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1 Experimental Procedures 
1.1 Phytoplankton Samples
Data on a total of 29 strains of phytoplankton were collected, comprising 3325 images and 2911 
fluorescence transients. Table S1 summarizes the species names, taxonomic orders, groups of 
ecological/biogeochemical relevance, and other information for the dataset. Figure S1 shows two pie 
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charts showing the distribution dataset by ecological groups. The dataset is very balanced and is a 
good proxy of real-world phytoplankton classification challenge. 

Table S1. A summary of the phytoplankton culture and images or transient data collected from the culture. 

ID Name Order Ecologicalgroupi
ng

# 
Image
s

# 
Transien
ts

Phytoplankt
on Culture 
Sources

1 Phaeodactylum 
tricornutum

Bacillariophyta Diatom 122 97 Roscoff 
Culture 
Collection 
(RCC69)

2 Skeletonema 
japonicum

Thalassiosirales Diatom 75 71 Roscoff 
Culture 
Collection 
(RCC74)

3 Thalassiosira 
weissflogii

Thalassiosirales Diatom 52 51 Roscoff 
Culture 
Collection 
(RCC76)

4 Nitzchia sp. Bacillariophyta Diatom 82 79 Roscoff 
Culture 
Collection 
(RCC80)

5 Nitzchia 
closterium

Bacillariophyta Diatom 73 63 Roscoff 
Culture 
Collection 
(RCC81)

6 Chrysotila 
dentata(1)

Coccolithales Coccolithophore
s

71 69 Marine 
Biological 
Association 
(PLY378)

7 Chrysotila 
dentata(2)

Coccolithales Coccolithophore
s

114 107 Marine 
Biological 
Association 
(PLY406)

8 Emiliania huxleyi 
(morphotype A,  
light 
tomoderately 
calcified)

Isochrysidales Calcifying 
Isochrysidales

225 205 Roscoff 
Culture 
Collection 
(RCC911)

9 Thalassiosira 
pseudonana

Thalassiosirales Diatom 104 60 Roscoff 
Culture 
Collection 
(RCC950)

10 Halamphora 
coffeaeformis

Naviculales Diatom 61 39 Culture 
Collection of 
Algae and 
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Protozoa 
(CCAP1001/
2)

11 Calcidiscus 
leptoporus (1)

Coccolithales Coccolithophore
s

134 119 Roscoff 
Culture 
Collection 
(RCC1130)

12 Calcidiscus 
leptoporus (2)

Coccolithales Coccolithophore
s

68 59 Roscoff 
Culture 
Collection 
(RCC1150)

13 Calyptrosphaera 
sphaeroidea

Coccolithales Coccolithophore
s

119 93 Roscoff 
Culture 
Collection 
(RCC1178)

14 Coccolithus 
braarudii

Coccolithales Coccolithophore
s

55 52 Roscoff 
Culture 
Collection 
(RCC1198)

15 Emiliania huxleyi 
(morphotype 
A/R,  
overercalcified 
calcified shield 
components)

Isochrysidales Calcifying 
Isochrysidales

284 278 Roscoff 
Culture 
Collection 
(RCC1216)

16 Emiliania huxleyi 
(haploid version 
of  RCC1216)

Isochrysidales Calcifying 
Isochrysidales

142 117 Roscoff 
Culture 
Collection 
(RCC1217)

17 Emiliania huxleyi 
(naked/diploid 
version of 
RCC1731)

Isochrysidales Calcifying 
Isochrysidales

100 84 Roscoff 
Culture 
Collection 
(RCC1242)

18 Gephyrocapsa 
oceanica

Isochrysidales Calcifying 
Isochrysidales

138 132 Roscoff 
Culture 
Collection 
(RCC1314)

19 Lepidodinium 
chlorophorum

Gymnodiniales Dinoflagellates 41 34 Roscoff 
Culture 
Collection 
(RCC1489)

20 Thoracosphaera 
heimii

Thoracosphaeral
es

Dinoflagellates 171 138 Roscoff 
Culture 
Collection 
(RCC1511)

21 Emiliania huxleyi 
(morphotype A,  
moderately 
calcified)

Isochrysidales Calcifying 
Isochrysidales

328 322 Roscoff 
Culture 
Collection 
(RCC1731)

22 Scyphosphaera 
apsteinii

Zygodiscales Coccolithophore
s

71 68 Roscoff 
Culture 
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Collection 
(RCC3598)

23 Coccolithus 
pelagicus

Coccolithales Coccolithophore
s

49 40 Roscoff 
Culture 
Collection 
(RCC3776)

24 Coscinodiscus 
sp.

Coscinodiscales Diatom 48 40 Roscoff 
Culture 
Collection 
(RCC4273)

25 Minidiscus 
variabilis

Thalassiosirales Diatom 179 126 Roscoff 
Culture 
Collection 
(RCC4657)

26 Minidiscus 
comicus

Thalassiosirales Diatom 111 95 Roscoff 
Culture 
Collection 
(RCC4660)

27 Scripsiella 
trochoidea

Thoracosphaeral
es

Dinoflagellates 58 51 Marine 
Biological 
Association 
(PLY632)

28 Heterocapsa 
triquetra

Peridiniales Dinoflagellates 74 62 Marine 
Biological 
Association 
(PLY717)

29 Emiliania huxleyi 
(morphotype 
A/R,  
overcalcified 
and_bulky_cent
ral region)

Isochrysidales Calcifying 
Isochrysidales

176 160 Marine 
Biological 
Association 
(PLY853)
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Figure S1. A pie chart illustrating the distribution of images(a) and fluorescence transients(b) samples by ecological groups.

