative PMI contribution	Step PMI solvents	Cumulative PMI contribution solvents	Step PMI water	Cumulative PMI contribution water
1	$\mathbf{9}$	283.04	95	1.673	12.6	48.24	2.2	3.68	8.8	14.72
2	9	345.12	49	1.00	219	219	85	85	118	118

Cumulative PMI	$:$	267.24
Cumulative PMI solvents	$:$	88.68
Cumulative PMI water	$:$	132.72

5. ICP-MS data for residual palladium

ICP-MS analysis of MMM688533 (1), Intermediate 14, and Intermediate 10 were performed by the UCLA Nano and Pico (NPC) Laboratory in order to determine the amount of residual palladium present in the final drug, and was shown to be below the detectable limit (see Table S5).

		palladium	
		$[\mu \mathrm{g} / \mathrm{g}]$	
Sample \#	Sample weight in analysis [mg]	Average*	St dev
MMV688533 (1)	2.50	8.455	0.071
Intermediate 16	10.00	0.520	0.010
Int-10 (This work)	2.00	3.536	0.061
Int-10 (literature)	8.00	3759.832	40.000

*Each sample was done in triplicated measurements with background correction; n / a represents below detection limit.

6. Analytical data

t-Butyl N-[N-(3-(trifluoromethyl)-5-bromo-benzoyl) carbamimidoyl] carbamate (14): ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.64(\mathrm{bs}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H})$, 1.43 (s, 9H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l} 3$) $\delta 175.4,169.6,159.6,153.3,139.9,135.6,131.3$ (q, J $=3.6 \mathrm{~Hz}$), $124.9(\mathrm{q}, J=3.9 \mathrm{~Hz}), 122.7,84.1,28.0 .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-62.8. HRMS (ESI-, m/z, $[\mathrm{M}-\mathrm{H}]^{+}$): calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ 408.0170; found 408.0174. Rf $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc 85:15) $=0.55$.

15
\boldsymbol{t}-Butyl $\quad \boldsymbol{N}$-[\boldsymbol{N}-[3-((triethylsilyl)ethynyl)-5-(trifluoromethyl) benzoyl] carbamimidoyl] carbamate (15): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.42(\mathrm{bs}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}$, $1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{t}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 176.6,159.6,153.1,138.6,135.9,131.3,125.9,124.4,123.95(\mathrm{q}, J=272.5 \mathrm{~Hz})$, 104.3, 94.2, 84.0, 28.0, 7.6, 4.4. ${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ C D C l} 3$) $\delta-62.9$. HRMS (ESI+, m/z, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}, 470.2087$; found $470.2094 ; \mathbf{R e f}_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc 90:10) $=0.35$.

Methyl 3-((triethylsilyl)ethynyl)-5-(trifluoromethyl) benzoate (16): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 8.28(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{td}, J=1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{td}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.70(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $165.2,136.2,132.71(\mathrm{q}, J=3.7 \mathrm{~Hz}), 131.46(\mathrm{q}, J=33.5 \mathrm{~Hz}), 131.4,129.8,129.0,126.05(\mathrm{q}, J=$ $3.8 \mathrm{~Hz}), 125.1,123.38(\mathrm{q}, J=272.8 \mathrm{~Hz}), 103.5,95.5,52.8,7.6,4.4 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
δ-63.0. HRMS (GC-ESI+, m / z, $[\mathrm{M}]^{+}$): calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Si}$, 342.1262; found 342.1263. $\mathbf{R}_{\mathbf{f}}$ $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc 95:05 $)=0.40$.

4
Methyl 3-ethynyl-5-(trifluoromethyl)benzoate (4): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.32$ (t, $J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 165.1,136.3,132.86(q, J=3.7 \mathrm{~Hz}), 131.60(\mathrm{q}, J=33.3 \mathrm{~Hz}), 131.6$, $126.59(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 123.9,123.48(\mathrm{q}, J=272.4 \mathrm{~Hz}), 81.2,80.1,52.8 .{ }^{\mathbf{1}} \mathbf{F}$ FMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta$-63.1. HRMS (GC-ESI ${ }^{+}, m / z,[\mathrm{M}+\mathrm{H}]^{+}$): calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2}, 228.0398$; found 228.0398. $\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}\right.$, hexanes $\left./ \mathrm{EtOAc} 95: 05\right)=0.38$.

5
3-Ethynyl-5-(trifluoromethyl)benzoic acid (5) : ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}$, DMSO) $\delta 13.82$ (bs, 1H), $8.20(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO) $\delta 165.2,135.9,133.1,131.94(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 130.16(\mathrm{q}, J=32.8 \mathrm{~Hz}), 125.71(\mathrm{q}, J=3.7$ $\mathrm{Hz}), 123.6,123.31(\mathrm{q}, J=273.1 \mathrm{~Hz}), 83.7,81.0 .{ }^{19}$ F NMR (471 MHz, DMSO-d6) δ-61.6. HRMS $\left(\mathrm{ESI}^{+}, m / z,[\mathrm{M}-\mathrm{H}]^{+}\right):$calcd. for $\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2}, 213.0163$; found 213.0174; $\mathbf{R} \mathbf{f}\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $60: 40)=0.40$.

