2,3-Diarylmaleate salts as a versatile class of diarylethenes with a full spectrum of photoactivity in water

Iumzhana A. Bolotova, ${ }^{a, b}$ Alexander O. Ustyuzhanin, ${ }^{a, b}$ Ekaterina S. Sergeeva, ${ }^{a, b}$
Anna A. Faizdrakhmanova, ${ }^{a, b}$ Yu Hai, ${ }^{c}$ Andrey V. Stepanov, ${ }^{a, b}$ Igor A. Ushakov, ${ }^{a}$
Konstantin A. Lyssenko, ${ }^{d}$ Lei You, ${ }^{c *}$ Andrey G. Lvov ${ }^{a, b *}$

${ }^{a}$ A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St., Irkutsk, 664033, Russia. E-mail: lvov-andre@yandex.ru
${ }^{b}$ Irkutsk National Research Technical University 83, Lermontov St., Irkutsk, 664074, Russia
${ }^{c}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. E-mail: lyou@fjirsm.ac.cn
${ }^{d}$ Department of Chemistry, Lomonosov Moscow State University Moscow, 119992, Russia

Table of contents

I. General information S2
II. Synthesis S3
II.1. Synthesis of starting diarylethenes 1 S3
II.2. Synthesis of DAM salts S6
II.3. Trapping of DAM salts S9
II.4. Preparative photoreactions of DAMs S11
III. NMR studies S15
III.1. Experiments with potassium carbonate S15
III.2. \boldsymbol{Z}-/E-isomerization of DAMs salts 2 S16
III.3. NMR monitoring of 2b-d photoreactions S18
III.4. NMR monitoring of 3a,b photoswitching 21
III.5. NMR monitoring of 4a,b photorearrangement S25
III.6. 2D NOESY for 4a S26
IV. X-ray crystallography S27
V. Photochemical studies S30
VI. DFT calculations S36
VII. Copies of NMR spectra S39
VIII. Copies of HRMS spectra S70
IX. References 881

I. General information

Materials. Diarylethenes 1a-e,g,h were synthesized according [S1]. 3,4-Bis(5-(3,5-bis(trifluoromethyl)phenyl)-2-methylthiophen-3-yl)furan-2,5-dione $\mathbf{1 f}$ was synthesized according [S2]. Water was distilled before use as solvent for preparative photoreactions. All commercially available reagents were used without further purification. Column chromatography was performed using silica gel $60(0.063-0.200 \mathrm{~mm}, \mathrm{pH} 6.0-7.5)$ by Th.Geyer; TLC analysis was conducted on silica gel $60 \mathrm{~F}_{254}$ plates.

Instrumentation. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{MHz})$ NMR spectra were recorded on a Bruker AV400 instrument in $\mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ and $\mathrm{CD}_{3} \mathrm{CN}$. Chemical shifts are reported in ppm using the residual signals of $\mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ as internal standards. HRMS were recorded using Agilent 1200/Agilent 6210 TOF HPLC instrument equipped with an electrospray ionization source (ESI). Melting points (uncorrected) were measured on a SMP10 apparatus (Stuart).

Photochemical studies. Electronic absorption spectra were recorded with a SF-56 spectrophotometer in 1 cm quartz cuvettes. The experimental measurements were performed in solutions of freshly distillated acetonitrile and water (buffer $\mathrm{pH}=7$) in the presence of air. UV irradiation was performed with Vilber Lourmat lamps (254 nm (6 W), 365 nm (15 W), 313 nm (15 W)). Visible light irradiation was performed by blue ($\lambda_{\max }=465 \mathrm{~nm}$) and green ($\lambda_{\max }=512 \mathrm{~nm}$) LED sources. For photolysis with UV (365 nm) common glassware was used. For photolysis with UV (254 and 313 nm) quartz cuvette and round-bottom flask was used.

The extinction coefficients at the absorbance maxima $\left(\varepsilon_{\lambda}\right)$ of $\mathbf{3 a} \mathbf{a} \mathbf{A}, \mathbf{3 a} \mathbf{- B}, \mathbf{3 b} \mathbf{- A}, \mathbf{3 b}-\mathbf{B}, \mathbf{4 b}$, and 11a were measured in three independent experiments for each value; the corresponding mean values were used for the calculations (Table S1). In the case of DAM's closed-ring isomers (3a-B and 3b-B), NMR spectroscopy combined with electronic spectroscopy (in 1 mm cells) was used to determine conversion. The conversion of $\mathbf{4 b}$ to $\mathbf{1 1 a}$ upon UV irradiation was taken as 100% at the moment when further irradiation did not cause any changes in the spectrum.

Table S1. Photophysical properties of DAM salts.

	$\lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ of initial isomers	$\lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ of photoisomers $(\mathbf{3 a - B}, \mathbf{3 b}-$ B) or photoproduct (11a)	$\Phi_{\mathrm{OC}}(\Phi$ for 4a)	Φ_{CO}
3a	$255(26500)$,	$460(5500)$	0.051	0.045
3b	$300(11400$, shoulder $)$			

The quantum yields of cyclization and cycloreversion (Φ_{OC} and Φ_{CO}, respectively) for 3a and 3b were measured using the previously reported method [S3]. 1,2-Bis(2-methyl-1-benzothiophen-3-yl)perfluorocyclopentene in hexane solution was used as a chemical actinometer at 313,465 and 512 nm [S3]. The photon numbers n_{p} were $\approx 8.7 \times 10^{15}$ photons $/ \mathrm{s}$ at $313 \mathrm{~nm}, \approx$ 7.6×10^{16} photons $/ \mathrm{s}$ at $465 \mathrm{~nm}, \approx 4.6 \times 10^{16}$ photons $/ \mathrm{s}$ at 512 nm .

The quantum yield of irreversible photorearrangement of $\mathbf{4 a}$ in water was measured using the following equation:

$$
\Phi=\frac{\Delta A_{235}^{B} \cdot N_{A} \cdot v}{1000 \cdot \varepsilon_{235}^{B} \cdot l \cdot n_{p} \cdot \frac{A_{313}^{A}(\Delta t)}{A_{313}(\Delta t)}\left(1-10^{-A_{313}(\Delta t)}\right) \cdot \Delta t}
$$

, where ΔA_{235}^{B} is the change of absorbance of photoproduct $11 \mathbf{a}$ at 235 nm during irradiation for $\Delta t ; \varepsilon_{235}^{B}$ is the extinction coefficient of 11 at $235 \mathrm{~nm} ; l$ is the optical path; v is the solution volume; N_{A} is the Avogadro constant; $A_{313}^{A}(\Delta t)$ is the mean value of 4 a absorbance at 313 nm for during irradiation for $\Delta t ; A_{313}(\Delta t)$ is the total absorbance of solution at 313 nm .

II. Synthesis

II.1. Synthesis of starting diarylethenes 1

Scheme S1.

General procedure. Arylacetic acid (1.5 mmol) and potassium carbonate (4.5 mmol) were suspended in N, N-dimethylformamide (DMF) (5 mL), and nitrogen was passed through the mixture for 15 min . Then 2-bromo-1-arylethanone (1.5 mmol) was added, and the suspension was stirred under nitrogen at room temperature for 1 h and at $80^{\circ} \mathrm{C}$ for 5 h . Next, the reaction mixture was heated at $80^{\circ} \mathrm{C}$ in an oxygen atmosphere until disappearance of organic components (TLC control, eluent petroleum ether / ethyl acetate 3:1). The mixture was cooled, poured into water $(200 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The aqueous phase was acidified (HCl) to $\mathrm{pH}=3-4$. The mixture was kept overnight, then extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with 5% sodium bicarbonate (150 mL), water (150 mL), dried over magnesium sulfate, and evaporated in vacuum.

3,4-Diphenylfuran-2,5-dione (1a).

Yield $76 \%(0.29 \mathrm{~g})$. Pale yellow powder, mp 159-160 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.60-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.93,138.30,131.27,129.82,129.06,127.32$. HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{3} 251.0703$, found 251.0708.

3-Phenyl-4-(p-tolyl)furan-2,5-dione (1b).

Yield $48 \%(0.19 \mathrm{~g})$. Pale yellow powder, mp $127-128^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.63-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 5 \mathrm{H})$, $7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.09$, $142.04,138.39,137.34,131.08,129.82,129.80,129.75,129.03,127.58$, 124.44, 21.74. HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{3}$ 265.0859, found 265.0863 .

3-(4-Methoxyphenyl)-4-phenylfuran-2,5-dione (1c).

Yield $49 \%(0.21 \mathrm{~g})$. Yellow powder, mp 132-134 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.60-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.92-$ $6.86(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.35,165.19$, 162.14, 137.99, 135.86, 131.86, 130.90, 129.64, 129.08, 127.88, 119.64, 114.58, 55.57. HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{4}$ 281.0808, found 281.0812 .

3-(4-Methoxyphenyl)-4-(p-tolyl)furan-2,5-dione (1d).

Yield $67 \%(0.30 \mathrm{~g})$. Yellow powder, mp 142-143 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.47,165.34,161.97,141.53$, $137.09,136.03,131.72,129.78,129.60,124.93,119.84,114.52,55.54$, 21.72. HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} 295.0965$, found 295.0969 .

3,4-Bis(2,5-dimethylthiophen-3-ylfuran-2,5-dione (1e).

Yield $69 \%(0.33 \mathrm{~g})$. Brown powder, mp 138-139 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.75$ (s, 2H), 2.43 ($\mathrm{s}, 6 \mathrm{H}$), 1.93 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.20,141.47,137.82,134.54$, 126.09, 125.55, 15.26, 14.97. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}_{2} 357.0016$, found 356.9927.

3-(5-Methyl-2-phenyloxazol-4-yl)-4-phenylfuran-2,5-dione (1g).

Yield $30 \%(0.14 \mathrm{~g})$. Orange powder, mp $158-160^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.72(\mathrm{~m}$, $2 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 6 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=164.82,164.03,160.99,151.99,139.21,131.44,130.98,130.72$, $130.55,128.97,128.48,127.56,126.66,126.51,125.91,12.67$. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{NO}_{4} 332.0917$, found 322.0924.

2,5-dione (1h).

Yield $28 \%(0.16 \mathrm{~g})$. Orange powder, mp $164-166^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ $-7.27(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 164.97, 163.74, 160.73, 152.94, 138.70, 134.15, 133.49, 131.30, 130.81, 130.51, 129.07, 128.83, 128.75, 126.94, 126.49, 126.38, 125.76, 125.12, 125.03, 12.61. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{NO}_{4} 382.1074$, found 382.1085 .

II.2. Synthesis of DAM salts

Scheme S2.

3,4-Diaryl substituted maleic anhydride $\mathbf{1}(2 \mathrm{mmol})$ and potassium carbonate (1.8 mmol) were suspended in DMF (5 mL) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . The reaction was controlled by ${ }^{13} \mathrm{C}$ NMR spectroscopy (disappearance of potassium carbonate: for details, see Section III.1). After completion of the reaction, the mixture was diluted with diethyl ether (50 mL), filtered on a glass funnel filter and dried in vacuo.

Potassium 2,3-diphenylmaleate (2a).

Yield $76 \%(0.47 \mathrm{~g})$. White powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=7.25-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=177.61,139.49,138.27,129.74,128.15,127.17$. HRMS (ESI-TOF) $m / z[\mathrm{M}-2 \mathrm{~K}+\mathrm{H}]{ }^{-}$calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~K}_{2} \mathrm{O}_{4} 267.0663$, found 267.0658.

Potassium 2-phenyl-3-(p-tolyl)maleate (2b).

Yield $58 \%(0.37 \mathrm{~g})$. White powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H})$, $7.06-7.01$ (m, 2H), 7.01-6.96 (m, 2H).2.24 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=177.91,177.65,139.72,138.78,138.47,137.40,135.14,129.76$, 129.70, 128.67, 128.14, 127.07, 20.31. HRMS (ESI-TOF) $m / z[\mathrm{M}-2 \mathrm{~K}+\mathrm{H}]^{-}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~K}_{2} \mathrm{O}_{4}$ 281.0819, found 281.0818.

Potassium 2-(4-methoxyphenyl)-3-phenylmaleate (2c).

Yield $73 \%(0.49 \mathrm{~g})$. White powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=177.94,177.66,157.87,139.32,138.63,138.52,131.13,130.93$, $129.80,128.15,127.03,113.55,55.30$. HRMS (ESI-TOF) $m / z[\mathrm{M}-2 \mathrm{~K}+\mathrm{H}]^{-}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~K}_{2} \mathrm{O}_{5} 297.0769$, found 297.0770.

Potassium 2-(4-methoxyphenyl)-3-(p-tolyl) maleate (2d).

Yield $88 \%(0.61 \mathrm{~g})$. Beige powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=7.07-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=177.87,177.85$, $157.70,138.81,138.54,137.16,135.27,131.02,129.63,128.61,113.46$, 55.20, 20.22. HRMS (ESI-TOF) $m / z[\mathrm{M}-2 \mathrm{~K}+\mathrm{H}]^{-}$calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~K}_{2} \mathrm{O}_{5}$ 311.0925, found 311.0921 .

Potassium 2,3-bis(2,5-dimethylthiophen-3-yl)maleate (3a).

Yield 55% (0.41 g). Brown powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=6.27$ ($\mathrm{s}, 1 \mathrm{H}$), $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=177.27,135.77,135.28,134.78,134.62$, 127.04, 14.19, 13.07. HRMS (ESI-TOF) $m / z[\mathrm{M}-2 \mathrm{~K}+\mathrm{H}]^{-}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~K}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ 335.0417, found 335.0413.

[^0]

Yield $80 \%(0.09 \mathrm{~g})$. White powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{CD}_{3} \mathrm{CN}$): $\delta=8.40(\mathrm{~s}, 4 \mathrm{H})$, 8.29 (s, 2H), 7.59 (s, 2H), 2.75 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}+\mathrm{CD}_{3} \mathrm{CN}\right): \delta=174.84,139.34,136.89$, $136.27,135.53,134.37,131.22(\mathrm{q}, J=33.3 \mathrm{~Hz}), 128.38$, 127.06, 124.77, 124.36, 121.66, 119.60, 118.95, 13.00. HRMS (ESI-TOF) $m / z[\mathrm{M}-2 \mathrm{~K}+\mathrm{H}]^{-}$calcd for $\mathrm{C}_{30} \mathrm{H}_{14} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{~K}_{2} 731.0226$, found 731.0230.

Potassium 2-(5-methyl-2-phenyloxazol-4-yl)-3-phenylmaleate (4a).

Yield $66 \%(0.51 \mathrm{~g})$. Brown powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=7.94-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 3 \mathrm{H})$, 7.33-7.14 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=177.53,174.48$, $159.91,147.55,147.21,137.79,132.91,130.72,129.12,128.57$, $128.35,126.60,126.25,125.95,9.77$. HRMS (ESI-TOF) $m / z[\mathrm{M}-2 \mathrm{~K}+3 \mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~K}_{2} \mathrm{NO}_{5}$ 350.1023 , found 350.1030 .

3-(5-Methyl-2-phenyloxazol-4-yl)-4-(naphthalen-1-yl) furan-2,5-dione (4b).

Yield $84 \%(0.72 \mathrm{~g})$. Brown powder, $\mathrm{mp}=262^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80$ (m, 2H), $7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.38(\mathrm{~m}, 8 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.32,174.14,158.79,146.64$, 143.31, 135.28, 132.72, 132.28, 130.15, 129.94, 129.80, 128.16, 127.56, 127.41, 126.24, 125.60, 125.33, 125.24, 125.09, 124.92, 9.75. HRMS (ESI-TOF) m / z [M$2 \mathrm{~K}+3 \mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~K}_{2} \mathrm{NO}_{5} 400.1180$, found 400.1190 .

II.3. Trapping of DAM salts

Scheme S3.

Products 5a,b. 3,4-Aryl substituted maleic anhydride $1(2 \mathrm{mmol})$ and potassium carbonate ($6 \mathrm{mmol}, 0.83 \mathrm{~g}$) were suspended in DMF (5 mL), the mixture was stirred for 1 h at 80 ${ }^{\circ} \mathrm{C}$ and cooled down to RT. Then iodomethane ($5 \mathrm{mmol}, 42 \mu \mathrm{~L}$) or 2-bromo-1-phenylethan-1-one ($5 \mathrm{mmol}, 0.50 \mathrm{~g}$) was added, and the suspension was stirred at room temperature for 24 h . The reaction mixture was poured into water (150 mL) and extracted with ethyl acetate ($4 \times 40 \mathrm{~mL}$). The combined organic phases were washed with water (150 mL), dried with magnesium sulfate, and evaporated in vacuum. The residue was purified by column chromatography eluting by petroleum ester/ethyl acetate (20:1).

Dimethyl 2,3-bis(2,5-dimethylthiophen-3-yl)maleate (Z-5a).

Yield $63 \%(0.46 \mathrm{~g})$. Orange powder, $\mathrm{mp} 128^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.26(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H})$, 1.98 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.46,136.94,135.84$, 134.57, 131.05, 126.28, 52.69, 15.19, 13.98. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}_{2}$ 365.0876, found 365.0886.

Bis(2-oxo-2-phenylethyl) 2,3-bis(2,5-dimethylthiophen-3-yl)maleate (5b).

Yield $42 \%(0.48 \mathrm{~g})$. Pale orange powder, $\mathrm{mp} 99-100^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.62-$ 7.56 (m, 2H), 7.50-7.43 (m, 4H), $6.52-6.47$ (m, 2H), 5.42 (s, 4H), $2.35-2.32(\mathrm{~m}, 6 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta=192.02,167.24,137.70,135.74,134.64,134.54$, 133.85, 130.91, 128.91, 128.01, 126.72, 67.23, 15.24, 14.22. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2}$
573.1400, found 573.1408.

Products \boldsymbol{Z}-7a and $\boldsymbol{Z} \mathbf{- 7} \mathbf{7 b}$. Corresponding DAM salt (2 mmol) was suspended in DMF (5 mL) with potassium carbonate ($2 \mathrm{mmol}, 0.28 \mathrm{~g}$) and iodomethane ($5 \mathrm{mmol}, 42 \mu \mathrm{~L}$) was added. The suspension was stirred at room temperature for 24 h . The reaction mixture was poured into water $(150 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 40 \mathrm{~mL})$. The combined organic phases were washed with water (150 mL), dried with magnesium sulfate, and evaporated in vacuum. The residue was purified by column chromatography eluting by petroleum ester/ethyl acetate (20:1).

Dimethyl 2,3-diphenylmaleate ($Z-7 a$).

Yield $35 \%(0.21 \mathrm{~g})$. Pale yellow powder, mp $108^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 4 \mathrm{H})$, 3.83 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.48,138.91,134.53$, 129.82, 128.47, 128.28, 52.84. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} 319.0941$ found 319.0944 .

Dimethyl 2-(4-methoxyphenyl)-3-phenylmaleate (Z-7c).

Yield $70 \%(0.46 \mathrm{~g})$. Pale yellow powder, $\mathrm{mp} 87-88^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{~N}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H})$, $7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.01,168.41,159.75,139.69$, 136.52, 134.91, 131.22, 129.94, 128.34, 128.26, 126.54, 55.24, 52.76, 29.80. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} 327.1227$ found 327.1236.

II.4. Preparative photoreactions of DAMs

Preparative photoreactions of DAMs. Potassium diarylmaleate (0.25 mmol) was dissolved in 200 mL of distilled water, and the reaction mixture was irradiated with appropriate light source (DAMs 2a-d, 4a,b: $\lambda=365 \mathrm{~nm}, 15 \mathrm{~W}$; DAM 3a: $\lambda=313 \mathrm{~nm}, 15 \mathrm{~W}$) with stirring. After completion of the reaction (NMR control), the mixture was evaporated in vacuum. The residue was suspended in DMF (5 mL) and potassium carbonate ($104 \mathrm{mg}, 0.75 \mathrm{mmol}$) was added. The reaction mixture was stirred for 1 h at room temperature. Then iodomethane ($40 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was added, and the suspension was stirred at room temperature for 24 h . The reaction mixture was poured into water (150 mL) and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with water (150 mL), dried with magnesium sulfate, and evaporated in vacuum. The residue was purified by column chromatography eluting by petroleum ester/ethyl acetate (20:1).

Dimethyl 2,3-diphenylmaleate ($\boldsymbol{E}-7 \mathbf{7 a}$).

DAM: 2a. Reaction time: 273 h .
Yield $28 \%(0.02 \mathrm{~g})$. White powder, mp $145^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.32(\mathrm{~m}, 10 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.58,137.74,135.54,128.98,128.64$, 128.14, 52.37. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$ 297.1121,
found 297.1126.

Dimethyl phenanthrene-9,10-dicarboxylate (8a).

DAM: 2a. Reaction time: 273 h .
Yield $57 \%(0.04 \mathrm{~g})$. White powder, mp $133^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.21-8.14(\mathrm{~m}$, 2H), $7.82-7.71$ (m, 2H), $7.71-7.63$ (m, 2H), 4.04 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.50,131.23,130.04,128.64,127.82,127.22,127.05,123.03,52.94$. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}$ 295.0965, found 295.0971.

Dimethyl 2-phenyl-3-(p-tolyl)maleate ($\boldsymbol{E}-7 \mathrm{~b}$).

DAM: 2b. Reaction time: 77.5 h .
Yield $31 \%(0.02 \mathrm{~g})$. White powder, mp $106^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.23-7.14(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.76,168.74,139.00,137.80,137.06,135.71,132.59$, 129.39, 128.88, 128.61, 128.12, 127.99, 52.36, 52.31, 21.46. HRMS (ESITOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} 311.1278$, found 311.1284

Dimethyl 3-methylphenanthrene-9,10-dicarboxylate (8b).

DAM: 2b. Reaction time: 77.5 h .
Yield $55 \%(0.04 \mathrm{~g})$. Pale yellow powder, $\mathrm{mp} 110^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.17$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.69-$ $7.62(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 6 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.64,168.60,138.79,131.38,130.93,130.12,129.59,128.95,128.38$, 127.69, 127.43, 127.01, 126.90, 125.17, 123.00, 122.79, 52.88, 22.29. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4} 309.1121$, found 309.1128.

Dimethyl 2-(4-methoxyphenyl)-3-phenylmaleate (\boldsymbol{E}-7c).

DAM: 2c. Reaction time: 77.5 h .
Yield $24 \%(0.02 \mathrm{~g})$. White powder, mp $109^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.58-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.02-6.81(\mathrm{~m}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $168.91,168.88,160.19,137.39,136.62,135.78,129.54,128.85,128.61$, 128.12, 127.83, 114.12, 55.41, 52.40, 52.31. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} 327.1227$, found 327.1235.

Dimethyl 3-methoxyphenanthrene-9,10-dicarboxylate (8c).

DAM: 2c. Reaction time: 77.5 h .
Yield $66 \%(0.05 \mathrm{~g})$. Pale yellow powder, mp $110^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.1$
$\mathrm{Hz}, 1 \mathrm{H}), 8.12-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.69$ (m, 1H), $7.69-7.62(\mathrm{~m}, 1 \mathrm{H})$,
$7.29(\mathrm{dd}, J=9.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.71$, $168.57,159.93,133.11,130.51,130.28,128.71,128.12,127.89,127.72,127.24,127.05,123.01$,
121.69, 117.90, 104.32, 55.64, 52.89, 52.84. HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$ 325.1071, found 325.1083 .

Dimethyl 2-(4-methoxyphenyl)-3-(p-tolyl)maleate (E-7d).

DAM: 2d. Reaction time: 77.5 h.
Yield $28 \%(0.02 \mathrm{~g})$. White powder, mp $118^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.17 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.82 (s, 3H), 3.57 (d, J $=5.4 \mathrm{~Hz}, 6 \mathrm{H}$), $2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.07$, $160.13,138.86,136.74,132.85,129.54,129.38,128.04,127.99,114.11$, 55.41, 52.35, 52.32, 21.46. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} 341.1384$, found 341.1392 .

Dimethyl 3-methoxy-6-methylphenanthrene-9,10-dicarboxylate (8d).

DAM: 2d. Reaction time: 77.5 h.
Yield $58 \%(0.05 \mathrm{~g})$. Pale yellow powder, mp $152^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.38(\mathrm{~s}, 1 \mathrm{H}), 8.12-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.09-3.94(\mathrm{~m}, 9 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.80,168.70,159.75,138.19,132.75$, 130.64, 129.66, 129.19, 128.64, 127.33, 126.89, 125.61, 122.69, 121.87, 117.77, 104.24, 55.65, 52.82, 52.77, 22.19. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5} 339.1227$, found 339.1236.

Dimethyl 2,3-bis(2,5-dimethylthiophen-3-yl)fumarate ($E-5 a$).

DAM: 3a. Reaction time: 22.5 h .
Yield $24 \%(0.02 \mathrm{~g})$. Pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=6.51(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}$, $6 \mathrm{H}), 2.23$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=167.10,135.66$, 134.92, 133.57, 131.08, 125.84, 52.20, 14.58, 13.26. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}$ 387.0695, found 387.0698.

Dimethyl ($\left.\mathbf{2 a}^{1}{ }^{1}, 5 a s\right)$-2a ${ }^{1}, 4,5 a, 7$-tetramethyl-2a ${ }^{1}, 5 a-d i h y d r o-5,6-d i t h i a a c e n a p h t h y l e n e-1,2-~$

dicarboxylate (10).
DAM: 3a. Reaction time: 22.5 h .
Yield 58% (0.05 g). Orange oil.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=6.44-6.40(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, 1.95 (d, $J=1.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=163.33,148.83,140.18,126.04$, 113.99, 63.88, 52.55, 51.54, 28.44, 22.85, 22.81. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2} 387.0695$, found 387.0700 .

Dimethyl 3-benzamido-4-methylnaphthalene-1,2-dicarboxylate
 (12a).

DAM: 4a. Reaction time: 5 h .
Yield $88 \%(0.08 \mathrm{~g})$. White powder, mp $197^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.25(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=168.40,168.07,165.56,135.25,134.43,134.22,132.20,131.34,129.31,128.97$, 128.63, 127.90, 127.61, 127.50, 126.54, 125.31, 125.21, 53.17, 52.85, 15.67. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{5} 378.1336$, found 378.1344.

Dimethyl 2-benzamido-1-methylphenanthrene-3,4-dicarboxylate (12b).

DAM: 4b. Reaction time: 25 h .
Yield $69 \%(0.07 \mathrm{~g})$. Beige powder, mp $194^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=10.33(\mathrm{~s}, 1 \mathrm{H}), 8.22-8.04(\mathrm{~m}$, 5 H), 8.01 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.66$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): $\delta=170.17,166.77,166.13,135.81,133.99,132.73$, $132.36,131.71,131.31,129.92,129.58,128.90,128.48,128.34,128.00,127.60,126.99,125.32$, 124.93, 122.81, 53.08, 52.65, 14.57. HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{5}$ 428.1493, found 428.1498 .

III. NMR studies ${ }^{\dagger}$

III.1. Experiments with potassium carbonate

For detection of potassium carbonate impurities in DAM salts, ${ }^{13} \mathrm{C}$ NMR spectroscopy was applied. Figure S1 shows an experiment on addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to DAM 2a. The pristine sample contains six peaks of entire compound in the downfield region (spectrum 1). Upon addition of 0.1 equiv. of $\mathrm{K}_{2} \mathrm{CO}_{3}$ a signal of the carbonate anions emerges at 165.50 ppm . Further addition of the salt results in downfield shift of the peak to 167.42 (0.5 equiv.) and 167.93 (1 equiv.). The spectrum of pure potassium carbonate features a signal at 168.41 in accordance to the literature data [S4].

Figure S1. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 a}$ in $\mathrm{D}_{2} \mathrm{O}$ upon addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$.

[^1]
III.2. $Z-/ E$-isomerization of DAMs salts 2

At the early stage of DAMs $\mathbf{2 a - d}$ photolysis, a formation of E-isomer with relatively deshielded signals of phenyl protons was observed (Scheme S4). In the case of $\boldsymbol{Z} \mathbf{- 2 a}$, the product $\boldsymbol{E - 2 a}$ was found at 7.3-7.5 ppm (Figure S2). Further irradiation led to partial disappearance of this product and formation of final phenanthrene 6a. Photolysis of alkylated derivative $\mathbf{Z - 7 a}$ for 2 h also led to the formation of $\boldsymbol{E}-\mathbf{7 a}$ with related downfield shift of phenyl signals (Figure S3). Note, both Z - and E-isomers of 7 a were isolated, the structure of \boldsymbol{Z}-7a was confirmed by X-ray crystallography.

Scheme S4.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a}$ in $\mathrm{D}_{2} \mathrm{O}$ upon continuous irradiation with UV light (365 nm).

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{Z}-\mathbf{7 a}$ in CDCl_{3} upon continuous irradiation with UV light (365 $\mathrm{nm})$.

III.3. NMR monitoring of 2b-d photoreactions

According to preparative photochemical reactions, DAMs 2a-d yield two main products, corresponding E-isomers as well as phenanthrenes 6a-d (Schemes S5-S7). NMR monitoring experiments support these results (Figures S4-S6).

Scheme S5.

E-2b

2b

6b

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 b}$ in $\mathrm{D}_{2} \mathrm{O}$ upon continuous irradiation with UV light (365 nm).

Scheme S6.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 c}$ in $\mathrm{D}_{2} \mathrm{O}$ upon continuous irradiation with UV light (365 nm).

Scheme S7.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 d}$ in $\mathrm{D}_{2} \mathrm{O}$ upon continuous irradiation with UV light $(365 \mathrm{~nm})$.

III.4. NMR monitoring of 3a,b photoswitching

Photolysis of DAMs \boldsymbol{Z}-3a for 9 h led to the formation of three products according to NMR spectroscopy (Figure S7). These compounds were recognized as \boldsymbol{E} - $\mathbf{3 a}$, closed-ring isomer 3a-B and product of formal 1,2-dyotropic rearrangement 9 [S5] (Scheme S8). To assign the corresponding NMR peaks, we performed a direct alkylation of \boldsymbol{Z}-3a (towards \boldsymbol{Z}-5a) and preparative photolysis followed by alkylation with iodomethane. The last experiment gave us pure $\boldsymbol{E}-5$ and $\mathbf{1 0}$ (Figure S8). The structure of the latter was proved by ${ }^{13} \mathrm{C}$ NMR spectroscopy (peaks at 63.88 and 52.55 ppm of $s p^{3}$-carbons bearing methyl groups in accordance to [S6-S9]) and UVVis spectroscopy (absorbance band in the visible region at 505 nm , Figure S26). The spectrum of $\mathbf{5 a - B}$ was detected upon photolysis of $\boldsymbol{Z} \mathbf{- 5 a}$ at the early stage (Figure S9). Comparison of the NMR spectra of water-soluble and alkylated products allowed us to assign the signals in the downfield region of as following: $\delta=6.61\left(\mathrm{H}^{1}\right.$ of $\left.\boldsymbol{E - 3 a}\right), 6.34\left(\mathrm{H}^{4}\right.$ of $\left.\mathbf{9}\right), 6.29\left(\mathrm{H}^{2}\right.$ of $\left.\boldsymbol{Z} \mathbf{- 3 a}\right), 6.22\left(\mathrm{H}^{3}\right.$ of $\left.\mathbf{3 a - B}\right)$ ppm.

Scheme S8.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a}$ in $\mathrm{D}_{2} \mathrm{O}$ upon with UV light (254 nm) and visible light (blue LED, 465 nm).

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{Z}-\mathbf{5 a}, \boldsymbol{E}-\mathbf{5 a}$ and $\mathbf{1 0}$ in CDCl_{3}.

3. $40 \mathrm{~min} \mathrm{UV}(365 \mathrm{~nm})$

4. $1 \mathrm{~h} 40 \mathrm{~min} \mathrm{UV}(365 \mathrm{~nm})$

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{Z}-\mathbf{5 a}$ in CDCl_{3} upon irradiation with UV light (365 nm).

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{CN} 1: 1\right)$ upon continuous irradiation with UV light (365 nm) and visible light (465 nm). MeCN residual peak ($\delta=2.53$) is marked by *.

III.5. NMR monitoring of 4a,b photorearrangement

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}$ in $\mathrm{D}_{2} \mathrm{O}$ upon continuous irradiation with UV light (365 nm).

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 b}$ in $\mathrm{D}_{2} \mathrm{O}$ upon continuous irradiation with UV light (365 nm).
III.6. 2D NOESY for 4a

Figure S13. H-H NOESY spectrum of $\mathbf{4 a}$.

IV. X-ray crystallography

Experimental intensities of reflections were measured on a Bruker D8 with Photon III detector, charge-integrating pixel array detector (CPAD), laterally graded multilayer (Goebel) mirror, microfocus Mo-target X-ray tube ($\lambda=0.73071 \AA$), and integrated Oxford Cryosystems 1000 liquid nitrogen cooling device (stability of 0.1 K). Data reduction and integration were performed with the Bruker software package SAINT (version 8.40B) platform [S10]. Absorption corrections based on measurements of equivalent reflections were carried out SADABS (multiscan methods) [S11]. The structures were solved by direct methods with the SHELXT program and refined by full matrix least-squares on F^{2} with SHELXL [S12]. Positions of all non-H atoms were found from electron difference density maps and refined with individual anisotropic displacement parameters. The H -atoms were positioned geometrically and refined as riding atoms with relative isotropic displacement parameters. A rotating group model was applied for methyl groups. Crystal data, data collection and structure refinement details are summarized in Table S2. The structures have been deposited at the Cambridge Crystallographic Data Center with the reference CCDC numbers 2255492-2255496, and they also contain the supplementary crystallographic data. These data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/data request/cif.

Table S2. Crystal data, data collection and structure refinement details.

	Z-7a	E-7b	E-7c	8b	8d	12a
CCDC number	2255492	2255495	2255494	2255496	2255493	2257444
Formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5}$	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5}$	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{5}$
M_{w}	296.31	310.33	326.33	308.32	338.34	377.38
T, K	110	110	139	110	110	101
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Triclinic	Monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{n}$	$\mathrm{P} 2_{1} / \mathrm{n}$	P2/n	Pbca	P-1	$\mathrm{P}_{1} / \mathrm{c}$
Z(Z')	4(1)	4(1)	4(1)	8	2(1)	4(1)
a, \AA	8.7095(4)	10.583(8)	9.538(2)	9.0013(18)	7.3855(18)	10.4074(6)
b, \AA	8.6086(4)	7.649(6)	10.289(2)	16.186(3)	10.729(3)	18.1894(10)
c, \AA	19.3283(8)	20.107(14)	16.613(4)	21.094(4)	12.101(4)	9.8502(6)
a, ${ }^{\circ}$	90	90	90	90	65.688(10)	90
b, ${ }^{\circ}$	93.799(2)	104.03(2)	94.677(10)	90	78.414(11)	100.929(2)
g, ${ }^{\circ}$	90	90	90	90	71.301(9)	90
V, \AA^{3}	1445.99(11)	1579(2)	1625.0(7)	3073.3(11)	825.1(4)	1830.87(18)
$\mathrm{d}_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.361	1.305	1.334	1.333	1.362	1.369
$\mathrm{m}, \mathrm{cm}^{-1}$	0.96	0.91	0.97	0.93	0.98	0.98
$\mathrm{F}(000)$	624	656	688	1296	356	792
$\begin{gathered} 2 \mathrm{q}_{\max },{ }^{\circ} \text { (compl, }, \\ \%) \end{gathered}$	58(99.9)	52(99.9)	55 (100)	54(100)	58(99.4)	58(99.9)
Number of measured reflections	13735	11685	12180	21024	8082	26142
Number of independent reflections	3843	3098	3739	3355	4343	4868
Number of observed reflections with $\mathrm{I}>2 \mathrm{~s}(\mathrm{I})$	2727	1559	2695	2331	3137	4029
Number of parameters	201	209	217	213	281	329
R1	0.0576	0.0893	0.0604	0.0667	0.0677	0.0548
wR2	0.1457	0.2582	0.1416	0.1741	0.1743	0.1431
GOF	1.001	1.008	1.038	1.049	1.036	1.052
Residual density, $\mathrm{e} \AA^{-3}\left(\mathrm{~d}_{\min } / \mathrm{d}_{\max }\right)$	$\begin{gathered} 0.336 /- \\ 0.326 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.362 /- \\ 0.462 \\ \hline \end{gathered}$	$\begin{gathered} 0.240 /- \\ 0.323 \\ \hline \end{gathered}$	0.442/-0.402	$\begin{gathered} \hline 0.233 /- \\ 0.275 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0403 /- \\ 0.392 \\ \hline \end{gathered}$

Figure S14. Molecular structure of \boldsymbol{E}-7c. Thermal ellipsoids are drawn at the 50% probability level.

Figure S15. Molecular structure of 8d. Thermal ellipsoids are drawn at the 50% probability level.

V. Photochemical studies

Figure S16. Spectral changes of water solution (buffer $\mathrm{pH}=7$) of $\mathbf{2 a}\left(c \approx 10^{-4} \mathrm{M}\right)$ upon irradiation with $\mathrm{UV}\left(\lambda_{\max }=254 \mathrm{~nm}\right)$ and thermal bleaching of $\mathbf{2 a - B}$ (on inset).

Figure S17. Thermal bleaching of 2a-B species in the air- and nitrogen-saturated solutions in the ambient conditions.

Figure S18. Spectral changes of water solution (buffer $\mathrm{pH}=7)$ of $\mathbf{2 b}\left(c \approx 10^{-4} \mathrm{M}\right)$ upon irradiation with UV $\left(\lambda_{\max }=254 \mathrm{~nm}\right)$ and thermal bleaching of 2b-B (on inset).

Figure S19. Spectral changes of water solution (buffer $\mathrm{pH}=7$) of $\mathbf{2 c}\left(c \approx 10^{-4} \mathrm{M}\right)$ upon irradiation with UV $\left(\lambda_{\max }=254 \mathrm{~nm}\right)$.

Figure S20. Spectral changes of water solution (buffer $\mathrm{pH}=7$) of $\mathbf{2 d}\left(c \approx 0.9^{*} 10^{-4} \mathrm{M}\right.$) upon irradiation with $\mathrm{UV}\left(\lambda_{\max }=254 \mathrm{~nm}\right)$.

Figure S21. Spectral changes of water solution (buffer $\mathrm{pH}=7$) of $\mathbf{3 a}\left(c \approx 10^{-4} \mathrm{M}\right)$ upon irradiation with UV ($\lambda_{\max }=254 \mathrm{~nm}$).

Figure S22. Spectral changes of water solution (buffer $\mathrm{pH}=7$) of $\mathbf{3 a}\left(c \approx 10^{-4} \mathrm{M}\right)$ upon irradiation with UV $\left(\lambda_{\max }=254 \mathrm{~nm}\right)$ and visible light $(\lambda \max =465 \mathrm{~nm})$ and cyclicity (on inset).

Figure S23. Spectral changes of water solution (buffer $\mathrm{pH}=7$) with acetonitrile $(1: 1)$ of $\mathbf{3 b}$ ($c \approx$ $\left.10^{-5} \mathrm{M}\right)$ upon irradiation with UV $\left(\lambda_{\max }=365 \mathrm{~nm}\right)$.

Figure S24. Spectral changes of water solution (buffer $\mathrm{pH}=7$) with acetonitrile (1:1) of $\mathbf{3 b}$ ($c \approx$ $\left.10^{-5} \mathrm{M}\right)$ upon irradiation with $\mathrm{UV}\left(\lambda_{\max }=365 \mathrm{~nm}\right)$ and visible light $(\lambda \max =512 \mathrm{~nm})$ and cyclicity (on inset).

Figure S25. Spectral changes of water solution (buffer $\mathrm{pH}=7$) of $\mathbf{4 a}\left(c \approx 10^{-4} \mathrm{M}\right)$ upon irradiation with UV $\left(\lambda_{\max }=365 \mathrm{~nm}\right)$.

Figure S26. Spectral changes of water solution (buffer $\mathrm{pH}=7$) of $\mathbf{4 b}\left(c \approx 10^{-4} \mathrm{M}\right)$ upon irradiation with UV $\left(\lambda_{\max }=365 \mathrm{~nm}\right)$ and thermal bleaching of 4b-B (on inset).

Figure S27. Absorbance spectrum of $\mathbf{1 0}$ in acetonitrile $\left(c \approx 1.2 \cdot 10^{-4} \mathrm{M}\right)$.

VI. DFT calculations

Spectral properties of photogenerated closed-ring isomers $\mathbf{2 a} \mathbf{a}-\mathbf{B}$ and $\mathbf{3 a - B}$ were simulated by the method of Patel and Masunov [S13]. All results were obtained using the Gaussian 09 program package [S14]. Density functional theory (DFT) calculations were performed using the M05-2x [S15] (structure optimization) and M05 [S16] (calculation of absorption spectra) functionals with the $6-31 \mathrm{G}(\mathrm{d})$ basis set [S17]. Calculation of vibrational frequencies was performed to prove that the optimized structure corresponds to a true minimum on the potential energy surface. The solvent influence was modeled using the polarizable continuum model (PCM) in water [S18]. The electronic excitations were calculated by linear-response time-dependent DFT (TD-DFT) [S19] at the TD-M05 level of theory.

Table S3. Calculated wavelength $\lambda(\mathrm{nm})$ and oscillator strength f for $\mathbf{2 a - B}$ (M05-2X/6$31 \mathrm{G}(\mathrm{d}) / \mathrm{PCM} / /$ TD-M05 /6-31G(d)/PCM level of theory).

	Excited state	$\lambda, \mathbf{n m}(f)$
	1	489.98 (0.1406)
	2	395.78 (0.0237)
	3	369.76 (0.0533)
	4	365.30 (0.0099)
	5	359.35 (0.0120)
	6	345.49 (0.0891)
	7	308.36 (0.1593)
	8	306.69 (0.0320)
	9	306.31 (0.0014)
	10	285.83 (0.0264)

Table S4. Calculated wavelength $\lambda(\mathrm{nm})$ and oscillator strength f for $\mathbf{3 a - B}$ (M05-2X/631G(d)/PCM // TD-M05 /6-31G(d)/PCM level of theory).

	Excited state	$\lambda, \mathrm{nm}(f)$
	1	438.72 (0.1628)
	2	355.68 (0.0542)
	3	339.23 (0.0154)
	4	336.04 (0.0435)
	5	333.82 (0.0043)
	6	332.37 (0.0006)
	7	305.23 (0.0099)
	8	289.00 (0.0001)
	9	279.50 (0.0011)
	10	279.21 (0.0037)

Cartesian coordinate columns of the optimized structure for compound 2a-B
(MO5-2X / 6-31G(d) / PCM (water))
Number of imaginary frequencies: 0
Computed total energy: $-575266.1 \mathrm{kcal} / \mathrm{mol}$

1	C	0.1747610	1.4419880	2.2716460
2	C	-0.0207100	0.7308120	0.9273310
3	C	-0.1747610	-1.4419880	2.2716460
4	C	0.0207100	-0.7308120	0.9273310
5	C	-0.1309280	1.4241840	-0.2381710
6	C	-0.3261530	0.6921160	-1.5566400
7	C	0.1309280	-1.4241840	-0.2381710
8	C	0.3261530	-0.6921160	-1.5566400
9	C	-0.1747610	2.8777550	-0.2773200
10	C	-0.0388670	3.5552680	-1.4370380
11	C	0.1415100	1.5096730	-2.7385420
12	C	0.2261350	2.8449150	-2.6827310
13	C	0.1747610	-2.8777550	-0.2773200
14	C	0.0388670	-3.5552680	-1.4370380
15	C	-0.1415100	-1.5096730	-2.7385420
16	C	-0.2261350	-2.8449150	-2.6827310
17	O	1.2087000	1.0921030	2.8901170
18	O	-0.6633240	2.3102340	2.6167070
19	O	0.6633240	-2.3102340	2.6167070
20	O	-1.2087000	-1.0921030	2.8901170
21	H	-1.4168590	0.5319310	-1.6748240
22	H	1.4168590	-0.5319310	-1.6748240
23	H	-0.2859370	3.3908800	0.6676110
24	H	-0.0552700	4.6383890	-1.4443260
25	H	0.3785140	0.9892710	-3.6592410
26	H	0.5257410	3.4141580	-3.5550260
27	H	0.2859370	-3.3908800	0.6676110
28	H	0.0552700	-4.6383890	-1.4443260
29	H	-0.3785140	-0.9892710	-3.6592410
30	H	-0.5257410	-3.4141580	-3.5550260

Cartesian coordinate columns of the optimized structure for compound 3a-B
(MO5-2X / 6-31G(d) / PCM (water))
Number of imaginary frequencies: 0
Computed total energy: $-1076519.5 \mathrm{kcal} / \mathrm{mol}$

1	C	-0.7363920	1.4365920	-0.0139070
2	C	0.7364070	1.4365830	0.0139140
3	C	-1.4045230	0.2701900	0.1327240
4	C	-0.6314880	-1.0161800	0.4322360
5	C	1.4045220	0.2701720	-0.1327210
6	C	0.6314720	-1.0161940	-0.4322110
7	C	-2.8337050	0.0229270	0.0661320
8	C	-3.1848500	-1.2740160	0.0136000
9	S	-1.8035790	-2.3930550	0.0290620
10	C	2.8337010	0.0228980	-0.0661470
11	C	3.1848300	-1.2740500	-0.0136020
12	S	1.8035540	-2.3930680	-0.0290090
13	C	4.5635760	-1.8460590	0.0654530
14	C	-4.5635870	-1.8460280	-0.0655540
15	C	-0.3545020	-1.0654750	1.9439020
16	C	0.3544890	-1.0655130	-1.9438790
17	C	-1.4591920	2.7317160	-0.3799070
18	O	-0.9155970	3.3911280	-1.2988380
19	O	-2.5345060	2.9949480	0.2133620
20	C	1.4592230	2.7316960	0.3799140
21	O	2.5345340	2.9949200	-0.2133740
22	O	0.9156420	3.3911310	1.2988300
23	H	-3.5426490	0.8373470	0.0397720
24	H	3.5426520	0.8373130	-0.0398030
25	H	4.7726790	-2.4805410	-0.7993070
26	H	5.2999230	-1.0433260	0.0975600
27	H	4.6803230	-2.4637040	0.9594930
28	H	-4.6804050	-2.4632680	-0.9598660
29	H	-4.7725790	-2.4809120	0.7989350
30	H	-5.2999650	-1.0433050	-0.0972280
31	H	0.2889590	-0.2314470	2.2288180
32	H	-1.3050290	-0.9739030	2.4713190
33	H	0.1219550	-2.0016840	2.2320170
34	H	1.3050190	-0.9739540	-2.4712920
35	H	-0.1219700	-2.0017260	-2.2319770
36	H	-0.2889670	-0.2314870	-2.2288080

VII. Copies of NMR spectra
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 a}$ in CDCl_{3}

$-77.16 \mathrm{CDCl} 3$
$\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 c}$ in CDCl_{3}

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum} \mathrm{of} \mathbf{1} \mathbf{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 g}$ in CDCl_{3}

* - acetone $(\delta=2.17)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 h}$ in CDCl_{3}

* - ethyl acetate ($\delta=4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 5 \mathrm{H}))$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 b}$ in $\mathrm{D}_{2} \mathrm{O}$
す!

$\begin{array}{lllllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 c}$ in $\mathrm{D}_{2} \mathrm{O}$

$\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}$ in $\mathrm{D}_{2} \mathrm{O}$

$\stackrel{T}{4}$
$\begin{array}{llllllllllllllllllllllllllll}0.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{p p m}{5.0} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}$
* The sample contents impurities of E-isomer of $\mathbf{2 d}$.
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 d}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ in $\mathrm{D}_{2} \mathrm{O}$

Ni
$-4.79 \mathrm{D} 20$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ in $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{CN}(1: 1)$

* $-\mathrm{MeCN}(\delta=2.53) ;{ }^{* *}$ - acetone $(\delta=2.36)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{b}$ in $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{CN}(1: 1)$

3b

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}$ in $\mathrm{D}_{2} \mathrm{O}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{Z}-\mathbf{5 a}$ in CDCl_{3}

$\stackrel{8}{i}$

Ja
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$ in CDCl_{3}

* - grease $(\delta=0.09)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b}$ in CDCl_{3}

* - silicone grease $(\delta=1.13)$
${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{Z}-\mathbf{7 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{Z}-7 \mathbf{a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{Z}-\mathbf{7} \mathbf{c}$ in CDCl_{3}

* - grease $(\delta=0.88,1.26) ;{ }^{* *}$ - water $(\delta=1.61) ;{ }^{* * *}$ - $\operatorname{DMF}(\delta=2.86,2.96)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{Z}-\mathbf{7} \mathbf{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{E}-\mathbf{7 a}$ in CDCl_{3}

* - water $(\delta=1.53)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{E}-7$ a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 a}$ in CDCl_{3}

* - water $(\delta=1.55)$; ** - grease $(\delta=1.26,0.07)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{E}-7 \mathbf{b}$ in CDCl_{3}

* - water $(\delta=1.55)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{E}-\mathbf{7 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{E}-7 \mathbf{c}$ in CDCl_{3}

* - water $(\delta=1.55)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{E}-7 \mathbf{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 c}$ in CDCl_{3}

* - water $(\delta=1.56)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{E}-\mathbf{7 d}$ in CDCl_{3}

* - water $(\delta=1.55)$
${ }^{13} \mathrm{C}$ NMR spectrum of \boldsymbol{E}-7d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{E}-\mathbf{5 a}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

* - water $(\delta=3.31))^{* *}$ - acetone $(\delta=2.08)$; $^{* * *}$ - grease $(\delta=1.24)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{E}-\mathbf{5 a}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

* - acetone $(\delta=30.61)$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

-3.69

* - water $(\delta=3.32) ;^{* *}$ - acetone $(\delta=2.08)$; $^{* * *}$ - grease $(\delta=1.24)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

 ${ }^{*}$ - grease $(\delta=28.95) ;{ }^{* *}$ - acetone $(\delta=30.64,206.41)$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 a}$ in CDCl_{3}

* - water $(\delta=1.57) ;{ }^{* *}$ - grease $(\delta=1.26)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 a}$ in CDCl_{3}

-15.67

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 b}$ in $\left(\mathrm{CD}_{3}\right) \mathrm{SO}$

VIII. Copies of HRMS spectra

HRMS spectrum of $\mathbf{1 a}$

HRMS spectrum of $\mathbf{1 b}$

HRMS spectrum of $\mathbf{1 c}$

HRMS spectrum of 1d

HRMS spectrum of $\mathbf{1 e}$

HRMS spectrum of $\mathbf{1 g}$

HRMS spectrum of $\mathbf{1 h}$

HRMS spectrum of 2a

HRMS spectrum of 2b

HRMS spectrum of 2c

HRMS spectrum of 2d

HRMS spectrum of 3a

HRMS spectrum of $\mathbf{3 b}$

HRMS spectrum of $\mathbf{4 a}$

HRMS spectrum of 4b

HRMS spectrum of $\boldsymbol{Z} \mathbf{- 5 a}$

HRMS spectrum of 5b

HRMS spectrum of \boldsymbol{Z}-7a

HRMS spectrum of \boldsymbol{Z}-7c

HRMS spectrum of $\boldsymbol{E}-\mathbf{7 a}$

HRMS spectrum of $\mathbf{8 a}$

HRMS spectrum of $\boldsymbol{E}-\mathbf{7 b}$

HRMS spectrum of $\mathbf{8 b}$

HRMS spectrum of \boldsymbol{E}-7c

HRMS spectrum of $\mathbf{8 c}$

HRMS spectrum of $\boldsymbol{E}-7 \mathbf{d}$

HRMS spectrum of 8d

HRMS spectrum of $\boldsymbol{E}-\mathbf{5 a}$

HRMS spectrum of $\mathbf{1 0}$

HRMS spectrum of 12a

HRMS spectrum of 12b

IX. References

[S1] O. Yu. Kuznetsova, I. V. Platonova, B. V. Lichitskii, M. M. Krayushkin, V. A. Barachevskii Russ. Chem. Bull. 2012, 61, 2109-2113.
[S2] Y. Hai, H. Ye, Z. Li, H. Zou, H. Lu, L. You, J. Am. Chem. Soc. 2021, 143, 20368-20376
[S3] T. Sumi, Y. Takagi, A. Yagi, M. Morimoto, M. Irie, Chem. Commun. 2014, 50, 39283930.
[S4] John Wiley \& Sons, Inc. SpectraBase (https://spectrabase.com); Spectrum ID=4DkIM6GVb69.
[S5] M. Irie, T. Lifka, K. Uchida, S. Kobatake, Y. Shindo, Chem. Commun. 1999, 747-750.
[S6] M. Herder, B. M. Schmidt, L. Grubert, M. Patzel, J. Schwarz, S. Hecht, J. Am. Chem. Soc. 2015, 137, 2738-2747.
[S7] M. Herder, F. Eisenreich, A. Bonasera, A. Grafl, L. Grubert, M. Patzel, J. Schwarz, S. Hecht, Chem. Eur. J. 2017, 23, 3743 - 3754.
[S8] A. G. Lvov, A. V. Yadykov, K. A. Lyssenko, F. W. Heinemann, V. Z. Shirinian, M. M. Khusniyarov, Org. Lett. 2020, 22, 604-609.
[S9] A. G. Lvov, M. Mortel, F. W. Heinemann, M. M. Khusniyarov, J. Mater. Chem. C 2021, 9, 4757-4763.
[S10] SAINT, Version 8.40B, Bruker AXS Inc., Madison, Wisconsin, USA, 2017.
[S11] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3.
[S12] G. M. Sheldrick, SHELX-2018/3, Program package for crystal structure solution and refinement, Göttingen, Germany, 2018.
[S13] P. D. Patel, A. E. Masunov, J. Phys. Chem. A 2009, 113, 8409-8414.
[S14] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B.

Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[S15] Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput. 2006, 2, 364-382.
[S16] Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
[S17] Ditschfield, R.; Hehre, W.; Pople, J. J. Chem. Phys. 1971, 54, 724-728.
[S18] Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117-129.
[S19] Casida, M.; Jamorski, C.; Casida, K.; Salahub, D. J. Chem. Phys. 1998, 108, 4439-4449.

[^0]: * The reaction was performed on 100 mg of substrate.

[^1]: \dagger Please note, that all NMR stacks were aligned to certain peaks of organic molecules (peak of water was not used as reference).

