Supplementary Information

Cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes or

alkynes: facile access to C-N axially chiral sultams

Xiao-Ju Si,[‡] Xiaofang Zhao,[‡] Jianli Wang,[‡] Xinhai Wang, Yuanshuo Zhang, Dandan Yang,^{*} Mao-Ping Song and Jun-Long Niu^{*}

College of Chemistry, Zhengzhou University, Zhengzhou 450001 (P. R. China).

[‡]These authors contributed equally: Xiao-Ju Si, Xiaofang Zhao, Jianli Wang

*Corresponding author. Email: yangdandan@zzu.edu.cn, niujunlong@zzu.edu.cn

Table of contents

General information	1
I. Supplemental experimental procedures	2
1. Optimization of reaction conditions	2
1.1 Optimization of reaction conditions for 4aa	2
1.2 Optimization of 5aa reaction conditions	7
1.3 Optimization of 6a reaction conditions	13
2. General procedure for the synthesis of 1, 2	15
3. General procedure for synthesis of racemic samples 4, 5 and 6	15
3.1 General procedure for synthesis of racemic product 4	15
3.2 General procedure for synthesis of racemic product 5 or 6	16
4. General procedure for synthesis of enantioenriched compounds 4, 5 and 6	16
4.1 General procedure for synthesis of enantioenriched compounds 4	16
4.2 General procedure for synthesis of enantioenriched compounds 5	17
4.3 General procedure for synthesis of enantioenriched compounds 6	17
5. Mechanistic studies	17
5.1 H/D exchange experiments	17
5.2 Parallel KIE experiments	19
5.3 Deuteryl labeling experiment	22
5.4 Nonlinear effect study of 4aa with L7	23
6. Synthetic application	24
7. Gram scale	25
7.1 Gram scale experiment of 4aa	25
7.2 Gram scale experiment of 5aa	25
7.3 Gram scale experiment of 6a	26
8. Study on product stability	27
9. X-ray crystal structure of 4aa , 5aa	38
II. Supplemental references	42
III. Characterization (NMR, HRMS, and HPLC) data	43
IV. NMR spectra for new compounds	.142

General information

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at 600 MHz, 151 MHz, and 565 MHz respectively on a Bruker DPX instrument using Me₄Si as an internal standard. High resolution mass spectra (HRMS) for new compounds were measured on a Waters ACQUITY UPLC I-Class PLUS liquid chromatogram coupled with a Waters Xevo G2-XS QTof mass spectrometer. The column was ACOUITY UPLC BEH C18 LC Column (2.1-100 mm, Waters). Melting points were measured on a WC-1 instrument and uncorrected. Chemical shift multiplicities are reported as follows: (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = doublet of doublet, dt = doublet of triplet, td = triplet of doublet). Unless otherwise mentioned, all materials were commercially obtained and used without further purification, and all the reactions were performed under the air unless otherwise noted. Chiral HPLC analysis was performed on Agilent 1260 Infinity LC instrument using Daicel Chiracel columns at 25 °C and a mixture of HPLC-grade hexanes and isopropanol as eluent. Chiralpak AD-H, AS-H, OD-H, IB-H, IC-H columns were purchased from Daicel Chemical Industries LTD. The specific rotations for were measured on WZZ-3A polarimeter. The absolute configuration of **4aa**, **5aa** were assigned by the X-ray analysis.

I. Supplemental experimental procedures

1. Optimization of reaction conditions

1.1 Optimization of reaction conditions for 4aa

Table S1. Optimization of ligands^a

9	L9	85	71
10	L10	53	44

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), catalyst (10 mol%), Ligand (20 mol%), dioxane (1.0 mL), 100 °C, O₂, 5 h, isolated yields. ^{*b*}Determined by chiral HPLC analysis.

Table S2. Optimization of solvents^a

Entry	Solvent	Yield (%)	ee (%) ^b
1	Dioxane	19	95
2	DCM	81	92
3	(CHCl ₂) ₂	61	95
4	DCE	59	92
5	CHCl ₃	44	87
6	1,2,3-Trichloropropane	35	92
7	CCl_4	7	93
8	1,2-Dichlorobenzene	45	91
9	PhCF ₃	56	93
10	PhOMe	51	93
11	Acetone	8	89
12	PhCN	44	89
13	TFE	55	90

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), Co(OAc)₂·4H₂O (10 mol%), **L7** (20 mol%), solvent (1.0 mL), 100 °C, O₂, 5 h, isolated yields. ^{*b*}Determined by chiral HPLC analysis.

Table S3. Optimization of additives^a

O S N H	→ + =•→ CO ₂ Bn →	Co(OAc) ₂ ·4H ₂ O (10 mol%) L7 (20 mol%) Additive (1.0 equiv) (CHCl ₂) ₂ , O ₂ , 100 °C, 5 h	O, O S'N Me CO ₂ Bn
1a	2a		3aa
Entry	Additive	Yield (%)	ee (%) ^b
1		61	95
2	PivOH	90	95
3	PhCOOH	89	94
4	1-AdCOOH	90	94
5	AcOH	85	94

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), Co(OAc)₂·4H₂O (10 mol%), **L7** (20 mol%), additive (1.0 equiv), 1,1,2,2-Tetrachloroethane (1.0 mL), 100 °C, O₂, 5 h, isolated yields. ^{*b*}Determined by chiral HPLC analysis.

Table S4. Optimization of the amounts of catalyst and ligand^a

	N N H Me H	Co(OAc) ₂ ·4H L7 (y r <u>PivOH (1</u> CO ₂ Bn (CHCl ₂) ₂ , O ₂	₂ O (x mol%) nol%) .0 equiv) ., 100 °C, 5 h	
1;	a 2	2a		3aa
Entry	X	У	Yield (%) ^b	ee (%)
1	10	20	90	95
2	5	10	86	94
3	5	5	83	94
4	2.5	5	55	92

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), Co(OAc)₂·4H₂O (x mol%), L7 (y mol%), PivOH (1.0 equiv), 1,1,2,2-Tetrachloroethane (1.0 mL), 100 °C, O₂, 5 h, isolated yields. ^{*b*}Determined by chiral HPLC analysis.

 Table S5. Optimization of temperature^a

	H =∙= CO₂Bn	Co(OAc) ₂ ·4H ₂ O (5 mol%) L7 (5 mol%) PivOH (1.0 equiv) (CHCl ₂) ₂ , O ₂ , Temp, 5 h	O O N S'N Me CO ₂ Bn
1a	2a		3aa
Entry	Temp (°C)	Yield (%)	ee (%) ^b
1	100	83	94
2	80	76	94
3	60	48	94

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), Co(OAc)₂·4H₂O (10 mol%), **L7** (20 mol%), PivOH (1.0 equiv), 1,1,2,2-Tetrachloroethane (1.0 mL), O₂, 5 h, isolated yields. ^{*b*}Determined by chiral HPLC analysis.

Table S6. Optimization of the amount of $2a^a$

O O O	→ + =•→ CO ₂ Bn	Co(OAc) ₂ ·4H ₂ O (5 mol%) L7 (5 mol%) PivOH (1.0 equiv) (CHCl ₂) ₂ , O ₂ , 100 °C, 5 h	O, O S M Me CO ₂ Bn
1a	2a		3aa
Entry	2a (x equiv)	Yield (%) ^b	ee (%)
1	3	83	94
2	2	83	94
3	1.5	87	94

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (x mmol), Co(OAc)₂·4H₂O (5 mol%), **L7** (5 mol%), PivOH (1.0 equiv), 1,1,2,2-Tetrachloroethane (1.0 mL), O₂, 100 °C, 5 h, isolated yields. ^{*b*}Determined by chiral HPLC analysis.

Table S7. Optimization of time^a

	+ =•=,	Co(OAc) ₂ ·4H ₂ O (5 mol%) L7 (5 mol%) PivOH (1.0 equiv) (CHCl ₂) ₂ , O ₂ , 100 °C, t	O O N S N Me CO ₂ Bn
1a	2a		3aa
Entry	Time (h)	Yield (%)	ee (%) ^b
1	6	90	94
2	5	90	94
3	4	86	94
4	3	86	94
5	2	77	94

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Co(OAc)₂·4H₂O (5 mol%), L7 (5 mol%), PivOH (1.0 equiv), 1,1,2,2-Tetrachloroethane (1.0 mL), O₂,100 °C 5 h, isolated yields. ^{*b*}Determined by chiral HPLC analysis.

Table S8. Optimization of atmosphere.^a

O, O S P H	+ =•= CO₂Bn	Co(OAc) ₂ ·4H ₂ O (5 mol%) L7 (5 mol%) PivOH (1.0 equiv) (CHCl ₂) ₂ , 100 °C, 5 h Atmosphere	O, O S N Me CO ₂ Bn
1a	2a		3aa
Entry	atmosphere	Yield (%)	ee (%) ^b
1	air	49	92
2	O 2	90	94
3	Ar	N.R.	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Co(OAc)₂·4H₂O (5 mol%), L7 (5 mol%), PivOH (1.0 equiv), 1,1,2,2-Tetrachloroethane (1.0 mL), atmosphere, 100 °C 5 h, isolated yields. ^{*b*}Determined by chiral HPLC analysis.

1.2 Optimization of 5aa reaction conditions Table S9. Optimization of solvents^{*a*}

O Ne S N +	Co(OAc) ₂ ·4H ₂ O (10 m Ph L7 (20 mol%) Mn(OAc) ₃ ·2H ₂ O (1.0 e solvent, air, 100 °C, Ph	equiv) 6 h Ph	e CH N Ph tBu tBu tBu
1a	3a	5aa	L7
Entry	Solvent	5aa (%)	ee (%) ^b
1	MeOH	41	99
2	^{<i>i</i>} PrOH	31	99
3	1-Butanol	31	99
4	2-methyl-2-butanol	32	98
5	PhCl	trace	
6	DCM	trace	
7	CH ₃ CN	trace	
8	DMF	trace	
9	Dioxane	35	99
10	THF	32	98
11	MTBE	27	98

^{*a*}Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), Ligand (20 mol%), $Mn(OAc)_3 \cdot 2H_2O$ (0.1 mmol) in solvent (1 mL) under air at 100 °C for 6 h. ^{*b*}Isolated yield.

Table S10. Optimization of ligands^a

^{*a*}Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), $Co(OAc)_2 \cdot 4H_2O(10 \text{ mol}\%)$, Ligand (20 mol%), $Mn(OAc)_3 \cdot 2H_2O(0.1 \text{ mmol})$ in MeOH (1 mL) under air at 100 °C for 6 h.

O O O S N H 1a	+ Ph N + Ph Ph 3a	Co(OAc) ₂ ·4H ₂ O (10 mol%) L7 (20 mol%) Mn salt (1.0 equiv) CH ₃ OH, air, 100 °C, 6 h	O O O S N Me Ph 5aa
Entry	Mn salt	5aa (%)	ee (%) ^b
1	Mn(OAc)3·2H2O	41	99
2	Mn(OAc) ₂	8	98
3	Mn(OAc) ₂ ·4H ₂ O	11	97
4	Mn(acac) ₂	trace	
5	Mn(acac) ₃	N.R. ^c	
6	MnO ₂	trace	
7	Mn(NO ₃) ₂ ·4H ₂ O	N.R.	
8	MnC ₂ O ₄ ·2H ₂ O	N.R.	
9	MnCl ₂ ·4H ₂ O	N.R.	
10	$MnBr_2 \cdot H_2O$	N.R.	

Table S11. Optimization of Mn salts^a

^{*a*}Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), Ligand (20 mol%), Mn salt (0.1 mmol) in MeOH (1 mL) under air at 100 °C for 6 h. ^{*c*}No reaction.

Table S12. Optimization of Co salts^a

3	$Co(C_2O_4)_2 \cdot 4H_2O$	38	99
4	Co(OOOCC ₆ H ₅) ₂	32	99
5	CoCl ₂ ·6H ₂ O	35	99
6	Co(ClO ₄) ₂ ·6H ₂ O	31	99

^{*a*}Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), Co salt (10 mol%), Ligand (20 mol%), Mn(OAc)₃·2H₂O (0.1 mmol) in MeOH (1 mL) under air at 100 °C for 6 h. ^{*b*}Isolated yield.

Table S13. Optimization of additives^a

O O S H 1a	$\begin{array}{c} & & Ph \\ & & \\ & & \\ N \end{array} + & Ph \\ & Ph \\ & \\ 3a \end{array}$	Co(OAc) ₂ ·4H ₂ O (10 mol%) L7 (20 mol%) Mn(OAc) ₃ ·2H ₂ O (1.0 equiv) additive (1.0 equiv) CH ₃ OH, air, 100 °C, 6 h	O, O S N Me Ph 5aa
Entry	additive	5aa (%)	ee (%) ^b
1	PivOH	23	99
2	AcOH	29	99
3	1-AdCOOH	32	99
4	Triphenylacetic acid	31	99
5	NaOPiv	48	99
6	CsOPiv	39	99
7	NaOAc	40	98
8	$Na_2C_2O_4$	37	99
9	Na ₂ CO ₃	42	99
10	Na ₂ HPO ₄ ·12H ₂ O	41	99
11	DBU	35	99

"Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), Ligand (20 mol%), $Mn(OAc)_3 \cdot 2H_2O$ (0.1 mmol), additive (0.1 mmol) in MeOH (1 mL) under air at 100 °C for 6 h. ^{*b*}Isolated yield.

Table S14. Optimization of the amount of NaOPiv^a

^{*a*}Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), Ligand (20 mol%), $Mn(OAc)_3 \cdot 2H_2O$ (0.1 mmol), NaOPiv (x equiv) in MeOH (1 mL) under air at 100 °C for 6 h. ^{*b*}Isolated yield.

Table S15. Optimization of temperature^{*a*}

S N H N	Ph +] Ph	Co(OAc) ₂ ·4H ₂ O (10 mol%) L7 (20 mol%) Mn(OAc) ₃ ·2H ₂ O (1.0 equiv) NaOPiv (x equiv) CH ₃ OH, air, T ⁰C, 6 h	O, O S N Me Ph Ph
1a	3a		5aa
Entry	Τ	5aa (%)	ee (%) ^b
1	60	15	99
2	80	34	99
3	100	48	99

^{*a*}Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), Co(OAc)₂·4H₂O (10 mol%), Ligand (20 mol%), Mn(OAc)₃·2H₂O (0.1 mmol), NaOPiv (0.1 mmol) in MeOH (1 mL) under air for 6 h. ^{*b*}Isolated yield.

Table S16. Optimization of time^a

O O O S N H N	+ Ph + H Ph	Co(OAc) ₂ ·4H ₂ O (10 mol%) L7 (20 mol%) Mn(OAc) ₃ ·2H ₂ O (1.0 equiv) NaOPiv (1.0 equiv) CH ₃ OH, air, 100 °C, t h	O, O S'N Me Ph Ph
1a	3a		5aa
Entry	t	5aa (%)	ee (%) ^b
1	6	48	99
2	12	61	99
3	24	80	99
4	36	93	98

^{*a*}Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), Ligand (20 mol%), $Mn(OAc)_3 \cdot 2H_2O$ (0.1 mmol), NaOPiv (0.1 mmol) in MeOH (1 mL) under air at 100 °C for 36 h. ^{*b*}Isolated yield.

Table S17. Optimization of the amounts of cobalt salt and ligand^a

	Ae N + H N +	Ph Ph 3a	Co(OAc) ₂ ·4H ₂ O (x L7 (y mol%) Mn(OAc) ₃ ·2H ₂ O (1. NaOPiv (1.0 eq CH ₃ OH, air, 100 °(mol%) 0 equiv) uiv) C, 36 h	o o S N Me Ph 5aa
Entry	X	<u>_</u>	y	5aa (%)	ee (%) ^b
1	5		5	36	97
2	5		10	54	98
3	10		10	85	98
4	10		20	93	98

^{*a*}Unless otherwise mentioned, all reactions were carried out using **1a** (0.1 mmol), **3a** (0.2 mmol), $Co(OAc)_2 \cdot 4H_2O$ (x mol%), Ligand (y mol%), $Mn(OAc)_3 \cdot 2H_2O$ (0.1 mmol), NaOPiv (0.1 mmol) in MeOH (1 mL) under air at 100 °C for 36 h. ^{*b*}Isolated yield.

1.3 Optimization of 6a reaction conditions

Table S18. Screening of ligands^a

^{*a*}Reaction conditions: Carbon cloth (15 mm × 20 mm × 0.33 mm) anode, stainless steel plate (15 mm × 20 mm × 1.0 mm) cathode, constant current = 4 mA, **1a** (0.25 mmol), phenylacetylene (0.5 mmol), Co(OAc)₂·4H₂O (20 mol%), ligand (20 mol%), EtOH (10.0 mL), HOAc (1.0 mL), NaOAc (2.0 equiv), 75 °C, 6 h, air, NMR yields. Enantiomeric excess was determined by chiral HPLC. **Table S19.** Optimization of the reaction conditions for electronic synthesis^{*a*}

Entry	sorvent	Constant current	Time	Ua (70) ²	ee (70)
1	MeOH	4 mA	6 h	36	96
2	EtOH	4 mA	6 h	54	99
3	^t BuOH	4 mA	6 h	trace	
4	TFE	4 mA	6 h	10	98
5	HFIP	4 mA	6 h		
6	EtOH	3 mA	6 h	59	99
7	EtOH	2 mA	6 h	65	99

8	EtOH	1 mA	6 h	72	99
9 ^c	EtOH	1 mA	6 h	89	99
10 ^c	EtOH	1 mA	2 h	30	99
11 ^c	EtOH	1 mA	4 h	47	99
12^{c}	EtOH	1 mA	8 h	97(91)	99
13 ^c	EtOH	1 mA	10 h	>99(95)	99
$14^{c, d}$	EtOH	1 mA	10 h	77	99
15 ^{<i>c</i>, <i>e</i>}	EtOH	1 mA	10 h	68	99
16 ^{<i>c</i>}	EtOH		10 h		
$17^{c,f}$	EtOH	1 mA	10 h		

^{*a*}Reaction conditions: Carbon cloth (15 mm × 20 mm × 0.33 mm) anode, stainless steel plate (15 mm × 20 mm × 1.0 mm) cathode, constant current, **1a** (0.25 mmol), phenylacetylene (0.5 mmol), $Co(OAc)_2 \cdot 4H_2O$ (20 mol%), **L7** (20 mol%), Solvent (10.0 mL), HOAc (1.0 mL), NaOAc (2.0 equiv), 75 °C, air, NMR yields. Enantiomeric excess was determined by chiral HPLC. ^{*b*}isolated yields. ^{*c*}EtOH (10.0 mL), HOAc (0.5 mL). ^{*d*}Co(OAc)_2 \cdot 4H_2O (10 mol%), **L7** (20 mol%). ^{*e*}Co(OAc)_2 \cdot 4H_2O (10 mol%), **L7** (10 mol%). ^{*f*}Without Co(OAc)_2 \cdot 4H_2O and **L7** (20 mol%).

Scheme S1. Control experiments.

We choose the 8-aminoquinoline sulfonamide as the substrate in which the quinoline is not substituted ortho-position, and the annulations of sulfonamide with allenes or alkynes were conducted

under standard conditions. As a result, the annulation of sulfonamide with allene gave no product. The annulations of sulfonamide with alkyne deliver products **5**' and **6**' with low or moderate yields, and more importantly the products **5**' and **6**' has no axial chirality.

2. General procedure for the synthesis of 1, 2

7-substituted 8-aminoquinolines were synthesized according to literature procedures.¹ All sulfonamides were prepared according to the reported literature.²

Allene substrates 2a-2f, 2n were synthesized according to reported literature methods.³

$$R_{O} \xrightarrow{O} PPh_{3} \xrightarrow{CI (1.0 \text{ equiv})} R_{O} \xrightarrow{O} R_{O}$$

Allene substrates 2g-2k were synthesized according to literature methods reported by Buono.⁴

Allene substrate **2m** was synthesized according to literature methods.⁵

$$= \overset{\text{Dr}_{2O} (1.5 \text{ equiv.})}{\overset{\text{Br}}{=}} \overset{\text{Cr}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}{\overset{\text{Br}}{=}} \overset{\text{Cr}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}{\overset{\text{Dr}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}} \overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}{\overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}} \overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})} \overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}{\overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}} \overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})} \overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}{\overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}} \overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})} \overset{\text{Br}_{2,6-\text{lutidine}}(1.5 \text{ equiv.})}{\overset{\text{Br}_{2,6-\text{lutidine}}(1.5$$

3. General procedure for synthesis of racemic samples 4, 5 and 6

3.1 General procedure for synthesis of racemic product 4

A dry 15 mL high-pressure tube with a stopcock was charged with a suitable magnet, benzenesulfonamide (0.05 mmol), $Co(OAc)_2 \cdot 4H_2O$ (5 mol%), racemic ligand (5 mol%), pivalic acid (0.05 mmol). 0.5 mL of 1,1,2,2-Tetrachloroethane solution and allene (0.075 mmol) was added under oxygen atmosphere. The closed high-pressure tube containing reaction mixture was placed in preheated metal bath at 100 °C for 5 hours. The reaction mixture was cooled to room temperature. The

mixture was quenched with saturated NaHCO₃ solution and extracted with CH₂Cl₂ for three times. The combined organic phase was dried over MgSO₄, and filtered. Then the solvent was evaporated. Product was purified using column chromatography on silica gel using appropriate eluent.

3.2 General procedure for synthesis of racemic product 5 or 6

Sulfonamides **1a** (0.1 mmol), alkynes **3a** (0.2 mmol), $Co(OAc)_2 \cdot 4H_2O$ (0.01 mmol), rac-L7 (10 mol%), $Mn(OAc)_3 \cdot 2H_2O$ (0.1 mmol), NaOPiv (0.1 mmol), anhydrous solvent methanol (1.0 mL) was added successively to a dry 15 mL high-pressure tube containing a magnetic stir bar under air. The closed high-pressure tube containing reaction mixture was placed in preheated metal bath at 100 °C for 36 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous Na_2CO_3 , and extracted with CH_2Cl_2 . The organic layer was dried over anhydrous Na_2SO_4 and concentrated in vacuo. The products were purified by preparative TLC.

4. General procedure for synthesis of enantioenriched compounds 4, 5 and 64.1 General procedure for synthesis of enantioenriched compounds 4

A dry 15 mL high-pressure tube with a stopcock was charged with a suitable magnet, benzenesulfonamide (0.2 mmol), Co(OAc)₂·4H₂O (5 mol%), chiral ligand (5 mol%), pivalic acid (0.2 mmol). 2 mL of 1,1,2,2-Tetrachloroethane solution and allene (0.3 mmol) was added under oxygen atmosphere. The closed high-pressure tube containing reaction mixture was placed in preheated metal bath at 100 °C for 5 hours. The reaction mixture was cooled to room temperature. The mixture was quenched with saturated NaHCO₃ solution and extracted with CH₂Cl₂ for three times. The combined organic phase was dried over MgSO₄, and filtered. The reaction solution was concentrated in vacuum and purified by flash column chromatography to give the product.

4.2 General procedure for synthesis of enantioenriched compounds 5

Sulfonamides **1a** (0.2 mmol), alkynes **3a** (0.40 mmol), $Co(OAc)_2 \cdot 4H_2O$ (0.02 mmol), **L7** (20 mol%), Mn(OAc)_3 \cdot 2H_2O (0.2 mmol), NaOPiv (0.2 mmol), anhydrous solvent methanol (2.0 mL) was added successively to a dry 15 mL high-pressure tube containing a magnetic stir bar under air. The closed high-pressure tube containing reaction mixture were placed in preheated metal bath at 100 °C for 36 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous Na₂CO₃, and extracted with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The products were purified by preparative TLC. **4.3 General procedure for synthesis of enantioenriched compounds 6**

A 30 mL sample bottle was equipped with a magnetic stir bar and charged with sulfonamide 1 (0.25 mmol), $Co(OAc)_2 \cdot 4H_2O$ (20 mol%), L7 (20 mol%), alkyne (0.5 mmol), anhydrous ethanol (10.0 mL) and HOAc(0.5 mL). The bottle was equipped with carbon cloths (15 mm × 20 mm × 0.33 mm) as the anodes and stainless steel plates (15 mm × 20 mm × 1 mm) as the cathodes, under air conditions (open to air by two thick syringe needles). The reaction mixture was stirred and electrolyzed at a constant current of 1 mA at 75 °C for 10 h. After the completion of the reaction, the solvent is removed under reduced pressure, and saturated NaHCO₃ is added and extracted with DCM. The organic phase is combined, dried, filtered, and concentrated in *vacuum*. The crude mixture was purified by preparative TLC using (DCM/PE = 5/1) as eluent, affording the final product **6**.

5. Mechanistic studies

5.1 H/D exchange experiments

5.1.1 H/D exchange experiments of 4aa

A dry 15 mL high-pressure tube with a stopcock was charged with a suitable magnet, 1e (0.1 mmol), $Co(OAc)_2 \cdot 4H_2O$ (5 mol%), L7 (5 mol%), pivalic acid (0.1 mmol). 1,1,2,2-Tetrachloroethane solution and D₂O (10 equiv) was added under oxygen atmosphere. The closed high-pressure tube containing reaction mixture was placed in preheated metal bath at 100 °C for 5 hours. The reaction mixture was cooled to room temperature. The mixture was quenched with saturated NaHCO₃ solution and extracted with CH₂Cl₂ for three times. The combined organic phase was dried over MgSO₄, and filtered. The reaction solution was concentrated in vacuum and purified by flash column chromatography to give the product. The product was purified by flash column chromatography using PE/EA (6:1) as eluent. ¹H NMR analysis showed that the D contents in the recovered amide was 6%.

A dry 15 mL high-pressure tube with a stopcock was charged with a suitable magnet, [**D**]-1e (0.1 mmol), $Co(OAc)_2 \cdot 4H_2O$ (5 mol%), L7 (5 mol%), pivalic acid (0.1 mmol). 1,1,2,2-Tetrachloroethane solution was added under oxygen atmosphere. The closed high-pressure tube containing reaction mixture was placed in preheated metal bath at 100 °C for 5 hours. The reaction mixture was cooled to room temperature. The mixture was quenched with saturated NaHCO₃ solution and extracted with CH₂Cl₂ for three times. The combined organic phase was dried over MgSO₄, and filtered. The reaction solution was concentrated in vacuum and purified by flash column chromatography to give the product. The product was purified by flash column chromatography using PE/EA (6:1) as eluent. ¹H NMR analysis showed that the D contents in the recovered amide was 8%.

5.1.2 H/D exchange experiments of 5aa

A 10 mL dry high-pressure tube was equipped with a magnetic stir bar and charged with sulfonamide **1e** (0.1 mmol), $Co(OAc)_2 \cdot 4H_2O$ (0.01 mmol), **L7** (20 mol%), $Mn(OAc)_3 \cdot 2H_2O$ (1.0 equiv), NaOPiv (1.0 equiv), and anhydrous solvent CD₃OD (1.0 mL) under air. Then the reaction system was closed with a stopper. The container was stirred at 100 °C for 2 h. After the reaction was completed, the reaction mixture was diluted with 25 mL of CH₂Cl₂ and filtered through a pad of celite. The reaction solution was detected by TLC, and then concentrated in vacuum. The product was purified by flash column chromatography using PE/EA (1:1) as eluent. ¹H NMR analysis showed that the D contents in the recovered amide was 26%.

A 10 mL dry high-pressure tube was equipped with a magnetic stir bar and charged with sulfonamide [D]-1e (0.1 mmol), $Co(OAc)_2 \cdot 4H_2O$ (0.01 mmol), L7 (20 mol%), $Mn(OAc)_3 \cdot 2H_2O$ (1.0 equiv), NaOPiv (1.0 equiv), and anhydrous solvent CH₃OH (1.0 mL) under air. Then the reaction system was closed with a stopper. The container was stirred at 100 °C for 2 h. After the reaction was completed, the reaction mixture was diluted with 25 mL of CH₂Cl₂ and filtered through a pad of celite. The reaction solution was detected by TLC, and then concentrated in vacuum. The product was purified by flash column chromatography using PE/EA (1:1) as eluent. ¹H NMR analysis showed that the H contents in the recovered amide was 15%.

5.2 Parallel KIE experiments

5.2.1 Parallel KIE experiments of 4ea

Figure S1. Parallel KIE experiments

A dry 25 mL high-pressure tube with a stopcock was charged with a suitable magnet, **[D]-1e** or **1e** (0.1 mmol), Co(OAc)₂·4H₂O (5 mol%), L7 (5 mol%), pivalic acid (0.1 mmol). 1,1,2,2-Tetrachloroethane solution and allene (0.15 mmol) was added under oxygen atmosphere. Then, the reaction system was stirred at 100 °C for 20 min, 22 min, 24 min, 26 min, 28 min, 30 min. After the reaction was completed, and immediately quenched with ethyl acetate. and filtered through a pad of celite. The reaction solution was removed under reduced pressure and ¹H NMR was taken using anisole (0.1 mmol, 10.8 mg) as the internal standard. The KIE was determined as $k_H/k_D = 1.2806/0.8057 = 1.6$.

5.2.2 Competitive KIE experiments of 4ea

1e + [D]-1e
$$2a$$
 4ea + [D]-4ea
 30 min
 $k_H/k_D = 1.8$

A dry 25 mL high-pressure tube with a stopcock was charged with a suitable magnet, **[D]-1e** and **1e** (0.1 mmol), $Co(OAc)_2 \cdot 4H_2O$ (5 mol%), L7 (5 mol%), pivalic acid (0.1 mmol). 1,1,2,2-Tetrachloroethane solution and allene (0.15 mmol) was added under oxygen atmosphere. Then, the reaction system was stirred at 100 °C for 30 min. After the reaction was completed, and immediately quenched with ethyl acetate. and filtered through a pad of celite. The reaction solution was removed

under reduced pressure and ¹H NMR was taken using anisole (0.1 mmol, 10.8 mg) as the internal standard. The KIE was determined as $k_H/k_D = 0.6441/0.3559 = 1.8$.

5.2.3 Parallel KIE experiments of 5ea

Figure S2. Parallel KIE experiments

A 10 mL dry high-pressure tube was equipped with a magnetic stir bar and charged with sulfonamide **1e** (0.1 mmol) or [D]-**1e** (0.1 mmol), Co(OAc)₂·4H₂O (0.01 mmol), Mn(OAc)₃·2H₂O (1.0 equiv), NaOPiv (1.0 equiv), and anhydrous solvent CH₃OH (1.0 mL) under air. Then, the reaction system was closed with a stopper. The vessel was heated at 100 °C for 140 min, 160 min, 180 min, 200 min, 220 min and immediately quenched with CH₂Cl₂. The reaction mixture was filtered through a pad of celite. The solvent was then removed under reduced pressure and ¹H NMR was taken using anisole (0.1 mmol, 10.8 mg) as the internal standard. The KIE was determined as $k_H/k_D = 0.0976/0.0487= 2.00$.

5.3 Deuteryl labeling experiment

The prepared deuterodiene was involved in the reaction under standard conditions. After the reaction, the products were separated by column chromatography and detected by ¹HNMR. The results showed that 23% of the methylene associated with the olefin was deuterated, suggesting that some of the olefin products in the ring may have been obtained through 1.3- hydrogen migration.

5.4 Nonlinear effect study of 4aa with L7

The factors influencing the selectivity of enantiomers were studied. The catalysts with different ee values were prepared by mixing the chiral ligand L7 with the racemic ligand in appropriate proportions. The product was separated by column chromatography and the ee value of the product was determined by HPLC. The results showed that the ee value of the product had a linear relationship with that of the corresponding catalyst.

Ligand ee (%)	0	21	40	63	80	99
Product ee (%)	0	19	36	70	72	93

Figure S3. Corresponding ee relationship between ligand and product.

6. Synthetic application

 $[Pd(\eta^3-C_3H_5)Cl]_2$ (0.005 mmol, 5 mol%), LiOAc (0.02 mmol, 20 mol%) was added dropwise to a solution of **5at** (0.01 mmol, 10 mol%) in THF (0.4 mL) and the mixture was stirred under argon at room temperature for 30 min. Then 1,3-diphenyl-2-propenyl acetate (0.1 mmol, 1.0 equiv), dimethyl malonate (0.3 mmol, 3.0 equiv), *N*,*O*-bis(trimethylsilyl)-acetamide (BSA) (0.3 mmol, 3.0 equiv) were added subsequently, and the reaction mixture was stirred at room temperature for 12 h until the reaction was completed. The reaction mixture was quenched with NH₄Cl aqueous solution and extracted with CH₂Cl₂. The combined organic layer extracts were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, and purified on silica gel chromatography (hexanes/ethyl acetate = 20:1) to afford the corresponding product.

Dimethyl (*R*,*E*)-2-(1,3-diphenylallyl)malonate (7).

 $\begin{array}{c} MeO_2C \\ \hline \\ CO_2Me \\ \hline \\ Ph \\ \end{array}$ Yield: 29.2 mg (90%). Colorless oil. The product was analyzed by HPLC to determine the enantiomeric excess: 65% ee (CHIRALPAK AD-H, hexane/*i*-

PrOH =90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (major) = 11.20 min, t_2 (minor) = 15.82.34 min.

7. Gram scale

7.1 Gram scale experiment of 4aa

A 100 mL oven-dried Schlenk bottle was equipped with a magnetic stir bar and charged with benzenesulfonamide **1a** (936 mg, 3 mmol), allene **2a** (783 mg, 4.5 mmol), Co(OAc)₂·4H₂O (52.5 mg, 0.15 mmol), L7 (39 mg, 0.15 mmol), anhydrous solvent 1,1,2,2-Tetrachloroethane (30.0 mL) under the oxygen atmosphere. Then, the reaction system was closed with a Rubber plug. The container was stirred at 100 °C for 10 h. The reaction mixture was cooled to room temperature. The mixture was quenched with saturated NaHCO₃ solution and extracted with CH₂Cl₂ for three times. The combined organic phase was dried over MgSO₄, and filtered. The reaction solution was detected by TLC, and then concentrated in vacuum. The product was purified by flash column chromatography using (PE/EA = 3/1) as eluent, affording the final product **4aa** (white powdery solid, 1.21 g, 83% yield, 94% ee).

7.2 Gram scale experiment of 5aa

A 250 mL dry high-pressure tube charged with magnetic stirrer added sulfonamide (2.8 mmol), alkyne (5.6 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), L7 (20 mol%), $Mn(OAc)_3 \cdot 2H_2O$ (1.0 equiv), NaOPiv·H₂O (1.0 equiv), and CH₃OH (28 mL). The reaction mixture was heated at 100 °C for 36 h. After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous Na₂CO₃, and extracted with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel (PE/EtOAc = 10:1) to give the desired product **5aa** (816 mg) in 60% yield as a white solid with 99% ee.

7.3 Gram scale experiment of 6a

A 250 mL oven-dried three-necked bottle was equipped with a magnetic stir bar and charged with sulfonamide **1a** (936 mg, 3 mmol), Co(OAc)₂·4H₂O (149.4 mg, 0.6 mmol), **L7** (210.7 mg, 0.6 mmol), phenylacetylene (612 mg, 6 mmol), anhydrous ethanol (100.0 mL) and HOAc (5 mL). The bottle was equipped with two carbon cloths (20 mm × 30 mm × 0.33 mm) as the anodes and two stainless steel plates (20 mm × 30 mm × 1 mm) as the cathodes, under air conditions (open to air by two thick syringe needles). The reaction mixture was strong stirred and electrolyzed at a constant current of 1 mA at 75 °C for 30 h. After the completion of the reaction, the solvent is removed under reduced pressure, saturated NaHCO₃ is added and extracted with DCM, the organic phase is combined, dried, filtered, and concentrated in *vacuum*. The crude mixture was purified by flash column chromatography using (DCM/PE = 5/1) as eluent, affording the final product **6a** (white solid, 0.83 g, 67% yield, 99% ee). We also recovered 191.0 mg of chiral ligand **L7** (90% yield).

8. Study on product stability

The enantiomerization barrier, corresponding to the barrier to rotation for the following atropisomers, was obtained by kinetic of racemization of an enantiomer. The slope of the firstorder kinetic line gives the racemization constant ($k_{racemization} = 2 \times k_{enantiomerization}$). According to the Eyring equation, the enantiomerization barrier ($\Delta G^{\neq}_{enantiomerization}$) can be obtained from enantiomerization constant ($k_{enantiomerization}$), R = 8.31451 J·K⁻¹·mol⁻¹, h = 6.62608 ×10⁻³⁴ J·s and $k_{B} = 1.38066 \times 10^{-23} J·K^{-1}$.

A solution of (R)-4aa (10.0 mg, 94% ee) in DMSO (1 mL) was heated at the specific temperatures. The ee value was determined by chiral HPLC analysis at different intervals.

Time (h) Temp.(°C) ee (%)	1	2	4	6	8	10	12
100	93.246	93.0	92.970	93.06	92.322	92.110	91.014
120	93.678	92.728	92.346	91.5	91.278	90.942	89.000
130	93.118	91.88	89.974	88.292	87.266	85.778	83.118

Table S20. Thermal racemization of product 4aa

Figure S4. The ee value of 4aa vs time at different temperature in DMSO

Figure S5. The plot of ln (ee₀/ee_t) vs time of 4aa at 130 °C

 $k_{\text{racemization}} (130 \text{ °C}) = 0.00936 \text{ h}^{-1} = 2.6 \text{ x} 10^{-6} \text{ s}^{-1}$

 $k_{enantiomerization} (130 \text{ }^{\circ}\text{C}) = 1.3 \text{ x } 10^{-6} \text{ s}^{-1}$

 $\Delta G^{\neq}_{\text{enantiomerization}} = 145.10 \text{ kJ/mol} = 34.68 \text{ kcal/mol}$

 $t_{1/2} (25 \text{ °C}) = 4.7 \times 10^4 \text{ years}$

A solution of (R)-4af (10.0 mg, 94% ee) in DMSO (1 mL) was heated at the specific temperatures.

The ee value was determined by chiral HPLC analysis at different intervals.

Time (h) Temp.(°C) ee (%)	1	2	4	6	8	10	12
130	89.542	88.156	86.814	85.044	83.422	81.408	80.568

Table S21. Thermal racemization of product 4af

Figure S6. The plot of ln(ee₀/ee_t) vs time of 4af at 130 °C

 $k_{\text{racemization}} (130 \text{ }^{\circ}\text{C}) = 0.01008 \text{ }\text{h}^{-1} = 2.8 \times 10^{-6} \text{ s}^{-1}$

 $k_{enantiomerization} (130 \text{ }^{\circ}\text{C}) = 1.4 \text{ x } 10^{-6} \text{ s}^{-1}$

 $\Delta G^{\neq}_{enantiomerization} = 145.00 \text{ kJ/mol} = 34.68 \text{ kcal/mol}$

 $t_{1/2} (25 \text{ °C}) = 4.7 \times 10^4 \text{ years}$

A solution of (R)-4ag (10.0 mg, 94% ee) in DMSO (1 mL) was heated at the specific temperatures. The ee value was determined by chiral HPLC analysis at different intervals.

Table S22. Thermal racemization of product 4ag

Time (h) Temp.(°C) ee (%)	1	2	4	6	8	10	12
130	93.002	92.044	90.362	88.472	88.492	87.588	85.106

Figure S7. The plot of $ln(ee_0/ee_t)$ vs time of **4ag** at 130 °C

 $k_{\text{racemization}} (130 \text{ °C}) = 0.0072 \text{ h}^{-1} = 2.0 \text{ x} 10^{-6} \text{ s}^{-1}$

 $k_{enantiomerization} (130 \text{ }^{\circ}\text{C}) = 1.0 \text{ x } 10^{-6} \text{ s}^{-1}$

 $\Delta G^{\neq}_{enantiomerization} = 146.02 \text{ kJ/mol} = 34.90 \text{ kcal/mol}$

 $t_{1/2} (25 \ ^{o}C) = 6.3 \times 10^{4} \text{ years}$

A solution of (R)-4ya (10.0 mg, 94% ee) in DMSO (1 mL) was heated at the specific temperatures. The ee value was determined by chiral HPLC analysis at different intervals.

Time (h) Temp.(°C) ee (%)	. 1	2	4	6	8	10	12
130	92.152	91.364	88.384	86.200	83.640	81.540	79.202

Table S23. Thermal racemization of product 4ya

Figure S8. The plot of ln(ee₀/ee_t) vs time of 4ya at 130 °C

 $k_{\text{racemization}} (130 \text{ °C}) = 0.01368 \text{ h}^{-1} = 3.8 \text{ x} 10^{-6} \text{ s}^{-1}$

 $k_{enantiomerization} (130 \ ^{o}C) = 1.9 \ x \ 10^{-6} \ s^{-1}$

 $\Delta G^{\neq}_{\text{enantiomerization}} = 143.86 \text{ kJ/mol} = 34.38 \text{ kcal/mol}$

 $t_{1/2} (25 \text{ °C}) = 2.8 \times 10^4 \text{ years}$

A solution of (R)-5aa (10.0 mg, 99% ee) in DMSO (1.0 mL) was heated at the specific temperatures (Table). The ee value was determined by chiral HPLC analysis at different intervals.

Time (h) Temp.(°C) ee (%)	1	2	4	6	8	10	12
100	98.846	98.760	98.578	98.510	98.272	98.156	97.680
120	97.990	96.932	94.406	93.222	92.274	90.694	88.504
130	96.492	93.918	89.966	87.772	84.498	79.818	75.750

Table S24. Thermal racemization of product 5aa

Figure S9. The ee value of 5aa vs time at different temperature in DMSO

Figure S10. The plot of ln(ee₀/ee_t) vs time of 5aa at 130 °C

 $k_{\text{racemization}} (130 \text{ }^{\circ}\text{C}) = 5.8 \text{ x } 10^{-6} \text{ s}^{-1}$

 $k_{enantiomerization} \; (130 \ ^oC) = 2.9 \; x \; 10^{-6} \; s^{-1}$

 $\Delta G^{\neq}_{enantiomerization} = 142.49 \text{ kJ/mol} = 34.06 \text{ kcal/mol}$

 $t_{1/2}$ (25 °C) = 1.6 x 10⁴ years

A solution of (*R*)-**5qa** (10.0 mg, 99% ee) in DMSO (1.0 mL) was heated at 130 °C (Table). The ee value was determined by chiral HPLC analysis at different intervals.

Table S25. Thermal racemization of product 5qa.

Time (h) Temp.(°C) ee (%)	1	2	4	6	8	10	12
130	96.256	95.526	92.712	88.890	85.380	82.114	78.866

Figure S11. The plot of ln(eeo/eet) vs time of 5qa at 130 °C

 $k_{\text{racemization}} (130 \text{ °C}) = 5.2 \text{ x } 10^{-6} \text{ s}^{-1}$

kenantiomerization (130 °C) = $2.6 \times 10^{-6} \text{ s}^{-1}$

 $\Delta G^{\neq}_{enantiomerization} = 142.86 \text{ kJ/mol} = 34.14 \text{ kcal/mol}$

 $t_{1/2} (25 \text{ °C}) = 1.9 \text{ x } 10^4 \text{ years}$

Table S26. Thermal racemization of product 5xca.

Time (h) Temp.(°C) ee (%)	. 1 2 4		4	6	8	10	12
130	97.048	96.114	92.166	86.860	83.880	79.564	74.638

Figure S12. The plot of ln(ee₀/ee_t) vs time of 5xca at 130 °C

 $k_{\text{racemization}} (130 \text{ °C}) = 6.6 \text{ x } 10^{-6} \text{ s}^{-1}$

 $k_{\text{enantiomerization}} (130 \text{ °C}) = 3.3 \text{ x } 10^{-6} \text{ s}^{-1}$

 $\Delta G^{\neq}_{enantiomerization} = 142.06 \text{ kJ/mol} = 33.95 \text{ kcal/mol}$

 $t_{1/2} (25 \text{ °C}) = 1.4 \text{ x } 10^4 \text{ years}$

Table S27. Thermal racemization of product 5aq

Time (h) Temp.(°C) ee (%)	. 1	2	4	6	8	10	12
130	89.192	72.934	66.610	56.098	61.884	52.284	42.590

Figure S13. The plot of ln(ee₀/ee_t) vs time of 5aq at 130 °C

 $k_{\text{racemization}} (130 \text{ °C}) = 1.58 \text{ x } 10^{-5} \text{ s}^{-1}$

 $k_{\text{enantiomerization}} (130 \text{ °C}) = 7.9 \text{ x } 10^{-6} \text{ s}^{-1}$

 $\Delta G^{\neq}_{enantiomerization} = 139.14 \text{ kJ/mol} = 33.26 \text{ kcal/mol}$

 $t_{1/2} (25 \text{ °C}) = 4.2 \text{ x } 10^3 \text{ years}$

Table S28. Thermal racemization of product 5ai

Time (h) Temp.(°C) ee (%)	. 1	2	4	6	8	10	12	
130	93.170	89.720	82.568	78.004	72.844	69.582	62.810	

Figure S14. The plot of ln(ee₀/ee_t) vs time of 5ai at 130 °C

 $k_{\text{racemization}} (130 \text{ }^{\circ}\text{C}) = 9.50 \text{ x } 10^{-6} \text{ s}^{-1}$

 $k_{enantiomerization} (130 \text{ }^{o}\text{C}) = 4.75 \text{ x } 10^{-6} \text{ s}^{-1}$

 $\Delta G^{\neq}_{enantiomerization} = 140.85 \text{ kJ/mol} = 33.66 \text{ kcal/mol}$

 $t_{1/2} (25 \text{ °C}) = 8.4 \text{ x } 10^3 \text{ years}$

9. X-ray crystal structure of 4aa, 5aa

Figure S15. X-ray molecular structure of 4aa (CCDC 2241825).

Crystal data and structure refinement for 4aa.

Identification code	4aa
Empirical formula	$C_{28}H_{24}N_2O_4S$
Formula weight	484.55
Temperature/K	199.99(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	8.7020(3)
b/Å	10.7451(4)
c/Å	25.9020(9)
α/	90
β/	90
γ/	90
Volume/Å ³	2421.94(15)
Z	4
$\rho_{calc}g/cm^3$	1.329
μ/mm^{-1}	1.497
F(000)	1016.0
Crystal size/mm ³	$0.03 \times 0.01 \times 0.01$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/	6.826 to 129.98
Index ranges	$\textbf{-10} \leq h \leq 10, \textbf{-12} \leq k \leq 9, \textbf{-29} \leq \textbf{l} \leq 30$
Reflections collected	7568
Independent reflections	3888 [$R_{int} = 0.0895$, $R_{sigma} = 0.0984$]

Method for crystal growth:

The pure compound **4aa** was dissolved in DCM in a little sample bottle. And hexane was added dropwise in the bottle. Then, the bottle is sealed with plastic film, and two holes are made in the plastic film. The bottle was placed in a quiet environment.

Crystal measurement:

A dichloromethane and hexane mixture of **4aa** were slowly evaporated at ambient temperature over a period of one day, to afford single crystals suitable for an X-ray crystallographic study. Singlecrystal X-ray diffraction data were collected on a Rigaku XtaLAB Pro diffractometer with Mo-K α radiation ($\lambda = 1.54184$ Å) for compound **4aa**. The structure was solved by Direct Method of SHELXS-97 and refined by full-matrix least-squares techniques using the SHELXL-97 program. Non-hydrogen atoms were refined with anisotropic temperature parameters, and hydrogen atoms of the ligands were refined as rigid groups.

Crystal data and structure refinement for 5aa

Identification code	5aa
Empirical formula	$C_{31}H_{24}N_2O_2S$
Formula weight	488.58
Temperature/K	297.15
Crystal system	triclinic
Space group	P-1
a/Å	8.3410(15)
b/Å	9.1638(18)
c/Å	16.563(3)
α/	97.862(7)
β/	92.549(7)
γ/	90.235(7)
Volume/Å ³	1252.8(4)
Z	2
$\rho_{calc}g/cm^3$	1.295
μ/mm^{-1}	0.161
F(000)	512.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.05
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	4.488 to 50
Index ranges	$-9 \le h \le 9, \text{-10} \le k \le 10, \text{-19} \le \text{l} \le 19$

Reflections collected	46254					
Independent reflections	4404 [$R_{int} = 0.1560, R_{sigma} = 0.0803$]					
Data/restraints/parameters	4404/50/373					
Goodness-of-fit on F ²	1.115					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1551, wR_2 = 0.3901$					
Final R indexes [all data]	$R_1 = 0.1698, wR_2 = 0.3961$					
Largest diff. peak/hole / e Å ⁻³ 0.60/-0.65						

Method for crystal growth:

The pure compound **5aa** was dissolved in DCM and toluene (1:1) in a little sample bottle. And hexane was added dropwise in the bottle. Then, the bottle is sealed with plastic film, and two holes are made in the plastic film. The bottle was placed in a quiet environment.

Crystal measurement:

A dichloromethane and hexane mixture of **5aa** were slowly evaporated at ambient temperature over a period of one day, to afford single crystals suitable for an X-ray crystallographic study. Singlecrystal X-ray diffraction data were collected on a Rigaku XtaLAB Pro diffractometer with Mo-K α radiation ($\lambda = 1.54184$ Å) for compound **5aa**. The structure was solved by Direct Method of SHELXS-97 and refined by full-matrix least-squares techniques using the SHELXL-97 program. Non-hydrogen atoms were refined with anisotropic temperature parameters, and hydrogen atoms of the ligands were refined as rigid groups.

II. Supplemental references

- 1. X.-J. Si, D. Yang, M.-C. Sun, D. Wei, M.-P. Song and J.-L. Niu, Nat. Synth, 2022, 1, 709-718.
- 2. O. Planas, C. J. Whiteoak, A. Company and X. Ribas, Adv. Synth. Catal., 2015, 357, 4003-4012.
- a) T. Li, J. Li, Z. Zhu, Y. Chen, X. Li, Q. Yang, J. Xia, W. Zhang, C. Zhang, W. Pan and S. Wu, Org. Chem. Front., 2021, 8, 928-935. b) S. Haubenreisser, T. H. Wöste, C. Martínez, K. Ishihara and K. Muñiz, Angew. Chem. Int. Ed., 2016, 55, 1-1.
- 4. H. Clavier, K. L. Jeune, I. D. Riggi, A. Tenaglia and G. Buono, Org. Lett., 2011, 13, 308-311.
- C.-H. Yang, H. Fan, H. Li, S. Hou, X. Sun, D. Luo, Y. Zhang, Z. Yang and J. Chang, *Org. Lett.*, 2019, 21, 9438-9441.
- V. S. Raut, M. Jean, N. Vanthuyne, C. Roussel, T. Constantieux, C. Bressy, X. Bugaut, D. Bonne and J. Rodriguez, J. Am. Chem. Soc., 2017, 139, 2140-2143.
- Z.-S. Liu, Y. Hua, Q. Gao, Y. Ma, H. Tang, Y. Shang, H.-G. Cheng, Q. Zhou, *Nat. Catal.*, 2020, 3, 727-733.
- 8. Z.-S. Liu, P.-P. Xie, X. Hong and Q. Zhou, Chem, 2021, 7, 1917-1932.

III. Characterization (NMR, HRMS, and HPLC) data

(*R*)-benzyl 2-(6-methyl-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4aa).

Yield: 87.0 mg (90%). White solid, mp: 169-170 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.76 (dd, J = 4.2, 1.7 Hz, 1H), 8.04 (dd, J = 8.2, 1.8 Hz, 1H), 7.70 (dd, J = 8.2, 2.1 Hz, 2H), 7.35 (d, J = 8.4 Hz, 1H), 7.31 – 7.23 (m, 6H), 7.15 – 7.06 (m, 2H), 6.53 (s, 1H), 5.46 – 4.27 (m, 2H), 4.10 – 2.90 (m, 2H), 2.46 (s, 3H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 151.5, 147.0, 142.6, 142.2, 136.7, 135.7, 135.3, 133.1, 131.3, 129.9, 129.4, 129.3, 128.5, 128.4, 128.3, 128.2, 127.4, 127.3, 121.1, 111.8, 66.6, 39.6, 21.7, 18.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₈H₂₅N₂O₄S]⁺ requires 485.1530, found 485.1516. [α]²⁵_D = -116 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =60/40, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 26.5 min, t₂ (major) = 37.4 min.

(*R*)-benzyl 2-(6-fluoro-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ba).

Yield: 92.7 mg (95%). White solid, mp: 172-173 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.70 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.2, 1.7 Hz, 1H), 7.84 – 7.77 (m, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.36 – 7.22 (m, 4H), 7.23 – 6.97 (m, 4H), 6.56 (s, 1H), 5.14 – 4.52 (m, 2H), 3.67 – 2.97 (m, 2H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3, 164.4 (d, ¹*J*_{C-F} = 253.6 Hz), 151.4, 146.7, 142.6, 138.4,135.9 (d, ³*J*_{C-F} = 10.0 Hz), 135.7, 135.2, 131.1, 129.5, 129.4, 128.5, 128.4, 128.3, 127.4, 124.1 (d, ³*J*_{C-F} = 9.9 Hz), 121.2, 115.2 (d, ²*J*_{C-F} = 24.2 Hz), 113.1 (d, ²*J*_{C-F} = 23.2 Hz), 111.2, 111.1, 66.8, 39.6, 19.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -106.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂FN₂O₄S]⁺ requires 489.1279, found 489.1280. [α]_D²⁵ = -202 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 26.7 min, t₂ (major) = 39.3 min.

(*R*)-benzyl 2-(6-chloro-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ca).

Yield: 92.7 mg (92%). White solid, mp: 162-163 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.69 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.06 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.74 (dd, *J* = 8.4, 2.6 Hz, 2H), 7.46 (d, *J* = 2.0 Hz, 1H), 7.43 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.33 – 7.24 (m, 4H), 7.17 – 7.11 (m, 2H), 6.54 (s, 1H), 4.82 – 4.74 (m,

2H), 3.28 - 3.16 (m, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 151.4, 146.7, 142.5, 138.5, 137.8, 135.8, 135.2, 134.8, 131.0, 130.3, 129.5, 129.4, 128.5, 128.4, 128.3, 127.7, 127.4, 126.6, 122.9, 121.3, 111.0, 66.8, 39.6, 19.0. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂ClN₂O₄S]⁺ requires 505.0983, found 505.0986. [α]_D²⁵ = -201 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 89% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 32.0 min, t₂ (major) = 48.4 min.

 2
 48.216
 1195.88940
 12.67706
 49.9007
 2
 48.411
 411.67804
 4.38783
 5.7355

 (R)-benzyl 2-(6-bromo-2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo[1,2]thiazin-3-yl)acetate

(4da).

Yield: 101.0 mg (92%). White solid, mp: 162-163 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.67 (dd, J = 4.2,

O, O S, N Br CO₂Bn 1.7 Hz, 1H), 8.03 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 8.3 Hz, 1H), 7.60 (d, *J* = 1.9 Hz, 1H), 7.56 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.14 – 7.09 (m, 2H), 6.51 (s, 1H), 4.80 – 4.72 (m,

2H), 3.90 - 2.72 (m, 2H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 151.4, 146.6, 142.5, 138.5, 135.8, 135.2, 135.0, 131.1, 131.0, 130.5, 129.6, 129.5, 129.4, 128.5, 128.4, 128.3, 127.4, 126.1, 123.0, 121.2, 110.8, 66.8, 39.6, 19.0. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂BrN₂O₄S]⁺ requires 549.0478, found 549.0477. [α]_D²⁵ = -143 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 35.2 min, t₂ (major) = 52.0 min.

Peak	RetTime	Area	Height	Area	
1	35.207	9473.80469	142.63760	96.0426	
2	52.010	390.36368	3.97142	3.9574	

(R)-benzyl 2-(2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo[1,2]thiazin-3-yl)acetate (4ea).

Yield: 78.9 mg (84%). White solid, mp: 151-152 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.73 (dd, J = 4.2, 1.7 Hz, 1H), 8.06 (dd, J = 8.2, 1.7 Hz, 1H), 7.91 – 7.77 (d, J = 8.4Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.48 (t, J = 7.2 Hz, 2H), 7.37 (d, J = 8.4 Hz, 1H), 7.32 – 7.26 (m, 4H), 7.15 – 7.09 (m, 2H), 6.62 (s, 1H), 4.83 – 4.73 (m, 2H), 3.32 – 3.19 (m, 2H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 151.4, 146.9, 142.5, 136.8, 135.7, 135.2, 133.1, 132.2, 131.7, 131.3, 129.4, 128.5, 128.3, 128.2, 127.6, 127.4, 127.0, 121.2, 121.1, 112.0, 66.7, 39.6, 18.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₃N₂O₄S]⁺ requires 471.1373, found 471.1366. [α]_D²⁵ = -164 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 24.8 min, t₂ (major) = 30.3 min.

(R)-benzyl 2-(6-(tert-butyl)-2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo[1,2]thiazin-3-

yl)acetate (4fa).

Yield: 97.7 mg (93%). White solid, mp: 170-171 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.78 (dd, J = 4.2, 1.7 Hz, 1H), 8.06 (dd, J = 8.3, 1.7 Hz, 1H), 7.76 (d, J = 8.3 Hz,

1H), 7.72 (d, J = 8.4 Hz, 1H), 7.52 (dd, J = 8.3, 1.9 Hz, 1H), 7.46 (d, J = 1.9 Hz,

1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.32 – 7.26 (m, 4H), 7.15 – 7.09 (m, 2H), 6.60 (s, 1H), 4.81 – 4.73 (m, 2H), 3.32 – 3.22 (m, 2H), 2.30 (s, 3H), 1.41 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 168.7, 155.2, 151.5, 147.0, 142.6, 136.5, 135.8, 135.3, 132.8, 131.3, 129.8, 129.4, 129.3, 128.5, 128.3, 128.2, 127.4, 125.2, 123.8, 121.1, 121.0, 112.2, 66.7, 39.6, 35.2, 31.2, 19.0. **HRMS** (ESI): m/z [M+H]⁺calcd for

 $[C_{31}H_{31}N_2O_4S]^+$ requires 527.1999, found 527.1992. $[\alpha]_D^{25} = -123$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 18.6 min, t₂ (major) = 32.5 min.

(*R*)-benzyl 2-(2-(7-methylquinolin-8-yl)-1,1-dioxido-6-phenyl-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ga).

Yield: 97.7 mg (89%). White solid, mp: 210-211 °C. ¹H NMR (600 MHz, CDCl₃) $\delta 8.77$ (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.2, 1.7 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.71 – 7.65 (m, 4H), 7.54 – 7.49 (t, J = 8.4 Hz, 2H), 7.47 – 7.42 (t, J = 8.4 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.34 – 7.27 (m, 4H), 7.17 – 7.11 (m, 2H), 6.68 (s, 1H), 4.83 – 4.75 (m, 2H), 3.35 – 3.24 (m, 2H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 151.5, 150.0, 144.7, 142.6, 139.8, 137.2, 135.8, 135.3, 133.5, 131.3, 131.0, 129.4, 129.3, 129.1, 128.5, 128.3, 128.2, 128.1, 127.4, 126.4, 125.6, 121.8, 121.2, 112.0, 66.7, 39.7, 19.0. HRMS (ESI): m/z [M+H]⁺calcd for [C₃₃H₂₇N₂O₄S]⁺ requires 547.1686, found 547.1683. [α]_D²⁵ = -136 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 42.6 min, t₂ (major) = 59.4 min.

Peak	RetTime	Area	Height	Area
1	42.526	2.23288e4	268.32419	49.6931
2	59.383	2.26046e4	196.31415	50.3069

Peak	RetTime	Area	Height	Area
1	42.618	3.76942e4	439.91489	97.4353
2	59.395	992.19702	8.47763	2.5647

(R)-benzyl 2-(6-methoxy-2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo[1,2]thiazin-3-

yl)acetate (4ha).

Yield: 89.9 mg (90%). White solid, mp: 140-141 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.78 (dd, J = 4.2,

1.7 Hz, 1H, 8.06 (dd, J = 8.2, 1.7 Hz, 1H), 7.73 (dd, J = 12.6, 8.5 Hz, 2H), 7.37 (d, J = 8.4 Hz, 1H), 7.33 - 7.26 (m, 4H), 7.16 - 7.09 (m, 2H), 6.99 (dd, J = 8.7, 2.5 Hz, 1H), 6.90 (d, J = 2.5 Hz, 1H), 6.53 (s, 1H), 4.81 - 4.73 (m, 2H), 3.89 (s, 3H), 3.52 - 3.07 (m, 2H), 2.31 (s, 3H).

142.6, 137.3, 135.8, 135.2, 135.1, 131.2, 129.4, 129.3, 128.5, 128.3, 128.2, 127.4, 125.3, 123.2, 121.1, 114.5, 11.6, 110.4, 66.7, 55.6, 39.6, 18.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₈H₂₅N₂O₅S]⁺ requires 501.1479, found 501.1474. $[\alpha]_D^{25} = -45$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 37.0 min, t₂ (major) = 46.4 min.

(*R*)-benzyl 2-(6-acetamido-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ia).

Yield: 56.5 mg (54%). White solid, mp: 148-149 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.69 (dd, J = 4.2, 1.7 Hz, 1H), 8.27 (s, 1H), 8.01 (dd, J = 8.3, 1.8 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.63 – 7.56 (d, J = 8.4 Hz, 2H), 7.43 (dd, J = 8.5, 2.0 Hz, 1H), 7.32 (d, J = 8.5 Hz, 1H), 7.25 – 7.21 (m, 4H), 7.10 – 7.02 (m, 2H), 6.43 (s, 1H), 4.75 – 4.66 (m, 2H), 3.50 – 2.97 (m, 2H), 2.27 (s, 3H), 2.04 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.3, 168.5, 151.5, 146.7, 142.7, 141.7, 137.0, 136.0, 135.1, 133.9, 130.9, 129.6, 129.4, 128.5, 128.3, 128.2, 127.5, 126.8, 121.9, 121.3, 118.6, 116.8, 111.9, 66.8, 39.6, 24.5, 19.0. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₉H₂₆N₃O₅S]⁺ requires 528.1588, found 528.1594. $[\alpha]_{D}^{25} = -136$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 11.9 min, t₂ (major) = 19.6 min.

 $(R) - benzyl\ 2 - (2 - (7 - methylquinolin - 8 - yl) - 1, 1 - dioxido - 6 - (trifluoromethyl) - 2H - benzo[1,2] thiazin-2H - benzo[1,2] - 2H - benzo[1,2]$

3-yl)acetate (4ja).

Yield: 77.3 mg (72%). White solid, mp: 174-175 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.63 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.2, 1.8 Hz, 1H), 7.92 (d, J = 8.1Hz, 1H), 7.78 – 7.74 (m, 2H), 7.72 (d, J = 8.2 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H),

7.38 – 7.27 (m, 4H), 7.15 (t, *J* = 6.5 Hz, 2H), 6.66 (s, 1H), 4.83 – 4.75 (m, 2H), 3.50 – 3.09 (m, 2H), 2.39 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 168.1, 151.4, 146.5, 142.5, 138.8, 135.8, 135.1, 134.3,

133.8, 133.6 (q, ${}^{2}J_{C-F}$ = 32.2 Hz), 131.0, 129.6, 129.3, 128.5, 128.4, 128.3, 127.4, 124.1 (q, ${}^{3}J_{C-F}$ = 4.4 Hz), 123.5 (q, ${}^{1}J_{C-F}$ = 272.9 Hz) 122.2, 121.3, 111.4, 66.8, 39.6, 19.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.8. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₈H₂₂F₃N₂O₄S]⁺ requires 539.1247, found 539.1247. [α]_D²⁵ = -106 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 20.6 min, t₂ (major) = 31.6 min.

(*R*)-benzyl 2-(8-fluoro-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ka).

49.8920

F Q O S N Me

30.965

1996.74768

35.21692

2

Yield: 89.2 mg (91%). White solid, mp: 155-156 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.64 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.03 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.32 – 7.23 (m, 4H), 7.20 (d, *J* =

2

31.557

325.93695

5.08864

4.6192

7.8 Hz, 1H), 7.16 – 7.07 (m, 3H), 6.59 (d, J = 1.9 Hz, 1H), 4.81 – 4.73 (m, 2H), 3.24 – 3.12 (m, 2H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3, 156.6 (d, ¹ $J_{C-F} = 256.8$ Hz), 151.3, 146.7, 142.6, 137.6, 136.0, 135.7, 135.2, 132.7 (d, ³ $J_{C-F} = 8.8$ Hz), 131.2, 129.4, 129.3, 128.5, 128.3, 128.2, 127.4, 122.9, 121.1, 121.0 (d, ³ $J_{C-F} = 14.4$ Hz), 114.9 (d, ² $J_{C-F} = 20.9$ Hz), 112.1, 112.0, 66.8, 39.6, 19.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -113.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂FN₂O₄S]⁺ requires 489.1279, found 489.1263. [α]_D²⁵ = -192 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 20.6 min, t₂ (major) = 26.2 min.

(*R*)-benzyl 2-(8-chloro-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4la).

Yield: 93.9 mg (93%). White solid, mp: 159-160 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.66 (dd, J = 4.2, Cl ON Me 1.7 Hz, 1H), 8.04 (dd, J = 8.2, 1.7 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 7.9Hz, 1H), 7.40 (dd, J = 8.0, 1.3 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.35 – 7.28 (m, 4H), CO₂Bn 7.31 – 7.24 (m, 1H), 7.18 – 7.11 (m, 2H), 6.57 (s, 1H), 4.83 – 4.75 (m, 2H), 3.26 – 3.14 (m, 2H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3 ,151.3, 146.7, 142.5, 137.2, 136.0, 135.8, 135.2, 131.8, 131.4, 130.6, 130.0, 129.5, 129.3, 128.6, 128.5, 128.4, 128.3, 127.4, 126.3, 121.2, 112.4, 66.8, 39.5, 19.0. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂ClN₂O₄S]⁺ requires 505.0983, found 505.0979. [α]²⁵ = -158 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 24.0 min, t₂ (major) = 28.4 min.

51

(*R*)-benzyl 2-(8-bromo-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ma).

Yield: 75.0 mg (68%). White solid, mp: 145-146 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.67 – 8.45 (d, *J* = 4.2 Hz 1H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.53 (t, *J* = 4.2 Hz, 1H), 7.30 – 7.26 (t, *J* = 4.2 Hz, 3H), 7.22 – 7.15 (m, 4H), 7.04 (s, 2H), 6.47 (s, 1H), 4.73 – 4.63 (m, 2H), 3.16 – 3.05 (m, 2H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 150.3, 145.6, 141.4, 136.0, 135.0, 134.7, 134.1, 132.4, 131.1, 130.8, 130.5, 128.4, 128.3, 127.4, 127.3, 127.2, 126.4, 126.0, 120.1, 114.4, 111.5, 65.7, 38.4, 17.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂BrN₂O₄S]⁺ requires 549.0478, found 549.0482. [α]_D²⁵ = -214 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 40.0 min, t₂ (major) = 43.7 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	40.512	4393.70313	67.9409	49.5236	1	39.973	5598.92578	85.49664	98.0551
2	44.223	4478.24023	64.06456	50.4764	2	43.662	111.05477	1.26821	1.9449

(*R*)-benzyl 2-(7-chloro-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4na).

Yield: 71.5 mg (71%). White solid, mp: 133-134 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.69 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.07 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.80 (d, *J* = 2.1 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.57 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.43 – 7.37 (m, 2H),

7.33 – 7.28 (m, 4H), 7.16 – 7.10 (m, 2H), 6.59 (s, 1H), 4.82 – 4.73 (m, 2H), 3.28 – 3.17 (m, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.4, 151.4, 146.7, 142.5, 137.2, 135.7, 135.2, 133.1, 133.0, 132.0, 131.6, 131.1, 129.5, 129.3, 128.5, 128.3, 128.2, 127.4, 121.3, 121.2, 111.5, 66.8, 39.6, 19.0.

HRMS (ESI): m/z [M+H]⁺calcd for $[C_{27}H_{22}ClN_2O_4S]^+$ requires 505.0983, found 505.0969. $[\alpha]_D^{25} = -213$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 24.4 min, t₂ (major) = 30.9 min.

(*R*)-benzyl 2-(7-bromo-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (40a).

Yield: 77.3 mg (71%). White solid, mp: 126-127 °C. ¹H NMR (600 MHz, CDCl₃)
δ 8.69 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.2, 1.8 Hz, 1H), 7.94 (d, J = 2.0 Hz,
1H), 7.76 - 7.70 (m, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.33

-7.28 (m, 4H), 7.18 - 7.10 (m, 2H), 6.58 (s, 1H), 4.82 - 4.73 (m, 2H), 3.27 - 3.16 (m, 2H), 2.35 (s, 3H). $^{13}C \text{ NMR} (151 \text{ MHz, CDCl}_3) \delta 168.3, 151.4, 146.7, 142.5, 137.4, 135.7, 135.2, 134.8, 133.2, 132.0, 131.1, 129.5, 129.3, 128.6, 128.5, 128.3, 128.2, 127.4, 124.1, 121.2, 120.5, 111.6, 66.8, 39.6, 19.0. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂BrN₂O₄S]⁺ requires 549.0478, found 549.0471. [<math>\alpha$]_D²⁵ = -429 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 25.6 min, t₂ (major) = 34.2 min.

(R)-benzyl 2-(6,8-difluoro-2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo[1,2]thiazin-3-

yl)acetate (4pa).

Yield: 41.4 mg (41%). White solid, mp: 153-154 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, J = 4.2 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.33 – 7.29 (m, 4H), 7.15 (dd, J = 6.4, 3.0 Hz, 2H), 6.97 – 6.92

(d, 1H), 6.92 - 6.86 (m, 1H), 6.55 (s, 1H), 4.86 - 4.70 (m, 2H), 3.24 - 3.11 (m, 2H), 2.45 (s, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 168.0, 164.0 (d, ${}^{1}J_{C-F} = 241.4$ Hz), 157.6 (d, ${}^{1}J_{C-F} = 241.6$ Hz), 151.3, 146.6, 142.7, 139.1, 137.5, 137.4, 135.7, 135.1, 130.9, 129.5, 129.4, 128.5, 128.4, 128.3, 127.4, 121.3, 117.5 (d, ${}^{2}J_{C-F} = 11.1$ Hz), 111.4, 109.3 (d, ${}^{2}J_{C-F} = 18.8$ Hz), 103.6 (d, ${}^{3}J_{C-F} = 2.3$ Hz), 66.9, 39.6, 19.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -103.4, -109.0. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₁F₂N₂O₄S]⁺ requires 507.1185, found 507.1189. [α]²⁵_D = -193 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 22.0 min, t₂ (major) = 39.0 min.

2	41.070	5327.98633	68.48190	49.9897	2	38.968	207.31775	3.03960
~	11.070	5521.90055	00.10170	17.7077	-	50.700	201.51115	5.05700

(R)-benzyl 2-(6,7-dimethoxy-2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo[1,2]thiazin-3vl)acetate (4qa).

1.6937

181.24104

11.16241

6.5215

Yield: 46.7 mg (44%). White solid, mp: 168-169 °C. ¹H NMR (600 MHz, CDCl₃) MeC δ 8.81 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.2, 1.7 Hz, 1H), 7.73 (d, J = 8.4 MeO Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.35 – 7.32 (m, 1H), 7.31 – 7.24 (m, 4H), 7.13 └O₂Bn -7.07 (m, 2H), 6.90 (s, 1H), 6.50 (s, 1H), 4.80 - 4.70 (m, 2H), 3.99 (s, 3H), 3.92 (s, 3H), 3.28 - 3.19 (m, 2H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.8, 151.9, 151.5, 148.9, 147.0, 142.6, 135.7, 135.3, 135.1, 131.3, 129.4, 129.3, 128.4, 128.3, 128.2, 127.4, 127.2, 124.9, 121.1, 111.5, 108.8, 103.3, 66.6, 56.3, 56.2, 39.4, 18.9. **HRMS** (ESI): $m/z [M+H]^+$ calcd for $[C_{29}H_{27}N_2O_6S]^+$ requires 531.1584, found 531.1577. $[\alpha]_D^{25} = -158$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 85% ee (CHIRALPAK AD-H, hexane/i-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 167.7 min, t₂ (major) = 202.2 min.

(R)-benzyl 2-(2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-thieno[1,2]thiazin-3-yl)acetate (4ra).

1

2

202.184

9872.52734

46.3640

53.6360

109.02621

1

2

172.221

201.671

9.38550e4

Yield: 48.8 mg (51%). White solid, mp: 165-166 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.84 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.07 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.53 (d, J = 5.1 Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.30 – 7.26 (m, ĊO₂Bn 3H), 7.13 - 7.07 (m, 3H), 6.64 (s, 1H), 4.82 - 4.70 (m, 2H), 3.31 - 3.19 (m, 2H), 2.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 151.6, 147.0, 142.8, 141.3, 136.7, 135.8, 135.2, 130.8, 129.6, 129.4, 128.7, 128.5, 128.3, 128.2, 127.7, 127.5, 125.4, 121.2, 108.2, 66.7, 39.3, 18.7. HRMS (ESI): m/z $[M+H]^+$ calcd for $[C_{25}H_{21}N_2O_4S_2]^+$ requires 477.0937, found 477.0933. $[\alpha]_D^{25} = -89$ (c = 0.1, CH₂Cl₂).

The product was analyzed by HPLC to determine the enantiomeric excess: 85% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 19.4 min, t_2 (major) = 21.8 min.

(R)-benzyl 2-(2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-naphtho[1,2]thiazin-3-yl)acetate (4sa).

Yield: 58.7 mg (56%). Red solid, mp: 124-125 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.93 (d, *J* = 8.4 Hz, 1H), 8.76 (d, *J* = 4.4, 1.8 Hz, 1H), 8.07 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 7.6, 1.8 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.58 - 7.47 (m, 2H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.33 – 7.27 (m, 4H), 7.17 – 7.11 (m, 2H), 6.69 (s, 1H), 4.85 – 4.73 (m, 2H), 3.55 – 3.06 (m, 2H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.5, 151.6, 146.9, 142.6, 137.3, 135.7, 135.2, 133.2, 132.9, 132.2, 131.5, 129.4, 129.4, 128.5, 128.4, 128.3, 128.2, 128.1, 127.4, 127.2, 126.4, 126.4, 125.2, 123.9, 121.2, 112.2, 66.7, 39.5, 18.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₃₁H₂₅N₂O₄S]⁺ requires 521.1530, found 521.1508. [α]_D²⁵ = -86 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 29.8 min, t₂ (major) = 48.7 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	29.729	5249.31836	89.10143	49.0093	1	29.786	4555.93506	78.72048	97.6171
2	48.640	5461.54150	56.54790	50.9907	2	48.719	111.21181	8.18547e-1	2.3829

(*R*)-benzyl 2-(2-(7-methylquinolin-8-yl)-1,1-dioxido-8-oxo-2*H*,8*H*-chromeno[1,2]thiazin-3-yl)acetate (4ta).

Yield: 83.3 mg (77%). White solid, mp: 123-124 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.63 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.2, 1.7 Hz, 1H), 7.94 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 9.5 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.35 (s, 1H), 7.34 – 7.27 (m, 4H), 7.14 (dd, J = 6.6, 2.8 Hz, 2H), 6.64 (s, 1H), 6.43 (d, J = 9.5 Hz, 1H), 4.85 – 4.71 (m, 2H), 3.30 – 3.14 (m, 2H), 2.41 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 159.8, 155.6, 151.4, 146.5, 142.6, 142.5, 139.9, 136.4, 135.8, 135.1, 130.8, 129.6, 129.4, 128.8, 128.5, 128.4, 128.3, 127.4, 121.9, 121.3, 118.2, 116.9, 114.1, 111.3, 66.9, 39.8, 19.1. HRMS (ESI): m/z [M+H]⁺calcd for [C₃₀H₂₃N₂O₆S]⁺ requires 539.1271, found 539.1277. [α]_D²⁵ = -132 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 85% ee (CHIRALPAK IB-H, hexane/*i*-PrOH =80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 55.1 min, t₂ (major) = 67.5 min.

(*R*)-benzyl 2-(2-(7-ethylquinolin-8-yl)-6-methyl-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ua).

Yield: 79.5 mg (80%). White solid, mp: 135-136 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.71 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.03 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.75 (d, *J* = 8.5 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.31 – 7.22 (m, 6H), 7.15 – 7.01 (m, 2H), 6.53 (s, 1H), 4.81 – 4.66 (m, 2H), 3.45 - 3.06 (m, 2H), 2.67 - 2.54 (m, 2H), 2.46 (s, 3H), 1.15 (t, J = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 151.4, 147.8, 147.0, 142.1, 137.0, 135.6, 135.3, 133.1, 130.6, 129.7, 128.5, 128.4, 128.2, 128.1, 127.5, 127.3, 127.2, 121.2, 111.7, 66.6, 39.5, 24.9, 21.7, 14.3. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₉H₂₇N₂O₄S]⁺ requires 499.1686, found 499.1687. [α]_D²⁵ = -147 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 24.3 min, t₂ (major) = 36.9 min.

(*R*)-benzyl 2-(2-(7-butylquinolin-8-yl)-6-methyl-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4va).

Yield: 95.5 mg (91%). White solid, mp: 117-118 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.81 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.04 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 1H), 7.32 – 7.23 (m, 6H), 7.13 –

7.07 (m, 2H), 6.55 (s, 1H), 4.82 – 4.70 (m, 2H), 3.40 – 3.04 (m, 2H), 2.46 (s, 3H), 2.44 – 2.36 (t, J = 7.6 Hz, 2H), 1.56 – 1.39 (m, 2H), 1.09 (dt, J = 13.3, 9.1, 7.4, 5.9 Hz, 1H), 0.93 (dt, J = 13.5, 9.2, 7.6, 6.1 Hz, 1H), 0.70 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 151.5, 147.2, 146.7, 142.1, 137.0, 135.7, 135.3, 133.0, 130.1, 130.0, 129.5, 128.5, 128.4, 128.2, 128.1, 128.0, 127.4, 127.3, 121.2, 121.1, 112.0, 66.6, 39.4, 32.6, 31.8, 23.0, 21.7, 13.7. HRMS (ESI): m/z [M+H]⁺calcd for [C₃₁H₃₁N₂O₄S]⁺ requires 527.1999, found 527.1993. [α]_D²⁵ = -99 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (CHIRALPAK AD-H, hexane/*i*-

PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 21.7 min, t_2 (major) = 36.8 min.

(*R*)-benzyl 2-(2-(7-chloroquinolin-8-yl)-6-methyl-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4wa).

O, O S N CI CO₂Bn Yield: 80.3 mg (80%). White solid, mp: 150-151 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.69 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.96 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 8.8 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.20 –

7.15 (m, 4H), 7.14 (s, 1H), 7.11 – 7.04 (m, 2H), 6.50 (s, 1H), 4.75 –4.64 (m, 2H), 3.45 – 2.95 (m, 2H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 151.3, 146.5, 141.1, 137.2, 134.9, 134.8, 134.2, 131.9, 130.0, 129.5, 127.6, 127.4, 127.2, 126.8, 126.5, 126.4, 120.9, 120.0, 111.9, 65.7, 38.4, 20.6. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂ClN₂O₄S]⁺ requires 505.0983, found 505.0991. [α]_D²⁵ = -134 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =70/30, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 58.7 min, t₂ (major) = 62.8 min.

59.996	7589.18701	70.83524	50.2435

2

2 62.819

202.94650

(*R*)-benzyl 2-(2-(7-bromoquinolin-8-yl)-6-methyl-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4xa).

Yield: 73.4 mg (67%). White solid, mp: 151-152 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.82 (dd, J = 6.1, 3.1 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.72 – 7.65 (m, 3H), 7.42 – 7.36 (m, 1H), 7.33 – 7.24 (m, 5H), 7.20 – 7.12 (m, 2H), 6.62 (s, 1H), 4.84 – 4.73 (m, 2H), 3.50 – 3.11 (m, 2H), 2.48 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3, 152.3, 147.8, 142.1, 135.9, 135.6, 135.3, 133.2, 133.0, 130.8, 130.7, 130.5, 129.1, 128.6, 128.4, 128.2, 128.1, 128.0, 127.4, 122.1, 121.0, 113.1, 66.7, 39.4, 21.7. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂BrN₂O4S]⁺ requires 549.0478, found 549.0489. $[\alpha]_D^{25} = -132$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) =48.9 min, t₂ (major) = 54.2 min.

(4ya).

Yield: 65.3 mg (58%). Yellow solid, mp: 124-125 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.00 – 8.97 (d, 1H), 8.19 (d, *J* = 8.3 Hz, 1H), 7.90 (d, *J* = 8.4, 2.1 Hz, 1H), 7.64 (d, *J* = 8.0, 2.0 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.32 (dd, *J*

= 5.0, 2.5 Hz, 3H), 7.27 (d, J = 8.1 Hz, 1H), 7.21 (d, J = 7.0 Hz, 4H), 7.06 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 8.0 Hz, 3H), 6.20 (s, 1H), 4.88 – 4.79 (m, 2H), 3.43 – 2.99 (m, 2H), 2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.4, 151.8, 147.1, 144.3, 141.5, 137.7, 136.2, 135.8, 135.4, 132.8, 131.3, 130.0,

129.4, 129.0, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.5, 127.3, 127.1, 121.9, 121.4, 112.2, 66.7, 39.3, 21.6. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{33}H_{27}N_2O_4S]^+$ requires 547.1686, found 547.1688. $[\alpha]_D^{25} = +79$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 35.4 min, t₂ (major) = 42.8 min.

(*R*)-benzyl 2-(2-(7-(4-methoxyphenyl)quinolin-8-yl)-6-methyl-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4za).

2

42.792

3.59584e4

385.85895

97.8052

49.7556

117.28445

1.02370e4

43.327

2

Yield: 101.0 mg (88%). White solid, mp: 127-128 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.95 (dd, J = 4.2, 1.7 Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.32 – 7.25 (m, 3H), 7.24 (d, J = 7.6 Hz, 1H), 7.21 – 7.14 (m, 2H), 7.13 – 7.08 (d, J = 8.4 Hz, 2H), 6.95 (s, 1H), 6.52 – 6.33 (d, J = 8.0 Hz, 2H), 6.21 (s, 1H), 4.85 – 4.73 (m, 2H), 3.65 (s, 3H), 3.39 – 3.00 (m, 2H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.4, 159.0, 151.8, 147.1, 144.3, 141.4, 136.5, 135.8, 135.4, 132.9, 131.4, 130.1, 130.0, 129.7, 129.3, 129.2, 128.4, 128.3, 128.2, 128.1, 128.0, 127.0, 121.7, 121.4, 112.7, 112.2, 66.6, 55.0, 39.3, 21.6. HRMS (ESI): m/z [M+H]⁺calcd for [C34H29N2O5S]⁺ requires 577.1792, found 577.1790. $[\alpha]_D^{25}$ = +94 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 47.0 min, t₂ (major) = 52.2 min.

Peak	RetTime	Area	Height	Area	
1	46.752	1.24812e4	128.29118	50.1418	
2	52.316	1.24106e4	112.71845	49.8582	

Peak	RetTime	Area	Height	Area
1	47.042	341.75574	3.53945	1.9961
2	52.180	1.67795e4	150.21198	98.0039

(R)-benzyl (E)-2-(6-methyl-1,1-dioxido-2-(7-styrylquinolin-8-yl)-2H-benzo[1,2]thiazin-3-

yl)acetate (4zaa).

Yield: 78.3 mg (70%). White solid, mp: 190-191 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.87 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.10 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.82 (d, *J* = 8.7 Hz, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.39 – 7.33 (m, 3H), 7.28 (d, *J* = 5.8 Hz, 1H), 7.26 – 7.18 (m, 5H), 7.16 (d, *J* = 16.3 Hz, 1H), 7.10 – 7.06 (m,

2H), 7.06 – 7.03 (m, 2H), 7.01 (d, J = 16.3 Hz, 1H), 6.64 (s, 1H), 4.85 – 4.52 (m, 2H), 3.44 – 2.99 (m, 2H), 2.57 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.4, 151.9, 147.4, 142.3, 140.1, 137.5, 136.6, 135.7, 135.3, 133.4, 133.0, 130.6, 129.7, 129.6, 128.8, 128.5, 128.4, 128.3, 128.1, 127.4, 127.0, 123.3, 123.2, 121.7, 121.6, 112.1, 66.6, 39.6, 21.8. HRMS (ESI): m/z [M+H]⁺calcd for [C₃₅H₂₉N₂O₄S]⁺ requires 573.1843, found 573.1851. $[\alpha]_D^{25} = +112$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 83% ee (CHIRALPAK IB-H, hexane/*i*-PrOH =80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 47.5 min, t₂ (major) = 60.4 min.

r	62 929	2122 20120	12 57840	40.0564	ĺ
2	63.838	3423.38428	13.5/840	49.0364	Ĺ

2 60.432

```
1.99962e4 70.53047 91.5376
```

(*R*)-benzyl 2-(6-methyl-1,1-dioxido-2-(7-(thiophen-3-yl)quinolin-8-yl)-2*H*-benzo[1,2]thiazin-3-yl)acetate (4zba).

Yield: 90.0 mg (82%). White solid, mp: 161-162 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.82 (dd, J = 4.2, 1.7 Hz, 1H), 8.10 (dd, J = 8.3, 1.8 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.56 (dd, J = 20.8, 8.2 Hz, 2H), 7.39 – 7.32 (m, 2H), 7.29 (dd, J = 4.9, 1.9 Hz, 3H), 7.24 (d, J = 8.1 Hz, 1H), 7.15 – 7.08 (m, 4H), 7.02 (dd, J = 4.9, 3.0 Hz, 1H), 6.35 (s, 1H), 4.75 – 4.65 (m, 2H), 3.51 – 3.04 (m, 2H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 151.7, 147.1, 141.7, 140.1, 137.7, 136.9, 135.8, 135.3, 132.9, 131.1, 130.2, 129.6, 128.8, 128.5, 128.4, 128.2, 128.1, 127.1, 124.9, 124.9, 121.8, 121.1, 112.3, 66.6, 39.4, 21.7. HRMS (ESI): m/z [M+H]⁺calcd for [C₃₁H₂₅N₂O₄S₂]⁺ requires 553.1250, found 553.1243. [α]₂²⁵ = -274 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 41.4 min, t₂ (major) = 45.6 min.

(R)-benzyl 2-(2-(5-chloro-7-methylquinolin-8-yl)-6-methyl-1,1-dioxido-2H-benzo[1,2]thiazin-3-

yl)acetate (4zca).

Yield: 92.3 mg (89%). White solid, mp: 128-129 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.78 (dd, J = 4.2, 1.7 Hz, 1H), 8.46 (dd, J = 8.5, 1.7 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.48 (s, 1H), 7.42 – 7.38 (m, 1H), 7.33 – 7.27 (m, 5H), 7.15 – 7.09 (m, 2H), 6.56 (s, 1H), 4.81 – 4.73 (m, 2H), 3.42 – 3.10 (m, 2H), 2.48 (s, 3H), 2.28 (s,

3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 152.0, 147.3, 142.9, 142.3, 136.5, 135.1, 133.0, 132.8, 132.7, 130.6, 129.8, 129.2, 128.6, 128.5, 128.3, 128.2, 127.3, 125.4, 121.8, 121.1, 112.2, 66.8, 39.6, 21.7, 18.8. HRMS (ESI): m/z [M+H]⁺calcd for [C28H₂₄ClN₂O₄S]⁺ requires 519.1140, found 519.1135. $[\alpha]_D^{25} = -102$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min, t_1 (minor) = 24.9 min, t_2 (major) = 58.9 min.

Peak	RetTime	Area	Height	Area
1	25.265	2.07593e4	403.93463	49.8118
2	59.571	2.09162e4	179.97485	50.1882

Peak	RetTime	Area	Height	Area
1	24.904	1.58497e4	315.10645	96.8663
2	58.923	512.74768	4.55417	3.1337

(R)-benzyl 2-(2-(5-bromo-7-methylquinolin-8-yl)-6-methyl-1,1-dioxido-2H-benzo[1,2]thiazin-3yl)acetate (4zda).

Me

Yield: 99.3 mg (94%). Yellow solid, mp: 123-124 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.75 (d, J = 4.1, 1.6 Hz, 1H), 8.42 (d, J = 8.5, 1.6 Hz, 1H), 7.70 (t, J = 4.0 Hz, 2H), 7.41 – 7.37 (m, J = 8.5, 4.2 Hz, 1H), 7.36 – 7.26 (m, 5H), 7.16 – ĊO₂Bn 7.10 (m, *J* = 6.7, 2.9 Hz, 2H), 6.56 (s, 1H), 4.79 (t, *J* = 1.7 Hz, 2H), 3.53 – 3.03 (dd, 2H), 2.48 (s, 3H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 152.0, 147.4, 143.2, 142.3, 136.4, 135.4, 135.1, 133.0, 132.9, 131.3, 129.8, 128.7, 128.5, 128.4, 128.3, 127.3, 126.8, 123.5, 122.2, 121.1, 112., 2, 66.8, 39.6, 21.7, 18.7. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₈H₂₄BrN₂O₄S]⁺ requires 563.0635, found 563.0631. $[\alpha]_D^{25} = -199$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/i-PrOH =65/35, detector: 254 nm, T = 25

^oC, flow rate: 1 mL/min), t_1 (minor) = 26.8 min, t_2 (major) = 73.0 min.

(R)-benzyl 2-(2-(5,7-dichloroquinolin-8-yl)-6-methyl-1,1-dioxido-2H-benzo[1,2]thiazin-3-

yl)acetate (4zea).

	C C
o c	

Yield: 54.6 mg (51%). White solid, mp: 172-173 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.81 (dd, J = 4.1, 1.6 Hz, 1H), 8.46 (dd, J = 8.5, 1.6 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.61 (s, 1H), 7.49 – 7.40 (m, 1H), 7.30 – 7.25 (m, 4H), 7.24 (s, ĊO₂Bn 1H), 7.17 – 7.12 (m, 2H), 6.59 (s, 1H), 4.84 – 4.76 (m, 2H), 3.44 – 3.01 (m, 2H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3, 152.9, 147.7, 142.3, 137.9, 135.6, 135.2, 133.8, 133.1, 132.8, 130.5, 130.4, 128.7, 128.5, 128.3, 128.2, 127.7, 127.5, 125.8, 122.6, 121.1, 113.3, 66.9, 39.5, 21.7. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₁Cl₂N₂O₄S]⁺ requires 539.0594, found 539.0595. $[\alpha]_D^{25} = -117$ (c = 0.1, CH_2Cl_2). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ $(minor) = 36.0 min, t_2 (major) = 59.4 min.$

(*R*)-benzyl 2-(2-(5,7-dibromoquinolin-8-yl)-6-methyl-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4zfa).

Yield: 39.8 mg (32%). White solid, mp: 184-185 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.79 (d, J = 4.3, 1H), 8.45 (dd, J = 8.5, 1.6 Hz, 1H), 8.01 (s, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.52 – 7.45 (m, 1H), 7.34 – 7.27 (m, 4H), 7.26 (s, 1H), 7.17 (t, J = 5.9 Hz, 2H), 6.62 (s, 1H), 4.82 (m, 2H), 3.43 – 3.07 (m, 2H), 2.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 152.8, 147.9, 142.3, 135.8, 135.3, 135.1, 133.7, 133.2, 132.9, 130.7, 128.7, 128.6, 128.5, 128.3, 128.2, 127.5, 127.4, 124.4, 123.1, 121.0, 113.4, 66.9, 39.4, 21.7. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₁Br₂N₂O₄S]⁺ requires 626.9583, found 626.9597. [α]²⁵_D = -54 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 33.8 min, t₂ (major) = 65.9 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	34.520	1580.34045	25.33051	49.6439	1	33.777	6254.67480	99.66270	96.7056
2	66.679	1603.01001	13.09837	50.3561	2	65.918	213.07454	1.82302	3.2944

(*R*)-methyl 2-(6-methyl-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ab).

Yield: 70.4 mg (86%). White solid, mp: 219-218 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.79 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.10 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.31 –

7.27 (m, 2H), 6.54 (s, 1H), 3.31 (s, 3H), 3.28 – 3.00 (m, 2H), 2.47 (s, 3H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.2, 151.4, 147.0, 142.5, 142.2, 136.8, 135.7, 133.1, 131.3, 129.9, 129.3, 128.5, 127.4, 127.3, 121.1, 111.8, 51.8, 39.6, 21.7, 18.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₂H₂₁N₂O₄S]⁺

requires 409.1217, found 409.1210. $[\alpha]_D^{25} = -213$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 23.0 min, t₂ (minor) = 29.8 min.

(*R*)-ethyl 2-(6-methyl-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ac).

Yield: 72.2 mg (86%). White solid, mp: 143-144 °C. ¹H NMR (600 MHz, CDCl₃) $\delta 8.79$ (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.2, 1.7 Hz, 1H), 7.76 (d, J = 8.4 Hz, H), 7.70 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.33 – 7.30 (m, 1H), 7.29 –

7.26 (m, 2H), 6.55 (s, 1H), 3.79 - 3.71 (m, 2H), 3.23 - 3.14 (m, 2H), 2.46 (s, 3H), 2.33 (s, 3H), 0.97 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.8, 151.4, 147.0, 142.6, 142.2, 137.0, 135.7, 133.1, 131.4, 129.9, 129.4, 129.3, 129.2, 128.5, 127.4, 127.3, 121.1, 121.0, 111.8, 60.9, 39.8, 21.7, 18.9, 13.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₃H₂₃N₂O₄S]⁺ requires 423.1373, found 423.1367. [α]_D²⁵ = -210 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 23.1 min, t₂ (minor) = 39.8 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	23.205	3875.62231	91.91750	49.9937	1	23.118	1.33123e4	289.16638	96.2196
2	39.484	3876.59839	54.52258	50.0063	2	39.808	523.02814	7.36591	3.78047

(R)-isopropyl 2-(6-methyl-2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo[1,2]thiazin-3-

yl)acetate (4ad).

Yield: 81.5 mg (93%). White solid, mp: 158-159 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.2, 1.7 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.34 – 7.30 (m, 1H), 7.29 – 7.24 (m, 2H), 6.55 (s, 1H), 4.70 – 4.62 (m, 1H), 3.28 – 3.03 (m, 2H), 2.46

(s, 3H), 2.34 (s, 3H), 1.03 (d, J = 6.3 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.4, 151.4, 146.9, 142.6, 142.1, 137.0, 135.7, 133.1, 131.4, 129.9, 129.4, 129.2, 128.4, 127.4, 127.2, 121.1, 121.0, 111.7, 68.6, 39.8, 21.7, 21.5, 19.0. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₄H₂₅N₂O₄S]⁺ requires 437.1530, found 437.1529. [α]_D²⁵ = -165 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =60/40, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 17.7 min, t₂ (major) = 41.4 min.

(*R*)-butyl 2-(6-methyl-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[1,2]thiazin-3-yl)acetate (4ae).

Yield: 77.4 mg (86%). White solid, mp: 130-131 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.80 (dd, J = 4.2, 1.7 Hz, 1H), 8.09 (dd, J = 8.2, 1.7 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.27 (dd, J = 7.8, 1.6 Hz, 2H), 6.55 (s, 1H), 3.76 – 3.65 (m, 2H), 3.25 – 3.13 (m,

2H), 2.46 (s, 3H), 2.33 (s, 3H), 1.37 – 1.24 (m, 2H), 1.16 – 1.08 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 168.9, 151.5, 147.0, 142.6, 142.1, 136.9, 135.7, 133.1, 131.4, 129.7, 129.4, 129.3, 128.5, 127.4, 127.2, 121.1, 121.0, 111.7, 64.9, 39.7, 30.3, 21.7, 18.9, 13.6. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₅H₂₇N₂O4S]⁺ requires 451.1686, found 451.1677. $[\alpha]_D^{25} = -158$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =60/40, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 17.0 min, t₂ (major) = 29.1 min.

(R)-tert-butyl 2-(6-methyl-2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo[1,2]thiazin-3-

yl)acetate (4af).

Yield: 47.3 mg (52%). White solid, mp: 154-155 °C. ¹H NMR (600 MHz, CDCl₃)
δ 8.71 (dd, J = 4.2, 1.7 Hz, 1H), 8.02 (dd, J = 8.2, 1.7 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.26 - 7.23 (m, 1H), 7.23
- 7.17 (m, 2H), 6.47 (s, 1H), 3.25 - 2.87 (m, 2H), 2.40 (s, 3H), 2.28 (s, 3H), 1.12

(s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 168.1, 151.4, 147.0, 142.5, 142.1, 137.4, 135.6, 133.2, 131.6, 129.9, 129.5, 129.1, 128.3, 127.5, 127.2, 121.1, 111.6, 81.3, 40.7, 27.7, 21.7, 19.0. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₅H₂₇N₂O₄S]⁺ requires 451.1686, found 451.1688. [α]_D²⁵ = -218 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (CHIRALPAK

AD-H, hexane/*i*-PrOH =60/40, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 18.7 min, t_2 (major) = 32.7 min.

(R)-3-benzyl-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[1,2]thiazine 1,1-dioxide (4ag).

Yield: 51.1 mg (60%). White solid, mp: 206-207 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.72 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.08 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.19 – 7.12 (m, 3H), 6.91 – 6.86 (m, 2H), 6.26 (s, 1H), 3.68 – 3.06

(m, 2H), 2.46 (s, 3H), 2.13 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 151.1, 146.8, 143.7, 142.2, 142.0, 136.6, 135.6, 133.6, 131.7, 129.3, 129.1, 128.8, 128.3, 127.9, 127.3, 126.9, 126.6, 121.1, 121.0, 109.9, 40.3, 21.7, 18.8. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₆H₂₃N₂O₂S]⁺ requires 427.1475, found 427.1482. [α]_D²⁵ = -185 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (CHIRALPAK AS-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 11.3 min, t₂ (major) = 14.4 min.

1	11.277	9026.43262	192.32336	49.7502	1	11.344	9219.26465	207.90971	96.5200
2	14.070	9117.08594	149.26382	50.2498	2	14.442	332.40063	6.51449	3.4800

(*R*)-3-(4-fluorobenzyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine 1,1-dioxide (4ah).

Yield: 49.1mg (55%). White solid, mp: 180-181 °C. ¹H NMR (600 MHz, CDCl₃) δ
8.69 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.2, 1.7 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.32 - 7.28 (m, 1H), 7.24 (d, J = 1.6 Hz, 2H), 6.87 - 6.81 (m, 4H), 6.27 (s, 1H), 3.48 (d, J = 16.3 Hz, 1H), 3.23 (d, J = 16.4 Hz, 1H), 2.46 (s, 3H), 2.15 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.7

(d, ${}^{1}J_{C-F} = 245.1$ Hz), 151.1, 146.7, 143.4, 142.0, 135.6, 133.5, 132.4 (d, ${}^{3}J_{C-F} = 3.6$ Hz), 131.7, 130.5, 130.4, 129.3, 129.2, 128.8, 128.0, 127.3, 126.9, 121.2, 121.0, 115.1, 115.0, 110.1, 39.5, 21.7, 18.8. 19 **F NMR** (565 MHz, CDCl₃) δ -116.3. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₆H₂₂FN₂O₂S]⁺ requires 445.1381, found 4445.1391. [α]_D²⁵ = -94 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (CHIRALPAK AS-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 16.0 min, t₂ (major) = 30.1 min.

(*R*)-3-(4-chlorobenzyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine 1,1-dioxide (4ai).

Yield: 66.3mg (72%). White solid, mp: 142-143 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.66 (dd, J = 4.3, 1.8 Hz, 1H), 8.05 (dd, J = 8.2, 1.7 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.24 (d, J = 6.0 Hz, 2H), 7.14 – 7.07 (m, 2H), 6.80 (d, J = 8.0 Hz, 2H), 6.28 (s, 1H), 3.47 (d, J = 16.3 Hz, 1H), 3.24 (d, J = 16.3 Hz, 1H), 2.46 (s, 3H), 2.17 (s, 3H). ¹³C NMR

 $(151 \text{ MHz}, \text{CDCl}_3) \delta 151.1, 146.7, 143.1, 142.1, 142.0, 135.6, 135.2, 133.5, 132.4, 131.7, 130.4, 129.4, 129.2, 128.9, 128.3, 128.1, 127.3, 127.0, 121.1, 121.0, 110.2, 39.7, 21.7, 18.8.$ **HRMS** $(ESI): m/z [M+H]⁺calcd for [C₂₆H₂₂ClN₂O₂S]⁺ requires 461.1085, found 461.1092. [<math>\alpha$]_D²⁵ = -36 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =60/40, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 16.0 min, t₂ (major) = 41.4 min.

(R) - 6 - methyl - 2 - (7 - methyl quinolin - 8 - yl) - 3 - (4 - (trifluoromethyl) benzyl) - 2H - benzo[1,2] thiazine (R) - 2H - benzo[1,2] + benz

1,1-dioxide (4aj).

Yield: 61.0mg (62%). White solid, mp: 168-169 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.61 (dd, J = 4.2, 1.7 Hz, 1H), 8.02 (dd, J = 8.2, 1.7 Hz, 1H), 7.68 (dd, J = 11.5, 8.1 Hz, 2H), 7.33 (dd, J = 15.6, 8.2 Hz, 3H), 7.28 – 7.22 (m, 3H), 6.95 (d, J = 8.0Hz, 2H), 6.33 (s, 1H), 3.54 (d, J = 16.2 Hz, 1H), 3.37 (d, J = 16.2 Hz, 1H), 2.46 (s, 3H), 2.16 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.1, 146.6, 142.4, 142.1, 142.0,

140.8, 135.5, 133.4, 131.6, 129.1, 129.0 (q, ${}^{2}J_{C-F} = 35.6 \text{ Hz}$), 128.5, 128.2, 127.3, 127.0, 125.0 (q, ${}^{3}J_{C-F} = 4.4 \text{ Hz}$), 124.2 (q, ${}^{1}J_{C-F} = 271.9 \text{ Hz}$), 121.2, 121.0, 110.7, 40.3, 21.7, 18.8. ¹⁹F NMR (565 MHz,

CDCl₃) δ -62.4. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₂F₃N₂O₂S]⁺ requires 495.1349, found 495.1353. [α]_D²⁵ = -104 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =60/40, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 11.6 min, t₂ (major) = 36.1 min.

(*R*)-3-(4-methoxybenzyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine 1,1-dioxide (4ak).

Yield: 56.6mg (62%). White solid, mp: 134-135 °C.¹H NMR (600 MHz, CDCl₃) δ 8.71 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.2, 1.7 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.22 (d, J = 7.7 Hz, 2H), 6.84 – 6.79 (m, 2H), 6.75 – 6.69 (m, 2H), 6.24 (s, 1H), 3.76 (s, 3H), 3.47 (d, J = 16.5 Hz, 1H), 3.18 (d, J = 16.5 Hz, 1H), 2.44 (s, 3H), 2.17 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.4, 151.1, 146.8, 144.1, 142.1, 142.0, 135.6, 133.7, 131.8, 130.2, 129.3, 128.8, 128.6, 127.8, 127.3, 126.9, 121.1, 121.0, 113.7, 109.6, 55.3, 39.4, 21.7, 18.8. HRMS (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₅N₂O₃S]⁺ requires 457.1580, found 457.1587. [α]_D²⁵ = -190 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (CHIRALPAK AS-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 14.4 min, t₂ (major) = 18.4 min.

(R)-6-methyl-2-(7-methylquinolin-8-yl)-3-phenethyl-2H-benzo[1,2]thiazine 1,1-dioxide (4al).

49.6751

18.227

7622.93652

86.34531

2

Yield: 56.5mg (64%). Yellow solid, mp: 180-181 °C.¹H NMR (600 MHz, CDCl₃) δ 8.82 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.11 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 8.3 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.25 – 7.22 (m, 2H), 7.16 (dd, *J* = 8.2, 6.6 Hz, 2H), 7.13 – 7.08 (m, 1H), 6.92 – 6.88 (m,

2

18.430

320.63315

3.55101

5.1210

2H), 6.39 (s, 1H), 2.89 – 2.78 (m, 2H), 2.47 (s, 3H), 2.36 – 2.31 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 151.3, 147.0, 143.8, 142.0, 141.1, 140.8, 135.6, 133.5, 132.2, 129.7, 129.4, 128.8, 127.9, 127.5, 126.9, 126.0, 121.1, 108.9, 35.8, 34.1, 21.7, 18.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₂₇H₂₅N₂O₂S]⁺ requires 441.1631, found 4411632. [α]_D²⁵ = -405 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 84% ee (CHIRALPAK AS-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 12.5 min, t₂ (major) = 22.9 min.

(*R*)-3-((diphenylphosphoryl)methyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine 1,1-dioxide (4am).

16.5, 13.1 Hz, 1H), 2.99 (t, J = 15.9 Hz, 1H), 2.40 (s, 3H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.4, 147.1, 142.2(d, ${}^{3}J_{C-F} = 4.3$ Hz), 135.8, 134.7(d, ${}^{3}J_{C-F} = 4.3$ Hz), 133.0, 132.8(d, ${}^{1}J_{C-F} = 101.5$ Hz), 132.1(d, ${}^{3}J_{C-F} = 2.3$ Hz), 131.8(d, ${}^{3}J_{C-F} = 2.3$ Hz), 131.6(d, ${}^{1}J_{C-F} = 102.6$ Hz), 131.5, 131.4, 131.3, 130.7(d, ${}^{2}J_{C-F} = 9.9$ Hz), 130.1, 129.6, 129.2, 128.8(d, ${}^{2}J_{C-F} = 12.1$ Hz), 128.5(d, ${}^{2}J_{C-F} = 12.1$ Hz), 128.4, 127.6, 127.4, 121.2, 120.8, 113.2(d, ${}^{3}J_{C-F} = 5.5$ Hz), 33.6(d, ${}^{1}J_{C-F} = 66.1$ Hz), 21.7, 18.6. ³¹P NMR (565 MHz, CDCl₃) δ 29.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₃₂H₂₈N₂O₃PS]⁺ requires 551.1553, found 551.1560. [α]²⁵_D = -157 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 77% ee (CHIRALPAK AS-H, hexane/*i*-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 30.7 min, t₂ (major) = 36.4 min.

(R)-benzyl 2-(4,6-dimethyl-2-(7-methylquinolin-8-yl)-1,1-dioxido-2H-benzo [1,2]thiazin-3-

50.2832

yl)acetate (4an).

36.239

2.52002e4

269.91238

2

Yield: 34.9mg (35%). White solid, mp: 179-180 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.83 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.06 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.71 (dd, *J* = 8.4 Hz, 1.9 Hz, 2H), 7.48 (s, 1H), 7.34 – 7.23 (m, 6H), 7.05 (dd, *J* = 7.2, 2.4 Hz, 2H), 4.75 – 4.68

2

36.355

4.34428e4

88.1989

462.57236

(m, 2H), 3.56 (d, J = 16.9 Hz, 1H), 3.26 (d, J = 16.9 Hz, 1H), 2.51 (s, 3H), 2.30 (s, 3H), 2.06 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.7, 151.6, 147.2, 142.5, 141.9, 135.7, 135.3, 135.0, 131.9, 131.6, 129.5, 129.1, 128.4, 128.3, 128.2, 128.1, 127.4, 125.4, 121.1, 121.0, 118.2, 66.5, 37.0, 22.0, 18.6, 15.3. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{29}H_{27}N_2O_4S]^+$ requires 499.1686, found 499.1693. $[\alpha]_D^{25} = -$ 158 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (CHIRALPAK AD-H, hexane/i-PrOH =65/35, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 13.1 min, t_2 (major) = 28.8 min.

(R)-6-methyl-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5aa).

49.3687

29.573

4690.49561

79.15138

1

2

Yield: 88.9 mg (91%). White solid, mp: 200-201 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.80 (dd, J = 4.2, 1.7 Hz, 1H), 7.96 (dd, J = 8.2, 1.7 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.33 - 7.26 (m, 4H), 7.23 (t, J = 7.3 Hz, 2H), 7.21 - 7.15 (m, 3H), 7.06 (d, J = 7.0 Hz, 2H), 6.81 (t, J = 7.4 Hz, 1H), 6.74 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 146.6, 141.7, 141.0, 140.5, 136.7, 135.3, 134.9, 133.1, 131.8, 130.5, 129.2, 128.4, 128.2, 127.8, 127.7, 127.2, 127.0, 126.9, 126.7, 124.1, 121.3,

1

2

28.816

176.93550

2.93734

4.4521

120.7, 22.0, 19.2. **HRMS** (ESI): $m/z [M+H]^+$ calcd for $[C_{31}H_{24}N_2O_2S]^+$ requires 489.1631, found 489.1635. $[\alpha]_D^{25} = -135$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AS-H, hexane/i-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 18.68 min, t_2 (major) = 25.98 min.

Peak	k RetTime Area		Height	Area
1	17.935	4862.44775	45.93650	50.9440
2	25.711	4682.23682	26.10755	49.0560

Peak	RetTime	Area	Height	Area	
1	18.676	141.52917	1.36001	1.0919	
2	25.979	1.28200e ⁴	70.06489	98.9081	

(R)-6-fluoro-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5ba).

Yield: 76.8 mg (78%). White solid, mp: 186-187 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.73 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.97 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.88 (dd, *J* = 8.6, 5.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.32 – 7.15 (m, 8H), 7.07 (dd, J = 10.6, 2.5Hz, 1H), 7.01 (d, J = 7.0 Hz, 2H), 6.84 (t, J = 7.4 Hz, 1H), 6.76 (t, J = 7.6 Hz, 2H), 2.45 (s, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 164.3 (d, ${}^{1}J_{C-F}$ = 250.8 Hz), 150.5, 146.5, 142.5, 140.8, 138.0 (d, ${}^{3}J_{C-F}$ = 9.0 Hz), 136.0, 135.4, 134.7, 132.8, 131.6, 129.6, 129.2, 129.0, 128.4, 128.1, 128.0, 127.3, 127.0, 126.8, 124.1 (d, ${}^{3}J_{C-F}$ = 8.6 Hz), 123.6 (d, ${}^{4}J_{C-F}$ = 2.6 Hz), 114.9 (d, ${}^{2}J_{C-F}$ = 24.2 Hz), 113.5 (d, ${}^{2}J_{C-F}$ = 24.2 Hz), 19.3. ¹⁹F NMR (565 MHz, CDCl₃) δ -106.7. HRMS (ESI): m/z [M+H]⁺ calcd for $[C_{30}H_{21}FN_2O_2S]^+$ requires 493.1381, found 493.1384. $[\alpha]_D^{25} = +16$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/i-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 10.20 min, t₂ (major) = 14.08 min.

2	14.277	1.18918e ⁴	187.14862	49.9222	2	14.077	4.83243e ⁴	704.15118	99.2
2	14.277	1.189186	10/.14002	49.9222		14.077	4.052456	/04.13118	

(R)-6-chloro-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5ca).

Yield: 58.3 mg (57%). White solid, mp: 182-183 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.71 (d, J = 4.2 Hz, 1H), 7.95 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.35 (s, 1H), 7.30 – 7.24 (m, 3H), 7.22 (t, J = 7.5 Hz, 2H), 7.20 – 7.14 (m, 2H), 6.99 (d, J = 7.6 Hz, 2H), 6.82 (t, J = 7.4 Hz, 1H), 6.75 (t, J = 7.5 Hz, 2H), 2.44 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 150.5, 146.4, 142.6, 140.7, 137.7, 136.9, 135.8, 135.4, 134.6, 132.7, 131.6, 131.0, 129.6, 129.1, 128.4, 128.1, 128.0, 127.6, 127.4, 127.0, 126.8, 126.7, 123.5, 123.0, 120.9, 19.3. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₁ClN₂O₂S]⁺ requires 509.1085, found 509.1093. [α]_D²⁵ = -203 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AS-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 13.32 min, t₂ (major) = 16.40 min.

(R)-(6-bromo-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5da).

Yield: 55.6 mg (50%). White solid, mp: 215-216 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.76 (d, J = 3.1 Hz, 1H), 7.99 (d, J = 8.2, Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.63 (dd, J = 8.3, 1.8 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.33 – 7.28 (m, 3H), 7.26 (t, J =

7.5 Hz, 2H), 7.22 (t, J = 7.3 Hz, 2H), 7.02 (d, J = 7.6 Hz, 2H), 6.86 (t, J = 7.4 Hz, 1H), 6.79 (t, J = 7.5 Hz, 2H), 2.48 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 150.6, 146.4, 142.6, 140.7, 137.0, 135.8, 135.4, 134.6, 132.7, 131.6, 131.4, 130.5, 129.7, 129.6, 129.1, 128.4, 128.1, 128.0, 127.4, 127.0, 126.8, 126.1, 123.4, 123.0, 120.9, 19.3. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₁BrN₂O₂S]⁺ requires 553.0580, found 553.0598. [α]_D²⁵ = -206 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine

the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 10.36 min, t_2 (major) = 13.97 min.

(R)-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5ea).

Yield: 90.1 mg (95%). White solid, mp: 232-233 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.73 (dd, J = 4.2, 1.7 Hz, 1H), 7.94 (dd, J = 8.2, 1.7 Hz, 1H), 7.88 (d, J = 7.7 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 6.7 Hz, 2H), 7.26 – 7.19 (m, 3H), 7.19 – 7.12 (m, 2H), 7.04 (d, J = 7.0 Hz, 2H), 6.81 (t, J = 7.4 Hz, 1H), 6.74 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 146.6, 141.1, 140.6, 136.5, 135.4, 135.0, 134.9, 133.0, 132.9, 131.7, 131.3, 129.8, 129.2, 128.3, 127.9, 127.8, 127.5, 127.1, 127.0, 126.9, 126.7, 124.3, 121.3, 120.8, 19.2. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₂N₂O₂S]⁺ requires 475.1475, found 475.1479. $[\alpha]_D^{25} = -158$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 7.66 min, t₂ (major) = 9.39 min.

(R)-6-(tert-butyl)-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5fa).

Yield: 100.6 mg (95%). White solid, mp: 219-220 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.70 (dd, J = 4.2, 1.7 Hz, 1H), 7.87 (dd, J = 8.3, 1.7 Hz, 1H), 7.74 (d, ^tBı J = 8.2 Hz, 1H), 7.51 – 7.37 (m, 2H), 7.34 (d, J = 1.8 Hz, 1H), 7.24 – 7.17 (m, 3H), 7.14 (t, J = 7.5 Hz, 2H), 7.11 – 7.06 (m, 2H), 6.99 (d, J = 6.9 Hz, 2H), 6.75 – 6.70 (m, 1H), 6.66 (t, J = 7.5 Hz, 2H), 2.31 (s, 3H), 1.19 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 154.7, 150.5, 146.6, 140.8, 140.4, 136.7, 135.3, 135.0, 134.6, 133.2, 131.7, 130.4, 129.8, 129.2, 128.2, 127.8, 127.7, 127.0, 126.9, 126.7, 124.9, 124.5, 123.8, 121.0, 120.7, 35.3, 31.2, 19.2. **HRMS** (ESI): m/z [M+H]⁺ calcd for $[C_{34}H_{30}N_2O_2S]^+$ requires 531.2101, found 531.2100. $[\alpha]_D^{25} = -133$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AD-H, hexane/i-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 21.64 min, t₂ (major) = 24.04 min.

Peak	RetTime	Area	Height	Area
1	21.338	1.18531e ⁴	300.55734	50.0774
2	23.860	1.18165e ⁴	260.68475	49.9226

Peak	RetTime	Area	Height	Area
1	21.638	196.48929	5.15724	0.9334
2	24.039	2.08537e ⁴	453.26038	99.0666

(R)- 2-(7-methylquinolin-8-yl)-3,4,6-triphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5ga).

Yield: 103.6 mg (94%). White solid, mp: 239-240 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.75 (dd, J = 4.2, 1.7 Hz, 1H), 8.05 – 7.83 (m, 2H), 7.67 (dd, J = 8.1, 1.7 Hz, 1H), 7.61 (s, 1H), 7.50 (d, J = 7.1 Hz, 3H), 7.41 (t, J = 7.7 Hz, 2H), 7.38 -7.30 (m, 3H), 7.27 - 7.19 (m, 3H), 7.19 - 7.13 (m, 2H), 7.06 (d, J = 7.0 Hz, 2H), 6.80 (t, J = 7.4 Hz,

1H), 6.74 (t, J = 7.6 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 146.6, 144.3, 141.6, 140.6, 140.2, 136.5, 135.5, 135.4, 134.9, 133.0, 131.8, 131.7, 129.8, 129.2, 129.0, 128.3, 128.1, 128.0, 127.9, 127.5, 127.2, 127.0, 126.8, 126.3, 125.7, 124.4, 121.9, 120.8, 19.3. **HRMS** (ESI): $m/z [M+H]^+$ calcd for $[C_{36}H_{26}N_2O_2S]^+$ requires 551.1788, found 551.1795. $[\alpha]_D^{25} = -127$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 9.44 min, t₂ (major) = 12.81 min.

Peak	RetTime	Area	Height	Area
1	9.298	3.58337e4	772.54193	49.9688
2	12.975	3.58785e4	521.12201	50.0312

Peak	RetTime	Area	Height	Area
1	9.444	1377.78796	28.17617	0.7409
2	12.806	1.84586e ⁵	2590.00586	99.2591

(R)-6-methoxy-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5ha).

Yield: 94.8 mg (94%). White solid, mp: 203-204 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 7.93 (dd, J = 8.2, 1.8 Hz, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.25 (d, J = 8.2

Hz, 1H), 7.20 (t, J = 7.5 Hz, 2H), 7.18 – 7.12 (m, 2H), 7.05 (d, J = 7.0 Hz, 2H),

6.98 (dd, J = 8.6, 2.5 Hz, 1H), 6.86 (d, J = 2.5 Hz, 1H), 6.84 – 6.76 (m, 1H), 6.73 (t, J = 7.5 Hz, 2H), 3.75 (s, 3H), 2.42 (s, 3H). ¹³**C** NMR (151 MHz, CDCl₃) δ 161.9, 150.5, 146.6, 141.7, 140.5, 137.1, 136.6, 135.3, 135.0, 133.1, 131.7, 129.7, 129.2, 128.2, 127.9, 127.8, 127.1, 127.0, 126.7, 126.1, 123.9, 123.3, 120.8, 113.2, 112.0, 55.5, 19.3. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₃₁H₂₄N₂O₃S]⁺ requires 505.1580, found 505.1587. [α]_D²⁵ = -139 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AS-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 9.94 min, t₂ (major) = 13.23 min.

(*R*)-N-(2-(7-methylquinolin-8-yl)-1,1-dioxido-3,4-diphenyl-2*H*-benzo[1,2]thiazin-6-yl)acetamide (5ia).

Yield: 95.0 mg (89%). White solid, mp: 226-227 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.76 (dd, J = 4.1, 1.8 Hz, 1H), 7.92 (d, J = 6.6 Hz, 2H), 7.71 (d, J = 8.4 Hz, 1H), 7.65 – 7.52 (m, 2H), 7.49 (d, J = 8.4 Hz, 1H), 7.35 – 7.22 (m, 3H), 7.19 (t, J = 7.5 Hz, 2H), 7.17 – 7.11 (m, 2H), 7.04 (d, J = 7.6 Hz, 2H), 6.80 (t, J = 7.4 Hz, 1H), 6.72 (t, J = 7.5 Hz, 2H), 2.37 (s, 3H), 2.04 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 168.9, 150.6, 146.5, 141.6, 141.1, 140.4, 136.3, 135.9, 135.4, 134.7, 132.9, 131.7, 129.7, 129.2, 128.4, 128.0, 127.9, 127.2, 127.0, 126.8, 123.9, 122.3, 120.9, 118.6, 117.2, 24.5, 19.2. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₂H₂₅N₃O₃S]⁺ requires 532.1689, found 532.1700. [α]_D²⁵ = -118 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 21.86 min, t₂ (major) = 25.34 min.

(R)-2-(7-methylquinolin-8-yl)-3,4-diphenyl-6-(trifluoromethyl)-2H-benzo[1,2]thiazine-1,1-dioxi de (5ja).

Peak	RetTime	Area	Height	Area
1	11.408	1.81699e ⁴	329.69110	49.8285
2	17.606	1.82950e4	201.10814	50.1715

Peak	RetTime	Area	Height	Area
1	11.610	514.76831	9.98517	0.7990
2	17.214	6.39128e ⁴	654.75549	99.2010

(R)- 8-fluoro-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine 1,1-dioxide (5ka).

Yield: 42.2 mg (43%). White solid, mp: 215-216 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.68 (dd, J = 4.3, 1.7 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.48 - 7.40 (m, 1H), 7.30 - 7.17 (m, 6H), 7.16 - 7.10 (m, 3H), 6.97 (d, J = 7.1 Hz, 2H), 6.84 (t, J = 7.3 Hz, 1H), 6.76 (t, J = 7.5 Hz, 2H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.7 (d, ${}^{1}J_{C-F}$ = 255.7 Hz), 150.4, 146.6, 141.7, 141.0, 138.2, 136.4, 135.5, 134.7, 132.8, 132.1 (d, ${}^{3}J_{C-F}$ = (d, ${}^{4}J_{C-F} = 3.3 \text{ Hz}$), 121.8 (d, ${}^{2}J_{C-F} = 14.1 \text{ Hz}$), 120.8, 114.8 (d, ${}^{2}J_{C-F} = 20.8 \text{ Hz}$), 19.4. ¹⁹F NMR (565 MHz, CDCl₃) δ -114.4. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₁FN₂O₂S]⁺ requires 493.1381, found 493.1390. [α]_D²⁵ = -213 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 7.09 min, t₂ (minor) = 14.46 min.

Peak	RetTime	Area	Height	Area
1	7.125	4295.34277	348.51236	50.2657
2	14.468	4249.94043	172.11548	49.7343

Peak	RetTime	Area	Height	Area
1	7.088	1.80252e ⁴	1557.64685	98.6773
2	14.457	241.61351	9.99804	1.3227

(R)-7-chloro-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine 1,1-dioxide (5na).

Yield: 85.9 mg (84%). White solid, mp: 184-185 °C. ¹H NMR (600 MHz, CDCl₃)

δ 8.72 (dd, J = 4.2, 1.7 Hz, 1H), 7.98 (dd, J = 8.2, 1.7 Hz, 1H), 7.86 (d, J = 2.2

 P_{Ph} Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.48 (dd, J = 8.7, 2.2 Hz, 1H), 7.32 (d, J = 8.7 Hz, 1H), 7.28 (dd, J = 8.2, 4.2 Hz, 1H), 7.26 – 7.16 (m, 6H), 6.99 (d, J = 7.0 Hz, 2H), 6.84 (t, J = 7.4 Hz, 1H), 6.76 (t, J = 7.6 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 146.4, 141.3, 140.7, 136.1, 135.4, 134.6, 133.7, 133.6, 133.1, 132.7, 131.6, 131.4, 129.7, 129.2, 128.6, 128.4, 128.0, 127.9, 127.3, 127.0, 126.8, 123.9, 121.3, 120.9, 19.3. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₁ClN₂O₂S]⁺ requires 509.1085, found 509.1089. [α]_D²⁵ = -216 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AS-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 0.5 mL/min), t₁ (minor) = 27.12 min, t₂ (major) = 31.96 min.

(R)-7-bromo-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine 1,1-dioxide (50a).

Yield: 89.6 mg (81%). White solid, mp: 175-176 °C. ¹H NMR (600 MHz, CDCl₃)

27.406

32.716

1

2

1.20488e4

1.25584e4

108.79118

86.13596

δ 8.71 (dd, J = 4.2, 1.7 Hz, 1H), 8.00 (d, J = 2.1 Hz, 1H), 7.96 (dd, J = 8.2, 1.7 Hz, 1H), 7.62 (dd, J = 8.7, 2.1 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.28 – 7.19 (m, 7H), 7.18 - 7.14 (m, 1H), 6.99 (d, J = 7.1 Hz, 2H), 6.83 (t, J = 7.4 Hz, 1H), 6.75 (t, J = 7.6 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 146.4, 141.6, 140.7, 136.0, 135.5, 134.6, 134.3, 134.0, 133.8, 132.7, 131.6, 129.6, 129.2, 128.8, 128.5, 128.0, 127.3, 127.0, 126.8, 124.1, 124.0, 120.9, 120.7, 19.3 **HRMS** (ESI): $m/z [M+H]^+$ calcd for $[C_{30}H_{21}BrN_2O_2S]^+$ requires 553.0580, found 553.0592. $[\alpha]_D^{25} = -199$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AS-H, hexane/i-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 0.5 mL/min), t_1 (minor) = 28.21 min, t_2 (major) = 33.20 min.

(R)-6,8-difluoro-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine 1,1-dioxide (5pa).

1

2

28.209

33.200

195.25334

1.80219e4

1.76910

126.70089

1.0718

98.9282

48.9646

51.0354

Yield: 23.5 mg (24%). White solid, mp: 215-216 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.69 (dd, J = 4.2, 1.7 Hz, 1H), 8.00 (dd, J = 8.2, 1.7 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.29 (dd, J = 8.2, 4.2 Hz, 1H), 7.25 – 7.07 (m, 6H), 6.96 – 6.81 (m, 5H), 6.78 (t, J = 7.6 Hz, 2H), 2.50 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.8 (dd, ¹ $J_{C-F} = 253.2, 12.3$ Hz), 157.7 (dd, ¹ $J_{C-F} = 258.0, 14.4$ Hz), 150.5, 146.46, 142.96, 141.21, 139.98 (d, ² $J_{C-F} = 10.4$ Hz), 135.82, 135.51, 134.52, 132.56, 131.50, 129.36, 129.16, 128.52, 128.13, 127.49, 127.02, 126.89, 123.91 (t, ⁴ $J_{C-F} = 2.3$ Hz), 120.88, 118.29 (dd, J = 14.0, 3.4 Hz), 109.83 (dd, J = 24.2, 3.8 Hz), 103.5 (t, ² $J_{C-F} =$ 25.9 Hz), 19.42. ¹⁹F NMR (565 MHz, CDCl₃) δ -103.3, -109.5. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₀F₂N₂O₂S]⁺ requires 511.1286, found 511.1291. [α]²⁵_D = -194 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) =5.75 min, t₂ (minor) = 8.38 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	5.775	6421.53857	653.07355	49.8803	1	5.748	1.56536e4	1597.87622	98.5978
2	8.390	6452.36670	462.17502	50.1197	2	8.377	222.61229	15.91588	1.4022

(R)-6,7-dimethoxy-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-benzo[1,2]thiazine	1,1-dioxide
(5qa).	

Yield: 102.6 mg (96%). White solid, mp: 205-206 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.83 (dd, J = 4.2, 1.7 Hz, 1H), 7.94 (dd, J = 14.6, 8.6 Hz, 1H), 7.50 (dd, J = 9.5, 5.6 Hz, 1H), 7.35 (s, 1H), 7.32 – 7.20 (m, 5H), 7.19 – 7.14 (m, 2H),

7.07 (d, J = 7.2 Hz, 2H), 6.84 (s, 1H), 6.78 (t, J = 7.2 Hz, 1H), 6.73 (t, J = 7.5 Hz, 2H), 3.89 (s, 3H), 3.74 (s, 3H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.4, 150.6, 148.8, 146.6, 140.4, 139.7, 136.8, 135.4, 134.9, 133.0, 131.6, 129.9, 129.2, 129.1, 128.2, 128.0, 127.7, 127.1, 127.0, 126.7, 125.7,

123.8, 120.8, 109.3, 103.5, 56.3, 56.0, 19.2. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{32}H_{26}N_2O_4S]^+$ requires 535.1686, found 535.1686. $[\alpha]_D^{25} = -170$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) =18.45 min, t₂ (minor) = 29.58 min.

(R)-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-thieno[1,2]thiazine-1,1-dioxide (5ra).

Yield: 23.2 mg (24%). White solid, mp: 199-200 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.92 (dd, J = 4.2, 1.7 Hz, 1H), 7.96 (dd, J = 8.2, 1.7 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 5.2 Hz, 1H), 7.31 (dd, J = 8.2, 4.2 Hz, 1H), 7.26 (t, J = 7.3 Hz, 2H), 7.22 (t, J = 7.4 Hz, 2H), 7.19 – 7.14 (m, 2H), 7.11 – 7.08 (m, 2H), 7.04 (d, J = 5.2 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H), 6.72 (t, J = 7.7 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.7, 146.6, 143.4, 140.8, 140.3, 137.2, 135.4, 134.2, 133.0, 130.8, 130.0, 129.2, 128.5, 128.1, 128.0, 127.9, 127.0, 126.9, 126.8, 126.3, 121.9, 120.9, 19.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₈H₂₀N₂O₂S₂]⁺ requires 481.1039, found 481.1040. [α]_D²⁵ = -157 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 9.24 min, t₂ (major) = 11.64 min.

Peak	RetTime	Area	Height	Area
1	9.003	1.73891e ⁴	259.67963	48.7374
2	11.875	1.82901e ⁴	202.24532	51.2626

Peak	RetTime	Area	Height	Area
1	9.241	136.98273	5.78675	0.6199
2	11.637	2.19605e ⁴	403.85309	99.3801

(R)-2-(7-methylquinolin-8-yl)-3,4-diphenyl-2H-naphtho[1,2]thiazine 1,1-dioxide (5sa).

Yield: 87.1 mg (83%). White solid, mp: 131-132 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.09 (dd, J = 8.6, 1.3 Hz, 1H), 8.74 (dd, J = 4.3, 1.7 Hz, 1H), 7.93 (dd, J = 8.2, 1.7 Hz, 1H), 7.90 (d, J = 9.2 Hz, 1H), 7.85 (d, J = 6.8 Hz, 1H), 7.58 – 7.48 (m, 3H), 7.45 (d, J = 8.9 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.25 – 7.21 (m, 3H), 7.19 (t, J = 8.1 Hz, 2H), 7.12 – 7.07 (m, 2H), 6.83 (t, J = 7.4 Hz, 1H), 6.77 (t, J = 7.5 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 146.6, 141.5, 140.7, 136.9, 135.3, 134.9, 134.6, 133.2, 132.6, 132.0, 131.6, 129.7, 129.1, 128.4, 128.2, 128.1, 127.9, 127.8, 127.5, 127.2, 127.1, 126.9, 126.7, 126.5, 124.7, 124.4, 124.3, 120.7, 19.2. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₄H₂₄N₂O₂S]⁺ requires 525.1631, found 525.1644. [α]_D²⁵ = -242 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AS-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 0.5 mL/min), t₁ (minor) =62.21 min, t₂ (major) = 71.99 min.

(R)-2-(7-ethylquinolin-8-yl)-6-methyl-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5ua).

Yield: 79.1 mg (79%). White solid, mp: 213-214 °C. ¹H NMR (600 MHz, CDCl₃)
δ 8.72 (dd, J = 4.2, 1.7 Hz, 1H), 7.95 (dd, J = 8.2, 1.7 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.32 - 7.24 (m, 5H), 7.21 (t, J = 7.3 Hz, 2H), 7.18 -

7.10 (m, 2H), 6.97 (d, J = 7.0 Hz, 2H), 6.80 (t, J = 7.4 Hz, 1H), 6.73 (t, J = 7.5 Hz, 2H), 3.00 – 2.86 (m, 1H), 2.80 – 2.69 (m, 1H), 2.38 (s, 3H), 1.10 (t, J = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ

150.4, 146.6, 146.3, 141.6, 141.3, 136.7, 135.3, 135.1, 135.0, 132.0, 131.7, 130.2, 129.9, 128.6, 128.4, 127.8, 127.7, 127.2, 127.0, 126.9, 126.7, 124.1, 121.3, 120.8, 24.8, 22.0, 14.4. HRMS (ESI): m/z $[M+H]^+$ calcd for $[C_{32}H_{26}N_2O_2S]^+$ requires 503.1788, found 503.1798. $[\alpha]_D^{25} = -106$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) =15.73 min, t_2 (major) = 18.47 min.

3.87045e4

306.33740

99.6525

(R)-2-(7-butylquinolin-8-yl)-6-methyl-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5va).

2

18.471

Yield: 88.0 mg (83%). White solid, mp: 195-196 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.83 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.94 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.34 – 7.25 (m, 4H), 7.24 – 7.19 (m, 3H), 7.18 – 7.12 (m, 2H), 7.08 - 6.98 (m, 2H), 6.78 (t, J = 7.4 Hz, 1H), 6.72 (t, J = 7.6 Hz, 2H), 2.79 - 2.70 (m, 1H), 2.61 - 2.52 (m, 1H), 2.38 (s, 3H), 1.51 - 1.37 (m, 1H), 1.35 - 1.25 (m, 1H), 1.24 - 1.14 (m, 1H), 1.13-1.01 (m, 1H), 0.76 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 146.8, 145.0, 141.6, 141.3, 136.7, 135.2, 134.9, 132.3, 131.7, 130.6, 130.0, 128.4, 128.3, 127.8, 127.7, 127.2, 127.0, 126.9, 126.6, 124.1, 121.4, 120.8, 32.7, 31.8, 23.0, 21.9, 13.8. HRMS (ESI): m/z [M+H]⁺ calcd for $[C_{34}H_{30}N_2O_2S]^+$ requires 531.2101, found 531.2109. $[\alpha]_D^{25} = -71$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK AD-H, hexane/i-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 10.28 min, t₂ (minor) = 24.32 min.

(R)-2-(7-chloroquinolin-8-yl)-6-methyl-3,4-diphenyl-2H-benzo[1,2]thiazine 1,1-dioxide (5wa).

Yield: 60.4 mg (59%). White solid, mp: 242-243 °C. ¹H NMR (600 MHz, CDCl₃)

δ 9.01 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.96 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.42 – 7.02 (m, 11H), 6.78 (t, J = 7.3 Hz, 1H), 6.73 (t, J = 7.4 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.6, 147.1, 141.9, 140.3, 136.4, 136.3, 135.5, 134.7, 134.4, 132.7, 131.8, 130.9, 130.1, 129.3, 128.4, 128.0, 127.9, 127.8, 127.3, 127.2, 127.1, 126.7, 124.7, 121.6, 121.3, 22.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₁ClN₂O₂S]⁺ requires 509.1085, found 509.1088. $[\alpha]_{D}^{25} = -142$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/i-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) =9.98 min, t_2 (major) = 15.65 min.

(R)-2-(7-bromoquinolin-8-yl)-6-methyl-3,4-diphenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5xa).

Yield: 25.1 mg (23%). White solid, mp: 209-210 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.04 (dd, J = 4.2, 1.7 Hz, 1H), 7.97 (dd, J = 8.3, 1.7 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.54 – 7.42 (m, 2H), 7.40 – 7.36 (m, 1H), 7.35 – 7.27 (m, 5H), 7.27 – 7.11 (m, 4H), 6.78 (t, J = 7.3 Hz, 1H), 6.72 (t, J = 7.6 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.6, 147.5, 141.9, 139.9, 136.4, 135.6, 134.8, 134.7, 134.3, 131.8, 131.1, 130.6, 130.1, 129.5, 128.4, 128.0, 127.9, 127.5, 127.3, 127.1, 126.9, 126.6, 125.0, 121.8, 121.2, 22.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₁BrN₂O₂S]⁺ requires 553.0580, found 553.0586. [α]²⁵ = -113 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) =10.74 min, t₂ (major) = 16.56 min.

(R)-(E)-6-methyl-3,4-diphenyl-2-(7-styrylquinolin-8-yl)-2H-benzo[1,2]thiazine-1,1-dioxide

(5xaa).

Yield: 22.7 mg (20%). White solid, mp: 248-249 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.07 (dd, J = 4.2, 1.7 Hz, 1H), 7.96 (dd, J = 8.2, 1.7 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.65 – 7.56 (m, 2H), 7.38 (d, J = 7.9 Hz, 1H), 7.35 (dd, J = 8.2, 4.2 Hz, 1H), 7.32 – 7.30 (m, 4H), 7.18 – 7.11 (m, 9H), 7.04 – 6.85 (m, 2H), 6.73 (t, J = 7.4 Hz, 1H), 6.65 (t, J = 7.6Hz, 2H), 2.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.3, 146.9, 142.3, 141.9, 138.2, 136.9, 136.1, 135.2, 134.5, 134.4, 132.7, 132.5, 131.8, 130.4, 130.0, 128.8, 128.7, 128.6, 128.4, 127.9, 127.8, 127.4, 127.0, 126.9, 126.5, 124.3, 124.0, 123.5, 122.0, 121.3, 22.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₈H₂₈N₂O₂S]⁺ requires 577.1944, found 577.1956. [α]_D²⁵ = -120 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK OD-H, hexane/*i*- PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 10.92 min, t₂ (major) = 24.46 min.

(R)-6-methyl-3,4-diphenyl-2-(7-(thiophen-3-yl)quinolin-8-yl)-2H-benzo[1,2]thiazine-1,1-dioxide

(5xba).

Yield: 32.7 mg (29%). White solid, mp: 202-203 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 9.21 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.05 (d, *J* = 8.3 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.44 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.36 (d, *J* = 7.9 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.19 – 7.07 (m, 4H), 7.04 – 6.90 (m, 5H), 6.79 (dd, *J* =

3.0, 1.3 Hz, 1H), 6.76 – 6.67 (m, 2H), 6.64 – 6.61 (m, 2H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.1, 146.7, 141.7, 139.9, 138.4, 137.3, 136.2, 135.4, 134.6, 134.3, 133.0, 131.7, 130.2, 130.0, 128.7, 128.6, 128.5, 128.1, 127.8, 127.7, 127.6, 127.4, 126.9, 126.3, 124.6, 124.2, 123.9, 121.9, 121.5, 22.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₄H₂₄N₂O₂S₂]⁺ requires 557.1352, found 557.1361. [α]_D²⁵ = -40 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) =9.00 min, t₂ (major) = 12.04 min.

Peak	RetTime	Area	Height	Area	
1	8.856	6252.42236	166.20657	50.0741	
2	12.075	6233.91602	108.52622	49.9259	

Peak	RetTime	Area	Height	Area	
1	9.004	655.74805	16.94347	1.3746	
2	12.041	4.70475e ⁴	721.12506	98.6254	

(R) - 2 - (5 - chloro - 7 - methylquinolin - 8 - yl) - 6 - methyl - 3, 4 - diphenyl - 2H - benzo [1, 2] thiazine - 1, 1 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 1 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 1, 2 - dioxid - 2H - benzo [1, 2] thiazine - 2H - benzo [1, 2] thiazine - 2H - benzo [1, 2] thiazine - 2H - benzo [1, 2] thiazine

e (5xca).

O O N S N Ph

9.090

12.484

1

2

Yield: 96.6 mg (92%). White solid, mp: 224-225 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.82 (dd, J = 4.2, 1.7 Hz, 1H), 8.35 (dd, J = 8.5, 1.7 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.41 – 7.35 (m, 1H), 7.35 – 7.11 (m, 8H), 7.05 (d, J = 6.9 Hz,

2H), 6.84 (t, J = 7.4 Hz, 1H), 6.76 (t, J = 7.6 Hz, 2H), 2.39 (s, 3H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.0, 147.0, 141.9, 140.9, 140.7, 136.5, 134.9, 134.8, 132.5, 132.4, 131.7, 131.4, 130.5, 129.7, 129.0, 128.5, 128.0, 127.9, 127.3, 127.0, 126.9, 124.9, 124.4, 121.5, 121.3, 22.0, 19.1. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₁H₂₃ClN₂O₂S]⁺ requires 523.1242, found 523.1251. [α]_D²⁵ = -161 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AS-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) =9.23 min, t₂ (major) = 12.47 min.

1.19807e4

1.17947e4

270.86691

134.07501

Peak	RetTime	Area	Height	Area
1	9.225	199.31787	4.64207	0.8544
2	12.471	2.31280e4	270.53802	99.1456

50.3912

49.6088

(*R*)-2-(5-bromo-7-methylquinolin-8-yl)-6-methyl-3,4-diphenyl-*2H*-benzo[1,2]thiazine-1,1-dioxid e (5xda).

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	9.323	3469.97363	84.23627	49.8292	1	9.271	58.63945	1.35928	1.0689
2	12.475	3493.76855	44.43232	50.1708	2	12.417	5427.38965	66.92525	98.9311

 $(\it R) - 2 - (5, 7 - dichloroquinolin - 8 - yl) - 6 - methyl - 3, 4 - diphenyl - 2H - benzo [1, 2] thiazine - 1, 1 - dioxide$

(5xea).

Yield: 97.8 mg (90%). White solid, mp: 206-207 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.03 (dd, J = 4.2, 1.6 Hz, 1H), 8.33 (dd, J = 8.5, 1.6 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.50 – 7.39 (m, 2H), 7.32 (d, J = 7.1 Hz, 2H), 7.29 – 7.11 (m,

7H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.76 (t, *J* = 7.5 Hz, 2H), 2.37 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 152.1, 147.2, 142.1, 140.1, 140.0, 136.3, 135.8, 134.7, 134.3, 132.7, 132.4, 132.1, 131.7, 130.9, 130.1, 128.5, 128.2, 128.0, 127.6, 127.4, 127.3, 127.2, 127.1, 126.9, 125.3, 125.0, 122.3, 121.3, 22.0. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{30}H_{20}Cl_2N_2O_2S]^+$ requires 543.0695, found 543.0695. $[\alpha]_D^{25} = -45$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IC-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 22.08 min, t₂ (minor) = 29.57 min.

(*R*)-2-(5,7-dibromoquinolin-8-yl)-6-methyl-3,4-diphenyl-2*H*-benzo[1,2]thiazine-1,1-dioxide (5xfa).

Yield: 116.0 mg (92%). White solid, mp: 194-195 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.04 (dd, J = 4.2, 1.6 Hz, 1H), 8.34 (dd, J = 8.5, 1.6 Hz, 1H), 7.82 (s, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.37 – 7.08 (m, 9H), 6.82 (t, J = 7.5 Hz, 1H), 6.76 (t, J = 7.5 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.1, 147.6, 142.0, 139.6, 136.2, 135.4, 134.7, 134.6, 134.1, 133.7, 131.7, 131.1, 130.1, 128.5, 128.2, 127.9, 127.4, 127.2, 127.0, 126.8, 126.4, 125.3, 123.0, 122.8, 121.2, 22.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₀Br₂N₂O₂S]⁺ requires 630.9685, found 630.9695. [α]²⁵_D = -110 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IC-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) =20.92 min, t₂ (minor) = 26.60 min.

Peak	RetTime	Area	Height	Area	
1	20.834	9372.89648	100.90287	49.6422	
2	26.484	9508.00195	82.85613	50.3578	

Peak	RetTime	Area	Height	Area	
1	20.921	3.26313e ⁴	366.14182	99.8553	
2	26.597	47.27801	7.40868e ⁻¹	0.1447	

(*R*)-3,4-bis(4-fluorophenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine-1,1-dioxi de (5ab).

Vi Vi Vi Vi Vi Vi Vi Vi Vi N N F 1H

Yield: 90.4 mg (86%). White solid, mp: 250-251 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.79 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.99 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.39 – 7.27 (m, 2H), 7.25 – 7.20 (m, 3H), 7.11 (s, 1H), 7.02 (dd, *J* = 8.5, 5.5 Hz, 2H), 6.95 (t, *J* = 8.6 Hz, 2H), 6.46 (t, *J* = 8.6 Hz, 2H), 2.41

(s, 3H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.7 (d, ²*J*_{C-*F*} = 22.1 Hz), 161.1 (d, ²*J*_{C-*F*} = 19.9 Hz), 150.6, 146.5, 141.9, 140.5 (d, ³*J*_{C-*F*} = 7.6 Hz), 134.7, 134.1 (d, ¹*J*_{C-*F*} = 281.7 Hz), 133.3 (d, ³*J*_{C-*F*} = 7.7 Hz), 132.4 (d, ³*J*_{C-*F*} = 4.1 Hz), 131.6, 131.5, 130.9 (d, ⁴*J*_{C-*F*} = 3.0 Hz), 130.6, 129.2, 128.6, 128.4, 127.1, 127.0, 123.3, 121.4, 120.9, 115.1 (d, ²*J*_{C-*F*} = 21.0 Hz), 114.0 (d, ²*J*_{C-*F*} = 22.0 Hz), 22.0, 19.2. ¹⁹**F** NMR (565 MHz, CDCl₃) δ -112.6, -114.7. HRMS (ESI): m/z [M+H]⁺ calcd for [C31H22F2N2O2S]⁺ requires 525.1443, found 525.1443. [α]²⁵_D = +17 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 10.35 min, t₂ (major) = 13.16 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	10.287	4722.00781	112.26784	48.7560	1	10.346	104.35126	2.72366	0.6997
2	13.216	4962.97949	84.23692	51.2440	2	13.155	1.48087e ⁴	244.66856	99.3003

(*R*)-3,4-bis(4-chlorophenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine 1,1-diox ide (5ac).

O O N S N Me CI Yield: 42.5 mg (38%). White solid, mp: 251-252 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.78 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.00 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.36 – 7.28 (m, 2H), 7.28 – 7.23 (m, 3H), 7.21 (t, *J* = 6.9 Hz, 2H), 7.09 (s, 1H), 6.99 (d, *J* = 8.3 Hz, 2H), 6.76 (d, *J* = 8.3 Hz, 2H), 2.41 (s,

3H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 146.4, 142.0, 140.4, 140.2, 135.5, 134.9, 134.4, 134.0, 133.3, 133.2, 133.0, 132.7, 131.0, 130.5, 129.2, 128.8, 128.5, 128.4, 127.3, 127.0, 123.3, 121.4, 120.9, 22.0, 19.2. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₃₁H₂₂Cl₂N₂O₂S]⁺ requires 557.0852, found 557.0851. [α]_D²⁵ = -190 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 16.37 min, t₂ (major) = 21.56 min.

(*R*)-3,4-bis(4-(tert-butyl)phenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine-1,1-

Yield: 97 mg (81%). White solid, mp: 210-211 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.82 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.95 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.51 (dd, *J* = 8.5, 2.7 Hz, 1H), 7.33 – 7.25 (m, 3H), 7.21 – 7.10 (m, 5H), 6.92 (dd, *J* = 8.5, 2.0 Hz, 2H), 6.70 – 6.68 (m, 2H), 2.40 (s, 3H), 2.37 (s, 3H), 1.24 (s, 9H), 0.99 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 150.4, 149.6, 146.7, 141.6, 141.4, 140.3, 135.2, 135.0, 133.7, 133.3, 132.1, 131.5, 130.5, 129.5, 129.2, 128.1, 128.0, 127.2, 127.0, 124.5, 123.9, 123.3, 121.2, 120.6, 34.4, 34.2, 31.3, 30.9, 22.0, 19.2. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₉H₄₀N₂O₂S]⁺ requires 601.2883, found 601.2897. [α]_D²⁵ = -101 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 15.57 min, t₂ (minor) = 18.76 min.

(*R*)-3,4-bis(4-methoxyphenyl)-6-methyl-2-(7-methylquinolin-8-yl)-*2H*-benzo[1,2]thiazine-1,1-di oxide (5ae).

49.9734

2

18.699

7754.35303

183.59186

Yield: 98.0 mg (89%). White solid, mp: 155-156 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.85 (dd, J = 4.3, 1.7 Hz, 1H), 7.96 (dd, J = 8.3, 1.7 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.39 – 7.25 (m, 2H), 7.22 – 7.15 (m, 4H), 7.04 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.26 (d, J = 8.7 Hz, 2H), 3.76 (s, 3H), 3.51

2

18.758

778.11700

17.70855

0.9680

(s, 3H), 2.39 (s, 3H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.7, 158.3, 150.5, 146.6, 141.7, 141.1, 140.1, 135.3, 135.2, 133.3, 132.8, 131.2, 130.5, 129.2, 129.0, 128.1, 128.0, 127.6, 127.2, 127.0, 123.3, 121.2, 120.7, 113.4, 112.1, 55.1, 54.8, 22.0, 19.1. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₃₃H₂₈N₂O₄S]⁺ requires 549.1843, found 549.1850. [α]_D²⁵ = -138 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 11.54 min, t₂ (major) = 15.94 min.

Peak	RetTime	Area	Height	Area
1	11.354	1.03713e ⁴	145.08365	51.0206
2	15.839	9956.33887	97.71770	48.9794

ĊF₃

Peak	RetTime	Area	Height	Area
1	11.539	155.89290	2.30812	1.1109
2	15.938	1.38775e ⁴	125.59432	98.8891

(*R*)-6-methyl-2-(7-methylquinolin-8-yl)-3,4-bis(4-(trifluoromethyl)phenyl)-2*H*-benzo[1,2]thiazi ne-1,1-dioxide (5af).

Yield: 107.9 mg (86%). White solid, mp: 258-259 °C. ¹H NMR (600 MHz, CDCl₃)
δ 8.77 (dd, J = 4.2, 1.7 Hz, 1H), 8.00 (dd, J = 8.3, 1.7 Hz, 1H), 7.81 (d, J = 8.0 Hz,
^{CF₃} 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H),
7.35 (d, J = 7.4 Hz, 1H), 7.30 (dd, J = 8.2, 4.2 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H),

7.16 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.2 Hz, 3H), 2.43 (s, 3H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.7, 146.4, 142.3, 140.6, 140.1, 138.1, 135.6, 134.0, 132.4, 132.0, 130.6, 130.0, 129.9 (q, ²*J*_{C-F}= 33.1 Hz), 129.5, 129.2, 128.7, 127.1, 127.0, 125.1 (q, ⁴*J*_{C-F} = 272.3, 65.6 Hz), 129.3, 129.2, 128.7, 127.1, 127.0, 125.6 (dd, J = 272.3, 65.6 Hz), 125.1 (q, ⁴*J*_{C-F} = 3.7 Hz), 124.1 (q, ⁴*J*_{C-F} = 3.7 Hz), 124.0 (q, ¹*J*_{C-F} = 272.2 Hz), 123.5 (q, ¹*J*_{C-F} = 272.2 Hz), 121.6, 121.3, 22.0, 19.2. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.6, -62.9.HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₃H₂₂F₆N₂O₂S]⁺ requires 625.1379, found 625.1383. [α]²⁵ = -113 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) =7.13 min, t₂ (minor) = 18.17 min.

Peak	RetTime	Area	Height	Area
1	7.113	9895.54688	795.08264	49.8537
2	17.761	9953.63867	206.43063	50.1463

Peak	RetTime	Area	Height	Area
1	7.128	3.53210e ⁴	2728.90918	98.5581
2	18.167	516.72943	10.36173	1.4419

(R)-6-methyl-2-(7-methylquinolin-8-yl)-3,4-di-m-tolyl-2H-benzo[1,2]thiazine-1,1-dioxide (5ag).

Yield: 84.2 mg (82%). White solid, mp: 226-227 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.86 (dd, J = 4.2, 1.7 Hz, 1H), 7.95 (dd, J = 8.2, 1.7 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.50 (dd, J = 8.4, 1.8 Hz, 1H), 7.34 – 7.24 (m, 2H), 7.21 – 7.06 (m, 6H), 6.98 (d, J = 6.5 Hz, 1H), 6.81 – 6.74 (m, 1H), 6.63 – 6.54 (m, 2H), 2.38 (s, 3H), 2.33 (s,

3H), 2.24 (s, 3H), 1.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 146.7, 141.7, 141.0, 140.2, 137.4, 136.5, 136.1, 135.3, 135.0, 134.7, 133.3, 132.4, 130.7, 129.2, 129.0, 128.5, 128.3, 128.1, 127.7, 127.5, 127.3, 126.9, 126.3, 124.0, 121.2, 120.7, 22.0, 21.4, 20.8, 19.1. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₃₃H₂₈N₂O₂S]⁺ requires 517.1944, found 517.1948. [α]_D²⁵ = +88 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 7.12 min, t₂ (major) = 9.23 min.

(*R*)-3,4-bis(3-methoxyphenyl)-6-methyl-2-(7-methylquinolin-8-yl)-*2H*-benzo[1,2]thiazine-1,1-di oxide (5ah).

97% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 9.42 min, t_2 (major) = 13.17 min.

(*R*)-3,4-bis(3-chlorophenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine-1,1-dioxi de (5ai).

Yield: 74.4 mg (67%). White solid, mp: 220-221 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.79 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.96 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.32 (d, *J* = 6.0 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.23 – 7.15 (m, 5H), 7.10 (s, 1H), 6.87 (d, *J* = 7.7 Hz, 1H), 6.83 – 6.79 (m, 1H), 6.69 (t,

J = 7.9 Hz, 1H), 2.41 (s, 3H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.7, 146.4, 142.1, 140.5,

140.1, 138.1, 136.2, 135.5, 134.2, 133.9, 132.9, 132.6, 131.6, 130.6, 129.9, 129.8, 129.4, 129.2, 128.9, 128.6, 128.3, 128.2, 127.9, 127.7, 127.1, 127.0, 123.3, 121.4, 121.0, 22.0, 19.2. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{31}H_{22}Cl_2N_2O_2S]^+$ requires 557.0852, found 557.0853. $[\alpha]_D^{25} = +53$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 12.19 min, t₂ (major) = 15.19 min.

Peak	RetTime	Area	Height	Area
1	12.115	8137.08789	143.51866	49.4716
2	15.502	8310.92383	115.44869	50.5284

Peak	RetTime	Area	Height	Area
1	12.193	1087.71130	20.60661	2.4963
2	15.188	4.24845e ⁴	543.19104	97.5037

(R)-3,4-dibutyl-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[1,2]thiazine-1,1-dioxide (5aj).

Yield: 72.8 mg (81%). White solid, mp: 198-199 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.82 (dd, *J* = 4.1, 1.8 Hz, 1H), 8.07 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.44 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.33 – 7.29 (m, 1H), 7.22 (d, *J* = 9.5 Hz, 1H), 2.79 – 2.61 (m, 2H), 2.50 (s, 3H), 2.18 – 2.10 (m,

4H), 2.04 – 1.89 (m, 1H), 1.68 – 1.61 (m, 3H), 1.52 – 1.44 (m, 2H), 1.42 – 1.34 (m, 1H), 1.12 – 0.98 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H), 0.58 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 147.1, 141.4, 140.5, 139.9, 135.4, 134.7, 133.1, 131.9, 129.4, 128.3, 127.6, 127.3, 124.7, 121.3, 120.9, 120.5, 32.2, 30.7, 30.5, 28.2, 23.0, 22.6, 22.1, 18.6, 14.0, 13.4. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₇H₃₂N₂O₂S]⁺ requires 449.2257, found 449.2266. [α]²⁵_D = -282 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 8.63 min, t₂ (major) = 12.72 min.

Peak	RetTime	Area	Height	Area
1	8.666	8492.09375	172.39214	49.9804
2	12.944	8498.75488	115.91394	50.0196

Peak	RetTime	Area	Height	Area
1	8.632	124.42561	3.06659	0.8266
2	12.718	1.49281e ⁴	203.73566	99.1734

(R)-6-methyl-2-(7-methylquinolin-8-yl)-3-phenyl-2H-benzo[1,2]thiazine-1,1-dioxide (5ak).

Yield: 61.7 mg (75%). White solid, mp: 241-242 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.00 (dd, J = 4.2, 1.7 Hz, 1H), 7.99 (dd, J = 8.3, 1.8 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 7.0 Hz, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.38 (s, 1H), 7.36 – 7.31 (m, 1H), 7.27 (d, J = 8.1 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1H), 7.11 (t,

J = 7.3 Hz, 1H), 7.04 (t, J = 7.6 Hz, 2H), 6.73 (s, 1H), 2.49 (s, 3H), 2.16 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.8, 144.7, 142.2, 139.6, 135.8, 135.4, 133.7, 133.5, 130.3, 129.4, 129.2, 128.5, 128.3, 127.9, 127.8, 127.4, 127.0, 121.5, 120.9, 111.2, 21.7, 18.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₅H₂₀N₂O₂S]⁺ requires 413.1318, found 413.1328. [α]_D²⁵ = +119 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 27.54 min, t₂ (major) = 32.52 min.

(*R*)-3-(4-fluorophenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine-1,1-dioxide (5al).

Yield: 81.0 mg (94%). White solid, mp: 234-235 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.99 (dd, J = 4.2, 1.7 Hz, 1H), 8.01 (dd, J = 8.3, 1.7 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.65 – 7.47 (m, 3H), 7.42 – 7.33 (m, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H), 6.73 (t, J = 8.7 Hz, 2H), 6.68 (s, 1H), 2.49 (s, 3H), 2.14 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.2 (d, ¹ J_{C-F} = 249.7 Hz), 151.0, 146.7, 143.5, 142.3, 139.6, 135.5, 133.5, 133.3, 131.9 (d, ⁴ J_{C-F} = 3.2 Hz), 130.3, 129.7 (d, ³ J_{C-F} = 8.9 Hz), 129.4, 128.6, 128.4, 127.4, 127.1, 121.5, 121.0, 115.0 (d, ² J_{C-F} = 20.8 Hz), 110.4, 21.7, 18.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -111.6. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₅H₁₉FN₂O₂S]⁺ requires 431.1224, found 431.1228. [α]²⁵_D = -120 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 14.68 min, t₂ (major) = 21.88 min.

(*R*)-3-(4-chlorophenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine-1,1-dioxide

(5am).

Yield: 82.2 mg (92%). White solid, mp: 246-247 °C. ¹**H NMR** (600 MHz, CDCl3) δ 8.98 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.00 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.70 (d, *J* = 7.9 Hz, 1H), 7.62 – 7.49 (m, 3H), 7.36 (s, 1H), 7.34 – 7.31 (m, 1H), 7.27 (d, *J* = 8.0 Hz, 1H),

7.15 (d, *J* = 8.4 Hz, 1H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.70 (s, 1H), 2.48 (s, 3H), 2.13 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.0, 146.7, 143.4, 142.4, 139.6, 135.6, 135.2, 134.3, 133.4, 133.3, 130.4, 129.5,

129.1, 128.8, 128.5, 128.3, 127.5, 127.4, 127.1, 121.5, 121.0, 111.5, 111.4, 21.7, 18.7. HRMS (ESI): $m/z \ [M+H]^{+} \ calcd \ for \ [C_{25}H_{19}ClN_2O_2S]^{+} \ requires \ 447.0929, \ found \ 447.0930. \ [\pmb{\alpha}]_{D}^{25} \ = -103 \ (c = 0.1, 0.1) \ (c = 0.1$ CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ $(minor) = 15.08 min, t_2 (major) = 20.75 min.$

Peak	RetTime	Area	Height	Area
1	14.476	1.34789e ⁴	181.34236	50.2574
2	20.817	1.33409e ⁴	137.50198	49.7426

(R)-6-methyl-2-(7-methylquinolin-8-yl)-3-(p-tolyl)-2H-benzo[1,2]thiazine-1,1-dioxide (5an).

9.01 (dd, J = 4.2, 1.7 Hz, 1H), 7.99 (dd, J = 8.2, 1.8 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.36 (s, 1H), 7.35 – 7.32 (m, 1H), 7.29 - 7.22 (m, 1H), 7.14 (d, J = 8.4 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 6.70 (s, 1H), 2.49 (s, 3H), 2.15 (s, 3H), 2.13 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.9, 144.7, 142.2, 139.5, 139.2, 135.4, 133.8, 133.6, 133.0, 130.3, 129.5, 128.7, 128.3, 128.2, 127.8, 127.3, 127.0, 121.5, 120.9, 110.6, 21.7, 21.1, 18.7. **HRMS** (ESI): $m/z [M+H]^+$ calcd for $[C_{26}H_{22}N_2O_2S]^+$ requires 427.1475, found

Yield: 74.5 mg (87%). White solid, mp: 260-261 °C. ¹H NMR (600 MHz, CDCl₃) δ

427.1479. $[\alpha]_D^{25} = +92$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/i-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 16.51 min, t_2 (major) = 23.35 min.

Peak	RetTime	Area	Height	Area
1	15.704	3.92003e ⁴	367.87833	50.4109
2	23.462	3.85613e ⁴	297.40997	49.5891

Peak	RetTime	Area	Height	Area
1	16.513	501.75006	5.40673	0.6111
2	23.349	8.15991e ⁴	564.82068	99.3889

(*R*)-3-(4-(tert-butyl)phenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[1,2]thiazine-1,1-diox ide (5ao).

Yield: 87.1 mg (93%). White solid, mp: 228-229 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.01 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.00 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.54 (dd, *J* = 8.4, 6.3 Hz, 3H), 7.47 – 7.30 (m, 2H), 7.25 (d, *J* = 7.0 Hz, 1H),

7.15 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 8.5 Hz, 2H), 6.71 (s, 1H), 2.49 (s, 3H), 2.15 (s, 3H), 1.15 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 152.3, 150.9, 147.0, 144.7, 142.1, 139.6, 135.4, 133.9, 133.7, 132.9, 130.3, 129.5, 128.3, 128.1, 127.5, 127.3, 127.1, 124.9, 121.5, 120.9, 110.8, 34.5, 31.1, 21.7, 18.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₉H₂₈N₂O₂S]⁺ requires 469.1944, found 469.1948. [α]_D²⁵ = -181 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 12.45 min, t₂ (major) = 20.32 min.

20.195	1.42469e ⁴	91.66684
20.175	1.424070	71.00004

3.11239e4

(R)-3-(4-methoxyphenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[1,2]thiazine-1,1-dioxide (5ap).

2

Yield: 83.0 mg (94%). White solid, mp: 238-239 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.01 (dd, J = 4.3, 1.7 Hz, 1H), 7.98 (dd, J = 8.2, 1.7 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 8.2 Hz, 3H), 7.39 – 7.27 (m, 2H), 7.26 – 7.21 (m, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.65 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 3.61 (s, 3H), 2.46 (s, 3H), 2.10 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 160.4, 150.9, 146.9, 144.4, 142.2, 139.5, 135.5, 133.9, 133.7, 130.2, 129.5,

129.3, 128.4, 128.2, 128.1, 127.3, 127.1, 121.4, 120.9, 113.4, 110.0, 55.1, 21.7, 18.7. HRMS (ESI): m/z [M+H]⁺ calcd for $[C_{26}H_{22}N_2O_3S]^+$ requires 443.1424, found 443.1422. $[\alpha]_D^{25} = +153$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/i-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ $(minor) = 27.39 min, t_2 (major) = 34.78 min.$

Peak	RetTime	Area	Height	Area	Peak	RefTime	Area	Height	Area
1	26.703	2513.95728	30.25465	50.7221	1	27.387	266.75439	3.15039	0.5168
2	37.258	2442.37427	22.99876	49.2779	2	34.783	5.13528e ⁴	359.36899	99.4832

(R)-3-(2-fluorophenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[1,2]thiazine-1,1-dioxide (5aq).

Yield: 77.5 mg (90%). White solid, mp: 216-217 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.93 (dd, J = 4.2, 1.7 Hz, 1H), 7.98 (dd, J = 8.2, 1.7 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.68 – 7.58 (m, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.39 (s, 1H), 7.31 (dd, J = 8.2, 4.3 Hz,

2H), 7.20 (d, J = 8.4 Hz, 1H), 7.09 – 6.98 (m, 1H), 6.92 – 6.84 (m, 1H), 6.81 (d, J = 1.9 Hz, 1H), 6.69 (t, J = 7.6 Hz, 1H), 2.50 (s, 3H), 2.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.2 (d, ¹ $J_{C-F} = 251.0$ Hz), 150.8, 146.7, 142.2, 140.5, 137.4, 135.4, 133.3, 133.0, 131.8, 130.6, 130.5 (d, ${}^{3}J_{C-F} = 8.8$ Hz), 129.5, 128.9, 128.3, 127.7, 127.0, 123.3 (d, ${}^{4}J_{C-F}$ = 3.4 Hz), 123.1 (d, ${}^{2}J_{C-F}$ = 11.9 Hz), 121.4, 120.9, 115.6 (d, ${}^{2}J_{C-F}$ = 22.0 Hz), 114.4 (d, ${}^{3}J_{C-F}$ = 4.4 Hz), 21.7, 18.6. 19 F NMR (565 MHz, CDCl₃) δ -116.4. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{25}H_{19}FN_2O_2S]^+$ requires 431.1224, found 431.1234. $[\alpha]_D^{25} = -$ 175 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/i-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 17.57 min, t_2 (major) = 21.72 min.

Peak	RefTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	16.796	8502.19922	212.19034	49.9164	1	17.566	54.97084	1.34104	0.7055
2	21.666	8530.67773	154.96280	50.0836	2	21.717	7736.68994	147.97299	99.2945

(R)-3-(3-chlorophenyl)-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[1,2]thiazine-1,1-dioxide

(5ar).

Yield: 76.5 mg (86%). White solid, mp: 218-219 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.00 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.01 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.66 (t, J = 1.9 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.39 (s, 1H), 7.35 (dd, J = 8.2, 4.2 Hz, 1H), 7.30 (d, J = 6.6 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.08 – 7.05 (m, 1H), 6.97 (t, J = 7.9 Hz, 1H), 6.74 (s, 1H), 2.50 (s, 3H), 2.16 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.0, 146.7, 143.2, 142.4, 139.7, 137.5, 135.5, 133.9, 133.3, 133.2, 130.5, 129.5, 129.2, 129.1, 128.9, 128.5, 127.9, 127.6, 127.1, 125.9, 121.5, 121.0, 111.9, 21.7, 18.7. HRMS (ESI): m/z [M+H]⁺ calcd for $[C_{25}H_{19}CIN_2O_2S]^+$ requires 447.0929, found 447.0933. $[\alpha]_D^{25} = -73$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (CHIRALPAK OD-H, hexane/i-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 45.31min, t₂ (major) = 56.73 min.

(R)-6-methyl-2-(7-methylquinolin-8-yl)-3-(trimethylsilyl)-2H-benzo[1,2]thiazine-1,1-dioxide

(5as).

Yield: 77.6 mg (95%). White solid, mp: 184-185 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.02 (dd, J = 4.2, 1.7 Hz, 1H), 8.32 (dd, J = 8.2, 1.7 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.59 – 7.43 (m, 3H), 7.03 (s, 1H), 2.73 (s, 3H), 2.62 (s, 3H), 0.00 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 152.1, 149.0, 148.4, 142.9,

142.5, 136.5, 135.4, 134.7, 131.5, 130.4, 130.0, 129.9, 128.4, 128.1, 122.1, 121.2, 22.8, 20.3, 0.00. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{22}H_{24}N_2O_2SSi]^+$ requires 409.1401, found 409.1404. $[\alpha]_D^{25} =$ -393 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee. (CHIRALPAK AD-H, hexane/i-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (major) = 13.86 min, t_2 (minor) = 22.42 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	13.668	1.58902e ⁴	684.14288	49.2619	1	13.862	4.31416e ⁴	1841.94287	99.6547
2	22.125	1.63664e ⁴	410.87125	50.7381	2	22.423	149.48857	3.76484	0.3453

(R)-3-(diphenylphosphaneyl)-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[e][1,2]thiazine 1,1dioxide (5at).

Yield: 57.2 mg (55%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.35 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.95 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.65 (t, *J* = 8.1 Hz, 2H), 7.50 (dt, *J* = 7.3, 4.0 Hz, 2H), 7.41 (t, *J* = 3.5 Hz, 3H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.0 Hz, 2H), 7.14 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 2H), 7.19 (t, *J* = 7.0 Hz, 2H), 7.14 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 2H), 7.19 (t, *J* = 7.0 Hz, 2H), 7.14 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 2H), 7.19 (t, *J* = 7.0 Hz, 2H), 7.14 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 2H), 7.19 (t, *J* = 7.0 Hz, 2H), 7.14 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.09 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.09 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.19 (t, *J* = 7.7 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.14 (dd, *J* = 8.2, 4.2 Hz), 7.14 (dd), 7.14

2H), 7.05 (s, 1H), 6.13 (s, 1H), 2.40 (s, 3H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.3, 146.8 (d, *J* = 13.3 Hz), 146.7 (d, *J* = 2.4 Hz), 142.5 (d, *J* = 2.2 Hz), 141.9, 135.3, 134.9, 134.7, 134.1, 134.0, 133.8 (d, *J* = 10.4 Hz), 133.4, 133.1 (d, *J* = 2.2 Hz), 129.7, 129.6, 129.1 (d, *J* = 2.4 Hz), 128.9, 128.8, 128.3, 128.2, 127.1, 121.1, 120.7, 118.1 (d, *J* = 4.5 Hz), 21.7, 19.3 (d, *J* = 2.6 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -7.91. HRMS (ESI): m/z [M+H]⁺calcd for [C₃₁H₂₆N₂O₂PS]⁺ requires 521.1447, found 521.1464. [α]²⁵_D = -82 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK OD-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 8.73 min, t₂ (major) = 9.84 min.

(*R*)-6-methyl-2-(7-methylquinolin-8-yl)-3-phenyl-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6a).

Yield: 97.9 mg (95%). White solid, mp: 241-242 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.00 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.99 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.38 (s, 1H), 7.34 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.28 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.14 – 7.09

(m, 1H), 7.05 (dd, *J* = 8.4, 6.9 Hz, 2H), 6.73 (s, 1H), 2.50 (s, 3H), 2.17 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.8, 144.7, 142.2, 139.6, 135.8, 135.4, 133.7, 133.5, 130.3, 129.5, 129.2, 128.5, 128.3, 127.9, 127.9, 127.4, 127.1, 121.5, 121.0, 111.2, 21.8, 18.8. HRMS (ESI): m/z [M+H]⁺ calcd

for $[C_{25}H_{21}N_2O_2S]^+$ requires 413.1318, found 413.1328. $[\alpha]_D^{25} = +119$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 25.21 min, t₂ (major) = 29.17 min.

(R)-6-(tert-butyl)-2-(7-methylquinolin-8-yl)-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6b).

Yield: 111.2 mg (98%). White solid, mp: 112-113 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.95 (s, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.55 (s, 1H), 7.46 (dd, *J* = 28.3, 8.4 Hz, 2H), 7.24 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.09 – 6.96 (m, 4H), 6.77 (s, 1H), 2.12 (s, 3H), 1.39 (s, 9H). ¹³C NMR (151

MHz, CDCl₃) δ 155.4, 150.9, 146.9, 144.5, 139.6, 135.9, 135.5, 133.5, 133.5, 130.3, 129.5, 129.2, 128.3, 128.0, 127.9, 127.1, 125.2, 124.0, 121.3, 120.9, 111.7, 35.3, 31.3, 18.9. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₂₈H₂₇N₂O₂S]⁺ requires 455.1788, found 455.1786. [α]_D²⁵ = +92 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 12.31 min, t₂ (major) = 18.60 min.

(R)-6-methoxy-2-(7-methylquinolin-8-yl)-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6c).

Yield: 106.0 mg (99%). White solid, mp: 266-267 °C. ¹H NMR (600 MHz,
CDCl₃)
$$\delta$$
 8.99 (dd, J = 4.2, 1.7 Hz, 1H), 7.99 (dd, J = 8.2, 1.7 Hz, 1H), 7.74 (d, J
= 8.6 Hz, 1H), 7.60 (d, J = 7.0 Hz, 2H), 7.54 (d, J = 8.4 Hz, 1H), 7.33 (dd, J =
8.2, 4.2 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.13 – 7.10 (m, 1H), 7.08 – 7.01 (m,

3H), 6.99 (dd, J = 8.6, 2.5 Hz, 1H), 6.72 (s, 1H), 3.92 (s, 3H), 2.21 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.2, 150.9, 146.8, 145.3, 139.7, 135.8, 135.7, 135.4, 133.5, 129.5, 129.3, 128.3, 127.9, 127.1, 125.8, 123.5, 120.9, 114.4, 111.0, 110.7, 55.7, 18.9. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₅H₂₁N₂O₃S]⁺ requires 429.1267, found 429.1272. [α]_D²⁵ = +168 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 22.70 min, t₂ (major) = 35.16 min.

(R)-2-(7-methylquinolin-8-yl)-3,6-diphenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6d).

Yield: 113.9 mg (96%). White solid, mp: 272-273 °C. ¹H NMR (600 MHz, CDCl₃)
δ 8.99 (dd, J = 4.3, 1.7 Hz, 1H), 8.00 (dt, J = 8.4, 3.1 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 1.7 Hz, 1H), 7.73 – 7.67 (m, 3H), 7.65 – 7.61 (m, 2H), 7.58 –

7.49 (m, 3H), 7.47 – 7.43 (m, 1H), 7.37 – 7.32 (m, 1H), 7.20 – 7.16 (m, 1H), 7.15 – 7.11 (m, 1H), 7.07 (t, J = 7.6 Hz, 2H), 6.86 (s, 1H), 2.24 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.8, 145.1, 144.8, 139.9, 139.7, 135.7, 135.5, 134.2, 133.5, 131.4, 129.5, 129.3, 129.1, 128.4, 128.3, 128.0, 127.9, 127.5, 127.1, 126.4, 125.8, 122.1, 122.1, 121.0, 111.3, 18.9. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₃N₂O₂S]⁺ requires 475.1475, found 475.1468. [α]²⁵_D = +92 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH

= 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 22.14 min, t_2 (major) = 30.92 min.

(R)-2-(7-methylquinolin-8-yl)-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6e).

O S N Me

Yield: 98.9 mg (99%). White solid, mp: 155-165 °C. ¹H NMR (600 MHz, CDCl₃) δ
8.97 (dd, J = 4.2, 1.7 Hz, 1H), 7.99 (dd, J = 8.2, 1.7 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.65 (td, J = 7.6, 1.3 Hz, 1H), 7.61 (ddd, J = 10.7, 5.6, 4.2 Hz, 3H), 7.55 (d, J = 8.4 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.16 (dd, J = 8.4 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.48 (td, J = 8.2, 4.2 Hz, 1H), 7.48 (td, J = 8.2, 4.2

= 8.4 Hz, 1H), 7.14 – 7.10 (m, 1H), 7.06 (dd, J = 8.3, 6.9 Hz, 2H), 6.80 (s, 1H), 2.20 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.8, 144.7, 139.7, 135.7, 135.5, 133.7, 133.4, 132.7, 131.8, 129.4, 129.3, 128.3, 127.9, 127.9, 127.5, 127.2, 127.1, 121.5, 120.9, 111.2, 18.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₄H₁₉N₂O₂S]⁺ requires 399.1162, found 399.1167. [α]_D²⁵ = +86 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 17.44 min, t₂ (major) = 21.75 min.

(R)-6-fluoro-2-(7-methylquinolin-8-yl)-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6f).

(*R*)-6-chloro-2-(7-methylquinolin-8-yl)-3-phenyl-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6g). Yield: 102.0 mg (94%). White solid, mp: 253-254 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.91 (dd, *J* = 4.3,

CI

J	$1.7 \text{ m}_2, 1.1, 1.2, 1.1, 1.5, (u, s = 0.2, 2.5 \text{ m}_2, 1.1), 1.75 (u, s = 0.5 \text{ m}_2, 1.1), 1.01 = 1.55$
¥ e ℕ	(m, 4H), $7.46 - 7.41$ (m, 1H), 7.33 (dd, $J = 8.1$, 4.1 Hz, 1H), 7.19 (dd, $J = 8.4$,
	3.3 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 7.6 Hz, 2H), 6.70 (s, 1H), 2.28

(s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.6, 146.3, 139.8, 137.9, 135.5, 135.4, 133.2, 130.7, 129.6, 129.4, 128.5, 128.0, 128.0, 127.6, 127.0, 126.7, 123.3, 121.0, 110.1, 19.0. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₂₄H₁₈ClN₂O₂S]⁺ requires 433.0772, found 433.0771. [α]_D²⁵ = +47 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee

(CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (minor) = 12.68 min, t_2 (major) = 17.36 min.

(*R*)-6-bromo-2-(7-methylquinolin-8-yl)-3-phenyl-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6h). Yield: 108.9 mg (87%). White solid, mp: 271-272 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.91 (dd, *J* = 4.3, 1.7 Hz, 1H), 7.99 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.75 (d, *J* = 1.8 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.61 – 7.54 (m, 4H), 7.33 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 1H), 7.16 – 7.12 (m, 1H), 7.07 (t, *J* = 7.6 Hz, 2H), 6.69 (s, 1H), 2.28 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.5, 146.3, 139.8, 135.6, 135.5, 135.4, 133.2, 131.1, 130.4, 129.7, 129.6, 129.4, 128.5, 128.0, 128.0, 127.0, 126.2, 123.3, 121.0, 110.0, 19.0. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₂₄H₁₇BrN₂NaO₂S]⁺ requires 499.0886, found 499.0087. [α]_D²⁵ = +27 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 12.97 min, t₂ (major) = 17.57 min.

(*R*)-2-(7-methylquinolin-8-yl)-3-phenyl-6-(trifluoromethyl)-2*H*-benzo[e][1,2]thiazine 1,1dioxide (6i).

Yield: 100.4 mg (86%). White solid, mp: 210-211 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.86 (dd, J = 4.3, 1.7 Hz, 1H), 8.01 (dd, J = 8.3, 1.8 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.88 (s, 1H), 7.74 – 7.69 (m, 1H), 7.61 – 7.54 (m, 3H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.19 – 7.13 (m, 1H), 7.09 (dd, J =

8.4, 7.0 Hz, 2H), 6.83 (s, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.6, 146.4, 139.9, 135.5, 135.3, 134.5, 134.5, 133.7 (q, ²*J*_{C-*F*} = 32.8 Hz), 133.1, 129.7, 129.3, 128.6, 128.1, 128.0, 127.1, 124.2 (q, ⁴*J*_{C-*F*} = 3.9 Hz), 124.0 (q, ⁴*J*_{C-*F*} = 3.6 Hz), 123.5 (q, ¹*J*_{C-*F*} = 272.9 Hz), 122.55, 121.1, 110.5, 19.1. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₅H₁₈F₃N₂O₂S]⁺ requires 467.1036, found 467.1041. [α]_D²⁵ = +40 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 9.66 min, t₂ (major) = 13.09 min.

(R)-7-chloro-2-(7-methylquinolin-8-yl)-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6j).

Yield: 104.6 mg (97%). White solid, mp: 160-161 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.92 (dd, *J* = 4.3, 1.7 Hz, 1H), 7.97 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.81 (d, *J* = 2.1 Hz, 1H), 7.58 (dd, *J* = 8.1, 2.2 Hz, 3H), 7.53 (t, *J* = 9.0 Hz, 2H), 7.31 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.18 – 7.11 (m, 2H), 7.06 (t, *J* = 7.6 Hz, 2H), 6.74 (s, 1H), 2.24 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.6, 145.1, 139.8, 135.5, 135.5, 133.3, 133.1, 133.0, 132.2, 132.1, 129.5, 129.4, 128.7, 128.6, 128.0, 127.9, 127.1, 121.6, 121.0, 110.6, 19.0. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₂₄H₁₈ClN₂O₂S]⁺ requires 433.0772, found 433.0779. [α]_D²⁵ = +26 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 10.89 min, t₂ (major) = 12.70 min.

(*R*)-7-bromo-2-(7-methylquinolin-8-yl)-3-phenyl-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6k). Yield: 106.3 mg (89%). White solid, mp: 235-236 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.92 (dd, *J* = 4.2, I.7 Hz, 1H), 7.99 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.95 (d, *J* = 2.0 Hz, 1H), 7.74 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.60 – 7.54 (m, 3H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.33 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 7.15 – 7.12 (m, 1H), 7.06 (t, *J* = 7.6 Hz, 2H), 6.74 (s, 1H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.6, 145.3, 139.8, 135.5, 135.5, 134.9, 133.5, 133.2, 132.6, 129.5, 129.4, 128.8, 128.5, 128.0, 127.9, 127.1, 124.5, 121.0, 120.5, 110.6, 19.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₄H₁₈BrN₂O₂S]⁺ requires 477.0267, found 477.0266. [α]²⁵_D = +41 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 11.11 min, t₂ (major) = 13.07 min.

Peak	RetTime	Area	Height	Area
1	10.903	2763.53760	121.94778	46.8755
2	12.999	3131.94507	101.48201	53.1245

Peak	RetTime	Area	Height	Area	
1	11.108	28.33352	1.03326	0.5230	
2	13.067	5388.89551	173.19127	99.4770	

(R)-8-fluoro-2-(7-methylquinolin-8-yl)-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6l).

Yield: 67.3 mg (65%). White solid, mp: 260-261 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.89 (dd, J = 4.2,

1.7 Hz, 1H), 7.96 (dd, J = 8.2, 1.8 Hz, 1H), 7.62 – 7.50 (m, 4H), 7.33 (d, J = 7.9 Hz, 1.7 Hz, 1H), 7.96 (dd, J = 8.2, 1.8 Hz, 1H), 7.62 – 7.50 (m, 4H), 7.33 (d, J = 7.9 Hz, 1H), 7.29 (dd, J = 8.2, 4.2 Hz, 1H), 7.18 – 7.04 (m, 5H), 6.76 (d, J = 1.9 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.7 (d, ¹ $J_{C-F} = 257.3$ Hz), 150.8, 146.7, 145.4, 140.0, 136.7, 135.5, 135.5, 133.3, 132.9 (d, ³ $J_{C-F} = 8.6$ Hz), 129.5 (d, ³ $J_{C-F} = 12.4$ Hz), 128.5, 128.0, 127.8, 127.1, 123.1 (d, ⁴ $J_{C-F} = 3.7$ Hz), 121.2 (d, ² $J_{C-F} = 14.1$ Hz), 120.9, 114.8 (d, ² $J_{C-F} = 20.9$ Hz), 111.2, 19.1. ¹⁹F NMR (565 MHz, CDCl₃) δ -113.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₄H₁₈FN₂O₂S]⁺ requires 417.1071, found 417.1068. [α]²⁵_D = +44 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 17.49 min, t₂ (major) = 19.86 min.

(*R*)-6,7-dimethoxy-2-(7-methylquinolin-8-yl)-3-phenyl-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6m).

Yield: 106.2 mg (93%). White solid, mp: 245-246 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.00 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.95 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.62 – 7.58 (m, 2H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.30 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.26 (s, 1H), 7.08 (dd, *J* = 16.4, 7.9 Hz, 2H), 7.04 – 6.98 (m, 3H), 6.67 (s, 1H), 3.97 (s,

3H), 3.87 (s, 3H), 2.13 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.1, 150.9, 148.9, 146.8, 143.1, 139.6, 135.8, 135.5, 133.4, 129.5, 129.0, 128.3, 127.9, 127.8, 127.8, 127.1, 125.4, 120.9, 111.0, 109.0, 103.6, 56.3, 18.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₆H₂₃N₂O₄S]⁺ requires 459.1373, found

459.1375. $[\alpha]_D^{25} = +358$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 35.52 min, t₂ (major) = 38.01 min.

(R)-2-(7-methylquinolin-8-yl)-3-phenyl-2H-naphtho[2,1-e][1,2]thiazine 1,1-dioxide (6n).

Yield: 96.5 mg (86%). White solid, mp: 266-267 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 9.06 – 8.97 (m, 2H), 8.09 – 7.96 (m, 2H), 7.88 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.69 – 7.66 (m, 2H), 7.61 (dd, *J* = 8.6, 3.7 Hz, 1H), 7.58 – 7.50 (m, 3H), 7.35 (dt, *J* = 8.3, 4.7 Hz, 1H), 7.18 – 7.13 (m, 2H), 7.08 (t, *J* = 7.6 Hz, 2H), 6.86 (s, 1H), 2.19 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 151.1, 147.0, 145.3, 140.0, 135.5, 135.4, 133.9, 133.7, 132.9, 132.4, 129.4, 128.6, 128.4, 128.3, 128.0, 127.4, 127.0, 126.8, 126.4, 125.4, 124.1, 121.0, 111.4, 18.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₈H₂₁N₂O₂S]⁺ requires 449.1318, found 449.1318. [α]_D²⁵ = +70 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 16.43 min, t₂ (major) = 17.34 min.

2	18.327	1643.10693	26.18628	51.2834		2	17.335	3.21266e4	524.16840	99.7787
---	--------	------------	----------	---------	--	---	--------	-----------	-----------	---------

(R)-2-(7-methylquinolin-8-yl)-3-phenyl-2H-thieno[3,2-e][1,2]thiazine 1,1-dioxide (60).

Yield: 42.3 mg (42%). White solid, mp: 260-261 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.04 (dd, J = 4.2,

1.7 Hz, 1H), 8.01 (dd, J = 8.2, 1.7 Hz, 1H), 7.62 – 7.54 (m, 4H), 7.37 (dd, J = 8.2, 4.2 Hz, 1H), 7.20 (d, J = 5.1 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.13 – 7.09 (m, 1H), 7.04 (dd, J = 8.4, 7.0 Hz, 2H), 6.82 (s, 1H), 2.15 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.0, 146.9, 144.8, 141.7, 139.9, 135.5, 133.3, 129.5, 129.2, 128.7, 128.5, 128.4,

127.9, 127.9, 127.0, 125.5, 121.0, 107.7, 18.6. **HRMS** (ESI): $m/z [M+H]^+$ calcd for $[C_{22}H_{17}N_2O_2S2]^+$ requires 405.0726, found 405.0739. $[\alpha]_D^{25} = +173$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 22.32 min, t₂ (major) = 25.29 min.

(*R*)-4-(6-methyl-2-(7-methylquinolin-8-yl)-1,1-dioxido-2*H*-benzo[e][1,2]thiazin-3-yl)benzonitrile (6p). Yield: 108.0 mg (99%). White solid, mp: 300-301 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.99 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.73 (dd, *J* = 8.2, 6.0 Hz, 3H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.41 (s, 1H), 7.39 – 7.32 (m, 4H), 7.20 (d, *J* = 8.5 Hz, 1H), 6.79 (s, 1H), 2.52 (s, 3H), 2.18 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.1, 146.6, 142.7, 142.6, 140.1, 139.7, 135.7, 133.0, 133.0, 131.9, 130.7, 129.5, 129.4, 128.7, 128.3, 127.8, 127.2, 121.7, 121.2, 118.3, 113.0, 112.7, 21.8, 18.8. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₂₆H₁₉N₃NaO₂S]⁺ requires 438.1271, found 460.1095. [α]_D²⁵ = +155 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 33.91 min, t₂ (major) = 40.47 min.

(R)-6-methyl-2-(7-methylquinolin-8-yl)-3-(m-tolyl)-2H-benzo[e][1,2]thiazine 1,1-dioxide (6q).

Yield: 105.3 mg (99%). White solid, mp: 204-205 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.04 (dd, J = 4.3, 1.7 Hz, 1H), 8.04 – 7.97 (m, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.48 (s, 1H), 7.41 – 7.32 (m, 3H), 7.28 (d, J = 8.1 Hz, 1H), 7.17 – 7.12 (m, 1H), 6.93 (dt, J = 14.2, 7.5 Hz, 2H), 6.74 (s, 1H), 2.50 (s, 3H), 2.13 (s, 3H),

2.06 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 147.0, 144.7, 142.2, 139.6, 137.5, 135.7, 135.4, 133.7, 130.4, 130.0, 129.5, 128.7, 128.5, 128.3, 127.8, 127.4, 127.1, 124.9, 121.5, 120.9, 111.0, 21.7, 21.0, 18.7. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₆H₂₃N₂O₂S]⁺ requires 427.1475, found 427.1474. [α]²⁵_D = +39 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 20.02 min, t₂ (major) = 25.50 min.

Peak	RetTime	Area	Height	Area	
1	20.016	247.54741	3.65792	0.4658	
2	25.499	5.29012e4	568.72900	99.5342	

(R)-6-methyl-2-(7-methylquinolin-8-yl)-3-(o-tolyl)-2H-benzo[e][1,2]thiazine 1,1-dioxide (6r).

2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.4, 146.7, 143.1, 142.0, 141.5, 137.9, 135.3, 135.1, 133.6, 132.9, 130.0, 129.5, 129.2, 128.6, 128.5, 128.3, 127.2, 127.0, 124.5, 121.3, 120.8, 113.1, 21.8, 19.6, 19.3. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₂₆H₂₃N₂O₂S]⁺ requires 427.1475, found 427.1477. [α]²⁵_D = -220 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 11.78 min, t₂ (major) = 13.32 min.

(*R*)-6-methyl-2-(7-methylquinolin-8-yl)-3-(pyridin-4-yl)-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6s).

Yield: 73.1 mg (71%). White solid, mp: 217-218 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.96 (dd, J = 4.2, 1.7 Hz, 1H), 8.40 – 8.30 (s, 2H), 8.01 (dd, J = 8.3, 1.8 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.49 (s, 2H), 7.40 (s, 1H), 7.36 – 7.30 (m, 2H), 7.18 (d, J = 8.4 Hz, 1H), 6.83 (s, 1H), 2.50 (s, 3H), 2.19 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.1, 149.7, 146.6, 143.2, 142.6, 142.1, 139.8, 135.7, 133.0, 132.9, 130.7, 129.5, 129.5, 128.8, 127.9, 127.2, 122.1, 121.6, 121.6, 121.1, 113.1, 21.7, 18.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₄H₂₀N₃O₂S]⁺ requires 414.1271, found 414.1279. [α]²⁵ = +57 (c = 0.1, CH₂Cl₂). The product

was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/i-

PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 36.48 min, t₂ (major) = 46.58 min.

(*R*)-6-methyl-2-(7-methylquinolin-8-yl)-3-(thiophen-3-yl)-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6t).

Yield: 99.3 mg (95%). White solid, mp: 237-238 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.04 – 8.97 (m,

1H), 8.09 - 7.97 (m, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.64 - 7.56 (m, 1H), 7.46 - 7.31 (m, 3H), 7.29 - 7.23 (m, 1H), 7.24 - 7.15 (m, 2H), 7.02 - 6.94 (m, 1H), 6.79 (s, 1H), 2.48 (s, 3H), 2.12 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.2, 147.0, 142.3,

139.7, 139.3, 137.3, 135.7, 133.7, 133.5, 130.4, 129.6, 128.4, 128.4, 127.4, 127.2, 126.9, 125.4, 125.0, 121.4, 121.0, 110.3, 21.8, 18.6. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{23}H_{19}N_2O_2S_2]^+$ requires 419.0882, found 419.0885. $[\alpha]_D^{25} = +34$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 48.78 min, t₂ (minor) = 91.64 min.

(R)-3-(cyclohex-1-en-1-yl)-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[e][1,2]thiazine 1,1-

dioxide (6u).

Yield: 98.8 mg (95%). White solid, mp: 196-197 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.86 (dd, J = 4.2, 1.7 Hz, 1H), 8.06 (dd, J = 8.2, 1.7 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.29 (s, 1H), 7.21 (d, J = 7.9 Hz, 1H), 6.54 (s, 1H), 6.09 (t, J = 1.8 Hz, 1H), 2.47 (s, 3H), 2.21 (s, 3H), 2.12 – 2.02 (m, 2H), 1.82 (dd, J = 18.8, 4.2 Hz, 1H), 1.74 – 1.64 (m, 1H), 1.39 – 1.32 (m, 1H), 1.31 – 1.23 (m, 3H). ¹³C NMR

(dd, b^{-1} 10.6, 1.2 1.2, 111), 1.7 1 1.6 1 (in, 111), 1.5 1 1.5 2 (in, 111), 1.5 1 1.25 (in, 511). C 1.01 (in, 111), 1.5 1 1.5 2 (in, 511). C 1.01 (in,

(*R*)-3-(3-hydroxypropyl)-6-methyl-2-(7-methylquinolin-8-yl)-2*H*-benzo[e][1,2]thiazine 1,1-

2

16.659

5.48655e4

99.5792

889.26837

50.1002

dioxide (6v).

2

17.200

1.63961e4

305.16980

Yield: 84.7 mg (86%). White solid, mp: 100-101 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.83 (dd, *J* = 4.3, 1.8 Hz, 1H), 8.09 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.33 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.22 (s, 2H), 6.44 (s, 1H), 3.67 – 3.59 (m, 1H), 3.53 – 3.44 (m, 1H), 2.95 (s,

1H), 2.44 (s, 3H), 2.24 – 2.18 (m, 1H), 2.17 (s, 3H), 2.13 – 2.06 (m, 1H), 1.79 – 1.66 (m, 2H). ¹³C **NMR** (151 MHz, CDCl₃) δ 151.4, 147.0, 144.0, 142.2, 141.1, 136.0, 133.5, 132.0, 129.7, 129.6, 128.9, 128.0, 127.5, 126.9, 121.3, 121.1, 109.3, 61.0, 31.1, 29.6, 21.7, 18.6. **HRMS** (ESI): m/z [M+H]⁺ calcd

for $[C_{22}H_{23}N_2O_3S]^+$ requires 395.1424, found 395.1435. $[\alpha]_D^{25} = -76$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 22.21 min, t₂ (major) = 24.01 min.

(R)-3-cyclopropyl-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[e][1,2]thiazine 1,1-dioxide (6w).

Yield: 50.4 mg (54%). White solid, mp: 87-88 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.75 (dd, J = 4.2, 1.7 Hz, 1H), 8.09 (dd, J = 8.3, 1.8 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.30 (dd, J = 8.2, 4.2 Hz, 1H), 7.21 (s, 2H), 6.20 (s, 1H) 2.45 (s, 3H), 2.41 (s, 3H), 1.34 (td, J = 8.4, 4.3 Hz, 1H), 0.54 –

0.48 (m, 1H), 0.45 (dq, J = 9.7, 5.1 Hz, 1H), 0.41 – 0.30 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 151.2, 147.0, 146.1, 141.9, 141.5, 135.6, 133.7, 132.6, 129.5, 129.3, 128.8, 127.6, 127.4, 126.8, 121.1, 121.0, 104.5, 21.7, 19.0, 14.2, 7.1, 6.0. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₂₂H₂₁N₂O₂S]⁺ requires 377.1318, found 377.1319. [α]_D²⁵ = -80 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 18.99 min, t₂ (major) = 20.06 min.

2 20.231 3435.58521 60.10282 51.7139 2 20.056 5187.70801 87.58326 99.8789

(R)-3,4-dibutyl-6-methyl-2-(7-methylquinolin-8-yl)-2H-benzo[1,2]thiazine-1,1-dioxide (5aj).

Yield: 47.8 mg (43%). White solid, mp: 198-199 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.82 (dd, *J* = 4.2, 1.8 Hz, 1H), 8.08 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.71 (d, *J* = 8.3 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.44 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.32 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.22 (dd, *J* = 8.0, 1.5 Hz, 1H), 2.77 – 2.66 (m, 2H), 2.51 (s, 3H),

2.15 (s, 4H), 1.96 (ddd, J = 14.2, 11.4, 4.8 Hz, 1H), 1.67 – 1.59 (m, 4H), 1.48 (hd, J = 7.0, 2.1 Hz, 2H), 1.42 – 1.33 (m, 1H), 1.12 – 1.04 (m, 1H), 1.03 – 0.95 (m, 4H), 0.58 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 147.1, 141.4, 140.5, 139.9, 135.4, 134.7, 133.1, 131.9, 129.4, 128.3, 127.6, 127.3, 124.7, 121.3, 121.0, 120.5, 32.2, 30.7, 30.5, 28.2, 23.0, 22.6, 22.1, 18.6, 14.0, 13.3. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₇H₃₂N₂O₂S]⁺ requires 449.2257, found 449.2266. [α]_D²⁵ = -282 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 7.40 min, t₂ (major) = 8.46 min.

(R)-4,6-dimethyl-2-(7-methylquinolin-8-yl)-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6x).

Yield: 37.1 mg (35%). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.79 (dd, J =
4.2, 1.8 Hz, 1H), 7.92 (dd, J = 8.2, 1.8 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.55 (s,
1H), 7.48 (d, J = 8.4 Hz, 1H), 7.41 − 7.29 (m, 3H), 7.27 − 7.23 (m, 1H), 7.13 (d, J =
8.4 Hz, 1H), 7.08 − 6.95 (m, 1H), 2.55 (s, 3H), 2.26 (s, 3H), 2.23 (s, 3H). ¹³C

NMR (151 MHz, CDCl₃) δ 150.5, 146.6, 141.8, 139.9, 139.7, 136.0, 135.2, 135.1, 133.4, 131.2, 129.6, 129.1, 128.4, 128.2, 128.0, 127.3, 126.9, 125.3, 121.3, 120.6, 116.0, 22.1, 19.0, 16.3. **HRMS** (ESI):

m/z $[M+H]^+$ calcd for $[C_{26}H_{23}N_2O_2S]^+$ requires 427.1475, found 427.1475. $[\alpha]_D^{25} = +154$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 11.30 min, t₂ (major) = 13.31 min.

(R)-2-(7-ethylquinolin-8-yl)-6-methyl-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6y).

Yield: 86.1 mg (81%). White solid, mp: 208-209 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.93 (dd, J = 4.2, 1.7 Hz, 1H), 7.99 (dd, J = 8.2, 1.8 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.64 – 7.54 (m, 3H), 7.39 (s, 1H), 7.36 – 7.30 (m, 1H), 7.28 (dd, J = 8.1, 1.6 Hz,

1H), 7.25 (d, J = 5.7 Hz, 1H), 7.15 – 7.08 (m, 1H), 7.04 (dd, J = 8.2, 6.9 Hz, 2H), 6.70 (s, 1H), 2.63 (dq, J = 15.1, 7.6 Hz, 1H), 2.56 (dq, J = 14.9, 7.6 Hz, 1H), 2.51 (s, 3H), 1.06 (t, J = 7.6 Hz, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 150.8, 146.9, 145.5, 145.1, 142.1, 135.9, 135.4, 133.8, 132.5, 129.9, 129.1, 128.7, 128.5, 128.1, 127.8, 127.5, 127.4, 127.0, 121.6, 121.6, 120.9, 111.1, 24.5, 21.8, 14.3. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₂₆H₂₃N₂O₂S]⁺ requires 427.1475, found 427.1477. [α]_D²⁵ = +139 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 21.85 min, t₂ (major) = 25.18 min.

(R)-2-(7-butylquinolin-8-yl)-6-methyl-3-phenyl-2H-benzo[e][1,2]thiazine 1,1-dioxide (6z).

Yield: 90.6 mg (80%). White solid, mp: 200-201 °C. ¹H NMR (600 MHz, CDCl₃) δ

9.07 (dd, J = 4.3, 1.7 Hz, 1H), 7.97 (dd, J = 8.2, 1.8 Hz, 1H), 7.71 (d, J = 7.9 Hz,

1H), 7.63 (d, J = 6.9 Hz, 2H), 7.54 (d, J = 8.5 Hz, 1H), 7.38 (s, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.28 (dd, J = 8.0, 1.6 Hz, 1H), 7.15 (d, J = 8.5 Hz, 1H), 7.12 – 7.07 (m, 1H), 7.03 (t, J = 7.6 Hz, 2H), 6.72 (s, 1H), 2.48 (s, 3H), 2.43 – 2.34 (m, 1H), 2.34 – 2.26 (m, 1H), 1.36 – 1.28 (m, 1H), 1.27 – 1.18 (m, 1H), 1.09 – 0.98 (m, 1H), 0.91 – 0.80 (m, 1H), 0.66 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 147.2, 145.1, 144.3, 142.2, 135.8, 135.5, 133.6, 132.7, 130.1, 129.2, 128.6, 128.6, 128.2, 128.1, 127.9, 127.4, 127.0, 121.6, 121.0, 111.2, 32.9, 31.4, 23.0, 21.7, 13.7. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₈H₂₇N₂O₂S]⁺ requires 455.1788, found 455.1786. [α]²⁵_D = +132 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 23.17 min, t₂ (major) = 25.57 min.

(R)-6-methyl-3-phenyl-2-(7-phenylquinolin-8-yl)-2H-benzo[e][1,2]thiazine 1,1-dioxide (6za).

Yield: 71.2 mg (60%). White solid, mp: 160-161 °C. ¹H NMR (600 MHz, CDCl₃)
δ 9.33 (dd, J = 4.3, 1.7 Hz, 1H), 8.13 (dd, J = 8.3, 1.8 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.65 (d, J = 8.3 Hz, 1H), 7.51 (dd, J = 8.3, 4.2 Hz, 1H), 7.34 (dd, J = 8.0, 1.6)

Hz, 1H), 7.26 – 7.22 (m, 2H), 7.13 (d, J = 8.3 Hz, 1H), 7.11 – 7.04 (m, 2H), 6.97 (t, J = 7.6 Hz, 2H), 6.91 (s, 1H), 6.79 (t, J = 7.4 Hz, 2H), 6.71 (d, J = 7.5 Hz, 2H), 6.09 (s, 1H), 2.47 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.7, 147.1, 143.2, 142.2, 141.9, 137.8, 135.7, 135.5, 133.6, 133.2, 129.6, 129.1, 128.9, 128.6, 128.3, 128.1, 128.0, 127.9, 127.6, 127.5, 127.3, 127.0, 122.2, 121.7, 111.7, 21.6. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₃₀H₂₃N₂O₂S]⁺ requires 475.1475, found 475.1485. [α]²⁵_D = + 128 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 29.07 min, t₂ (minor) = 40.94 min.

Peak	RetTime	Area	Height	Area		
1	30.724	6164.22949	75.37975	51.8618		
2	41.682	5721.65576	44.38799	48.1382		

1	10 15	20 25	30 35 40	45 nir
Peak	RetTime	Area	Height	Area
1	29.066	6.74213e4	678.82184	99.7977
2	40.943	136.66936	1.43888	0.2023

(*R*)-2-(7-(4-methoxyphenyl)quinolin-8-yl)-6-methyl-3-phenyl-2H-benzo[e][1,2]thiazine 1,1dioxide (6zb).

Yield: 57.1 mg (45%). White solid, mp: 107-108 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.33 (dd, J = 4.2,

1.8 Hz, 1H), 8.13 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.52 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.36 (ddd, *J* = 8.0, 1.7, 0.8 Hz, 1H), 7.27 - 7.22 (m, 2H), 7.13 (d, *J* = 8.3 Hz, 1H), 7.10 - 7.04 (m, 1H), 7.00 - 6.93 (m,

3H), 6.67 – 6.62 (m, 2H), 6.32 (d, *J* = 8.0 Hz, 2H), 6.14 (s, 1H), 3.70 (s, 3H), 2.48 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.0, 151.6, 147.2, 143.5, 142.0, 141.6, 135.7, 135.6, 133.8, 133.3, 130.3, 129.3, 129.2, 128.9, 128.5, 128.2, 128.1, 127.8, 127.6, 127.4, 122.3, 121.6, 112.4, 111.5, 55.1, 21.6. HRMS

(ESI): m/z $[M+H]^+$ calcd for $[C_{31}H_{25}N_2O_3S]^+$ requires 505.1580, found 505.1591. $[\alpha]_D^{25} = +334$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 42.36 min, t₂ (minor) = 56.76 min.

(*R*)- (E)-6-methyl-3-phenyl-2-(7-styrylquinolin-8-yl)-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6zc). Yield: 110.0 mg (88%). White solid, mp: 160-161 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.08 (dd, *J* = 4.2,

2H), 2.53 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.5, 147.2, 146.2, 142.5, 138.2, 136.8, 135.7, 135.5, 133.6, 132.9, 132.8, 130.0, 129.3, 128.9, 128.7, 128.6, 128.3, 128.1, 128.0, 127.9, 127.7, 126.9, 123.8, 123.6, 122.10, 121.4, 111.1, 21.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₃₂H₂₅N₂O₂S]⁺ requires 501.1631, found 501.1635. [α]_D²⁵ = + 43 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (minor) = 40.49 min, t₂ (major) = 57.13 min.

2	59.583	3744.62817	18.51033	52.0379		2	57.113	3.88110e4	169.10344	98.4832
---	--------	------------	----------	---------	--	---	--------	-----------	-----------	---------

(*R*)-6-methyl-3-phenyl-2-(7-(thiophen-3-yl)quinolin-8-yl)-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6zd).

Yield: 64.8 mg (54%). White solid, mp: 225-226 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.24 (d, J = 4.1

Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 8.3 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 7.7 Hz, 2H), 7.14 (d, J = 8.3 Hz, 1H), 7.08 – 7.02 (m, 2H), 6.98 – 6.90 (m, 3H), 6.58 (s, 1H), 6.50 (d, J = 4.9 Hz, 1H), 6.22 (s, 1H), 2.47 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.6, 147.1, 143.6, 142.1, 138.0, 137.4, 135.7, 135.6, 133.7, 133.3, 129.5, 128.9, 128.7, 128.2, 128.1, 128.0, 128.0, 127.6, 127.6, 124.2, 123.5, 122.1, 121.7, 111.7, 21.7. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₈H₂₁N₂O₂S₂]⁺ requires 481.1039, found 481.1048. [α]_D²⁵ = + 311 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 32.43 min, t₂ (minor) = 38.39 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	32.970	6536.83984	76.75323	50.0620	1	32.430	2.28055e4	255.08836	99.7306
2	39.300	6520.65381	61.04184	49.9380	2	38.392	61.61191	6.18263e-1	0.2694

(*R*)-2-(5-chloro-7-methylquinolin-8-yl)-6-methyl-3-phenyl-2*H*-benzo[e][1,2]thiazine 1,1-dioxide (6ze).

Yield: 108.2 mg (97%). White solid, mp: 246-247 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.98 (dd, J = 4.2, 1.7 Hz, 1H), 8.33 (dd, J = 8.5, 1.8 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 7.2 Hz, 2H), 7.43 – 7.33 (m, 2H), 7.24 (d, J = 7.0

Hz, 2H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 2H), 6.72 (s, 1H), 2.44 (s, 3H), 2.16 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 151.4, 147.2, 144.5, 142.5, 139.9, 135.7, 133.6, 132.8, 132.6, 131.5, 130.3, 129.4, 129.3, 128.7, 128.1, 127.9, 127.6, 125.0, 121.7, 121.5, 111.5, 21.8, 18.8. **HRMS** (ESI): m/z $[M+H]^+$ calcd for $[C_{25}H_{20}CIN_2O_2S]^+$ requires 447.0929, found 447.0927. $[\alpha]_D^{25} = +40$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 80/20, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 31.18 min, t₂ (minor) = 35.22 min.

4-methyl-N-(7-methylquinolin-8-yl)benzenesulfonamide (1a)

Me O

0

Yield: 1.4 g (90%). White solid, mp: 114-115 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.37 (dd, J = 4.2, 1.7 Hz, 1H), 8.14 (s, 1H), 7.97 (dd, J = 8.2, 1.7 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.19 –

7.15 (m, 1H), 6.90 (d, J = 8.0 Hz, 2H), 2.76 (s, 3H), 2.21 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.8, 143.1, 142.9, 136.7, 135.9, 135.6, 131.1, 130.5, 128.6, 127.6, 126.4, 125.2, 120.4, 21.3, 20.1. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₇H₁₇N₂O₂S]⁺ requires 313.0932, found 313.1009.

4-fluoro-N-(7-methylquinolin-8-yl)benzenesulfonamide (1b)

Yield: 870.0 mg (90%). White solid, mp: 132-133 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.37 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (s, 1H), 7.99 (dd, J = 8.2, 1.7 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.45 (d, J = 8.4 Hz, 1H), 7.22 – 7.15 (m, 1H), 6.80 – 6.73 (m, 2H), 2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.0 (d, ¹ J_{C-F} = 254.1 Hz), 149.0, 142.8, 137.3, 135.7, 134.7, 134.6, 130.7, 130.5 (d, ² J_{C-F} = 36.4 Hz), 130.4, 126.4, 125.6, 120.6, 115.1, 115.0, 20.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.8. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄FN₂O₂S]⁺ requires 317.0755, found 317.0762.

4-chloro-N-(7-methylquinolin-8-yl)benzenesulfonamide (1c)

Yield: 1.36 g (82%). White solid, mp: 135-136 °C. ¹H NMR (600 MHz, CDCl₃) $\delta 8.37$ (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (s, 1H), 8.00 (dd, J = 8.2, 1.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.44 – 7.39 (d, 2H), 7.23 – 7.16 (m,

1H), 7.09 – 7.05 (d, 2H), 2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.1, 142.8, 138.9, 137.3, 137.2, 135.8, 130.6, 129.1, 128.2, 126.5, 125.7, 120.6, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄ClN₂O₂S]⁺ requires 333.0459, found 333.0461.

4-bromo-N-(7-methylquinolin-8-yl)benzenesulfonamide (1d)

Yield: 1.5 g (80%). White solid, mp: 138-139 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.37 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.06 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.34 (dd, *J* = 8.6, 1.6 Hz, 2H),

7.31 – 7.08 (m, 3H), 2.78 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 149.0, 142.8, 137.7, 137.3, 135.7, 131.2, 130.6, 130.5, 129.2, 127.4, 126.4, 125.7, 120.6, 20.0. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄BrN₂O₂S]⁺ requires 376.9881, found 376.9962.

N-(7-methylquinolin-8-yl)benzenesulfonamide (1e)

Yield: 1.4 g (94%). White solid, mp: 152-153 °C. ¹H NMR (600 MHz, CDCl₃) δ
8.34 (dd, J = 4.2, 1.7 Hz, 1H), 8.12 (s, 1H), 7.96 (dd, J = 8.2, 1.7 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.50 (dd, J = 8.5, 1.3 Hz, 2H), 7.45 (d, J = 8.4 Hz, 1H), 7.31
7.22 (m, 1H), 7.15 (dd, J = 8.2, 4.2 Hz, 1H), 7.13 – 7.09 (m, 2H), 2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.9, 142.8, 138.6, 136.9, 135.6, 132.3, 130.9, 130.5, 128.0, 127.6, 126.3, 125.4, 120.5, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₅N₂O₂S]⁺ requires 299.0776, found 299.0853.

4-(tert-butyl)-N-(7-methylquinolin-8-yl)benzenesulfonamide (1f)

Yield: 1.48 g (83%). White solid, mp: 141-142 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 0.26$ (dd, J = 3.7, 1.8 Hz, 1H), 8.00 (s, 1H), 7.95 (dd, J = 8.2, 2.0 Hz, 1H), 7.55 (dd, J = 8.6, 3.4 Hz, 1H), 7.44 (dd, J = 9.5, 4.6 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.13 – 7.05 (m, 1H), 7.06 (d, J = 6.9 Hz, 2H), 2.78 (s 3H), 1.15 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 156.2, 148.7, 142.9, 137.1, 135.5, 135.4, 131.1, 130.5, 127.4, 126.3, 125.4, 125.3, 124.8, 120.2, 34.9, 31.0, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₀H₂₃N₂O₂S]⁺ requires 355.1475, found 355.1483.

N-(7-methylquinolin-8-yl)-[1,1'-biphenyl]-4-sulfonamide (1g)

Yield: 1.8 g (81%). White solid, mp: 147-148 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.32 (dd, J = 4.2, 1.7 Hz, 1H), 8.13 (s, 1H), 7.96 (dd, J = 8.2, 1.7 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 1H), 7.45

-7.34 (m, 5H), 7.29 (d, J = 8.5 Hz, 2H), 7.15 -7.09 (m, 1H), 2.81 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) § 148.9, 145.3, 142.9, 139.4, 137.2, 137.1, 135.6, 130.9, 130.5, 128.9, 128.3, 128.1, 127.1, 126.6, 126.4, 125.4, 120.4, 20.0. **HRMS** (ESI): $m/z [M+H]^+$ calcd for $[C_{22}H_{19}N_2O_2S]^+$ requires 375.1089, found 375.1167.

4-methoxy-N-(7-methylquinolin-8-yl)benzenesulfonamide (1h)

o o Yield: 1.29 g (79%). White solid, mp: 135-136 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (dd, J = 3.5, 1.7 Hz, 1H), 8.11 (s, 1H), 7.98 (dd, J = 8.4, 2.0 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.46 – 7.40 (m, 3H), 7.20 – 7.14 (m, 1H), 6.60 – 6.54 (m, 2H), 3.69 (d, J =3.1 Hz, 3H), 2.77 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.8, 148.9, 142.9, 136.8, 135.6, 131.2, 130.5, 129.7, 126.4, 125.2, 120.5, 113.1, 55.4, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd for $[C_{17}H_{17}N_2O_3S]^+$ requires 328.0882, found 329.0963.

N-(7-Methylquinoline-8-yl)-4-acetamidobenzenesulfonamide (1i)

Yield: 532 mg (30%). White solid, mp: 241-242 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 10.16 (s, 1H), 9.49 (s, 1H), 8.42 (dd, J = 4.2, 1.7 Hz, 1H), 8.23 (dd, J = 8.2, 1.7 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.54 - 7.48 (m, 3H), 7.47-7.42 (m, 2H), 7.37 -7.28 (m, 1H), 2.56 (s, 3H), 2.05 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 154.4, 149.2, 147.8, 143.2, 141.0, 139.6, 136.4, 135.0, 133.4, 131.8, 131.5, 125.9, 122.9, 29.3, 24.7. **HRMS** (ESI): $m/z [M+H]^+$ calcd for $[C_{18}H_{18}N_3O_3S]^+$ requires 356.1063, found 356.1072.

N-(7-methylquinolin-8-yl)-4-(trifluoromethyl)benzenesulfonamide (1j)

Yield: 1.20 g (66%). White solid, mp: 150-151 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.26 (dd, J = 4.2, 1.6 Hz, 1H), 8.01 (s, 1H), 7.98 (dd, J = 8.2, 1.7 Hz, 1H), 7.59 (t, J = 7.9 Hz, 3H), 7.48 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 8.2 Hz,

2H), 7.18 – 7.12 (m, 1H), 2.80 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.0, 142.7, 142.0, 137.7, 135.7, 134.1 (q, ${}^{2}J_{C-F} = 32.9$ Hz), 130.6, 130.3, 128.2, 126.4, 126.0, 124.9 (q, ${}^{3}J_{C-F} = 4.5$ Hz), 124.1, 123.1 (q, ${}^{1}J_{C-F} = 272.54$ Hz), 120.6, 20.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.2. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₈H₁₅F₃NO₂S]⁺ requires 366.077, found 366.0779.

2-fluoro-*N*-(7-methylquinolin-8-yl)benzenesulfonamide (1k)

Yield: 1.2 g (75%). White solid, mp: 126-127 °C. ¹H NMR (600 MHz, CDCl₃) $\delta 8.40$ (d, J = 4.7 Hz, 1H), 8.20 (s, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.57 (d, J = 8.5Hz, 1H), 7.50 – 7.38 (m, 2H), 7.37 – 7.32 (m, 1H), 7.17 (dd, J = 8.4, 4.2 Hz, 1H), 7.02 (t, J = 9.3 Hz, 1H), 6.90 (t, J = 7.6 Hz, 1H), 2.74 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.7 (d, ¹ $J_{C-F} = 256.3$ Hz), 149.1, 143.3, 137.8, 135.7, 134.7 (d, ³ $J_{C-F} = 8.5$ Hz), 130.5, 130.1, 126.4, 125.8, 123.5 (d, ⁴ $J_{C-F} = 3.8$ Hz), 120.6, 116.4 (d, ² $J_{C-F} = 21.7$ Hz), 20.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -106.9 HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄FN₂O₂S]⁺ requires 317.0682, found 317.0758.

2-chloro-N-(7-methylquinolin-8-yl)benzenesulfonamide (11)

Yield: 1.1 g (67%). White solid, mp: 147-148 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.41 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.36 (s, 1H), 7.98 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.62 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.46 (dd, *J* = 8.0, 1.2 Hz, 1H),

7.43 (d, J = 8.4 Hz, 1H), 7.34 – 7.28 (m, 1H), 7.20 – 7.17 (m, 1H), 7.05 (t, J = 7.7 Hz, 1H), 2.69 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 149.0, 143.4, 137.9, 135.6, 133.2, 133.1, 131.2, 130.9, 130.6, 130.4, 126.4, 126.3, 125.8, 120.6, 20.0. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄ClN₂O₂S]⁺ requires 333.0386, found 333.0463.

2-bromo-N-(7-methylquinolin-8-yl)benzenesulfonamide (1m)

Yield: 1.49 g (79%). White solid, mp: 170-171 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (dd, J = 4.3, 1.7 Hz, 2H), 7.97 (dd, J = 8.2, 1.7 Hz, 1H), 7.67 (dd, J = 7.9, 1.2 Hz, 1H), 7.64 (dd, J = 7.9, 1.7 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.21 (td, J = 7.7, 1.7 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.08 (td, J = 7.6, 1.2 Hz, 1H), 2.68 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.9, 143.4, 139.6, 137.9, 135.5, 134.7, 133.1, 131.0, 130.8, 130.3, 126.8, 126.4, 125.8, 121.6, 120.6, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄BrN₂O₂S]⁺ requires 376.9954, found 376.9962.

3-chloro-N-(7-methylquinolin-8-yl)benzenesulfonamide (1n)

Yield: 1.33 g (80%). White solid, mp: 143-144 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.39 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (s, 1H), 8.00 (dd, J = 8.2, 1.7 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 1.9 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.31 (d, J = 7.9

Hz, 1H), 7.24 - 7.20 (m, 1H), 7.19 - 7.14 (m, 1H), 7.00 (t, J = 7.9 Hz, 1H), 2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.0, 142.7, 140.1, 137.4, 135.7, 134.2, 132.3, 130.6, 130.4, 129.1, 127.9, 126.5, 125.8, 125.7, 120.6, 20.0. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄ClN₂O₂S]⁺ requires 333.0459, found 333.0467.

3-bromo-N-(7-methylquinolin-8-yl)benzenesulfonamide (10)

Yield: 1.02 g (55%). White solid, mp: 155-156 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.39 (dd, J = 4.3, 1.7 Hz, 1H), 8.09 (s, 1H), 7.99 (dd, J = 8.3, 1.7 Hz, 1H), 7.64 (t, J = 1.9 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.35 (t, J = 7.8 Hz, 2H), 7.21 - 7.15 (m, 1H), 6.92 (t, J = 7.9 Hz, 1H), 2.77 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ

149.0, 142.7, 1403, 137.4, 135.8, 135.2, 130.8, 130.5, 130.4, 129.3, 126.5, 126.1, 128.8, 121.9, 120.7, 20.0. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄BrN₂O₂S]⁺ requires 376.9954, found 376.9958.

2,4-difluoro-*N*-(7-methylquinolin-8-yl)benzenesulfonamide (1p)

Yield: 1.4 g (81%). White solid, mp: 140-141 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.44 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.13 (s, 1H), 8.01 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.25 – 7.18 (m, 1H), 6.75 (t, *J* =

8.13 Hz 1H), 6.60 (t, J = 8.35 Hz 1H), 2.74 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 165.71 (dd, J = 257.5, 12.0 Hz), 161.41 (d, ² $J_{C-F} = 16.0$ Hz), 159.68 (d, ² $J_{C-F} = 15.4$ Hz), 149.22, 143.28, 138.22, 135.79, 131.84 (d, ² $J_{C-F} = 10.4$ Hz), 130.49, 126.46, 126.01, 124.19 (dd, J = 14.4, 3.9 Hz), 120.73, 110.77 (dd, J = 21.6, 3.8 Hz), 104.82 (t, ² $J_{C-F} = 25.6$ Hz), 19.96. ¹⁹F NMR (565 MHz, CDCl₃) δ -101.2, -101.4.**HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₃F₂N₂O₂S]⁺ requires 335.0588, found 335.0663.

3,4-dimethoxy-N-(7-methylquinolin-8-yl)benzenesulfonamide (1q)

J = 2.1 Hz, 1H), 6.56 (d, *J* = 8.5 Hz, 1H), 3.77 (s, 3H), 3.57 (s, 3H), 2.79 (s, 3H). ¹³C NMR (151 MHz,

CDCl₃) δ 152.4, 148.9, 148.1, 142.9, 136.8, 135.6, 131.4, 130.6, 130.5, 126.4, 125.1, 121.6, 120.6, 110.2, 109.7, 56.0, 55.9, 20.1. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₈H₁₉N₂O₄S]⁺ requires 359.0987, found 359.1069.

N-(7-methylquinolin-8-yl)thiophene-2-sulfonamide (1r)

Yield: 608 g (40%). White solid, mp: 119-120 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.43 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (s, 1H), 8.02 (dd, J = 8.2, 1.7 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.27 (d, J = 5.0 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.15 – 7.09 (m, 1H), 6.68 (dd, J = 5.0, 3.7 Hz, 1H), 2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.0, 143.2, 139.1, 137.4, 135.7, 132.7, 132.0, 130.1, 130.6, 126.6, 126.4, 125.6, 120.6, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₄H₁₃N₂O₂S₂]⁺ requires 305.0413, found 305.0441.

N-(7-methylquinolin-8-yl)naphthalene-1-sulfonamide (1s)

Yield: 1.44 g (83%). White solid, mp: 152-153 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.53 – 8.48 (m, 1H), 8.24 (s, 1H), 8.02 – 7.97 (t, 1H), 7.81 (dt, J = 5.7, 2.3 Hz, 3H), 7.69 (t, J = 6.4 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.43 – 7.34 (m, 3H), 7.27 – 7.21 (m, 1H), 6.93 (dt, J = 6.1, 3.2 Hz, 1H), 2.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 143.0, 136.7, 135.2, 135.0, 133.9, 133.7, 131.3, 130.3, 129.5, 129.3, 128.1, 127.3, 126.2, 126.1, 125.3, 124.9, 123.7, 120.2, 20.1. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₂₀H₁₇N₂O₂S]⁺ requires 349.1005, found 349.1008.

N-(7-methylquinolin-8-yl)-2-oxo-2H-chromene-7-sulfonamide (1t)

Yield: 420 mg (28%). White solid, mp: 207-208 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.29 (dd, J = 4.2, 1.6 Hz, 1H), 8.07 (s, 1H), 7.97 (dd, J = 8.2, 1.7 Hz, 1H), 7.68 (d, J = 2.2 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.48 (dd, J = 9.1, 2.1 Hz, 2H), 7.18 – 7.09 (m, 1H), 7.01 (d, J = 8.7 Hz, 1H), 6.39 (d, J = 9.6 Hz, 1H), 2.81 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 156.1, 149.0, 142.7, 142.2, 137.8, 135.8, 134.9, 130.8, 130.7, 130.3, 128.0, 126.5, 125.9, 120.7, 117.9, 117.8, 116.6, 20.2. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₉H₁₅N₂O₄S]⁺ requires 367.0747, found 367.0754.

N-(7-ethylquinolin-8-yl)-4-methylbenzenesulfonamide (1u)

Yield: 1.30 g (80%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.35 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (s, 1H), 7.97 (dd, J = 8.1, 1.7 Hz, 1H), 7.60 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 8.5 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.16 (dd, J = 8.2, 4.2 Hz, 1H), 6.88 (d,

J = 8.0 Hz, 2H), 3.32 - 3.20 (m, 2H), 2.20 (s, 3H), 1.34 (t, J = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.82, 143.05, 142.92, 142.63, 135.52, 130.33, 129.73, 128.80, 128.64, 128.50, 127.71, 126.36, 125.72, 25.35, 21.33, 14.63. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₉H₂₁N₂O₂S]⁺ requires 327.1162, found 327.1166.

N-(7-butylquinolin-8-yl)-4-methylbenzenesulfonamide (1v)

Yield: 796 mg (75%). White solid, mp: 164-165 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.36 (dd, J = 4.2, 1.7 Hz, 1H), 8.06 (s, 1H), 7.96 (dd, J = 8.2, 1.7 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.36 (d,J = 8.6 Hz, 2H), 7.23 – 7.15 (m, 1H), 6.89 (d, J = 8.0 Hz, 2H), 3.25 – 3.20 (t, 2H), 2.21 (s, 3H), 1.74 – 1.66 (m, 2H), 1.40 (t, J = 7.4 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.8, 143.1, 143.0, 141.5, 135.8, 135.5, 130.6, 129.1, 128.5,127.7, 126.4, 125.5, 120.4, 32.6, 32.0, 22.7, 21.3, 14.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₀H₂₃N₂O₂S]⁺ requires 355.1475, found 355.1475.

N-(7-chloroquinolin-8-yl)-4-methylbenzenesulfonamide (1w)

Yield: 1.1 g (66%). White solid, mp: 144-145 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.64 (dd, J = 4.2, 1.6 Hz, 1H), 8.26 (s, 1H), 8.09 (dd, J = 8.2, 1.7 Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.8 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.38 – 7.31 (m, 1H), 7.14 (d, J = 8.0 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.0, 143.5, 143.1, 137.3, 136.0, 131.8, 130.3, 129.0, 128.9, 127.6, 126.8, 125.8, 121.6, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄ClN₂O₂S]⁺ requires 333.0386, found 333.0466.

N-(5-bromoquinolin-8-yl)-4-methylbenzenesulfonamide (1x)

Yield: 1.50 g (80%). White solid, mp: 156-157 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.56 (dd, J = 4.2, 1.7 Hz, 1H), 8.10 – 8.05 (m, 2H), 7.74 (d, J = 8.8 Hz, 1H), 7.65 (d, J = 7.2 Hz, 2H), 7.54 (d, J = 8.8 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.11 (d, J = 8.1 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 143.6, 143.5, 137.2, 136.0, 133.6, 131.8, 128.9, 127.7, 127.3, 126.4, 121.7, 121.1, 21.5. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₄BrN₂O₂S]⁺ requires 376.9954, found 376.9962.

4-methyl-N-(7-phenylquinolin-8-yl)benzenesulfonamide (1y)

Yield: 1.38 g (79%). Yellow solid, mp: 146-147 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.70 (dd, J = 4.2, 1.7 Hz, 1H), 8.45 (s, 1H), 8.12 (dd, J = 8.2, 1.7 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.63 (d, J = 7.7 Hz, 2H), 7.59 (d, J = 8.5 Hz, 1H), 7.41 – 7.29 (m, 6H), 6.94 (d, J = 8.0 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.5, 143.0, 142.7, 139.8, 137.6, 136.7, 135.8, 130.8, 130.2, 129.6, 128.6, 128.3, 127.4, 127.3, 127.1, 125.3, 121.4, 21.4. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₂H₁₉N₂O₂S]⁺ requires 375.1162, found 375.1166.

N-(7-(4-methoxyphenyl)quinolin-8-yl)-4-methylbenzenesulfonamide (1z)

MeO Yield: 594 mg (73%). Yellow solid, mp: 194-195 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.67 (dd, J = 4.2, 1.7 Hz, 1H), 8.45 (s, 1H), 8.07 (dd, J = 8.2, 1.7 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 7.54 – 7.47 (m, 3H), 7.34 – 7.30 (m, 1H), 7.31 (d, J = 8.2 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 6.84 – 6.79 (d, J = 8.2 Hz, 2H), 3.82 (s, 3H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.0, 149.5, 143.1, 142.6, 137.2, 137.0, 135.8, 132.0, 130.8, 130.7, 130.2, 128.6, 127.1, 125.2, 121.3, 113.7, 55.1, 21.4. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₃H₂₁N₂O₃S]⁺ requires 405.1267, found 405.1274.

(E)-4-methyl-N-(7-styrylquinolin-8-yl)benzenesulfonamide (1za)

(d, J = 7.9 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.3, 143.3, 143.2, 137.3, 135.7, 135.6, 133.8, 130.6, 130.5, 128.7, 128.0, 127.8, 127.4, 127.2, 125.8, 125.5, 124.2, 121.1, 21.4. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₄H₂₂N₂O₂S]⁺ requires 401.1318, found 401.1321.

4-methyl-N-(7-(thiophen-3-yl)quinolin-8-yl)benzenesulfonamide (1zb)

Yield: 741 mg (63%). White solid, mp: 191-192 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.57 (dd, J = 4.2, 1.7 Hz, 1H), 8.31 (s, 1H), 8.05 (dd, J = 8.2, 1.7 Hz, 1H), 7.67 -7.62 (m, 3H), 7.55 (dd, J = 5.0, 1.3 Hz, 1H), 7.32 (d, J = 8.6 Hz, 2H), 7.33 -7.26(m, 2H), 6.93 (d, J = 8.0 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.5, 143.3, 142.9, 140.0, 136.6, 135.7, 133.0, 130.6, 129.5, 128.7, 128.6, 127.3, 127.2, 125.6, 125.2, 124.2, 121.2, 21.4. HRMS (ESI): m/z [M+H]⁺ calcd for [C₂₀H₁₇N₂O₂S₂]⁺ requires 381.0726, found 381.0730.

N-(5-chloro-7-methylquinolin-8-yl)-4-methylbenzenesulfonamide(1zc)

Yield: 504 mg (73%). White solid, mp: 173-174 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (dd, J = 4.2, 1.6 Hz, 1H), 8.34 (dd, J = 8.4, 1.6 Hz, 1H), 8.05 (s, 1H), 7.53 (s, 1H), 7.41 – 7.36 (d, J = 1.6 Hz, 2H), 7.30 – 7.25 (m, 1H), 6.92 (d, J = 8.0 Hz, 2H), 2.74 (s, 3H), 2.22 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.4, 143.3, 143.2, 137.2, 135.6, 132.8, 130.5, 130.2, 128.7, 128.5, 127.6, 124.4, 121.1, 21.4, 20.0. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₇H₁₆ClN₂O₂S]⁺ requires 347.0616, found 347.0620.

N-(5-bromo-7-methylquinolin-8-yl)-4-methylbenzenesulfonamide (1zd)

Yield: 1.6 g (82%). White solid, mp: 166-167 °C. ¹H NMR (600 MHz, CDCl₃) $\delta 8.39$ (dd, J = 4.2, 1.6 Hz, 1H), 8.32 (dd, J = 8.4, 1.6 Hz, 1H), 8.08 (s, 1H), 7.75 (s, 1H), 7.40 (d, J = 8.3 Hz, 2H), 7.33 – 7.22 (m, 1H), 6.93 (d, J = 8.0 Hz, 2H), 2.75 (s, 3H), 2.23 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.4, 143.3, 143.2, 137.6, 135.7, 135.4, 133.9, 131.2, 128.7, 127.6, 125.8, 121.4, 118.8, 21.4, 19.9. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₇H₁₆BrN₂O₂S]⁺ requires 391.0038, found 391.0115.

N-(5,7-dichloroquinolin-8-yl)-4-methylbenzenesulfonamide (1ze)

Yield: 413 mg (39%). Yellow solid, mp: 198-199 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.68 (dd, J = 4.3, 1.6 Hz, 1H), 8.47 (dd, J = 8.5, 1.6 Hz, 1H), 8.19 (s, 1H), 7.71 (d, J = 8.1 Hz, 2H), 7.68 (s, 1H), 7.51 – 7.42 (m, 1H), 7.16 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 143.7, 143.3, 137.2, 133.3, 131.2, 130.0, 129.1, 129.0, 128.6, 127.6, 125.1, 122.3, 21.5. **HRMS** (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₃Cl₂N₂O₂S]⁺ requires 367.0069, found 367.0075.

N-(5,7-dibromoquinolin-8-yl)-4-methylbenzenesulfonamide (1zf)

 $\int_{N}^{Br} \int_{N}^{Br} Yield: 720 \text{ mg} (55\%). White solid, mp: 198-199 °C. ¹H NMR (600 MHz, CDCl₃)$ $<math>\delta 8.58 \text{ (dd, } J = 4.2, 1.6 \text{ Hz}, 1\text{H}), 8.42 \text{ (dd, } J = 8.5, 1.6 \text{ Hz}, 1\text{H}), 8.06 \text{ (s, 2H)}, 7.68$ $- 7.64 \text{ (d, } J = 8.6 \text{ Hz}, 2\text{H}), 7.53 - 7.41 \text{ (m, 1H)}, 7.14 \text{ (d, } J = 8.0 \text{ Hz}, 2\text{H}), 2.35 \text{ (s, 3H)}. ^{13}C NMR (151 MHz, CDCl₃) <math>\delta 150.5, 143.7, 143.6, 137.1, 135.9, 134.6, 133.7, 129.0, 127.7, 126.8, 122.7, 120.6, 119.5, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for [C₁₆H₁₃Br₂N₂O₂S]⁺ requires 454.9059, found 454.9067.$

IV. NMR spectra for new compounds

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	ppm

0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 p		Manuel 1	the second se	and the second se			200 C 200 A 20				and the second second	
	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm

