Electronic Supplementary Information

Rare Earth Dialkyl Cations and Monoalkyl Dications supported by a

Rigid Neutral Pincer Ligand: Synthesis and Ethylene Polymerization

Aathith Vasanthakumar, Jeffrey S. Price and David J. H. Emslie*

Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4M1, Canada. Fax: (905)-522-2509; Tel: (905)-525-9140 x 23307.

E-mail: <u>emslied@mcmaster.ca</u>. Website: <u>https://emsliegroup.mcmaster.ca/</u>

Contents

NMR spectra	Figures S1-S43 (on pages S2-S24)
X-ray crystal structure of 3	Figure S44 (on page S25)
Polyethylene GPC data	Table 1 (on page S26)

Figure S1. ¹H NMR spectrum of the XII₂ ligand (600 MHz, C₆D₆).

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of the XII₂ ligand (151 MHz, C₆D₆).

Figure S3. ¹H NMR spectrum of [(XII₂)YCI₃] (1) (600 MHz, CD₂Cl₂).

Figure S4. ¹³C{¹H} NMR spectrum of $[(XII_2)YCI_3]$ (1) (151 MHz, CD₂Cl₂). See Figures S5 and S6 for expanded regions of the spectrum with labelled peaks.

Figure S5. Expanded region of the ¹³C{¹H} NMR spectrum of [(XII₂)YCI₃] (1) (151 MHz, CD₂CI₂).

Figure S6. Expanded region of the ¹³C{¹H} NMR spectrum of [(XII₂)YCl₃] (1) (151 MHz, CD₂Cl₂).

Figure S8. ¹³C{¹H} NMR spectrum of [H(XII₂)][B(C₆F₅)₄]·0.5 hexane (151 MHz, CD₂Cl₂).

Figure S9. ¹H NMR spectrum of [(XII₂)Y(CH₂SiMe₃)₂][B(C₆F₅)₄] (**2**) (600 MHz, C₆D₅Br).

Figure S10. ¹³C{¹H} NMR spectrum of $[(XII_2)Y(CH_2SiMe_3)_2][B(C_6F_5)_4]$ (**2**) (151 MHz, C₆D₅Br). See Figures S11 and S12 for expanded regions of the spectrum with labelled peaks.

Figure S11. Expanded region of the ${}^{13}C{}^{1}H$ NMR spectrum of $[(XII_2)Y(CH_2SiMe_3)_2][B(C_6F_5)_4]$ (2) (151 MHz, C_6D_5Br).

Figure S12. Expanded region of the ${}^{13}C{}^{1}H$ NMR spectrum of $[(XII_2)Y(CH_2SiMe_3)_2][B(C_6F_5)_4]$ (2) (151 MHz, C_6D_5Br).

Figure S13. ¹H NMR spectrum of $[(XII_2)Sc(CH_2SiMe_3)_2][B(C_6F_5)_4]$ (3) (600 MHz, C_6D_5Br).

Figure S14. ¹³C{¹H} NMR spectrum of $[(XII_2)Sc(CH_2SiMe_3)_2][B(C_6F_5)_4]$ (**3**) (151 MHz, C₆D₅Br). See Figures S15 and S16 for expanded regions of the spectrum with labelled peaks.

Figure S15. Expanded region of the ¹³C{¹H} NMR spectrum of $[(XII_2)Sc(CH_2SiMe_3)_2][B(C_6F_5)_4]$ (**3**) (151 MHz, C_6D_5Br).

Figure S16. Expanded region of the ¹³C{¹H} NMR spectrum of $[(XII_2)Sc(CH_2SiMe_3)_2][B(C_6F_5)_4]$ (**3**) (151 MHz, C_6D_5Br).

Figure S17. Variable temperature ¹H NMR spectra of $[(XII_2)Sc(CH_2SiMe_3)_2][B(C_6F_5)_4]$ (3) (500 MHz, C_6D_5Br).

Figure S18. Low temperature ¹H NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_2CH_2SiMe_3)][MeB(C_6F_5)_3][B(C_6F_5)_4]$ (4) (500 MHz, 252K, C₆D₅Br). See Figures S19 and S20 for expanded regions of the spectrum with labelled peaks.

Figure S19. Expanded region of the low temperature ¹H NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_2CH_2SiMe_3)][MeB(C_6F_5)_3][B(C_6F_5)_4]$ (4) (500 MHz, 252K, C₆D₅Br).

Figure S20. Expanded region of the low temperature ¹H NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_2CH_2SiMe_3)][MeB(C_6F_5)_3][B(C_6F_5)_4]$ (**4**) (500 MHz, 252K, C₆D₅Br).

Figure S21. Low temperature ¹³C{¹H} NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_2CH_2SiMe_3)][MeB(C_6F_5)_3][B(C_6F_5)_4]$ (4) (126 MHz, 252K, C₆D₅Br). See Figures S22 and S23 for expanded regions of the spectrum with labelled peaks.

Figure S22. Expanded region of the low temperature ${}^{13}C{}^{1}H$ NMR spectrum of in situ generated [(XII₂)Sc(CH₂SiMe₂CH₂SiMe₃)][MeB(C₆F₅)₃][B(C₆F₅)₄] (**4**) (126 MHz, 252K, C₆D₅Br).

Figure S23. Expanded region of the low temperature ${}^{13}C{}^{1}H$ NMR spectrum of in situ generated [(XII₂)Sc(CH₂SiMe₂CH₂SiMe₃)][MeB(C₆F₅)₃][B(C₆F₅)₄] (**4**) (126 MHz, 252K, C₆D₅Br).

Figure S24. Regions of the low temperature ${}^{1}H{}^{-13}C$ HMBC NMR spectrum of in situ generated [(XII₂)Sc(CH₂SiMe₂CH₂SiMe₃)][MeB(C₆F₅)₃][B(C₆F₅)₄] (**4**) (500 MHz ${}^{1}H$, 126 MHz ${}^{13}C$, 252K, C₆D₅Br). The ${}^{1}H$ NMR spectrum is on the horizontal axis. The ${}^{13}C{}^{1}H$ NMR spectrum is on the vertical axis.

Figure S25. ¹¹B NMR Spectrum of in situ generated [(XII₂)Sc(CH₂SiMe₂CH₂SiMe₃)][MeB(C₆F₅)₃][B(C₆F₅)₄] (4) (161 MHz, 252K, C₆D₅Br).

Figure S26. ¹⁹F NMR Spectrum of in situ generated [(XII₂)Sc(CH₂SiMe₂CH₂SiMe₃)][MeB(C₆F₅)₃][B(C₆F₅)₄] (4) (471 MHz, 252K, C₆D₅Br).

Figure S27. Region of the low temperature ${}^{1}H{}^{29}Si$ HMBC NMR of $[(XII_2)Sc(CH_2SiMe_2CH_2SiMe_3)][MeB(C_6F_5)_3][B(C_6F_5)_4]$ (4) (500 MHz ${}^{1}H$, 126 MHz ${}^{29}Si$, 252K, C₆D₅Br). Note: the ${}^{29}Si$ NMR spectrum on the y-axis is an internal projection.

Figure S28. Variable temperature ¹H NMR spectra of in situ generated [(XII₂)Sc(CH₂SiMe₂CH₂SiMe₃)][MeB(C₆F₅)₃][B(C₆F₅)₄] (**4**) (500 MHz, 252K, C₆D₅Br).

Figure S29. ¹H NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^x-toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz, 298 K, C₆D₅Br). See Figures S30 and S31 for expanded regions of the spectrum with labelled peaks.

Figure S30. Region of the ¹H NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x}-toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz, 298 K, C_6D_5Br).

Figure S31. Region of the ¹H NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x}-toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz, 298 K, C_6D_5Br).

Figure S32. Region of the ¹H-¹H COSY NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^x - toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz, 298 K, C_6D_5Br). This region of the spectrum enabled location of the CH^{1,8} proton signal.

Figure S33. ¹³C{¹H} NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^x-toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (126 MHz, 298 K, C_6D_5Br). See Figures S34 and S35 for expanded regions of the spectrum with labelled peaks.

Figure S34. Region of the ¹³C{¹H} NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x-1} toluene)_n][B(C_6F_5)_4]_2$ (5) in the presence of 5 equivalents of toluene (126 MHz, 298 K, C₆D₅Br).

Figure S35. Region of the ¹³C{¹H} NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x}-toluene)_n][B(C_6F_5)_4]_2$ (5) in the presence of 5 equivalents of toluene (126 MHz, 298 K, C₆D₅Br).

Figure S36. Region of the ¹H-¹³C HSQC NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x-1} toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz ¹H, 126 MHz ¹³C, 298 K, C₆D₅Br). This region enabled location of the ¹³C NMR C*Me*₂ signal. The ¹H NMR spectrum is on the horizontal axis. The ¹³C{¹H} NMR spectrum is on the vertical axis.

Figure S37. Region of the ¹H-¹³C HMBC NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x-1} toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz ¹H, 126 MHz ¹³C, 298 K, C₆D₅Br). This region enabled location of the ¹³C NMR C^{4,5} signal. The ¹H NMR spectrum is on the horizontal axis. The ¹³C{¹H} NMR spectrum is on the vertical axis.

Figure S38. Region of the ¹H-¹³C HMBC NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x}-toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz ¹H, 126 MHz ¹³C, 298 K, C_6D_5Br). This region enabled location of the ¹³C NMR $C^{10,13}$ signal. The ¹H NMR spectrum is on the horizontal axis. The ¹³C{¹H} NMR spectrum is on the vertical axis.

Figure S39. Region of the ¹H-¹³C HMBC NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x-1} toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz ¹H, 126 MHz ¹³C, 298 K, C_6D_5Br). This region enabled location of the ¹³C NMR NCN signal. The ¹H NMR spectrum is on the horizontal axis. The ¹³C{¹H} NMR spectrum is on the vertical axis.

Figure S40. Region of the ¹H-¹³C HMBC NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x-1} toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz ¹H, 126 MHz ¹³C, 298 K, C_6D_5Br). This region enabled location of the ¹³C NMR ScCH₂ signal. The ¹H NMR spectrum is on the horizontal axis. The ¹³C{¹H} NMR spectrum is on the vertical axis.

Figure S41. ¹¹B NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^x-toluene)_n][B(C_6F_5)_4]_2$ (5) in the presence of 5 equivalents of toluene (161 MHz, 298K, C₆D₅Br).

Figure S42. ¹⁹F NMR spectrum of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^x-toluene)_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (471 MHz, 298K, C_6D_5Br).

Figure S43. Variable temperature ¹H NMR spectra of in situ generated $[(XII_2)Sc(CH_2SiMe_3)(\eta^{x-toluene})_n][B(C_6F_5)_4]_2$ (**5**) in the presence of 5 equivalents of toluene (500 MHz, C₆D₅Br).

Figure S44. Front and side views of the cationic portion of the X-ray crystal structure of $[(XII_2)Sc(CH_2SiMe_3)_2][B(C_6F_5)_4]\cdot 2PhF$ (**3**·2PhF). Ellipsoids are set to 30% probability and hydrogen atoms are omitted for clarity. One of the CMe₃ groups is disordered, and only one orientation is shown. In view b, all atoms of the XII_2 ligand, except for O, N(1) and N(2) are shown in wireframe. Selected bond lengths (Å) and angles (°): Sc–N(1) 2.190(3), Sc–N(2) 2.190(2), Sc–O 2.282(2), Sc–C(42) 2.228(4), Sc–C(46) 2.211(3), N(1)–C(24) 1.369(4), N(2)–C(33) 1.369(4), C(27)···C(36) 4.598, C(30)···C(39) 8.324, N(1)–Sc–N(2) 126.9(1), O–Sc–C(42) 151.2(1), O–Sc–C(46) 104.8(1), C(42)–Sc–C(46) 104.1(1), Sc–C(42)–Si(1) 130.9(2), Sc–C(46)–Si(2) 123.9(2).

Solvent	Polym. Time (min)	Yield (g)	Activity (kg/mol·h·atm)	M _n (kg/mol)	M _w (kg/mol)	Mz (kg/mol)	M _v (kg/mol)	M _p (kg/mol)	M _w /M _n
toluene/ o-C ₆ H ₄ F ₂	2	0.239	741	46.77	65.70	98.06	62.76	70.30	1.40
toluene/ <i>o</i> -C ₆ H ₄ F ₂	3	0.420	868	79.47	111.88	163.61	106.98	104.82	1.41
toluene/ <i>o</i> -C ₆ H ₄ F ₂	5	0.456	565	98.12	202.21	298.45	191.29	205.73	2.06
0-C ₆ H ₄ F ₂	3	0.135	168	132.24	170.55	210.66	165.40	174.86	1.29

Table S1. Ethylene Polymerization Data for Catalyst **5** (0.2 mM concentration)^a under 1 atm of Ethylene at room temperature.[§]

^{*a*} The catalyst solution was generated in situ by stirring 15 mg (9.7 μ mol) of [(XII₂)Sc(CH₂SiMe₃)₂][B(C₆F₅)₄] (**3**) with 1 equiv. of [CPh₃][B(C₆F₅)₄] (9 mg; 9.8 μ mol) in 3 mL of solvent (either a 1:2 mixture of toluene and *o*-C₆H₄F₂, or neat *o*-C₆H₄F₂) for 2 hours, followed by the addition of an additional 40 mL of solvent (either a 3:1 mixture of toluene and *o*-C₆H₄F₂). Note: The polymerization reactions were exothermic, causing an increase in the solution temperature, despite the room temp. water bath around the flask.

^b Values from GPC are relative to polyethylene standards.