1.2 Microscopy and Image Analysis
The optical images were taken on a Zeiss Axio Examiner, A1 Epifluorecence microscope (Carl Zeiss Ltd., 
Cambridge U.K.) using a 20× air objective (NA = 0.5, EC Plan-Neofluar). The excitation filter was 
supplied by Thorlab and the dichromic mirror and emission filter were a Zeiss filter set 15, transmitting 
emission wavelength above 590 nm. The excitation light source was a LQ-HXP 120V Lamp. The images 
and videos to extract fluorescence transients were recorded using a Hamamatsu ORCA-Flash 4.0 
digital CMOS camera (Hamamatsu, Japan), providing 16-bit images with 4 MP resolution. The image 
was analyzed using ImageJ to locate phytoplankton. The intensity was extracted using a Zen 2 Pro. The 
effective area ( ) of phytoplankton cells was analysed using ImageJ freeware (Fiji distribution) 𝐴



S6

threshold method so that the effective radius is calculated using the area of a circle equation (
). 𝐴 = 𝜋𝑟2

The imaging data for phytoplankton was processed using OpenCV and then resized to 80 pixels with 
equal width and height for deep learning datasets. No data transformation or data augmentation was 
performed. 

1.3 Fluorescence transients
Measurement of fluorescence transients used a combination of the microscopy mentioned above and 
a 3D printed opto-electrochemical cell described elsewhere.[1] Briefly, an opto-electrochemical cell 
housed a three-electrode setup: a glassy carbon electrode (diameter = 3.00 mm, BASi, USA) as the 
working electrode, a saturated calomel electrode (SCE, ALS distributed by BASi, Tokyo, Japan) as the 
reference electrode and a graphite carbon rod as the counter electrode. Before the fuoro-
electrochemical experiment, 50 µL of phytoplankton culture were dropcasted onto the electrode. The 
phytoplankton cells were allowed to settle onto the working electrode for approximately one minute 
before the cell was filled with electrolyte. 

In the fluoro-electrochemical experiment the phytoplankton cells were first exposed to continuous 
fluorescence excitation (λex = 475 ± 35nm) for 40 seconds. A series of fluorescence images were taken 
at 10 frames per second throughput the experiment. From t = 40s ( ), a current was applied and 𝑡 = 𝑡𝑜𝑛

ramped from 0 μA at a rate of 10 μA s-1 until the fluorescence from the cells was completely switched 
off.[1-2] The fluorescence transients were produced by integrating the intensity of a phytoplankton 
particle, and the intensity was normalized to unity using the value at . Since the fluorescence images 𝑡𝑜𝑛

were taken 10 frames per second and the neural network used 19 seconds of transients, the transient 
data was transformed to the shape (190,1), where the former number represented the 190 data points 
and the latter number represented the single fluorescence channel. 

2 Computational Methods
2.1 Neural networks facilitated phytoplankton classification
The two neural networks applied for either image recognition or fluorescence transient analysis were 
built using TensorFlow 2.3 and Keras in the Anaconda Python 3.7 environment.  

2.1.1 Classification using Phytoplankton imaging
ResNet50V2[3] was directly imported from TensorFlow Keras applications library with pretrained 
weights from “imagenet”. The output layers were GlobalAveragePooling2D with fully connected 
layers, containing either 10 neurons for classification into taxonomic orders or 4 neurons for 
classification into ecological groups. Transfer learning with ResNet50V2 had two stages: a shorter first 
stage of initial training at a normal learning rate (10-3) while freezing all layers except for the output 
layer and a longer second stage, fine tuning all layers at a very small learning rate (10-5). The loss 
function was categorical cross entropy (introduced later), and the optimizer was Adam.[4] The network 
was trained for 10 epochs in the first stage and 50 epochs for the fine tuning stage. Recall that 10% of 
the training dataset was used for validation, the training and validation history was plotted in Figure 
S3. The training history showed high training accuracy after ~30 epochs of training, and validation 
accuracy stumbled around 85%, suggesting that the model was overfitted. The relatively low 
validation accuracy suggested that even with state-of-the-art network, images alone may not provide 
the most useful information. 
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Figure S2. Training history of transfer learning using ResNet50V2. Initial training was before the 10th epoch and fine tuning 
was after the 10th epoch. The losses are shown on the left y-axis and the accuracy was shown on the right y-axis. 

2.1.2 Classification using fluorescence transients 
Classification of fluorescence transients used a home-made neural network specifically designed to 
adapt to the 1D fluorescence transient data. The network was called 1D Inception as two 1D inception 
blocks[5] were adopted in the network, providing strong discriminative power. Figure S3  illustrates the 
structure of the first inception block, containing three layers operating in parallel and detailed 
parameters allowing fully reproduction are shown in Table S2.  After processing the input with two 1D 
inception blocks, the output was flattened and propagated through three fully-connected (dense) 
layers with decreasing width (800,400 and 100 neurons). The auxiliary input representing the radii of 
the phytoplankton was merged with the second hidden dense layer. 

To classify transients into their taxonomic orders, the network was trained for 300 epochs. Figure S4 
shows that training history as the 1D Inception neural network achieved a comparably high training 
and testing accuracy. 
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Figure S3. Schematic illustration of the structure of the 1D Inception block. 

Table S2. Detailed parameters summary of 1D inception block.

Layer (type) Output Size Notes
Input (Input Layer) (190,1) -

Layer 1-1 (Convolution 1D) (190,32) Filters=32, kernel size=1, 
padding = ‘same’, activation = 
‘relu’. 

Layer 1-2 (Convolution 1D) (190,32) Filters=32, kernel size=3, 
padding = ‘same’, activation = 
‘relu’.

Layer 1-3 (Dropout) (190,32) Dropout rate = 0.2 
Layer 2-1 (Convolution 1D) (190,32) Filters=32, kernel size=1, 

padding = ‘same’, activation = 
‘relu’. 

Layer 2-2 (Convolution 1D) (190,32) Filters=32, kernel size=5, 
padding = ‘same’, activation = 
‘relu’.

Layer 2-3 (Dropout) (190,32) Dropout rate = 0.2 
Layer 3-1 (MaxPooling 1D) (190,1) Pool_size = 3, strides=1, 

padding  = ‘same’
Layer 3-2 (Convolution 1D) (190,32) Filters=32, kernel size=1, 

padding = ‘same’, activation = 
‘relu’.

Layer 3-3 (Dropout) (190,32) Dropout rate = 0.2 
Concatenate (Concatenate) (190,96) Concatenates the outputs of 

Layer 1-3, Layer 2-3 and Layer 
3-3.
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Figure S4. The training history of 1D Inception network on fluorescence transients with loss on the left y-axis and accuracy on 
the right y-axis. 

2.1.3 Activation and loss functions for classifications
This section describes the activation and loss functions used for relevant neural network tasks. 

The activation function for multiclass taxonomic classification was softmax:

where  is the softmax function,  are the inputs, and  is the total number of classes. 

𝜎(𝑥)𝑖 =
𝑒

𝑥𝑖

𝐾

∑
𝑗 = 1

𝑒
𝑥𝑗

𝜎 𝑥𝑖 𝐾

The activation function for binary identification was sigmoid:

𝜎(𝑥) =
1

1 + 𝑒 ‒ 𝑥

The loss function for binary identification was binary cross entropy: 

𝐿 =‒ (𝑦log 𝑝 + (1 ‒ 𝑦)log (1 ‒ 𝑝))

For a multiclass classification where , the loss function is categorical cross entropy:𝐾 > 2

𝐿 =  ‒
𝐾

∑
𝑖 = 1

𝑦𝑜,𝑐log (𝑝𝑜,𝑐)

where  is a binary indicator (0 or 1) if observation  can be correctly classified to class label c and  is 𝑦 𝑜 𝑝

the predicted probability observation  is of class c.  𝑜

2.2 Phytoplankton classification using KNN and GridSearchCV
Phytoplankton could be classified to their taxonomic orders using just two parameters: half-lives and 
radii with the help K-Nearest Neighbour (KNN) method. The unit of half-life is second and unit of radii 
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is micrometre so that these two parameters are numerically comparable in scale. KNN algorithm 
classifies phytoplankton by finding and voting the taxonomic orders of its closest K neighbours, where 
K is a hyperparameter and the metric of “closest” neighbours is also to be defined. Thus, a 
GridSearchCV algorithm was applied to find the best hyperparameters for KNN algorithm to achieve 
the highest training accuracy. The search space is shown in Table S3. Note that the number of 
neighbours, K, are all odd numbers to prevent draws in voting.  Using 5-fold cross validation of the 
training data, the optimal set of hyperparameters are found to be K=7, using Euclidean distance and 
uniform weighting. The training accuracy reached 89.0%. The testing accuracy reached 87.5%. The 
KNN and GridSearchCV methods were imported from Scikit-learn Python package. 

Table S3.The hyperparameter search space for KNN classification. 

Hyperparameter Search Space
Number of neighbours, K [3,5,7,9,11,13,15,17,19,21]

Distance metric [Euclidean, Manhattan]
Weights [uniform, distance]
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