\boldsymbol{t}-Butyl \boldsymbol{N}-[\boldsymbol{N}-[3-ethynyl-5-(trifluoromethyl)benzoyl]carbamimidoyl]carbamate (8): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
$\delta 176.3,159.63(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 153.1,138.8,136.0,131.54(\mathrm{q}, J=3.7 \mathrm{~Hz}), 130.90(\mathrm{q}, J=33.0$ Hz), $126.36(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.54(\mathrm{~d}, J=272.9 \mathrm{~Hz}) 123.2,84.0,81.9,79.1,27.9 .{ }^{\mathbf{1}} \mathbf{F}$ NMR ($\mathbf{3 7 6}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-62.9. HRMS (ESI ${ }^{+}, m / z,[\mathrm{M}+\mathrm{H}]^{+}$): calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}, 356.1222$; found 356.1214; $\mathbf{R f}\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc 70:30) $=0.45$.

9
5-Bromo- \boldsymbol{N}-(pyridin-2-yl)-2-(trifluoromethyl)benzamide (9): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.98(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 164.8,151.4,146.9,139.1,137.2$, $133.4,131.6,128.35(\mathrm{q}, J=4.8 \mathrm{~Hz}), 126.7,126.60(\mathrm{q}, J=31.7 \mathrm{~Hz}), 121.77(\mathrm{q}, J=274.7 \mathrm{~Hz})$, 120.4, 115.1. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-59.0. HRMS (ESI ${ }^{+}, m / z$, $[\mathrm{M}+\mathrm{Na}]^{+}$): calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{ONa}, 366.9670$; found 366.9675; $\mathbf{R f}_{\mathbf{f}}\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc 70:20) $=0.42$.

t-Butyl N-[N-[3-[2-[3-(2-pyridylcarbamoyl)-4-(trifluoromethyl) phenyl] ethynyl] -5(trifluoromethyl) benzoyl] carbamimidoyl] carbamate (10): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.94(\mathrm{~s}, 1 \mathrm{H}), 10.32(\mathrm{~s}, 1 \mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.40-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{dt}$, $J=8.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14$ (m, 1H), $7.04(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 175.3,165.6,160.7,153.8$, $151.4,147.4,139.4,138.1,135.4(\mathrm{q}, J=2.4 \mathrm{~Hz}), 135.3,132.8,130.9(\mathrm{q}, J=3.4 \mathrm{~Hz}), 130.9(\mathrm{q}, J=$ $33.4 \mathrm{~Hz}), 126.8,126.6(\mathrm{q}, J=4.5 \mathrm{~Hz}), 126.3(\mathrm{q}, J=3.5 \mathrm{~Hz}), 125.85(\mathrm{q}, J=31.7 \mathrm{~Hz}), 124.56(\mathrm{~d}, J$ $=13.3 \mathrm{~Hz})$, 124.1, $122.39(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 120.4,115.7,91.6,89.0,83.7,28.2 .{ }^{19}$ F NMR (471 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta-59.2,-63.0$. HRMS ($\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z},[\mathrm{M}+\mathrm{Na}]^{+}$): calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}$, 642.1552; found 642.1556; $\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc 70:40) $=0.55$.

5-((3-(Carbamimidoylcarbamoyl)-5- (trifluoromethyl)phenyl)ethynyl) - N-(pyridin-2-yl)-2(trifluoromethyl) benzamide (1): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - d} \mathbf{d}$) $\delta 11.18$ (s, 1H), 8.51 (d, $J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.42-8.34(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H})$, $7.93-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{dd}, J=7.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 172.93,165.89,163.59,152.13,148.63,141.31,138.81,136.57,135.49$, 133.14, 132.22, 130.37, 130.33, 130.31, 130.12, 129.87, 129.61, 127.49, 127.45, 127.41, 127.38, $127.22,126.65,126.40,126.31,126.14,125.91,125.88,125.85,125.23,125.04,123.06,122.93$, 122.87, 120.90, 120.69, 120.65, 114.64, 91.12, 89.25, 40.57, 40.48, 40.41, 40.32, 40.24, 40.15, 40.07, 39.98, 39.90, 39.82, 39.65, 39.48. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (376 MHz, DMSO-d6) δ-58.1, -61.4. HRMS $\left(\mathrm{ESI}^{+}, m / z,[\mathrm{M}+\mathrm{Na}]^{+}\right)$: calcd. for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Na}, 542.1028$; found $542.1014 ; \mathbf{m p}=153-156{ }^{\circ} \mathrm{C}$. $\mathbf{R}_{\mathbf{f}}\left(\mathrm{SiO}_{2}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 90\right)=0.48$.

7. References

1. B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C. Duplais and A. Krasovskiy, J. Org. Chem., 2011, 76, 4379-4391.
2. WO2019008027A1 (PCT/EP2018/068079).

8. HPLC data

Column	$:$	Lux cellulose-2, $256 \times 4.6 \mathrm{~mm}$
Eluent	$:$	hexane $/ \mathrm{i}-\mathrm{PrOH}=85 / 15$
Flow rate	$:$	$1.25 \mathrm{~mL} / \mathrm{min}$
Column temperature	$:$	$20^{\circ} \mathrm{C}$

Signal 6: DAD1 F, Sig=270,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	1.882	BB	0.1250	24.42749	2.71456	0.2020
2	3.049	BB	0.0906	52.52763	8.68288	0.4343
3	4.201	BB	0.1985	16.36362	1.21990	0.1353
4	6.895	BB	0.5691	1.20010 e 4	314.55920	99.2284
Total	s :			1.20943 e 4	327.17655	

9. NMR spectral data

(376 MHz, $\left.\mathrm{CDCl}_{3}\right)$

S46

[^1]

[^0]: ${ }^{\text {a }}$ Reaction conditions: $0.25 \mathrm{mmol} 13,0.275 \mathrm{mmol} 11 ;{ }^{\mathrm{b}}$ Isolated yield.

[^1]:

