Stereoselective Two-Carbon Ring Expansion of Allylic Amines via Electronic Control of Palladium-Promoted Equilibria

 and Jonathan P. Knowles*a

[^0]${ }^{\mathrm{b}}$ School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

Supporting Information

Supporting Information

CONTENTS

1.0 Screening of ring expansion conditions ... 2
2.0 Preliminary mechanistic studies and in situ cycloaddition reactions ... 3
3.1 General Materials, Methods and Instrumentation.. 6
3.2 Preparation of phosphonium salts and 4-methoxybenzyl bromide ... 6
3.3 Preparation of oxazolidone precursors.. 7
3.4 Preparation of vinyl oxazolidinone precursors ... 8
3.5 Preparation of proline-derived allylic amine substrates.. 10
3.6 Preparation of 2-phenylpyrrolidine allylic amine substrates... 15
3.7 Preparation of 2-phenyl-octahydroindole allylic amine substrates ... 20
3.8 Preparation of 2-phenylpiperidine allylic amine substrates.. 23
3.9 Preparation of trans-alkenyl isomer 7r.. 25
3.10 Palladium-catalysed ring expansion reactions.. 26
3.11 Derivatisation reactions. ... 32
4.0 NMR Spectra ... 37
5.0 X-ray Crystallography Data .. 99
6.0 Density Functional Theory Data... 102
7.0 References... 102

1.0 Screening of ring expansion conditions

Table S1: Further details of screening studies.

		${ }_{2} \mathrm{Bn}^{\frac{\mathrm{Pds}}{\text { solve }}}$					
Entry	Pd source ${ }^{\text {a }}$	Ligand	Additive(s) (equiv.)	Yield/ $\%{ }^{[b]}$	$5 \mathrm{E} / \mathrm{Z}$ ratio		
$1{ }^{[c]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PPh_{3}	TFA. ${ }^{\text {i }} \mathrm{Pr}_{2} \mathrm{NH}$	30	2.25:1		
$2^{\text {[d] }}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PPh_{3}	TFA. ${ }^{\text {i }}{ }^{\text {r }}$ 2 NH	<1	<2:98		
$3^{[\mathrm{e}]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PPh_{3}	TFA. ${ }^{\text {P }}{ }^{2} \mathrm{NH}$	53	7:3		
$4^{[d]}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	PPh_{3}	TFA. ${ }^{\text {Pr }}{ }_{2} \mathrm{NH}$	55	<2:98		
$5^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	PPh_{3}	TFA. ${ }^{\text {i }}{ }^{\text {Pr }}{ }_{2} \mathrm{NH}$	3	<2:98		
$6^{[d]}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{P}(\mathrm{OPh})_{3}$	TFA. ${ }^{\text {P }}{ }^{2}{ }_{2} \mathrm{NH}$	40	15:85		Results from main
$7{ }^{\text {[d] }}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA. ${ }^{\text {P }} \mathrm{Pr}_{2} \mathrm{NH}$	20	<2:98		manuscript
$8^{[d]}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA, morpholine (1:0.4)	72	9:1		
$9^{\text {[d] }}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA, morpholine (1:0.4)	78 (64)	1:1		
$10^{[\text {[e] }}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA, morpholine (1:0.4)	75	65:35		
$11^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	PPh_{3}	TFA, morpholine (1:0.4)	57	13:87		
$12^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA, piperidine (1:0.4)	15	<2:98		
$13{ }^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA, N-Me morpholine (1:0.4)	<1	<2:98		Variation of amine
$14^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA, ethanolamine (1:0.4)	20	<2:98		
$15^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	MsOH , morpholine (1:0.4)	59	7:93		
$16^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	2,4-DNBA, morpholine (1:0.4)	23	<2:98		
$17^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TCA, morpholine (1:0.4)	<1	<2:98	-	Variation of acid
$18^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	$\mathrm{PhCO}_{2} \mathrm{H}$, morpholine	<1	<2:98		
$19^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA, morpholine (1:0.2)	32	<2:98		
$20^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA, morpholine (1:0.6)	59	1:4		
$21^{[d]}$	$[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$	$\mathrm{P}(\mathrm{OEt})_{3}$	TFA only (1)	<1	<2:98		Variation of stoichiometry
$22^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	Morpholine only (0.4)	<1	<2:98		
$23^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}(\mathrm{OEt})_{3}$	MsOH , morpholine (1:1)	70	85:15		
$24^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	$\mathrm{P}\left(\mathrm{O}^{\mathbf{i}} \mathrm{Pr}\right)_{3}$	TFA, morpholine (1:0.4)	17	<2:98		
$25^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	PCy_{3}	TFA, morpholine (1:0.4)	<1	<2:98		
$26^{[d]}$	$[\mathrm{Pd} \text { (allyl) } \mathrm{Cl}]_{2}$	BINAP	TFA, morpholine (1:0.4)	<1	<2:98		
$27^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	DPEPhos	TFA, morpholine (1:0.4)	<1	<2:98		Variation of ligand
$28^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	dppbz	TFA, morpholine (1:0.4)	<1	<2:98		
$29^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	dppp	TFA, morpholine (1:0.4)	<1	<2:98		
$30^{[d]}$	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	XantPhos	TFA, morpholine (1:0.4)	4	<2:98		

${ }^{\text {a }}$ Reactions employing $\mathrm{Pd}(\mathrm{OAc})_{2}$ employed $10 \mathrm{~mol} \%$ catalyst whereas $5 \mathrm{~mol} \%$ was used for both $\left[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}_{2}\right.$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR against
 $=$ trifluoroacetic acid, 2,4- DNBA $=2,4$-dinitrobenzoic acid, $\mathrm{TCA}=$ trichloroacetic acid.

2.0 Preliminary mechanistic studies and in situ cycloaddition reactions

Reaction of product $\mathbf{8 b}$ under standard reaction conditions.

Unsuccessful trapping of intermediates using acetic anhydride.

Effect of electron density on reaction conversion at fixed time points.

Reaction of E / Z mixtures of $\mathbf{7 b}$ (from recovered starting materials).

In situ trapping via [3+2]-cycloaddition reaction.

Crude ${ }^{1} \mathrm{H}$ NMR spectrum under conditions A

Crude ${ }^{1} \mathrm{H}$ NMR spectrum under conditions B

3.1 General Materials, Methods and Instrumentation

All palladium-catalysed processes were carried out using Schlenk technique under argon using either commercially available dry DCM at $42{ }^{\circ} \mathrm{C}$ or dry MeCN at $80{ }^{\circ} \mathrm{C}$ unless stated otherwise. Chemicals were obtained from commercial sources unless otherwise stated. DCE, THF, and toluene were dried over activated 3 A molecular sieves for 3 days prior to use. Column chromatography was performed using 40-60 mesh silica powder. NMR spectroscopic analysis was performed using Jeol ECS 400 MHz instrument. Chemical shifts are reported in $\delta \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR are referenced to solvent as internal standard $\left(\mathrm{CDCl}_{3}\right.$ or DMSO$)$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentent, $\mathrm{h}=$ hextet, $\mathrm{hpt}=$ heptet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{td}=$ triplet of doublets, $\mathrm{tt}=$ triplet of triplets, $\mathrm{ddt}=$ doublet of doublet of triplets, ddd $=$ doublet of doublet of doublets, $m=$ multiplet), coupling constants (Hz), and integration. Mass spectrometry analysis was performed using via electrospray ionisation in methanol.

3.2 Preparation of phosphonium salts and 4-methoxy benzyl bromide

Compound S3: Ethyltriphenylphosphonium bromide
$\mathrm{PPh}_{3} \mathrm{Br}$ A 0.5 cm thick glass tube was charged with triphenylphosphine ($4.50 \mathrm{~g}, 17.4 \mathrm{mmol}$), $\operatorname{EtBr}(2.7 \mathrm{~mL}, 36 \mathrm{mmol})$ and toluene $(7 \mathrm{~mL})$. The tube was sealed and heated to $110{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was cooled to rt , the solids were filtered off and washed sequentially with toluene, hexane and ether (20 mL each) under a stream of nitrogen. The solids were dried under reduced pressure afforded product as fine white powder ($6.0 \mathrm{~g}, 93 \%$).

Compound S4: Benzyltriphenylphosphonium bromide

Following a literature procedure, ${ }^{1}$ a stirred solution of $\mathrm{PPh}_{3}(4.00 \mathrm{~g}, 15.3 \mathrm{mmol})$ and $\mathrm{BnBr}(1.5 \mathrm{~mL}, 13 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ were heated to $80^{\circ} \mathrm{C}$ and stirred for 16 h . The mixture was allowed to reach rt and the white solid filtered off. The solids were washed with ether $(60 \mathrm{~mL})$ followed by hexane $(60 \mathrm{~mL})$ then dried under reduced pressure at $40{ }^{\circ} \mathrm{C}$ for 30 min afforded product as white crystalline solid ($5.7 \mathrm{~g}, 100 \%$). All spectra data was in accord with that reported. ${ }^{1}$

Compound S5: Phenylethyltriphenylphosphonium bromide
Following an adapted procedure, ${ }^{2}$ a stirred solution of $\mathrm{PPh}_{3}(4.7 \mathrm{~g}, 18 \mathrm{mmol})$ and 2-bromoethyl benzene ($2.4 \mathrm{~mL}, 18 \mathrm{mmol}$) was refluxed in toluene (64 mL) for 4 days. The mixture was allowed to cool to rt and solvent decanted off. Hexane $(50.0 \mathrm{~mL})$ was added with stirring and cooled to $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 15 mins before decanting hexane off and scratching at the gum with a spatula to induce mobility. This process was repeated once more. After decanting hexane, the gum-oil was dried under reduced pressure causing it to expand. The gum was scratched with a spatula vigorously and dried under reduced pressure at $45^{\circ} \mathrm{C}$. After 5 scratching/evaporation cycles, product was obtained as white crystalline powder ($5.3 \mathrm{~g}, 66 \%$). All spectra data was in accord with that reported. ${ }^{2}$

Compound S6: Isopentyltriphenylphosphonium bromide
 Following an adapted procedure, ${ }^{3}$ to a stirred solution of $\mathrm{PPh}_{3}(4.90 \mathrm{~g}, 18.7 \mathrm{mmol})$ in toluene (30 mL) at rt , in a flask fitted with a dry reflux condenser under nitrogen, 1-bromo-3-methyl butane ($4.7 \mathrm{~mL}, 39 \mathrm{mmol}$) was added dropwise. The mixture was heated to $120{ }^{\circ} \mathrm{C}$ and stirred for 5 days. Alkyl halide (1 eq .) was added and the mixture stirred further for 18 h and cooled to $0{ }^{\circ} \mathrm{C}$. The solid was filtered and washed with cold toluene (50 mL)
followed by cold $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$. The solid was dried under reduced pressure to afford the title compound as a white powder ($5.8 \mathrm{~g}, 75 \%$). All spectra data was in accord with that reported. ${ }^{3}$

Compound S7: (Ethoxycarbonylmethylene)triphenylphosphorane.

Following a literature procedure, ${ }^{4}$ to a stirred solution of $\mathrm{PPh}_{3}(2 \mathrm{~g}, 7.6 \mathrm{mmol})$ in EtOAc (16 mL), was added 2-bromo ethyl acetate ($0.90 \mathrm{~mL}, 8.1 \mathrm{mmol}$) dropwise. The mixture was refluxed for 7.5 h and cooled to rt . The precipitate was filtered, washed with hexane $(2 \times 20 \mathrm{~mL})$ and the solid dried under vacuum to give phosphonium salt as a fine white powder ($3.2 \mathrm{~g}, 97 \%$). The freshly made phosphonium salt ($2.9 \mathrm{~g}, 6.9 \mathrm{mmol}$) was dissolved in DCM $(44 \mathrm{~mL})$ and washed with aq. $\mathrm{KOH}(1.3 \mathrm{~g}, 22.2 \mathrm{mmol}$ in 44 mL$)$. The phases were separated and the organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ to give phosphorane $\mathbf{S} 7$ as a white solid (2.7 g , quant.). All spectra data was in accord with that reported. ${ }^{4}$

Compound S8: 4-Methoxybenzyl bromide.

To stirred solution of 4-methoxy-benzyl alcohol ($2.0 \mathrm{~g}, 15 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(15$ mL), cooled to $0{ }^{\circ} \mathrm{C}$ under nitrogen, was added $\mathrm{PBr}_{3}(0.70 \mathrm{~mL}, 7.5 \mathrm{mmol})$ dropwise. The phases were separated, and organic phase washed further with saturated $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. The ether phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude 4-methoxybenzyl bromide $\mathbf{S 8}$ as a clear oil ($2.0 \mathrm{~g}, 68 \%$), which was used without further purification. All spectra data was in accord with that reported. ${ }^{5}$

3.3 Preparation of oxazolidone precursors

Compound (\pm)-S9: (2R, 5S)-2-trichloromethyl-1-aza-3-oxabicyclo[3.3.0]octan-4-one.

Following a literature procedure, ${ }^{6} \mathrm{rac}$-proline $(10.0 \mathrm{~g}, 86.9 \mathrm{mmol})$ and chloral hydrate $(22 \mathrm{~g}, 131 \mathrm{mmol})$ were refluxed in $\mathrm{CHCl}_{3}(160 \mathrm{~mL})$ in a flask equipped with a reverse Dean-Stark condenser under argon for 6 h . The reaction was allowed to cool to rt and washed with saturated $\mathrm{NaHCO}_{3}(120 \mathrm{~mL})$ and the phases separated. The aq. phase was extracted further with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude brown crystalline solid. This was recrystallised from boiling $\mathrm{EtOH}(100 \mathrm{~mL})$. The crystals were filtered off, washed with cold absolute EtOH , and dried under reduced pressure to give product ($15.1 \mathrm{~g}, 73 \%$) as a white crystalline solid. All spectral data was in accord with that reported. ${ }^{6}$

Compound (S)-S9: (2R, 5S)-2-trichloromethyl-1-aza-3-oxabicyclo[3.3.0]octan-4-one.

Following literature procedure, ${ }^{6}$ L-proline ($10.0 \mathrm{~g}, 86.9 \mathrm{mmol}$) and chloral hydrate $(21.6 \mathrm{~g}, 131 \mathrm{mmol})$ were refluxed in $\mathrm{CHCl}_{3}(160 \mathrm{~mL})$ in a flask equipped with a reverse Dean-Stark condenser under argon for 6 h . The reaction was allowed to cool to rt and washed with saturated $\mathrm{NaHCO}_{3}(120 \mathrm{~mL})$ and the phases separated. The aq. phase was extracted further with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude brown crystalline solid. This was recrystallised from boiling EtOH (85 mL). The crystals were filtered off, washed with cold absolute EtOH, and dried under reduced pressure to give product $(10.9 \mathrm{~g}, 51 \%)$ as a white crystalline solid. All spectral data was in accord with that reported. ${ }^{6}$

Compound (\pm)-S10: 4-oxo-2-(trichloromethyl)-1-aza-3-oxabicyclo[3.3.0]octane-5-carbaldehyde. Following an adapted procedure, ${ }^{7}$ to a stirred solution cooled to $-78^{\circ} \mathrm{C}$, of dry ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$
 $(3.0 \mathrm{~mL}, 20 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL}),{ }^{\mathrm{n}} \mathrm{BuLi}(8.5 \mathrm{~mL}$ of a 2.5 M solution in hexane, 21 mmol) was added dropwise. The mixture was stirred for 30 min . A stirred solution of substrate $\mathbf{S 9}(3.7 \mathrm{~g}, 14.9 \mathrm{mmol})$ in dry $\mathrm{THF}(24 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon, was then quickly added via syringe over 6 min to the freshly made LDA solution. The mixture was stirred for 30 min . Methyl formate ($3.0 \mathrm{~mL}, 49 \mathrm{mmol}$) added dropwise and the mixture was stirred further at $-78^{\circ} \mathrm{C}$ for 25 min warmed to $-40^{\circ} \mathrm{C}$ and stirred for 25 min . The reaction was quenched with aq. 10% citric acid (50 mL) and extracted with DCM (180 mL). The phases were separated, and the aq. phase extracted further with DCM (110 mL). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $1: 4$ to 1:1 as eluent) afforded product as white solid ($1.64 \mathrm{~g}, 48 \%$). All spectra data was in accord with that reported. ${ }^{6}$

Compound (R)-S10: (2R, 5R)-4-oxo-2-(trichloromethyl)-1-aza-3-oxabicyclo[3.3.0]octane-5carbaldehyde.

Following an adapted procedure, ${ }^{7}$ to a stirred solution cooled to $-78{ }^{\circ} \mathrm{C}$, of dry ${ }^{1} \mathrm{Pr}_{2} \mathrm{NH}$
 ($3.5 \mathrm{~mL}, 22.8 \mathrm{mmol}$) in dry THF (44 mL), ${ }^{\mathrm{n}} \mathrm{BuLi}(9.3 \mathrm{~mL}$ of a 2.5 M solution in hexane, 23 mmol) was added dropwise. The mixture was stirred for 30 min . A stirred solution of substrate (\mathbf{S})-S9 $(3.7 \mathrm{~g}, 14.9 \mathrm{mmol})$ in dry THF $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon, was then quickly added via syringe over 3 min to the freshly made LDA solution. The mixture was stirred for 30 min . Methyl formate ($2.8 \mathrm{~mL}, 45 \mathrm{mmol}$) added dropwise over 30 sec . The mixture was stirred further at $-78^{\circ} \mathrm{C}$ for 25 min then warmed to -40 ${ }^{\circ} \mathrm{C}$ and stirred for 25 min . The reaction was quenched with aq. 10% citric acid (50 mL) and extracted with DCM (180 mL). The phases were separated, and the aq. phase extracted with DCM $(110 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $1: 4$ to 1:1 as eluent) afforded product as white solid ($2.5 \mathrm{~g}, 74 \%$). All spectra data was in accord with that reported. ${ }^{6}$

3.4 Preparation of vinyl oxazolidinone precursors

Compound (\pm)-S11: 2-Trichloromethyl-5-vinyl-1-aza-3-oxabicyclo[3.3.0]- octane-4-one.

Following literature procedure, ${ }^{6}$ to stirred suspension of $\mathrm{MePPh}_{3} \mathrm{Br}(1.3 \mathrm{~g}, 3.6 \mathrm{mmol})$ in dry toluene (70 mL) under argon at rt , $\mathrm{KO}{ }^{\prime} \mathrm{Bu}(401 \mathrm{mg}, 3.6 \mathrm{mmol})$ was added in one portion. The mixture was heated to $90^{\circ} \mathrm{C}$ and stirred for 2 h until yellow solution had formed. The mixture was cooled to rt and a solution of aldehyde (\pm)-S10 (852 mg , 3.1 mmol) in dry toluene (9.0 mL) added dropwise then stirred for 1 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, diluted with ether (70 mL) and stirred vigorously for 5 min . The mixture was filtered over Celite, the solids washed with ether (50 mL) and the filtrate evaporated. Purification by silica gel chromatography (EtOAc/hexane, 5:95 to 1:9 as eluent) afforded the title compound as clear oil (466 $\mathrm{mg}, 55 \%$). All spectral data was in accord with that reported. ${ }^{6}$

Compound (\pm)-S12: 2-Trichloromethyl-5-(1-(Z)-propenyl)-1-aza-3-oxabicyclo[3.3.0]- octane-4-one.
 To a stirred suspension of $\mathrm{EtPPh}_{3} \mathrm{Br}(4.2 \mathrm{~g}, 11.3 \mathrm{mmol})$ in anhydrous THF $(50 \mathrm{~mL})$ at rt under argon was added sodium hydride (420 mg of a 60% dispersion in mineral oil, 10.5 mmol) in a single portion and the reaction heated to $55{ }^{\circ} \mathrm{C}$. After 16 h the red/orange suspension was cooled to $0^{\circ} \mathrm{C}$ and substrate ($850 \mathrm{mg}, 2.13 \mathrm{mmol}$) added portionwise until a tan suspension was formed. The reaction was warmed to rt , stirred for 17 min , cooled to $0^{\circ} \mathrm{C}$ and petrol (120 mL) added. After stirring for 5 min the mixture was filtered through Celite, eluting with $\mathrm{Et}_{2} \mathrm{O} /$ petrol $(1: 5,50 \mathrm{~mL})$. Evaporation gave a light yellow semi-
solid which was purified by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, $1: 19$ to $1: 9$ as eluent $)$ to afford the title compound ($648 \mathrm{mg}, 73 \%$) as a pale yellow oil. $v_{\max } / \mathrm{cm}^{-1}$ (neat) $2950,1801,1448,1365,1321$, 1217, 1208, 1186; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.78$ (sextet, $\mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.86 (d, J=6.8 Hz, Me), 1.92 (hept, $\mathrm{J}=6.0 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH} H$), 2.09 (quint, $\mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H$), 2.32 (quint, $\mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}$), 3.21 (quint, $\left.\mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} 2\right), 3.45(\mathrm{ddd}, \mathrm{J}=11.5,6.3,6.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} 2), 5.05\left(\mathrm{~s}, 1 \mathrm{H},\left(\mathrm{Cq}\left(\mathrm{CCl}_{3}\right)\right), 5.50-5.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHMe}), 5.62(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CHMe}) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 13.8(\mathrm{Me}), 25.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 40.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 58.2$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 77.8\left(C \mathrm{CH}=\mathrm{CHCH}_{3}\right), 100.5\left(\mathrm{CCl}_{3}\right), 102.8\left(\mathrm{CqCO}_{2}\right), 127.7(\mathrm{CH}=C \mathrm{HCMe}), 130.3$ $(C H=C H M e), 175.3\left(\mathrm{CqCO}_{2}\right) . \mathrm{m} / \mathrm{z}$: molecular ion not found.

Compound (R)-S12: 2-Trichloromethyl-5-(1-(Z)-propenyl)-1-aza-3-oxabicyclo[3.3.0]- octane-4-one.
 To stirred suspension of freshly made $\mathrm{EtPPh}_{3} \mathrm{Br} \mathbf{S 3}$ ($1.7 \mathrm{~g}, 4.6 \mathrm{mmol}$) in dry THF (18 mL) at rt under argon, NaH (174 mg of $60 \% \mathrm{NaH}$ in mineral oil, 4.4 mmol) was added portionwise. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 3.5 h . The orange solution was cooled to $0^{\circ} \mathrm{C}$ and aldehyde (R)-S11 ($547 \mathrm{mg}, 2 \mathrm{mmol}$) was added portion wise until loss of colour occurred. The mixture warmed to rt , stirred for 10 min and recooled to $0{ }^{\circ} \mathrm{C}$. Petrol (54 mL) was added and the mixture stirred vigorously for 10 min . The reaction was filtered over Celite, and solids washed with petrol/ether ($5: 1,30 \mathrm{~mL}$). The filtrate was evaporated to give a yellow oily solid. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol. $1: 99$ to 5:95 to 1:9 as eluent) afforded the product as a clear oil ($390 \mathrm{mg}, 69 \%$).

Compound (\pm)-S13: 2-Trichloromethyl-5-(1-(Z)-(2-phenylethyl)vinyl)-1-aza-3-oxabicyclo[3.3.0]-octane-4-one.

To stirred suspension phenylethyltriphenylphosphonium bromide $\mathbf{S 5}$ ($653.0 \mathrm{mg}, 1.5$ $\mathrm{mmol})$ in dry THF (14 mL), cooled to $-10^{\circ} \mathrm{C}$ under argon, $\mathrm{nBuLi}(530.0 \mu \mathrm{~L}$ of 2.5 M ${ }^{n} \mathrm{BuLi}, 1.3 \mathrm{mmol}$) was added dropwise. The mixture was stirred for 10 min by which time a dark red solution had formed. Aldehyde $\mathbf{S 1 0}$ ($200.0 \mathrm{mg}, 0.7 \mathrm{mmol}$) was added portion wise until loss of colour occurred. The mixture was warmed to rt , stirred for 20 min then cooled to $0{ }^{\circ} \mathrm{C}$. Petrol (45 mL) was added and stirred vigorously for 10 min . The mixture was filtered over celite, and solids rinsed with petrol/ether (5:1, 40 $\mathrm{mL})$. The filtrate was evaporated to give crude orange oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, 5:95 to $1: 1$ as eluent) afforded the product as a clear oil ($154 \mathrm{mg} 58 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 3027, 2957, 2807, 1718, 1495, 1453, 1166; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.80(\mathrm{dq}, J=13.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$). 1.92-2.02 (m, 1H, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $2.16\left(\mathrm{ddd}, J=13.2,8.0,6.3 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.41$ (dt, $\left.J=13.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 3.22\left(\mathrm{dt}, J=11.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.50(\mathrm{ddd}, J=$ $11.5,8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $3.71-3.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{RCH}=\mathrm{CHCH}_{2} \mathrm{Ph}\right), 5.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCCl}_{3}\right), 5.65$ $\left(\mathrm{dt}, J=11.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{RCH}=\mathrm{CHCH}_{2} \mathrm{Ph}\right), 5.77\left(\mathrm{dt}, J=11.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{RCH}=\mathrm{CHCH}_{2} \mathrm{Ph}\right), 7.17-$ $7.32\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 25.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 34.0\left(\mathrm{RCH}=C \mathrm{HCH}_{2} \mathrm{Ph}\right), 40.6\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $58.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 72.9\left(\mathrm{R}_{2} \mathrm{NC}_{q} \mathrm{CO}\right), 100.5\left(\mathrm{CCl}_{3}\right), 102.9\left(\mathrm{CHCCl}_{3}\right), 130.2\left(\mathrm{RCH}=C \mathrm{CHCH}_{2} \mathrm{Ph}\right), 131.8$ $\left(\mathrm{RCH}=\mathrm{CHCH}_{2} \mathrm{Ph}\right), 140.8\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 175.1\left(\mathrm{CO}_{\text {ester }}\right) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$: molecular ion not found.

Compound (\pm)-S14: 2-Trichloromethyl-5-(1-(Z)-(2-phenyl)vinyl)-1-aza-3-oxabicyclo[3.3.0]- octane4 -one.

To stirred suspension of $\mathrm{PhCH}_{2} \mathrm{PPh}_{3} \mathbf{S 5}(2.1 \mathrm{~g}, 4.8 \mathrm{mmol})$ in dry THF (20 mL), cooled to $0{ }^{\circ} \mathrm{C}$ under nitrogen, NaH (172 mg of $60 \% \mathrm{NaH}$ in mineral oil, 4.3 mmol) was added in one portion. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h forming and orange solution. A solution of aldehyde $\mathbf{S 1 0}(651 \mathrm{mg}, 2.4 \mathrm{mmol})$ in dry THF (1 mL) was added dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , warmed to rt and stirred further for 30 min . The mixture was recooled to $0{ }^{\circ} \mathrm{C}$, petrol $(60 \mathrm{~mL})$ was added, and the mixture stirred vigorously for 10 min . This was filtered over Celite, and the solids washed with petrol/ether ($5: 1,50 \mathrm{~mL}$). The filtrate was evaporated to give an orange solid. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $5: 95$ to 1:9 as eluent) afforded the product as a white crystalline solid ($411 \mathrm{mg}, 50 \%$). Mpt $101-102{ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1}$ (neat); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.45-1.61(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH} H\right), 1.63-1.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH} H\right)$), $1.95\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.2,9.7,6.6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CH} H\right)$, $2.17\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.4,7.5,4.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CH} H\right), 2.91(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.0,9.6,5.7 \mathrm{~Hz}, \mathrm{NCH} H), 3.02$ (1 H , ddd, $\mathrm{J}=10.7,6.7,3.6 \mathrm{~Hz}, \mathrm{NCHH}$), $4.99\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{3}\right), 5.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHPh})$, $6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHPh}), 7.25-7.33\left(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.55\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 25.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 39.0\left(\mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CH}_{2}\right), 57.7\left(\mathrm{NCH}_{2}\right), 73.5\left(\mathrm{NC}_{\mathrm{q}} \mathrm{CO}_{2}\right), 100.5$ $\left({C C_{3}}_{3}\right), 102.8\left(C H C C l_{3}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.2(\mathrm{CH}=\mathrm{CHPh}), 133.2(\mathrm{CH}=\mathrm{CHPh}), 136.4$ $\left(C_{q A r}\right), 175.3\left(\mathrm{CO}_{2}\right)$. HRMS (ESI $) \mathrm{m} / \mathrm{z}$: molecular ion not found.

3.5 Preparation of proline-derived allylic amine substrates

Compound (\pm)-7a: N-benzyl-O-benzyl-pyrrolidine-(2-vinyl)-2-carboxylate.
 To stirred solution of $\mathbf{S 1 1}(466 \mathrm{mg}, 1.6 \mathrm{mmol})$ in 2-propanol $(10 \mathrm{~mL})$ at rt, aq. 6 M $\mathrm{HCl}(10 \mathrm{~mL})$ was added, and mixture stirred for 6 days. The reaction was dried by azeotropic removal of toluene ($6 \times 20 \mathrm{~mL}$) under reduced pressure at $70{ }^{\circ} \mathrm{C}$ to give pink-white crystalline solid. This was suspended in $\mathrm{MeCN}(7 \mathrm{~mL})$ with stirring at rt. $\mathrm{K}_{2} \mathrm{CO}_{3}(680 \mathrm{mg}, 4.9 \mathrm{mmol})$ was added followed by $\mathrm{NaI}(37 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{BnBr}(390 \mu \mathrm{~L}, 3.3$ mmol). The mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 12 h . The mixture was allowed to cool to rt and evaporated. The residue was taken up in water (10 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol; 1:99 to 1:9 as eluent) afforded product as a clear oil ($383 \mathrm{mg}, 73 \%$ over two steps). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 3029, 2957, 2831, 2807, 1721, 1495, 1454); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.76-1.86(2 \mathrm{H}$, $\mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 1.93 (ddd, $J=12.4,9.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}$), $2.36-2.43(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.68(\mathrm{q}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{NCHH}), 2.90-2.97(1 \mathrm{H}, \mathrm{NCHH}), 3.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}$, NCHHPh), $3.92(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, \mathrm{NCHHPh}), 5.18-5.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHH}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Bn}\right), 5.39(\mathrm{dd}$, $\mathrm{J}=17.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH} H), 6.15\left(\mathrm{dd}, \mathrm{J}=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right) .7 .18-7.42(\mathrm{~m}, 10 \mathrm{H}, 10 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right) . \delta \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 21.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 37.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 50.7\left(\mathrm{NCH}_{2}\right), 53.9\left(\mathrm{NCH}_{2} \mathrm{Bn}\right)$, $66.4\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Bn}\right), 73.0\left(\mathrm{NC}_{\mathrm{q}} \mathrm{CO}_{2}\right), 115.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2-128.8\left(5 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 136.2$ $\left(C q_{A r}\right), 140.5($ Cqar $), 173.9\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$. HRMS (ESI^{+}) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2} 322.1807$; found 322.1804.

Compound (\pm)-7b: N-benzyl-O-benzylpyrrolidine-2-(1-(Z)-propenyl)-2-carboxylate.

To stirred solution of (\pm)-S12 $(170 \mathrm{mg}, 0.60 \mathrm{mmol})$ in 2-propanol $(3 \mathrm{~mL})$ was added aq. $6 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$ and mixture stirred for 4 days. The reaction was dried via azeotropic removal of toluene ($3 \times 8 \mathrm{~mL}$) under reduced pressure at $60{ }^{\circ} \mathrm{C}$. The white solid was suspended in $\mathrm{MeCN}(6 \mathrm{~mL})$ with stirring at $\mathrm{rt} . \mathrm{K}_{2} \mathrm{CO}_{3}(250 \mathrm{mg}, 1.8 \mathrm{mmol})$ was added followed by $\mathrm{NaI}(15 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{BnBr}(0.15 \mathrm{~mL}, 1.25 \mathrm{mmol})$. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 20 h . The mixture was cooled, diluted with water (20 mL) and extracted with ether ($2 \times 20 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude product as yellow oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, 1% to 5% as eluent) afforded the title compound ($131 \mathrm{mg}, 63 \%$) as a clear oil. $v_{\max } / \mathrm{cm}^{-1}$ (neat) $2956,2805,1721,1495$, 1454,1366 and $1169 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.57(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.0,1.3 \mathrm{~Hz}, \mathrm{Me}), 1.75-1.93(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.46(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 8.6,6.6 \mathrm{~Hz}, \mathrm{NCHH}), 2.56(1 \mathrm{H}$, ddd, J 13.7, $9.4,4.1 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}$), $2.84(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 8.6,3.8 \mathrm{~Hz}, \mathrm{NCHH}), 3.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4 \mathrm{~Hz}, \mathrm{NCHHPh}), 4.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=13.6 \mathrm{~Hz}, \mathrm{NCHHPh}), 5.14-5.25\left(2 \mathrm{H}, \mathrm{AB} q, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.63(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=11.4,6.7 \mathrm{~Hz}, \mathrm{Me}-\mathrm{CH}=), 5.70$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{Me})$ and $7.17-7.42\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 14.9$ (Me), $21.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 36.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 49.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 54.1\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 66.4(\mathrm{OCH} 2 \mathrm{Ph}), 71.0$ $\left(\mathrm{NCqCO}_{2}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5(=\mathrm{CH}-\mathrm{Me}), 128.25\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.33\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.45\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.57\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.63\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 132.5(\mathrm{CH}=\mathrm{CH}-\mathrm{Me}), 136.1\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 140.4\left(\mathrm{Cq}_{\mathrm{Ar}}\right)$ and 173.3 $\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2} 336.1964$; found 336.1962.

Compound (R)-7b: N-benzyl-O-benzylpyrrolidine-2-(1-(Z)-propenyl)-2-carboxylate
 To stirred solution of (R)-S12 $(81.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ in 2-propanol $(1.5 \mathrm{~mL})$, aq. 6 M HCl $(1.5 \mathrm{~mL})$ was added and mixture stirred for 6 days. The reaction was dried via azeotropic removal of toluene ($4 \times 4 \mathrm{~mL}$) under reduced pressure at $60^{\circ} \mathrm{C}$. The white solid was suspended in $\mathrm{MeCN}(3 \mathrm{~mL})$ with stirring at $\mathrm{rt} . \mathrm{K}_{2} \mathrm{CO}_{3}(118.6 \mathrm{mg}, 0.9 \mathrm{mmol})$ was added followed by $\mathrm{NaI}(7 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{BnBr}(68.0 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$. The mixture was heated to $80{ }^{\circ} \mathrm{C}$ and stirred for 23 h . The mixture was cooled and evaporated. The residue was taken up in water $(10 \mathrm{~mL})$ and extracted with ether $(2 \times 10 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude product as yellow oil. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, $0: 1$ to $1: 9$ as eluent) afforded the product as a clear oil ($71.0 \mathrm{mg}, 74 \%$ over two steps). $[\alpha]^{20}{ }_{\mathrm{D}}=+9.8$ (c 0.924 , DCM). Spectral data was as reported above.

Compound (\pm)-7c: N -(4-methoxy-benzyl)-O-(4-methoxy-benzyl)-pyrrolidine-2-(1-(Z)-phenylethyl vinyl)-2-carboxylate.
To a stirred solution of compound $\mathbf{S 1 3}(229 \mathrm{mg}, 0.6 \mathrm{mmol})$, in 2-propanol (3.0 mL) at $\mathrm{rt}, 6 \mathrm{M} \mathrm{HCl}$ aq.
 $(3.0 \mathrm{~mL})$ was added. The mixture was heated to $50{ }^{\circ} \mathrm{C}$ and stirred for 2 days then allowed to cool to rt and stir further for 5 days. The reaction was dried by the azeotropic removal of toluene ($4 \times 8.0 \mathrm{~mL}$) under reduced pressure at $60{ }^{\circ} \mathrm{C}$. The resulting oily residue was suspended in $\mathrm{MeCN}(5 \mathrm{~mL})$ with stirring at $\mathrm{rt} . \mathrm{K}_{2} \mathrm{CO}_{3}$ $(261.0 \mathrm{mg}, 1.9 \mathrm{mmol})$ was added in one portion, followed by $\mathrm{NaI}(14.0 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ and $\mathrm{PMBBr}(182 \mu \mathrm{~L}, 1.3 \mathrm{mmol})$. The mixture was heated to $80{ }^{\circ} \mathrm{C}$, stirred for 2 h , allowed to cool to rt and evaporated. The orange residue was washed with water (10 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give brown oil (355.0 mg). Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $1: 9$ to $1: 4$ as eluent) afforded product as a clear oil ($192 \mathrm{mg}, 65 \%$ over two steps). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $2956,2834,1718,1612$, $1512,1454,1245 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.75-2.03\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.45(1 \mathrm{H}$, $\mathrm{q}, ~ J=8.2 \mathrm{~Hz}, \mathrm{NCH} H), 2.61\left(1 \mathrm{H}, \mathrm{ddd}, J=11.9,8.0,4.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.86(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=9.1,3.2$ $\mathrm{Hz}, \mathrm{NCHH}), 3.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.3 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.34\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Ph}\right), 3.78$ and $3.79(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, J=4.3 \mathrm{~Hz}, 2 \times \mathrm{OMe}), 3.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{NCHHPh}), 5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.65-5.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 6.79-6.88(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}$ Ar $)$,
$7.10-7.21\left(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.23-7.33\left(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 22.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $35.3\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right), 37.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 49.8\left(\mathrm{NCH}_{2}\right), 53.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 55.4(\mathrm{OMe}), 66.3$ $\left.\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 71.1, \mathrm{NCqCO}_{2}\right), 113.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 128.4$ and $128.5\left(2 \times C \mathrm{H}_{\mathrm{Ar}}\right)$, $129.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.3\left(\mathrm{CH}=C \mathrm{HCH}_{2}\right) 132.3\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 132.6\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right), 140.4\left(\mathrm{Cq}_{\mathrm{Ar}}\right)$, $158.6\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 159.7\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 173.1\left(\mathrm{CO}_{2} \mathrm{Bn}\right) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{4} 472.2488$; found 472.2490.

Compound (\pm)-7d: N-(4-methoxy-benzyl)-O-(4-methoxy-benzyl)-pyrrolidine-2-(1-(Z)-phenylvinyl)-2-carboxylate.

To stirred suspension at rt , of $\mathbf{S 1 4}$ ($572 \mathrm{mg}, 1.7 \mathrm{mmol}$) in 2-propanol (10 mL), aq. $6 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added, and the oily suspension stirred at rt for 2 days. The mixture was heated to $50{ }^{\circ} \mathrm{C}$ and stirred further for 16 h by which time a clear solution had formed. The mixture was allowed to cool rt and dried via azeotropic removal of toluene ($6 \times 20 \mathrm{~mL}$) under reduced pressure at $60^{\circ} \mathrm{C}$ to give pink-white crystalline solid. This was suspended in $\mathrm{MeCN}(15 \mathrm{~mL})$ with stirring at $\mathrm{rt} . \mathrm{K}_{2} \mathrm{CO}_{3}$ (684 mg , 4.9 mmol), $\mathrm{NaI}(37 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{PMBBr}(476 \mu \mathrm{~L}, 3.3 \mathrm{mmol})$ were added sequentially. The mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 15 h , allowed to cool to rt and evaporated. The brown-orange solid was taken up in water $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude product as brown-orange oil. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, $1: 99$ to $3: 7$ as eluent $)$ afforded the product as a clear oil $(537 \mathrm{mg}, 67 \%$ over two steps). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $2954,2843,1716,1612,1511,1462,1365 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.69$ - $1.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.33\left(\mathrm{q}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.57(\mathrm{t}, \mathrm{J}=9.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH} H), 2.82(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH} H), 3.12(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{NCH} H \mathrm{Ph}), 3.12(\mathrm{~d}, \mathrm{~J}=13.2$ $\mathrm{Hz}, 1 \mathrm{H} \mathrm{NCHHPh}), 3.78(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 3.99(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{NCHHPh}), 4.43(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH} H \mathrm{Ph}\right), 4.76\left(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH} H \mathrm{Ph}\right), 5.90(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHPh}), 5.62(\mathrm{~d}, \mathrm{~J}=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHPh}), 6.80(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{CH}$ Ar $), 7.07\left(\mathrm{~m}, 9 \mathrm{H}, 9 \times \mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101\right.$ $\mathrm{MHz}) 22.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 36.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 49.9\left(\mathrm{NCH}_{2}\right), 53.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 55.4$ (Ar-OMe), 66.0 $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $71.1\left(\mathrm{NCqCO}_{2}\right), 113.6$ and $113.8\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(C \mathrm{H}_{\mathrm{Ar}}\right)$, $129.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.3(C H=\mathrm{CHPh}), 132.2\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 134.6(\mathrm{CH}=C \mathrm{HPh}), 137.5\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 158.6$ $\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 159.5\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 171.3\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{4} 458.233134$; found 458.2334 .

Compound (\pm)-7e: N-(4-methoxybenzyl-O-(4-methoxybenzyl)-pyrrolidine-2-(1-(Z)-propenyl)-2carboxylate.

To a stirred solution of substrate $\mathbf{S 1 2}(310 \mathrm{mg}, 1.09 \mathrm{~mol})$ in 2-propanol (6 mL) was added 6 M aq. $\mathrm{HCl}(6 \mathrm{~mL})$ and the reaction stirred at rt. After 4 days the reaction was evaporated under vacuum at $45^{\circ} \mathrm{C}$ and further dried by azeotropic removal of toluene $(3 \times 15 \mathrm{~mL})$ at the same temperature to give a white solid. The crude material was suspended in $\mathrm{MeCN}(8 \mathrm{~mL})$, potassium carbonate ($250 \mathrm{mg}, 1.8 \mathrm{mmol}$) added, stirred for 5 min and TBAI ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) and a solution of 4-methoxybenzyl bromide $(475 \mathrm{mg}, 2.4 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ added. The reaction was heated to $60^{\circ} \mathrm{C}$. After 20 h the reaction was cooled to rt , evaporated and partitioned between water $(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a yellow oil. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, 10% to 20% as eluent) afforded the title compound ($287 \mathrm{mg}, 67 \%$ over two steps) as a clear oil. $v_{\max } / \mathrm{cm}^{-1}$ (film) 1301, $1462,1511,1612,1718$ and 2954; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.55(3 \mathrm{H}, \mathrm{dd}, J 6.9,1.4 \mathrm{~Hz}, \mathrm{Me}), 1.70-1.91$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.42\left(1 \mathrm{H}, \mathrm{td}, J 8.7,6.9 \mathrm{~Hz}, \mathrm{NCHHCH}_{2}\right), 2.52(1 \mathrm{H}, \mathrm{ddd}, J 13.7,9.3,4.0 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.81\left(1 \mathrm{H}, \mathrm{td}, J 8.6,3.6 \mathrm{~Hz}, \mathrm{NCHHCH}_{2}\right), 3.25(1 \mathrm{H}, \mathrm{d}, J 13.2 \mathrm{~Hz}, \mathrm{NCHHAr}), 3.77(3 \mathrm{H}$,
s, OMe), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90(1 \mathrm{H}, \mathrm{d}, J 13.2 \mathrm{~Hz}, \mathrm{NCHHAr}), 5.13\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 5.55-5.70$ $(2 \mathrm{H}, \mathrm{m}, H \mathrm{C}=\mathrm{CH}), 6.78-6.83\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 6.84-6.90\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.11-7.19(2 \mathrm{H}, \mathrm{m}, 2$ $\left.\times \mathrm{CH}_{\mathrm{Ar}}\right)$ and $7.28-7.35\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 14.9(\mathrm{Me}), 21.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 36.8$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 49.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 53.4\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.3(\mathrm{OMe}), 55.4(\mathrm{OMe}), 66.1\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 71.0$ $\left(C_{\mathrm{q}}-\mathrm{CO}_{2}\right), 113.6\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 113.9\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.3(=C \mathrm{HMe}), 128.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.6\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 130.4(2$ $\left.\times \mathrm{CH}_{\mathrm{Ar}}\right), 132.5\left(\mathrm{C}_{\mathrm{q}}\right), 132.6(\mathrm{CH}=\mathrm{CHMe}), 158.5\left(\mathrm{C}_{\mathrm{q}} \mathrm{OMe}\right), 159.7\left(\mathrm{C}_{\mathrm{q}} \mathrm{OMe}\right)$ and $173.3\left(\mathrm{CO}_{2} \mathrm{Ar}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{4} 396.2175$; found 396.2174

Compound (\pm)-7f: N-(4-methoxy-benzyl)-N-(amido-4-methoxy-benzyl)-pyrrolidine-2-(1-(Z)-propenyl)-2-carboxylate amide.

A stirred mixture of neat compound $\mathbf{S 1 2}(110 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{PMBNH}_{2}(101$ $\mu \mathrm{L}, 0.8 \mathrm{mmol}$) was heated to $80^{\circ} \mathrm{C}$ for 6 h . The mixture was allowed to cool to rt then passed through a silica plug (neat EtOAc as eluent) to remove excess PMBNH_{2} to give a mixture of free amine/ formamide as an orange oil (92 mg). This was dissolved in $\mathrm{EtOH}(1 \mathrm{~mL})$ with stirring at $\mathrm{rt} .50 \%$ aq. $\mathrm{NaOH}(0.3 \mathrm{~mL})$ was added, and the mixture heated to $80^{\circ} \mathrm{C}$ for 4 h then allowed to cool to rt and stir for 2.5 h . The reaction was dissolved in water $(10 \mathrm{~mL})$ and extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude free amine (75 mg , ca 0.3 mmol). This was dissolved in $\mathrm{MeCN}(1 \mathrm{~mL})$ with stirring at $\mathrm{rt} . \mathrm{K}_{2} \mathrm{CO}_{3}(37 \mathrm{mg}, 0.3 \mathrm{mmol})$, $\mathrm{NaI}(3 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\operatorname{PMBBr}(39 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ were added sequentially. The mixture was stirred for 6.3 h then evaporated. The brown residue was washed with water $(10 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a yellow oil. Purification by silica gel chromatography (EtOAc/petrol, 1:9 to 1:1) afforded the product as a clear oil ($75.0 \mathrm{mg}, 49 \%$ over 3 steps). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3337,2934,2834,1660,1611,1599,1301,1241 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.65$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Me}) .1 .69-1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.09\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.1,8.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right)$, $2.40\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.3,8.7,4.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.54(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{NCHH}), 2.83(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ $=8.4,3.8 \mathrm{~Hz}, \mathrm{NCHH}), 3.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.76$ ($3 \mathrm{H}, \mathrm{s}, \operatorname{ArOMe}$), $3.76(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOMe}), 4.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.2,4.9 \mathrm{~Hz}$, CONHCHH$), 4.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $14.2,6.3 \mathrm{~Hz}, \mathrm{CONHCHH}), 5.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHMe}), 5.79(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.3,7.1 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHMe}), 6.74\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{CH} \mathrm{Ar}_{\mathrm{Ar}}, 7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0\right.$ $\left.\mathrm{Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.21\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.83\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CONHCH}_{2}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101\right.$ $\mathrm{MHz}) 14.8(\mathrm{Me}), 22.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 39.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 43.2\left(\mathrm{CONHCH}_{2}\right), 51.9\left(\mathrm{NCH}_{2}\right), 54.5$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 55.3$ and $55.4(2 \mathrm{x} \mathrm{ArOMe}), 113.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.9$ $(\mathrm{CH}=C \mathrm{HMe}), 130.2(\mathrm{CH}=\mathrm{CHMe}), 130.7\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 132.0\left(C \mathrm{q}_{\mathrm{Ar}}\right), 158.6\left(C \mathrm{q}_{\mathrm{Ar}}\right), 159.1\left(C \mathrm{q}_{\mathrm{Ar}}\right), 174.8\left(C \mathrm{q}_{\mathrm{Ar}}\right)$. HRMS (ESI ${ }^{+}$) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} 395.2335$; found 395.2334.

Compound (\pm)-S15: O-(methyl-ester)-1H-pyrrolidine-2-(1-(Z)-propenyl)-2-carboxylate.

To a stirred solution of compound $\mathbf{S 1 2}(886 \mathrm{mg}, 3.1 \mathrm{mmol})$ in $\mathrm{MeOH}(13 \mathrm{~mL})$ at rt under argon, $\mathrm{Na}(64.0 \mathrm{mg}, 2.8 \mathrm{~g}$ atom) was added. The mixture was stirred for 2 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Acetyl chloride ($5.8 \mathrm{~mL}, 81.6 \mathrm{mmol}$) was added dropwise. The mixture was heated to $50^{\circ} \mathrm{C}$ and stirred for 4.5 h then allowed to cool to rt . The reaction was stirred for 15 h then heated to $50^{\circ} \mathrm{C}$, stirred for 3 h and evaporated under reduced pressure. The light brown residue was taken up in DCM (10 mL) and washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The phases were separated and the aq. phase extracted further with $\mathrm{DCM}(2 \times 10.0 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude free base amine ($525.0 \mathrm{mg}, \mathrm{ca} .3 \mathrm{mmol}$) which was used without further purification.

Compound (\pm)-71: $\quad \mathrm{N}$-(5-methyl-2-furyl)-O-(methyl-ester)-pyrrolidine-2-(1-(Z)-propenyl)-2carboxylate ester.

To stirred solution of crude amine $\mathbf{S 1 5}(80 \mathrm{mg}, 0.47 \mathrm{mmol})$ in $\mathrm{DCM}(1.5 \mathrm{~mL})$ at rt , 5-methylfurfural ($52 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$) was added and the mixture stirred for 10 min . $\mathrm{NaBH}(\mathrm{OAc})_{3}(148 \mathrm{mg}, 0.7 \mathrm{mmol})$ was added in one portion. The mixture was stirred for 17.5 h , saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the mixture stirred for 5 mins. The reaction was extracted with DCM ($3 \times 10 \mathrm{~mL}$), the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a red oil. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ /petrol, 5:95 to 1:9 as eluent) afforded product as a clear oil ($47 \mathrm{mg}, 38 \%$ over three steps). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $2949,2816,1722,1567,1434,1366 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) 1.59(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHMe}), 1.79-1.97\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right)$, $2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}) 2.49\left(1 \mathrm{H}\right.$, ddd, 12.2, $\left.8.24 .6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.58(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{NCHH})$, $2.99(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.5,4.6 \mathrm{~Hz}, \mathrm{NCHH}), 3.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.1 \mathrm{~Hz}, \mathrm{NCHHAr}), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.84$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.1 \mathrm{~Hz}, \mathrm{NCHHAr}), 5.58-5.69(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHMe}), 5.84\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.01$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) . \quad \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 13.8(\mathrm{ArMe}), 14.6(\mathrm{Me}), 21.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 36.9$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 46.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 50.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 51.6\left(\mathrm{NCH}_{2}\right), 70.8\left(\mathrm{NCqCO}_{2}\right), 106.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 108.3$ $\left(C H_{\mathrm{Ar}}\right), 127.8(C \mathrm{H}=\mathrm{CHMe}), 131.5(\mathrm{CH}=C \mathrm{HMe}), 151.5\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 173.7\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$ 264.1600; found 264.1596.

Compound ($\mathbf{\pm}$)-7m: N-(2-pyridyl)-O-(methyl-ester)-pyrrolidine-2-(1-(Z)-propenyl)-2-carboxylate.

To a stirred solution of crude amine $\mathbf{S 1 5}(159 \mathrm{mg},<0.60 \mathrm{mmol})$, in $\mathrm{MeCN}(5 \mathrm{~mL})$ at $\mathrm{rt}, \mathrm{K}_{2} \mathrm{CO}_{3}(155 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{NaI}(6.0 \mathrm{mg}, 0.04 \mathrm{mmol})$ and 2-bromomethyl pyridine ($96 \mathrm{mg}, 0.6 \mathrm{mmol}$) were added sequentially. The mixture was stirred for 18 h then evaporated. The resulting red residue was dissolved in water (10 mL) and extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a red oil. Purification by silica gel chromatography ($\mathrm{EtOH} / \mathrm{NH}_{3} / \mathrm{DCM}, 2: 98$ to 5:95 as eluent) afforded the product as a red oil (64 mg , 44% over 3 steps). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $2950,2878,1723,1652,1589,1433,1463$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.58(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{Me}), 1.78-1.93\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right)$, 2.48-2.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 3.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{NCHHPyr}), 3.71(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 4.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{NCHHPyr}), 5.60-5.67(2 \mathrm{H}, \mathrm{m} \mathrm{CH}=\mathrm{CHMe}), 7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.42\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.61\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{CH} H_{\mathrm{Ar}}\right)$. $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 14.6(\mathrm{Me}), 22.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 36.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right), 51.7\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $56.2\left(\mathrm{NCH}_{2} \mathrm{Pyr}\right), 71.0\left(\mathrm{NCqCO}_{2}\right), 121.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5(\mathrm{CH}=C \mathrm{HMe}), 132.2(C H=\mathrm{CHMe})$, $136.7\left(C H_{\mathrm{Ar}}\right), 149.0\left(C \mathrm{H}_{\mathrm{Ar}}\right), 160.5\left(C \mathrm{q}_{\mathrm{Ar}}\right), 173.9\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} 261.160303$; found 261.1599 .

Compound (\pm)-7n: N-(2-bromobenzyl)-O-(methyl-ester)-pyrrolidine-2-vinyl-2-carboxylate ester.
To a stirred solution of compound $\mathbf{S 1 1}(180 \mathrm{mg}, 0.7 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ at rt under $\mathrm{N}_{2}, \mathrm{Na}(25.0 \mathrm{mg}, 1.1 \mathrm{~g}$ atom) was added. The mixture was stirred for 1 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, acetyl chloride ($1.3 \mathrm{~mL}, 18.2 \mathrm{mmol}$) was added dropwise. The mixture was heated to $50^{\circ} \mathrm{C}$, stirred for 17 h , allowed to cool to rt and evaporated. The resulting residue was suspended in MeCN (7 $\mathrm{mL})$ at rt with stirring under $\mathrm{N}_{2} . \mathrm{K}_{2} \mathrm{CO}_{3}(231 \mathrm{mg}, 1.7 \mathrm{mmol})$, $\mathrm{NaI}(7 \mathrm{mg}, 0.05$ mmol) and 2-bromobenzyl bromide ($185 \mathrm{mg}, 0.7 \mathrm{mmol}$) were added sequentially, heated to $80^{\circ} \mathrm{C}$ and stirred for 7 h . The mixture was allowed to cool to rt and evaporated. The residue was dissolved in water $(20 \mathrm{~mL})$ and extracted with DCM $(2 \times 20 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude orange oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, 1:99 to 3:97 to 5:95 as eluent) afforded product as a clear oil (160 mg , 74% over 3 steps). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3061,2836,1726,1462,1439,1169,1024 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
$1.89-2.00\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CH} H\right), 2.39\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.2,6.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{CH} H\right), 2.74(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{NCHH}), 3.03(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.4,6.4 \mathrm{~Hz}, \mathrm{NCHH}), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, $5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 5.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 6.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.4,10.7$ $\left.\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.07\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.28\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 21.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 37.7\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}\right), 50.9$ $\left(\mathrm{NCH}_{2}\right), 51.7\left(\mathrm{CO}_{2} M e\right), 53.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 73.5\left(C_{\mathrm{q}} \mathrm{CO}_{2}\right), 115.3\left(\mathrm{CH}=C \mathrm{H}_{2}\right), 123.7\left(\mathrm{C}_{\mathrm{qAr}}\right) 127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 139.3\left(C_{\text {qAr }}\right), 174.5\left(C \mathrm{O}_{2} \mathrm{Me}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for C15H19NO2Br 324.0599; found 324.0586.

3.6 Preparation of 2-phenylpyrrolidine allylic amine substrates

Compound (\pm)-S16: N-Boc-2-phenyl-pyrrolidine.

To a stirred solution of 2-phenylpyrrolidine ($1.5 \mathrm{~g}, 10.2 \mathrm{mmol}$) in DCM (50 mL) under nitrogen was added $\mathrm{Et}_{3} \mathrm{~N}(2.8 \mathrm{~mL}, 20 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(4.4 \mathrm{~g}, 20 \mathrm{mmol})$ and the reaction stirred at rt. After 3.5 h the mixture was evaporated and purified by silica gel chromatography (two sequential columns employing $\mathrm{Et}_{2} \mathrm{O} /$ petrol, $1: 9$ to $3: 7$ then $\mathrm{Et}_{2} \mathrm{O}$ in DCM, 0% to 1% as eluent) to afford the title compound ($2.10 \mathrm{~g}, 83 \%$) as a clear oil which subsequently crystallised on standing. All data was in accord with that reported. ${ }^{8}$

Compound (\pm)-S17: 1-(Boc) 2-ethyl 2-phenylpyrrolidine-2-carboxylate.

Following an adapted literature procedure, ${ }^{9}$ to a dried flask under argon was added compound S16 ($500 \mathrm{mg}, 2 \mathrm{mmol}$) and dry THF (24 mL) and the stirred solution degassed by sparging with argon for 4 min . The solution was cooled to $0^{\circ} \mathrm{C}$ under argon and ${ }^{\mathrm{n}} \mathrm{BuLi}(1.05 \mathrm{~mL}$ of a 2.5 M solution, 2.6 mmol) added dropwise over 3.5 min . The reaction was stirred for a further 3.5 min and ethyl chloroformate ($410 \mu \mathrm{~L}, 4.3 \mathrm{mmol}$) added dropwise over 1 min . The reaction was stirred for 10 min , warmed to rt over 5 min and quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The phases were separated, the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a yellow oil. Purification by silica gel chromatography (EtOAc/petrol, 1:9 to 1:4 as eluent) afforded the title compound ($574 \mathrm{mg}, 89 \%$) as a clear oil which partially crystallised on standing. Spectral data was in accord with that reported. ${ }^{10}$

Compound (\pm)-S18: 1-(benzyl) 2-ethyl 2-phenylpyrrolidine-2-carboxylate.

To stirred $\mathrm{MeOH}(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added acetyl chloride (1.0 mL) dropwise. The reaction was stirred for 10 min and a solution of compound $\mathbf{S 1 7}$ (570 $\mathrm{mg}, 1.8 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ added dropwise. The reaction was warmed to rt , stirred for 23 h and evaporated to give a yellow oil. The crude hydrochloride was redissolved in $\mathrm{MeCN}(15 \mathrm{~mL})$ and potassium carbonate ($650 \mathrm{mg}, 4.7 \mathrm{mmol}$), sodium iodide ($30 \mathrm{mg}, 0.20 \mathrm{mmol}$) and benzyl bromide ($275 \mu \mathrm{~L}, 2.3 \mathrm{mmol}$) added sequentially. The reaction was stirred at rt for 22 h , filtered and evaporated. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, 5:95 to 1:9 as eluent) afforded the title compound ($434 \mathrm{mg}, 78 \%$) as a clear oil. $v_{\max } / \mathrm{cm}^{-1}$ (neat) 2978, $1745,1699,1447,1388$ and 1246; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.33(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{Me}), 1.82-1.97(3 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{C}_{\mathrm{q}}-\mathrm{CH} H\right), 2.54(\mathrm{dt}, \mathrm{J} 9.4,8.8, \mathrm{Cq}-\mathrm{CHH}), 2.66-2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHHCH}$), 3.13 (ddd, J 9.3, 8.8, 3.3, NCHHCH 2), 3.46 (1H, d, J 14.2, NCHHPh), 3.93 (1H, d, J 14.1, NCHHPh), 4.31 (2H, q, J 7.1, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 7.21-7.40(8 \mathrm{H}, \mathrm{m})$ and $7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ; 14.7\left(\mathrm{CH}_{2} \mathrm{Me}\right), 21.8$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 40.1\left(\mathrm{C}_{\mathrm{q}} \mathrm{PhCH} 2\right), 50.3\left(\mathrm{NCH}_{2}\right), 54.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 75.8\left(\mathrm{NC}_{\mathrm{q}} \mathrm{CO}_{2}\right), 126.7$ and $126.8\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2-128.4\left(3 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 140.4\left(\mathrm{C}_{\mathrm{qAr}}\right), 142.0\left(\mathrm{C}_{\mathrm{qAr}}\right) ;$ HRMS (ESI $\left.{ }^{+}\right)$ $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} 310.1808$; found 310.1805.

Compound (\pm)-7g: 1-(benzyl) 2-vinyl 2-phenylpyrrolidine.

To a stirred solution of compound $\mathbf{S 1 8}(542 \mathrm{mg}, 1.8 \mathrm{mmol})$ in dry THF $(17.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{LiAlH}_{4}(166$ $\mathrm{mg}, 4.4 \mathrm{mmol}$) in two portions. The mixture was stirred for 5 \min and heated to $60{ }^{\circ} \mathrm{C}$. After 1 h the reaction was cooled to 0
${ }^{\circ} \mathrm{C}$ and was quenched by the sequential dropwise addition of water $(170 \mu \mathrm{~L}), 15 \% \mathrm{aq} . \mathrm{NaOH}(170 \mu \mathrm{~L})$, and water $(540 \mu \mathrm{~L})$,). The mixture was stirred at rt for 10 min , diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and MgSO_{4} added. After stirring for a further 10 min the mixture was filtered, washing with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and DCM (10 mL). Evaporation gave the desired amino alcohol as a pale-yellow oil ($453 \mathrm{mg},<1.7 \mathrm{mmol}$). SO_{3}. Pyr complex ($504 \mathrm{mg}, 3.2 \mathrm{mmol}$) was dissolved in dry DMSO (2.8 mL) under argon and stirred for 15 min at rt . The resulting solution was added dropwise to a stirred solution of amino-alcohol ($<0.1 .7$ $\mathrm{mmol})$ and triethylamine $(1.2 \mathrm{~mL}, 8.4 \mathrm{mmol})$ in dry DMSO $(5.8 \mathrm{~mL})$ at rt under argon. The reaction was stirred for 1 h and quenched by the addition of saturated $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 60 \mathrm{mLl})$ and the combined organic phase washed with saturated $\mathrm{NaHCO}_{3}(40$ mL). Drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation gave the crude aldehyde ($370 \mathrm{mg},<1.7 \mathrm{mmol}$) as a yellow oil used without further purification. Ca. 30% of this crude aldehyde ($113 \mathrm{mg},<0.4 \mathrm{mmol}$) was used in the subsequent step. To a suspension of $\mathrm{MePPh}_{3} \mathrm{Br}(660 \mathrm{mg}, 1.9 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(208 \mathrm{mg}, 1.9 \mathrm{mmol})$ and the stirred mixture heated to $70^{\circ} \mathrm{C}$ under argon. After 2 h the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of the crude aldehyde ($370 \mathrm{mg},>0.4 \mathrm{mmol}$) in toluene (1 mL) added dropwise. The reaction was stirred for 10 min , warmed to rt , stirred for a further 10 min and the excess ylide quenched by the dropwise addition of $\mathrm{MeOH}(60 \mu \mathrm{~L})$,) then cooled to $0{ }^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and petrol $(10 \mathrm{~mL})$ and stirred for 5 min . The mixture was filtered over Celite, the solids washed with petrol/ether $(5: 1,20 \mathrm{~mL})$ and the filtrate evaporated to give crude light yellow oil. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, $1: 9$ as eluent) afforded product as a clear oil ($58 \mathrm{mg}, 51 \%$ over three steps) as a clear oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2956, 1603, 1495, 1442; δ_{H} $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.71-1.96\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CHH}\right), 2.24-2.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{q}} \mathrm{CHH}\right), 2.42$ (1H, dd, J 8.4, 7.9, NCHHCH2), $3.02\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 8.7,3.4, \mathrm{NCHHCH}_{2}\right), 3.26$ (1H, d, J 13.5, NCHHPh), $3.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4$, NCHHPh $), 5.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.6, \mathrm{CH}=\mathrm{CH} H), 5.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8, \mathrm{CH}=\mathrm{CHH}), 6.07$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.6,10.9, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.21-7.27(2 \mathrm{H}, \mathrm{m}), 7.30-7.43(6 \mathrm{H}, \mathrm{m})$ and $7.62(2 \mathrm{H}, \mathrm{d}, 7.7) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 21.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 38.6\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}\right), 49.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 53.3\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 71.1\left(\mathrm{NC} \mathrm{q}_{\mathrm{q}}\right)$, $116.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $137.8\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right)$ and $145.7\left(\mathrm{C}_{\mathrm{q}}\right)$; JK6-100: HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}$ 264.1752; found 264.1749 .

Compound (\pm)-Z-7h: 1-(benzyl) 2-(1-(Z)-propenyl)-2-phenylpyrrolidine.

To a stirred solution of ester $\mathbf{S 1 8}$ in dry THF (5.4 mL) at $0{ }^{\circ} \mathrm{C}$ under argon, $\mathrm{LiAlH}_{4}(49 \mathrm{mg}, 1.3 \mathrm{mmol})$ was added in one portion. The mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 1 h then cooled 0 ${ }^{\circ} \mathrm{C}$. The reaction was quenched sequentially with $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{~L})$, 15% aq $\mathrm{NaOH}(50 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(150 \mu \mathrm{~L})$. The mixture was stirred for 10 min , diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dried over MgSO_{4} for 10 min . The mixture was filtered through Celite and eluted with $\mathrm{Et}_{2} \mathrm{O}, \mathrm{DCM}$ and $\mathrm{EtOAc}(10 \mathrm{~mL}$ each) and the filtrate evaporated to give the crude alcohol as clear oil ($217 \mathrm{mg},<0.5 \mathrm{mmol}$). This was dissolved in dry DCM $(830 \mu \mathrm{~L})$ and added dropwise to a 15 min pre-mixed solution of dry $\mathrm{DMSO}(55 \mu \mathrm{~L}, 0.8 \mathrm{mmol})$ and oxalyl chloride $(66 \mu \mathrm{~L}, 0.8 \mathrm{mmol})$ in dry $\mathrm{DCM}(1.7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon. The mixture was stirred for $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}$ $(457 \mu \mathrm{~L}, 3.3 \mathrm{mmol})$ was added dropwise. The mixture was stirred further for 2 h then allowed to warm to rt over 15 mins and quenched with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The reaction was extracted with DCM (2 x 15 mL), drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation organic of the organic phase afforded the crude aldehyde as a yellow oil $(135.0 \mathrm{mg},<0.5 \mathrm{mmol})$. To a stirred solution of freshy made $\mathrm{EtPPh}_{3} \mathrm{Br}(756 \mathrm{mg}, 2.0$ mmol) in dry THF (6.6 mL) at rt under argon, $\mathrm{NaH}(76.0 \mathrm{mg}$ of $60 \% \mathrm{NaH}$ in mineral oil, 1.9 mmol) was added in one portion. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 4 h . The orange solution was cooled to $0^{\circ} \mathrm{C}$, a solution of crude aldehyde in dry THF (2 mL) was added dropwise. The mixture was allowed to reach rt , stirred for 15 min then cooled to $0{ }^{\circ} \mathrm{C}$. Petrol (26 mL) was added and stirred vigorously for 10 min . The mixture was filtered over Celite and the solids washed with petrol/ether $(5: 1,20 \mathrm{~mL})$. The filtrate was evaporated to give a yellow oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, 0:100 to 3:97 as eluent) afforded the product as a clear oil ($86.0 \mathrm{mg}, 57 \%$ over 3 steps). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3060,3023,2963,2912,2799,1492,1445 ; \delta_{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8$ $\mathrm{Hz},=\mathrm{CHMe}), 1.92\left(2 \mathrm{H}, \mathrm{h}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.26\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}\right), 2.59(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.0$ $\left.\mathrm{Hz}, \mathrm{NCH} H \mathrm{NH}_{2}\right), 2.70\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NCH} H \mathrm{NH}_{2}\right), 3.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{NCH} H \mathrm{Ph}), 3.49(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{NCH} H \mathrm{Ph}), 5.71-5.90(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHMe}), 7.18-7.41(8 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}$ Ar) $), 7.54(2 \mathrm{H}$,
$\left.\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 16.1(=\mathrm{CHMe}), 22.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 41.5\left(\mathrm{C}_{\mathrm{q}} C \mathrm{H}_{2}\right), 49.7$ $\left(\mathrm{NCH}_{2}\right), 54.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 70.3\left(\mathrm{NC}_{q} \mathrm{Ph}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.8(=\mathrm{CHMe})$, $128.0-128.6\left(3 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $133.2(C H=C H M e), 140.7\left(\mathrm{C}_{\mathrm{qAr}}\right)$, $144.1\left(\mathrm{C}_{\mathrm{qAr}}\right)$; HRMS (ESI^{+}) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}$ 278.1910; found 278.1909.

Compound (\pm)- $\boldsymbol{E - 7 h}: 1$-(benzyl)-2-(1-(E)-propenyl)-2-phenylpyrrolidine.

To a stirred solution of compound $\mathbf{S 1 8}$ ($304 \mathrm{mg}, 1 \mathrm{mmol}$) in dry THF (10 ml) at $0{ }^{\circ} \mathrm{C}$ under argon, $\mathrm{LiAlH}_{4}(94 \mathrm{mg}, 2.5$ mmol) was added in one portion. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 mins then quenched sequentially with water (100 $\mu \mathrm{L}), 15 \%$ aq. $\mathrm{NaOH}(100 \mu \mathrm{~L})$ and water $(300 \mu \mathrm{~L})$ then stirred for 10 min . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{ml})$ and dried over MgSO_{4} for 15 min . The mixture was filtered over Celite and the product eluted with $\mathrm{Et}_{2} \mathrm{O}, \mathrm{DCM}$ and $\mathrm{EtOAc}(10 \mathrm{ml}$ of each $)$ and the filtrate evaporated to give the crude alcohol as a clear oil (268 mg). This was dissolved in dry DCM (1.5 $\mathrm{ml})$ and added dropwise to a 15 min pre-mixed solution of dry DMSO $(98.6 \mu \mathrm{~L}, 1.4 \mathrm{mmol})$ and oxalyl chloride $(120 \mu \mathrm{~L}, 1.4 \mathrm{mmol})$ in dry DCM at $-78{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}$ $(806 \mu \mathrm{~L}, 5.8 \mathrm{mmol})$ was added dropwise and the mixture stirred further for 1 h then allowed to warm to rt over 15 min . The reaction was quenched with saturated $\mathrm{NaHCO}_{3}(32 \mathrm{~mL})$ and extracted with DCM $(2 \times 27 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude aldehyde as a clear oil (274 mg) which was dissolved in toluene $(11 \mathrm{~mL})$ with stirring at rt. Freshly made phosphorane $\mathbf{S 7}(1.3 \mathrm{~g}, 3.7 \mathrm{mmol})$ was added and the mixture heated to $90{ }^{\circ} \mathrm{C}$. This was stirred for 15 h , allowed to cool to rt and evaporated. The residue was passed through a silica plug $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, 4:96 as eluent) to afford the crude allylic ester as clear oil (207 mg). This was dissolved dry THF (6 mL) at rt with stirring under argon and cooled to $-10{ }^{\circ} \mathrm{C} . \mathrm{LiAlH}_{4}(48 \mathrm{mg}, 1.3 \mathrm{mmol})$ was added in one portion, stirred for 30 mins then quenched sequentially with water ($50 \mu \mathrm{~L}$), $15 \% \mathrm{aq}$. $\mathrm{NaOH}(50 \mu \mathrm{~L})$ and water $(150 \mu \mathrm{~L})$ then stirred for 10 min . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(24 \mathrm{ml})$ and dried over MgSO_{4} for 15 min . The mixture was filtered over Celite and the product eluted with $\mathrm{Et}_{2} \mathrm{O}$, DCM and $\mathrm{EtOAc}(15 \mathrm{ml}$ of each) and the filtrate evaporated to give the crude allylic alcohol as a clear oil (268 mg). $72 \mathrm{mg}(>2.5$ $\mathrm{x} 10^{-1} \mathrm{mmol}$) of the allylic alcohol wad used directly. To a stirred solution of crude allylic alcohol (72 $\left.\mathrm{mg},>2.5 \times 10^{-1} \mathrm{mmol}\right), \mathrm{LiBr}(426 \mathrm{mg}, 4.9 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(177 \mu \mathrm{~L}, 1.3 \mathrm{mmol})$ in dry THF $(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}, \mathrm{MsCl}(25 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 hr then warmed to $-40{ }^{\circ} \mathrm{C}$ and stirred further 1.5 h . Further $\mathrm{MsCl}(5 \mu \mathrm{~L}, 0.065 \mathrm{mmol})$ was added, the mixture was stirred further for 1 h 40 min then warmed to $-10^{\circ} \mathrm{C}$ and stirred further for 1 h . The mixture was quenched with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and extracted with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude allylic bromide as a clear oil $(140 \mathrm{mg})$. This was dissolved in dry THF $(2.5 \mathrm{~mL})$ at rt with stirring under argon and cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{LiALH}_{4}(23 \mathrm{mg}, 0.6$ mmol) was added in one portion and the mixture heated to $60^{\circ} \mathrm{C}$. This was stirred for 3 h and cooled to $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with DCM (3×15 $\mathrm{mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O}$ /petrol, $1: 99$ to $2: 98$ as eluent) afforded the E-alkene product as a clear oil ($17 \mathrm{mg}, 16 \%$ over 6 steps). $v_{\max } / \mathrm{cm}^{-1}$ (neat) 3026, 2962, 2914, 2878, 2801, 1600, 1493, 1446; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.73-2.09\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH} M e\right.$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CH} H\right), 2.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4$ $\left.\mathrm{Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{CHH}\right) 2.40(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{NCHH}), 2.99(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.7,3.6 \mathrm{~Hz}, \mathrm{NCHH}), 3.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $13.3 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.3 \mathrm{~Hz}, \mathrm{NCH} H \mathrm{Ph}), 5.71(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{CHMe}), 7.19-7.49(8 \mathrm{H}$, $\left.\mathrm{m}, 8 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.62\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 18.4(\mathrm{CH}=\mathrm{CHMe}), 21.8$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 39.4\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}\right), 50.0\left(\mathrm{NCH}_{2}\right), 53.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 70.6\left(C_{\mathrm{q}} \mathrm{Ph}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(C \mathrm{H}_{\mathrm{Ar}}\right)$, $126.7(C H=C H M e), 127.2\left(C H_{\mathrm{Ar}}\right), 128.1\left(C \mathrm{H}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8(\mathrm{CH}=C \mathrm{HMe})$, $140.9\left(\mathrm{C}_{\mathrm{qAr}}\right), 146.5\left(\mathrm{C}_{\mathrm{qAr}}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N} 278.1910$; found 278.1907.

Compound (\pm)-7i: 1-(methyl)-2-(1-(Z)-propenyl)-2-phenylpyrrolidine.

To a stirred solution of compound $\mathbf{S 1 8}(279 \mathrm{mg}, 0.9 \mathrm{mmol})$ in dry THF (7 ml) at $0{ }^{\circ} \mathrm{C}$ under argon, $\mathrm{LiAlH}_{4}(80 \mathrm{mg}, 2.1 \mathrm{mmol})$ was added in one portion. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 4 h and cooled to $0^{\circ} \mathrm{C}$. The reaction was quenched sequentially with water $(80 \mu \mathrm{~L}), 15 \%$ aq. $\mathrm{NaOH}(80 \mu \mathrm{~L})$, and water $(240 \mu \mathrm{~L})$. The mixture was stirred for 10 mins , diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dried over MgSO_{4} further for 10 min . The mixture was filtered over Celite and evaporated to give crude N-methyl alcohol as a clear oil $(158 \mathrm{mg})$. This was dissolved in dry DCM $(1.4 \mathrm{~mL})$ under argon and added dropwise to a 15 min pre-mixed solution of dry DMSO ($88.4 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and oxalyl chloride ($106.6 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) in dry $\mathrm{DCM}(2.7 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ under argon and stirred for 1 h . $\mathrm{Et}_{3} \mathrm{~N}(732 \mu \mathrm{~L}, 5.3 \mathrm{mmol})$ was added dropwise, stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$ then warmed to rt and stir further for 30 min . The reaction was quenched with saturated $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and extracted with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude aldehyde as a pink oil (174 mg). To a stirred suspension of freshly made $\mathrm{EtPPh}_{3}(1.3 \mathrm{~g}, 3.5 \mathrm{mmol})$ in dry THF (11 mL) at rt under argon, NaH (132 mg of $60 \% \mathrm{NaH}$ dispersed in mineral oil, 3.3 mmol) was added in one portion. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 4 h to give an orange solution. The solution was cooled to $0^{\circ} \mathrm{C}$ and a solution of the crude aldehyde ($<0.9 \mathrm{mmol}$) in dry THF (2 mL) added dropwise. The mixture was warmed to rt and stirred for 15 min then cooled to $0^{\circ} \mathrm{C}$. Petrol (33 mL) was added and the mixture stirred vigorously for 10 min then filtered over Celite and the solids washed with petrol/ $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The filtrate was evaporated to give crude brown solid. Purification by silica gel chromatography ($\mathrm{EtOH} . \mathrm{NH}_{3} / \mathrm{DCM}$, 0.5:99.5 to 4:96 as eluent) afforded product as a clear oil ($103 \mathrm{mg}, 59 \%$ over 3 steps). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 3018, 2963, 2936, 2785, 1599, 1488, 1446, 1234; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.22(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH} M e), 1.86-2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{N} M e), 2.12-2.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{q}} \mathrm{CH} H\right), 2.31$ (1 H , ddd, J = 12.8, 9.8, $6.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{CHH}$), $2.63-2.79$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), $5.63-5.78$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHMe}$), $7.17-7.39\left(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{xH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 15.8(\mathrm{CH}=\mathrm{CHMe}), 21.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 35.5(\mathrm{NMe})$, $40.8\left(\mathrm{C}_{\mathrm{q}} \mathrm{CHH}\right), 52.8\left(\mathrm{NCH}_{2}\right), 69.6\left(\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 126.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6(\mathrm{CH}=C \mathrm{HMe}), 127.8$ $\left(\mathrm{CH}_{\text {Ar }}\right) 133.0(\mathrm{CH}=\mathrm{CHMe}), 142.6\left(\mathrm{C}_{\text {qAr }}\right)$; ; HRMS (ESI^{+}) m/z: [M-H $\left.{ }^{+}\right]$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N} 200.1440$; found 200.1438 .

Compound (\pm)-7j: 1-(benzyl) 2-(1-(Z)-4-methyl-pentenyl)-2-phenylpyrrolidine. with at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{LiAlH}_{4}(109 \mathrm{mg}, 2.8$ mmol) in one portion. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 5 min , warmed to $60^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction was cooled to $0^{\circ} \mathrm{C}$ and water ($110 \mu \mathrm{~L}$), 15% aq. NaOH (110 $\mu \mathrm{L}$) and water ($330 \mu \mathrm{~L}$) were added sequentially. The mixture was stirred for 10 min and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and MgSO_{4} were added and the mixture filtered through Celite. Evaporation gave the product ($272 \mathrm{mg}, 97 \%$) as a clear oil which was used directly. $\mathrm{SO}_{3 .}$ py (303.0 mg , $1.9 \mathrm{mmol})$ was dissolved in dry DMSO $(1.7 \mathrm{~mL})$ and stirred at rt for 15 min . The resulting solution was added dropwise to a stirred solution of the crude alcohol and $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL}, 5 \mathrm{mmol})$ dissolved in DMSO $(3.4 \mathrm{~mL})$. was added and stirred at rt . The reaction was stirred at rt for 45 min and partitioned between $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aq. phase was extracted further with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation gave the crude aldehyde ($237 \mathrm{mg}, 87 \%$) as a yellow oil, which was used directly without further purification. Isopentylphosphonium bromide $\mathbf{S 6}(740 \mathrm{mg}, 1.8 \mathrm{mmol})$ was dissolved/suspended in dry THF (5 mL) under argon at $0^{\circ} \mathrm{C}$. $\mathrm{nBuLi}(2.5 \mathrm{M}, 680 \mu \mathrm{~L}$ of 2.5 M nBuLi in hexanes, 1.7 mmol) was added dropwise over 2 min and the solution was warmed to rt . After 45 min the deep orange solution was cooled to $0^{\circ} \mathrm{C}$ and a solution of crude aldehyde ($237 \mathrm{mg},<0.89 \mathrm{mmol}$) in dry THF (2 mL) was added dropwise. The mixture was stirred for 10 min and acetaldehyde ($50 \mu \mathrm{~L}$) added to quench the residual ylide. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and petrol $(20 \mathrm{~mL})$ were added and the mixture filtered through Celite and evaporated. Purification by silica gel chromatography ($5-20 \% \mathrm{Et}_{2} \mathrm{O} /$ petrol as eluent)
afforded the title compound ($180 \mathrm{mg}, 67 \%$ over 3 steps) as a clear oil. $v_{\max } / \mathrm{cm}^{-1}: 3040,2954,2870$, $2800,1493,1453$ and $\left.1170 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 0.77(6 \mathrm{H} \text {, app. d, J 5.9, CMe })^{2}\right), 1.49-1.67(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CHMe} \mathrm{M}_{2}$ and allylic CH_{2}), $1.83-1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.21-2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.54-$ $2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3, \mathrm{NCHHPh}), 3.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3, \mathrm{NCHHPh}), 5.67(1 \mathrm{H}, \mathrm{dt}$, J 11.8, 6.9, $=\mathrm{CH}_{-\mathrm{CH}_{2}}$), $5.86\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.8,=\mathrm{CH}-\mathrm{C}_{\mathrm{q}}\right), 7.14-7.35(8 \mathrm{H}, \mathrm{m})$ and $7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 22.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.5(\mathrm{Me}), 22.6(\mathrm{Me}), 28.7\left(C \mathrm{HMe}_{2}\right), 38.7$ (allylic $\left.\mathrm{CH}_{2}\right), 41.1$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 49.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 54.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 70.4\left(\mathrm{NC}_{\mathrm{q}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.7(2$ $\left.\times \mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 132.7\left(=C \mathrm{H}-\mathrm{CH}_{2}\right), 133.1\left(=C \mathrm{H}-\mathrm{C}_{\mathrm{q}}\right)$, $140.7\left(\mathrm{C}_{\mathrm{q}}\right)$ and $143.9\left(\mathrm{C}_{\mathrm{q}}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N} 320.2378$; found 320.2376.

Compound (\pm)-S19: 1-(benzyl) 2-aceto-2-phenylpyrrolidine.
To a stirred solution of compound $\mathbf{S 1 8}(304 \mathrm{mg}, 0.98 \mathrm{mmol})$ in dry THF $(8 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ under argon, $\mathrm{LiAlH}_{4}(90 \mathrm{mg}, 2.4 \mathrm{mmol})$ was added in one portion. The mixture was heated to $60{ }^{\circ} \mathrm{C}$ and stirred for 4 h then cooled to $0{ }^{\circ} \mathrm{C}$. The reaction was quenched sequentially with water $(90 \mu \mathrm{~L}), 15 \%$ aq. $\mathrm{NaOH}(90 \mu \mathrm{~L})$, and water $(360 \mu \mathrm{~L})$. The mixture was stirred for 10 mins, diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dried over MgSO_{4} further for 10 min . The mixture was filtered over Celite and evaporated to give the crude alcohol as a clear oil $(158 \mathrm{mg})$. To a stirred solution of anhydrous DMSO ($0.10 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in DCM (3 mL) at $-78^{\circ} \mathrm{C}$ under argon was added oxalyl chloride ($0.12 \mathrm{~mL}, 1.4 \mathrm{mmol}$) dropwise. The mixture was stirred for 15 min and a solution of crude alcohol ($<0.98 \mathrm{mmol}$) in DCM $(1.5 \mathrm{~mL})$ dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for a further 1 h and triethylamine $(0.83 \mathrm{~mL}, 6.0 \mathrm{mmol})$ added dropwise. The reaction was stirred for a further 3.5 h , warmed to rt and quenched by the addition of sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{DCM}(2 \times 25 \mathrm{~mL})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude aldehyde (263 mg) as a yellow oil, which was used directly. To a solution of crude aldehyde ($<0.98 \mathrm{mmol}$) in dry THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{MeMgBr}(0.60 \mathrm{~mL}$ of a 3 M solution in THF, 1.8 mmol) dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h and further MeMgBr (0.90 mL of a 3 M solution in $\mathrm{THF}, 2.7 \mathrm{mmol}$) added dropwise. The reaction was stirred for 30 min , warmed to rt , stirred for 10 min and quenched by the addition of sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc $(2 \times 25 \mathrm{~mL})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude alcohol $(240 \mathrm{mg})$ as a yellow oil, which was directly. To a stirred solution of anhydrous DMSO $(0.10 \mathrm{~mL}, 1.4 \mathrm{mmol})$ in $\mathrm{DCM}(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon was added oxalyl chloride (0.12 $\mathrm{mL}, 1.4 \mathrm{mmol}$) dropwise. The mixture was stirred for 15 min and a solution of crude alcohol (<0.98 $\mathrm{mmol})$ in $\mathrm{DCM}(1.5 \mathrm{~mL})$ dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for a further 1 h and triethylamine $(0.83 \mathrm{~mL}, 6.0 \mathrm{mmol})$ added dropwise. The reaction was stirred for a further 30 min and warmed to rt over 15 min . The reaction was quenched by the addition of sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The mixture was extracted with DCM $(2 \times 25 \mathrm{~mL})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude product as an orange oil. Purification by silica gel chromatography (EtOAc/petrol, 5:95 to $1: 4$ as eluent) afforded the title compound ($152 \mathrm{mg}, 56 \%$ over 4 steps) as a pale yellow oil. $v_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1}$ (film) $2958,1711,1672,1601,1494,1448$ and 1351 ; $\delta_{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.87-1.96(2 \mathrm{H}$, m, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.14-2.26\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right.$ and Me$), 2.51\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.6,7.7, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right)$, 2.65-2.77 (2H, m, NCH2 CH_{2}), $3.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2, \mathrm{NCHHPh}), 3.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3, \mathrm{NCHHPh}), 7.18-$ $7.42(10 \mathrm{H}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 21.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 28.2(\mathrm{Me}), 36.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 50.4$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 54.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 79.6\left(\mathrm{NC}_{\mathrm{q}} \mathrm{Ph}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.48\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.53\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.35$ $\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.37\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 139.7(\mathrm{Cq}), 140.1(\mathrm{Cq})$ and $209.8(\mathrm{C}=\mathrm{O})$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO} 280.1702$; found 280.1698.

Compound (土)-7k: 1-(benzyl) 2-(3-methyl-ethenyl)-2-phenylpyrrolidine.

To a stirred suspension of $\mathrm{MePPh}_{3} \mathrm{Br}(770 \mathrm{mg}, 2.15 \mathrm{mmol})$ in toluene $(11 \mathrm{~mL})$ at rt under argon was added $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(240 \mathrm{mg}, 2.14 \mathrm{mmol})$ and the mixture heated to $80^{\circ} \mathrm{C}$. After 80 min the yellow reaction was cooled to $0^{\circ} \mathrm{C}$ and a solution of substrate $\mathbf{S 2 0}(140 \mathrm{mg}, 0.50$ $\mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ added dropwise. The stirred reaction was heated to $60^{\circ} \mathrm{C}$, stirred for 4 h and cooled to $0^{\circ} \mathrm{C}$. The excess ylide was quenched by the dropwise addition of acetaldehyde
$(0.10 \mathrm{~mL})$, the reaction stirred for 10 min and diluted with $\mathrm{Et}_{2} \mathrm{O} /$ petrol $(1: 1,35 \mathrm{~mL})$. After stirring for a further 10 min the reaction was filtered though Celite and the filtrate evaporated to give a yellow oil. Purification by silica gel chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in petrol as eluent) to afford the title compound (85 $\mathrm{mg}, 61 \%)$ as a clear oil. $v_{\max } / \mathrm{cm}^{-1}($ film $) 2970,1643,1599,1493,1445$ and $1363 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $1.70(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.79-2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.19\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 12.1,6.5, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.36(1 \mathrm{H}$, app. q, J 8.8, NCHHCH_{2}), $2.46\left(1 \mathrm{H}\right.$, ddd, J 14.1, 10.0, 5.0, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7$, $\mathrm{NCH} H \mathrm{Ph}), 2.88\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 9.3,3.3, \mathrm{NCHHCH}_{2}\right), 3.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7$, NCHHPh$), 5.06(1 \mathrm{H}, \mathrm{s},=\mathrm{CH} H)$, $5.35(1 \mathrm{H}, \mathrm{s},=\mathrm{CHH})$ and $7.17-7.40(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 21.56(\mathrm{Me}), 21.64$ (NCH 2 CH 2), $37.8(\mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2), 50.7(\mathrm{NCH} 2 \mathrm{CH} 2), 54.9(\mathrm{NCH} 2 \mathrm{Ph}), 74.2\left(\mathrm{NC} \mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 111.3(=\mathrm{CH} 2)$, $126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.7\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.20\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.22\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $140.80\left(\mathrm{C}_{\mathrm{q}}\right), 140.85\left(\mathrm{C}_{\mathrm{q}}\right)$ and $148.3\left(\mathrm{C}_{\mathrm{q}}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N} 278.1909$; found 278.1907.

3.7 Preparation of 2-phenyl-octahydroindole allylic amine substrates

Compound S20: Methyl (2S,3aS,7aS)-1-[(phenyl)- carbamoyl]-octahydro-1H-indole-2-carboxylate.
 Using an adapted literature procedure, ${ }^{11}$ a stirred suspension of ($2 \mathrm{~S}, 3 \mathrm{aS}, 7 \mathrm{aS}$)-octahydro- 1 H -indole carboxylic acid ($2.2 \mathrm{~g}, 13 \mathrm{mmol}$) in MeOH (33 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon, thionyl chloride $(2.2$ $\mathrm{mL}, 28 \mathrm{mmol}$) was added dropwise. The mixture was warmed to rt and stirred for 23 h . The mixture was evaporated, and the residue partitioned between saturated $\mathrm{NaHCO}_{3}(45 \mathrm{~mL})$ and $\mathrm{DCM}(90 \mathrm{~mL})$. The phases were separated, and the aq. phase extracted further with DCM ($2 \times 90 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the free-base amine ester as a clear oil (2.2 g). All spectra data was in accord with that reported. ${ }^{11}$ This was dissolved in DCM (58 mL) at rt under argon, phenyl isocyanate $(1.5 \mathrm{~mL}, 13 \mathrm{mmol})$ was added dropwise. The mixture was stirred for 1.5 h and quenched with water $(60 \mathrm{~mL})$. The phases were separated, and the aq. phase was extracted further with DCM $(2 \times 60 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a white solid (5 g). Purification by silica gel chromatography (EtOAc/petrol, $1: 9$ to $1: 1$ as eluent) afforded the product as a fine white powder ($3.7 \mathrm{~g}, 93 \%$ over 2 steps $)$. All spectral data was in accord with that reported. ${ }^{12}$

Compound S21: (2R,3aS,7aS)-2-phenyl-octahydro-1H-indole-2-carboxylic acid.

Following an adapted procedure, ${ }^{12}$ to a stirred solution/suspension of compound $\mathbf{S 2 0}$ (1.3 g, 4.1 $\mathrm{mmol})$ in dry $\mathrm{DCM}(20.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon, TMSCl ($3.8 \mathrm{~mL}, 29.9 \mathrm{mmol}$) was added dropwise. The mixture was warmed to rt and stirred for 15 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, dry $\mathrm{MeOH}(7.2$ $\mathrm{mL})$ was added dropwise and stirred further for 20 min . The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(4.3$ $\mathrm{mL}, 31 \mathrm{mmol}$) added dropwise. The mixture was added dropwise to a vigorously stirred solution of saturated $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and extracted with DCM (3x60 mL). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude product $\left(1.6 \mathrm{~g}\right.$, ca. 88% conversion of by ${ }^{1} \mathrm{H}$ NMR to the MOM protected urea). To a stirred solution of crude MOM protected urea ($1.6 \mathrm{~g},<4.1 \mathrm{mmol}$) in dry THF (41 mL) and $\mathrm{LiCl}(438 \mathrm{mg}, 10.3 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under argon, 20% KHMDS in THF $(11.8$ $\mathrm{mL}, 10.3 \mathrm{mmol}$) was added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min then warmed to rt and stirred further for 4 h . The mixture was poured over saturated $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and extracted with EtOAc (3 x 200 mL). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude the hydantoin as a dark brown oil $(1.1 \mathrm{~g})$. This was dissolved in dioxane (5.3 mL) with stirring at rt, 4 M aq. $\mathrm{NaOH}(32 \mathrm{~mL})$ was added dropwise. The mixture was heated to $120{ }^{\circ} \mathrm{C}$ for 4 days. The
mixture was allowed to cool to rt and acidified with 3 M HCl . The excess insoluble solids were filtered off. The acidic medium containing the product was loaded onto DOWEX50WX4 ion exchange resin (pre-washed with aq. 3 M HCl). Once loaded the column was washed sequentially with one column length of water, dioxane and then water. The product was eluted with $35 \% \mathrm{NH}_{3}$ and the eluent evaporated under reduced pressure at $70{ }^{\circ} \mathrm{C}$. The residual water was removed by azeotropic removal of toluene to afford the product as a yellow solid ($400 \mathrm{mg}, 40 \%$ over 3 steps). All spectral data was in accord with that reported. ${ }^{12}$

Compound S22: (2R,3aS,7aS)-1-benzyl-2-O-methyl-2-phenyl-octahydroindole-2-carboxylate.
 To a stirred suspension of amino acid $\mathbf{S 2 1}(259 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(337 \mathrm{mg}, 2.4 \mathrm{mmol}), \mathrm{NaI}(24 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{BnBr}(264 \mu \mathrm{~L}, 2.2$ $\mathrm{mmol})$ were sequentially added. The mixture was heated $60{ }^{\circ} \mathrm{C}$ and stirred for 22 h . The mixture was cooled to rt and evaporated. The resulting residue was partitioned between water (15 mL) and DCM (15 mL). The phases were separated, and the aq. phase extracted further with DCM ($2 \times 15 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ to give an orange oil. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, $0: 100$ to 5:95 as eluent) afforded product as a clear oil ($266 \mathrm{mg}, 59 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3029,2935,2852,1722$, 1494, 1446. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.23-1.60\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right) 2.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.1,7.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{\mathrm{q}} \mathrm{PhCHH}\right), 2.27(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}), 2.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.1,10.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{PhCHH}\right), 3.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.7$ $\mathrm{Hz}, \mathrm{NCH} H \mathrm{Ph}), 3.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.7 \mathrm{~Hz}, \mathrm{NCHHPh}) 5.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH} H \mathrm{Ph}\right), 5.29(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH} H \mathrm{Ph}\right), 7.15-7.40\left(15 \mathrm{H}, \mathrm{m}, 15 \times \mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 21.6\left(\mathrm{CH}_{2}\right), 23.0$ $\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 35.6(\mathrm{NCHCH}), 42.9\left(\mathrm{C}_{\mathrm{q}} \mathrm{PhCH}_{2}\right), 50.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.9(\mathrm{NCHCH}), 66.8$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 74.4\left(\mathrm{~N} C_{\mathrm{q}} \mathrm{Ph}\right), 126.5-126.9\left(3 \mathrm{x} C \mathrm{H}_{\mathrm{Ar}}\right), 128.0-128.7\left(5 \times \mathrm{H}_{\mathrm{Ar}}\right), 135.9\left(C_{\mathrm{qAr}}\right), 141.0\left(C_{\mathrm{qAr}}\right)$, $145.2\left(C_{q A r}\right), 175.8\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{2} 426.2435$; found 426.2434 .

Compound 7o: (2R,3aS,7aS)-1-benzyl-2-vinyl-2-phenyl-octahydroindole.

To a stirred solution of compound $\mathbf{S 2 2}$ ($486 \mathrm{mg}, 1.1$ $\mathrm{mmol})$ in dry THF $(11.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{LiAlH}_{4}(95 \mathrm{mg}$, 2.5 mmol) was added in one portion. The mixture was warmed to rt, stirred for 50 min then cooled to $0{ }^{\circ} \mathrm{C}$. The reaction was quenched sequentially with water (100 $\mu \mathrm{L}), 15 \%$ aq. $\mathrm{NaOH}(100 \mu \mathrm{~L})$ and water $(300 \mu \mathrm{~L})$, stirred for 10 min then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dried over MgSO_{4} for 10 min . The mixture was filtered through Celite and product eluted with $\mathrm{Et}_{2} \mathrm{O}, \mathrm{DCM}$ and $\mathrm{EtOAc}(10 \mathrm{~mL}$ of each) and the filtrate evaporated to give a crude $1: 1$ mixture of the secondary alcohol and $\mathrm{BnOH}(498 \mathrm{mg})$. This was dissolved in dry DCM (3.6 mL) under argon and added dropwise to a 15 min pre-mixed solution of dry DMSO $(234 \mu \mathrm{~L}, 3.3 \mathrm{mmol})$ and oxalyl chloride $(285 \mu \mathrm{~L}, 3.3 \mathrm{mmol})$ in dry $\mathrm{DCM}(7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(1.9 \mathrm{~mL}, 13.6$ mmol) was added dropwise and the mixture stirred further for 1 h . The mixture was allowed to warm to rt over 15 min , quenched with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(2 \times 15 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude $1: 1$ mixture of aldehyde product and $\mathrm{PhCHO}(599 \mathrm{mg})$. To a stirred suspension of $\mathrm{MePPh}_{3} \mathrm{Br}(1.6 \mathrm{~g}, 4.6 \mathrm{mmol})$ in toluene (15 $\mathrm{ml})$ at rt , ${ }^{\mathrm{t}} \mathrm{BuOK}(511 \mathrm{mg}, 4.6 \mathrm{mmol})$ was added in one portion. The mixture was heated to $90{ }^{\circ} \mathrm{C}$ and stirred for 1.5 h , forming a yellow solution. This was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of the crude aldehyde in toluene (3 mL) added dropwise. The mixture was warmed to rt and stirred for 30 min then cooled to $0{ }^{\circ} \mathrm{C}$. The excess ylide was quenched with $\mathrm{MeOH}(1 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL})$ was added and the mixture stirred vigorously for 10 min then filtered over Celite. The solids were washed with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and the filtrate evaporated to give an orange oil. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, $0.5: 99.5$ to $3: 97$ as eluent) afforded the product as a clear oil ($96 \mathrm{mg}, 53 \%$ over 3 steps). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3081,3060,3026,2921,2851,2806,1493,1453 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.18-1.68(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}$ $\left.\mathrm{CH}_{2 \text { (cyclohexyl) }}\right), 1.94\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3,7.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{PhCH} H\right), 2.23-2.33(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}), 2.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$
$\left.=12.2 \mathrm{~Hz}, \mathrm{NC}_{\mathrm{q}} \mathrm{PhCH} H\right), 3.07(1 \mathrm{H}, \mathrm{dt}, 10.9,5.6 \mathrm{~Hz}, \mathrm{NCHC}), 3.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.84$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{NCHHPh}$), $5.08(1 \mathrm{H}, \mathrm{d}, 17.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 5.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H)$, $6.22\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.4,10.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.12-7.24\left(2 \mathrm{H}, \mathrm{m} 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.31(4 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.2,2.3,4 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.45\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{CH}_{\mathrm{Ar}}\right), 7.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{C} H_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 21.4$ $\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right)$, $23.5\left(\mathrm{CH}_{2(\text { (cyclohexyl) })}\right)$, $26.0\left(\mathrm{CH}_{2(\text { cyclohexyl) }}\right), 26.6\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right), 34.9(\mathrm{NCHCH}), 43.4$ $\left(\mathrm{C}_{\mathrm{q}} \mathrm{PhCH}_{2}\right), 50.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.0(\mathrm{NCHCH}), 70.3\left(\mathrm{NC} \mathrm{q}_{\mathrm{q}} \mathrm{Ph}\right), 114.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6$ and $127.8\left(2 \times \mathrm{xH}_{\mathrm{Ar}}\right), 128.2$ and $128.4\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 145.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right) 141.3\left(\mathrm{C}_{\mathrm{qAr}}\right), 147.8$ $\left(\mathrm{C}_{\mathrm{qAr}}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N} 318.2223$; found 318.2220.

Compound 7p: (2R,3aS,7aS)-1-benzyl-2-(1-(Z)-propenyl)-2-phenyl-octahydroindole.
 To a stirred solution of compound $\mathbf{S 2 2}$ ($337 \mathrm{mg}, 0.8$ mmol) in dry THF (8 mL) at $0{ }^{\circ} \mathrm{C}$ under argon, LiALH_{4} ($66 \mathrm{mg}, 1.7 \mathrm{mmol}$) was added in one portion. The mixture was warmed to rt and stirred 2.5 h . The reaction was quenched sequentially with water ($70 \mu \mathrm{~L}$,), 15% aq. NaOH and water $(210 \mu \mathrm{~L})$. The mixture was stirred for 10 min , diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dried over MgSO_{4} for 10 min . The mixture was filtered through Celite and eluted sequentially with $\mathrm{Et}_{2} \mathrm{O}$ (10 $\mathrm{mL})$, $\mathrm{DCM}(10.0 \mathrm{~mL})$ and $\operatorname{EtOAc}(10 \mathrm{~mL})$. The filtrate was evaporated to give a $1: 1$ mixture of the secondary alcohol product and benzyl alcohol (338 mg). A solution of the crude alcohol mixture in DCM (2.5 mL) was added dropwise to a 15 min pre-mixed solution of oxalyl chloride ($198 \mu \mathrm{~L}, 2.3$ $\mathrm{mmol})$ and dry DMSO $(162 \mu \mathrm{~L}, 2.3 \mathrm{mmol})$ in $\mathrm{DCM}(4.9 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 9.5 \mathrm{mmol})$ was added dropwise and stirred further for 1 h . The mixture was allowed to warm to rt over 15 min , quenched with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a $1: 1$ mixture of the aldehyde product and benzaldehyde as an orange oil (339 mg , of which 75% was used in the subsequent reaction, $<0.59 \mathrm{mmol})$. To a stirred suspension of $\mathrm{EtPPh}_{3} \mathrm{Br}(2 \mathrm{~g}, 5.4 \mathrm{mmol})$ in dry THF at rt under argon, NaH in mineral oil (60% dispersion, $194 \mathrm{mg}, 4.9 \mathrm{mmol}$) was added portionwise. The mixture was heated to $60^{\circ} \mathrm{C}$ for 5 h forming a bright orange solution. This was cooled to $0{ }^{\circ} \mathrm{C}$, a solution of the crude aldehyde mixture (ca. 0.59 mmol) in dry THF (3 mL) was added dropwise. The mixture was warmed to rt and stirred for 20 min then quenched with $\mathrm{MeOH}(200 \mu \mathrm{~L})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, petrol (57 mL) wad added and stirred vigorously for 10 min . The mixture was filtered over celite, and solids washed with petrol/ $\mathrm{Et}_{2} \mathrm{O}(5: 1,20 \mathrm{~mL})$. The filtrate was evaporated to give crude product as orange oil. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol, $0 \% 1 \%$ as eluent $)$ afforded the product as a clear oil ($155 \mathrm{mg}, 59 \%$ over 3 steps $) .[\alpha]^{20}{ }_{\mathrm{D}}=+61.2(c 0.12, \mathrm{DCM}) . v_{\max } / \mathrm{cm}^{-1}$ (neat) $3060,3023,2924,2852,1493,1145,1362 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.20-1.73\left(11 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2 \text { (cyclohexyl }}\right)$ and $=\mathrm{CH} M e), 2.23-2.49\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}\right.$ and NCHCH$), 2.96(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=9.9,5.4 \mathrm{~Hz}, \mathrm{NCH}) 3.30(1 \mathrm{H}$, d, J = 14.2 Hz, NCHHPh), $3.82(1 \mathrm{H}, \mathrm{d}, 14.2 \mathrm{~Hz}, \mathrm{NCH} H \mathrm{Ph}) .5 .64(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHMe}), 6.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=11.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHMe}), 7.15-7.39\left(8 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right.$, $101 \mathrm{MHz}) 16.0(=\mathrm{CHMe})$, $21.4\left(\mathrm{CH}_{2(\text { cyclohexyl) }}\right)$, $22.0\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right)$, $22.8\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right), 27.8$ $\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right), 36.4(\mathrm{NCHCH}), 48.0\left(\mathrm{C}_{\mathrm{q}} \mathrm{PhCH}_{2}\right), 49.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.0(\mathrm{NCH}), 69.5\left(\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 125.8$ $(\mathrm{CH}=C \mathrm{HMe}), 126.0\left(C H_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.8(\mathrm{CH}=\mathrm{CHMe}), 141.7$ $\left(C_{\text {qAr }}\right), 147.9\left(C_{\text {qAr }}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N} 332.2380$; found 332.2378.

3.8 Preparation of 2-phenylpiperidine allylic amine substrates

Compound (\pm)-S23: N-Boc-2-phenylpiperidine.

To a stirred solution of 2-phenylpiperidine ($1.00 \mathrm{~g}, 6.2 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ at rt under argon was added $\mathrm{Boc}_{2} \mathrm{O}(1.60 \mathrm{~g}, 7.3 \mathrm{mmol})$ in one portion. The reaction was stirred for 1 h, evaporated and purified by silica gel chromatography (EtOAc/petrol, 1:19 to 5:95 as eluent) to afford the title compound ($1.42 \mathrm{~g}, 88 \%$) as a clear oil which crystallised on prolonged standing. All spectral data was in accord with that reported. ${ }^{10}$

Compound (\pm)-S24: 1-(tert-butyl) 2-ethyl 2-phenylpiperidine-2-carboxylate.

Following an adapted literature procedure, ${ }^{9}$ a stirred solution of substrate $\mathbf{S 2 3}$ (500 $\mathrm{mg}, 1.92 \mathrm{mmol}$) in dry THF (12 mL) was degassed by sparging with argon and cooled to $-40^{\circ} \mathrm{C}$. ${ }^{n} \mathrm{BuLi}(0.98 \mathrm{~mL}$ of a 2.5 M solution in hexanes, 2.4 mmol) was added dropwise over 2 min and the resulting yellow solution stirred for 30 min . Ethyl chloroformate ($0.64 \mathrm{~mL}, 6.7 \mathrm{mmol}$) was added dropwise to give a blood red solution. The reaction was allowed to warm to rt over 3 h and the colourless reaction was quenched by the addition of methanol (5 mL) and evaporated. The residue was purified by silica gel chromatography ($\mathrm{EtOAc} / \mathrm{petrol}$, gradient elution: 5:95 to 1:4 as eluent) to afford the title compound ($500 \mathrm{mg}, 78 \%$) as a clear oil. All spectral data was in accord with the literature.

Compound (\pm)-S25: 1-(benzyl)-2-ethyl-2-phenylpiperidine-2-carboxylate.

To a stirred solution of compound $\mathbf{S 2 4}(470 \mathrm{mg}, 1.4 \mathrm{mmol})$ in DCM $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added TFA ($7 \mathrm{~mL}, 91 \mathrm{mmol}$) dropwise. The reaction was warmed to rt , stirred for 2.5 h and evaporated to give a yellow oil which was redissolved in MeCN (10 mL). Potassium carbonate ($550 \mathrm{mg}, 4.0 \mathrm{mmol}$), sodium iodide ($20 \mathrm{mg}, 0.13 \mathrm{mmol}$) and benzyl bromide ($210 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$) were added, and the reaction heated to $60^{\circ} \mathrm{C}$. After 14 h the reaction was cooled and concentrated in vacuo. The residue was partitioned between water (20 mL) and DCM (15 mL), the phases separated, and the aqueous phase extracted with DCM (15 mL). Drying $\left(\mathrm{MgSO}_{4}\right.$) and evaporation gave the crude product as a pink oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, 1% to 5% as eluent) afforded product as a clear oil ($315 \mathrm{mg}, 69 \%$ over two steps) as a clear oil. $v_{\text {max }} / \mathrm{cm}^{-1}($ film $) 2939,1724,1493,1445$ and $1222 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $1.40(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{Me}), 1.46-1.69\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{C}_{\mathrm{q}}-\mathrm{CH}_{2} \mathrm{CHH}\right), 1.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3, \mathrm{C}_{\mathrm{q}^{-}}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH} H\right), 1.85\left(1 \mathrm{H}\right.$, td, J 12.8, 3.7, $\left.\mathrm{C}_{\mathrm{q}}-\mathrm{CHH}\right), 2.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2, \mathrm{C}_{\mathrm{q}}-\mathrm{CHH}\right), 2.49(1 \mathrm{H}$, app. t, J 11.9, $\left.\mathrm{NCHHCH}_{2}\right), 2.81\left(\mathrm{~d}, \mathrm{~J} 12.4, \mathrm{NCHHCH}_{2}\right), 3.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6, \mathrm{NCHHPh}), 3.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6, \mathrm{NCHHPh})$, $4.39\left(2 \mathrm{H}\right.$, app. q, J $\left.7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 7.15-7.23(2 \mathrm{H}, \mathrm{m}), 7.24-7.36(6 \mathrm{H}, \mathrm{m})$ and $7.38-7.48(2 \mathrm{H}, \mathrm{m})$; δ_{C} $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 14.7(\mathrm{Me}), 23.0\left(\mathrm{C}_{\mathrm{q}}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 25.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 39.8\left(\mathrm{C}_{\mathrm{q}}-\mathrm{CH}_{2}\right), 47.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $56.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.5\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 73.2\left(\mathrm{NC}_{\mathrm{q}}\right), 126.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.7(2$ $\left.\times \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 141.5\left(\mathrm{C}_{\mathrm{q}}\right), 143.8\left(\mathrm{C}_{\mathrm{q}}\right)$ and $174.2\left(\mathrm{CO}_{2} \mathrm{Et}\right)$; HRMS (ESI') $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} 324.1965$; found 324.1965.

Compound 7q: 1-(benzyl)-2-vinyl-2-phenylpiperidine.

To a stirred solution of substrate $\mathbf{S 2 5}(190 \mathrm{mg}, 0.6 \mathrm{mmol})$ in dry THF (5.5 mL) at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{LiAlH}_{4}(70 \mathrm{mg}, 1.8$ mmol) in one portion. The mixture was stirred for 80 min , heated to $60^{\circ} \mathrm{C}$, stirred for an additional 30 min and cooled to $0^{\circ} \mathrm{C}$. Water ($70 \mu \mathrm{~L}$), 15% aq. $\mathrm{NaOH}(70 \mu \mathrm{~L})$ and water $(210 \mu \mathrm{~L})$ were added sequentially, and the mixture stirred for 10 min , diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and dried over MgSO_{4} for a further 10 min . The mixture was filtered through Celite, eluting with EtOAc and DCM, and the filtrate evaporated to give a clear oil (180 mg). The crude alcohol and triethylamine ($410 \mu \mathrm{~L}, 2.9 \mathrm{mmol}$) were dissolved in dry DMSO (2 mL) at rt under argon. A solution of $\mathrm{SO}_{3} . \mathrm{py}(175 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry DMSO (1 mL , solution pre-mixed for 15 min) was added dropwise and the reaction stirred at rt . After 13 h the reaction was partitioned between $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and half-saturated aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The phases were separated, the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the combined organic phase
dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude aldehyde $(153 \mathrm{mg})$ as a red oil which was used directly without further purification. To a stirred suspension of methyltriphenylphosphonium bromide (830 mg , 2.3 mmol) in dry toluene (12 mL) at rt under argon was added potassium tert-butoxide ($260 \mathrm{mg}, 2.3$ mmol) in one portion and the reaction heated to $75^{\circ} \mathrm{C}$. After 2 h the yellow mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of crude aldehyde ($<0.54 \mathrm{mmol}$) in toluene $(2 \mathrm{~mL})$ added dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 min , warmed to rt , stirred for an additional 10 min and the excess ylide quenched by the addition of acetaldehyde $(0.10 \mathrm{~mL})$. The reaction was cooled to $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O} /$ petrol $(15 \mathrm{~mL}, 1: 2)$. After stirring for a further 5 min the mixture was filtered through Celite and the filtrate evaporated. The residue was purified by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $5: 95$ as eluent $)$ to afford the title compound ($87 \mathrm{mg}, 53 \%$ over 3 steps) as a clear oil. $v_{\max } / \mathrm{cm}^{-1}$ (film) $2934,2798,1600$, 1492 and $1444 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.55-1.76\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.83(1 \mathrm{H}$, app. t, J 12.2, $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CHH}\right), 2.05\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.6,4.3, \mathrm{C}_{\mathrm{q}} \mathrm{CHH}\right), 2.40\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 12.1,6.4, \mathrm{NCHHCH}_{2}\right), 2.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.1$, $\left.\mathrm{NCHHCH}_{2}\right), 3.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.4, \mathrm{NCH} H \mathrm{Ph}), 3.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.4, \mathrm{NCHHPh}), 5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.9,=\mathrm{CH} H)$, $5.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2,=\mathrm{CHH}), 6.09\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 18.0,11.2, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.15-7.23(2 \mathrm{H}, \mathrm{m}), 7.26-7.34(4 \mathrm{H}$, $\mathrm{m}), 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8)$ and $7.69(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 22.0\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 37.9(\mathrm{Cq}-$ $\left.C_{2}\right), 47.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 54.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 66.5(\mathrm{NCq}), 118.7\left(=\mathrm{CH}_{2}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.1$ $\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.0\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.2\left(4 \times \mathrm{CH}_{\mathrm{Ar}}-\right.$ two environments overlap $), 137.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 140.8$ $\left(\mathrm{C}_{\mathrm{q}}\right)$ and $147.8\left(\mathrm{C}_{\mathrm{q}}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N} 278.190874$; found 278.1905.

Compound (土)-7r: 1-(benzyl)-2-(1-(Z)-propenyl)-2-phenylpiperidine.

To a stirred solution of compound $\mathbf{S} 25(336.0 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry THF (9.7 mL) at $0{ }^{\circ} \mathrm{C}$ under argon, $\mathrm{LiALH}_{4}(124 \mathrm{mg}, 3.3$ mmol) was added in one portion. The mixture was heated to 60 ${ }^{\circ} \mathrm{C}$ for 1 h then cooled to $0{ }^{\circ} \mathrm{C}$. Water $(130 \mu \mathrm{~L}), 15 \%$ aq. NaOH $(130 \mu \mathrm{~L})$ and water $(390 \mu \mathrm{~L})$ were added sequentially, and the mixture stirred for 10 min , diluted with $\mathrm{Et}_{2} \mathrm{O}(26 \mathrm{~mL})$ and dried over MgSO_{4} for a further 15 min . The mixture was filtered through Celite, eluting with EtOAc $(10 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$. The filtrate was evaporated to give crude mono-alcohol as clear oil ($254 \mathrm{mg},<0.9 \mathrm{mmol}$). This was dissolved in dry DMSO (2.5 mL) at under argon and $\mathrm{Et}_{3} \mathrm{~N}(760 \mu \mathrm{~L}, 5.5 \mathrm{mmol})$ added. To this, a 15 min premixed solution of $\mathrm{SO}_{3} . \mathrm{Py}(313.0 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added dropwise, and the mixture stirred for 18 h . The mixture was partitioned between saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The phases were separated, and the aq. phase extracted further with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The combined phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude red oil $(244.0 \mathrm{mg}, 75 \%$ conversion of SM by H-NMR). The crude oil was re-dissolved in dry DMSO $(2.5 \mathrm{~mL})$ at under argon and $\mathrm{Et}_{3} \mathrm{~N}(380 \mu \mathrm{~L}, 2.7 \mathrm{mmol})$ added. To this, a 15 min premixed solution of $\mathrm{SO}_{3} . \mathrm{Py}(157 \mathrm{mg}, 1 . \mathrm{mmol})$ was added dropwise, and the mixture stirred for 18 h . The mixture was partitioned between saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The phases were separated, and the aq. phase extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude aldehyde as a red oil ($186 \mathrm{mg},<0.6 \mathrm{mmol}$). To a stirred suspension of $\mathrm{EtPPh}_{3} \mathrm{Br}(958 \mathrm{mg}, 2.6 \mathrm{mmol})$ in dry THF $(12 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ under argon, nBuLi $(970 \mu \mathrm{~L}$ of a 2.5 M solution in hexane, 2.4 mmol) was added dropwise. The mixture was stirred for 30 min until orange solution had formed. The crude aldehyde was dissolved in dry THF (2 mL) under argon and added to the ylide solution. The mixture was warmed to rt and stir for 20 min . The mixture was quenched with $\mathrm{MeOH}(2 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$ and diluted with petrol (30 mL). The mixture was vigorously stirred for 10 min then filtered over Celite. The solids were washed with petrol/ $\mathrm{Et}_{2} \mathrm{O}(5: 1$, 20 mL) and the filtrate evaporated to give crude oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, 1:99 to 1:9) afforded the product as a clear oil ($136 \mathrm{mg}, 52 \%$ over 3 steps). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 3019, 2933, 2857, 2798, 1600, 1492, 1444; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.53-1.69(7 \mathrm{H}, \mathrm{m},=\mathrm{CH} M e$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.86-1.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{q}} \mathrm{CH} H\right), 2.17\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{CHH}\right), 2.48(1 \mathrm{H}$, td, $\mathrm{J}=13.3,6.5 \mathrm{~Hz}, \mathrm{NCH} H), 2.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.1 \mathrm{~Hz}, \mathrm{NCH} H \mathrm{Ph}), 3.57(1 \mathrm{H}$, d, J = 14.1 Hz, NCHHPh $, 5.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHMe}), 5.92-6.04(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHMe})$, $7.14-7.36\left(8 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.71\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 16.3(=\mathrm{CHMe})$, $22.1\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 26.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 40.3\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}\right), 47.3\left(\mathrm{NCH}_{2}\right), 54.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 67.0\left(\mathrm{NC} \mathrm{q}_{\mathrm{q}} \mathrm{Ph}\right), 126.4$ $\left(C H_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.1-128.2\left(3 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.4(=C \mathrm{HMe}), 128.9(C \mathrm{H}=\mathrm{CHMe})$, $140.9\left(C_{q A r}\right), 146.2\left(C_{q A r}\right)$. HRMS $(E S I+) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N} 292.2065$; found 292.2063.

3.9 Preparation of trans-alkene isomer $7 \mathbf{r}$

Compound (R)-S26: 2-Trichloromethyl-5-(1-(allyl)-1-aza-3-oxabicyclo[3.3.0]- octane-4-one.

Following an adapted procedure. ${ }^{7}$ To a stirred solution of ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(2.40 \mathrm{~mL}, 17.4 \mathrm{mmol})$ in dry THF (35 mL) at $-78^{\circ} \mathrm{C}$ under argon, ${ }^{\mathrm{n}} \mathrm{BuLi}(9.0 \mathrm{~mL}$ of a 2.0 M solution in hexane, 18 mmol) was added dropwise. The mixture was stirred for 30 min and a pre-cooled solution at $0^{\circ} \mathrm{C}$ of protected proline compound (S)-S9 (3.00 g, 12.3 mmol$)$ in dry THF $(25 \mathrm{~mL})$ under argon added to the stirred LDA solution over 4 min . The mixture was stirred for 30 min and allyl bromide $(1.9 \mathrm{~mL}, 22 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-40^{\circ} \mathrm{C}$ and stirred for a further 30 min . The reaction was poured over water (70 $\mathrm{mL})$ and extracted with $\mathrm{DCM}(3 \times 70 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude product as a brown oil. Purification by silica gel chromatography (EtOAc/petrol, 5:95 to 1:4 as eluent) afforded the title compound as a clear oil ($1.7 \mathrm{~g}, 49 \%$). All spectral data was in accord with that reported. ${ }^{7}$

Compound (R)-S27: N-benzyl-O-benzylpyrrolidine-2-(1-(allyl)-2-carboxylate.

To a stirred solution of compound $\mathbf{S} 26(1.7 \mathrm{~g}, 6.0 \mathrm{mmol})$ in 2-propanol (28 mL) at rt, aq. $\mathrm{HCl}(6 \mathrm{M}, 28 \mathrm{~mL})$ was added. The mixture was stirred at rt for 5 days, heated 50 ${ }^{\circ} \mathrm{C}$ for 6 h and cooled to rt . The reaction was evaporated under reduced pressure and the residual water removed by azeotropic removal of toluene $(4 \times 60 \mathrm{~mL})$ to give a white oily solid. This was dissolved in $\mathrm{MeCN}(42 \mathrm{~mL})$ at rt with stirring. $\mathrm{K}_{2} \mathrm{CO}_{3}(2.6$ $\mathrm{g}, 19.2 \mathrm{mmol}), \mathrm{NaI}(135 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{BnBr}(1.50 \mathrm{~mL}, 12.6 \mathrm{mmol})$ were added sequentially and the mixture heated to $90^{\circ} \mathrm{C}$. After 17 h the reaction was cooled to rt and evaporated. The residue was dissolved in water $(90 \mathrm{~mL})$ and extracted with DCM $(2 \times 90 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a brown oil. Purification by silica chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, 1:99 to $1: 9$ as eluent) afforded the product as a clear oil ($1.1 \mathrm{~g}, 57 \%$ over 2 steps). $[\alpha]^{20}{ }_{\mathrm{D}}=+47.8$ (c $0.680, \mathrm{DCM}) . v_{\max } / \mathrm{cm}^{-1}$ (neat) $3065,3030,2949,2806,1720,1512,1454 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.64$ $-1.86\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.18\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{J}=12.2,8.9,4.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right)$, $2.44-2.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}\right.$ and $\left.\left.\mathrm{CH} H \mathrm{CH}=\mathrm{CH}_{2}\right), 2.71\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.2,7.6 \mathrm{~Hz}, \mathrm{CHHCH}=\mathrm{CH}_{2}\right)\right), 2.86$ $(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.4,3.3 \mathrm{~Hz}, \mathrm{NCHH}), 3.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}$, $\mathrm{NCH} H \mathrm{Ph})$, , $5.05-5.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.91(1 \mathrm{H}$, ddt, J $=17.1,10.1,7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.16-7.45\left(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 21.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 33.9$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 39.3\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 51.6\left(\mathrm{NCH}_{2}\right), 53.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 66.2\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 70.3\left(\mathrm{NCCO}_{2}\right)\right.$, $118.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3-128.8\left(5 \times \mathrm{CH}_{\mathrm{Ar}}\right), 134.3\left(C \mathrm{H}=\mathrm{CH}_{2}\right), 136.2\left(C_{\mathrm{qAr}}\right), 140.3\left(C_{\mathrm{qAr}}\right)$ $174.3\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2} 336.1965$; found 336.1959.

Compound (R)-7r: N-benzyl-O-benzylpyrrolidine-2-(1-(E)-propenyl)-2-carboxylate.

To a flame-dried Schlenk tube under argon, $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{H}(\mathrm{CO}) \mathrm{Cl}$, (145.5 mg, 0.15 mmol) was added followed by dry THF (5 mL). A solution of compound $\mathbf{S 2 7}$ (512.6 $\mathrm{mg}, 1.5 \mathrm{mmol})$ in dry THF (10 mL) was added and the stirred mixture heated to 70 ${ }^{\circ} \mathrm{C}$. After 16.5 h the mixture was allowed to cool to rt and evaporated. Purification by silica gel chromatography (petrol/ $\mathrm{CHCl}_{3}, 4: 6$ to $1: 9$ as eluent) afforded the product as a clear oil $(304 \mathrm{mg}, 59 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=+4.25(c 0.561, \mathrm{DCM}) . v_{\max } / \mathrm{cm}^{-1}$ (neat) 3063,3030, 2960, 2831, $1722,1495,1453 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.72(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} M e), 1.73-1.93(3 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.36\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.5,6.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5$ $\mathrm{Hz}, \mathrm{NCHH}), 2.88(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.7,6.7 \mathrm{~Hz}), 3.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.9 \mathrm{~Hz}, \mathrm{NCHHPh}), 5.16(2 \mathrm{H}, \mathrm{A} / \mathrm{B}$ q, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 5.64-5.78(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHMe}), 7.16-7.41\left(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$ $18.3(\mathrm{CH}=\mathrm{CH} M e), 21.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 37.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 50.5\left(\mathrm{NCH}_{2}\right), 53.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 66.3$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 77.6\left(\mathrm{NCCO}_{2}\right), 126.4(\mathrm{CH}=\mathrm{CHMe}), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3-128.6\left(3 \times \mathrm{CH}_{\mathrm{Ar}}\right), 131.5$ $(\mathrm{CH}=C \mathrm{HMe})$, $136.2\left(\mathrm{C}_{\mathrm{qAr}}\right)$, $140.8\left(\mathrm{C}_{\mathrm{qAr}}\right)$, $174.3\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}$ 336.1965; found 336.1957.

3.10 Palladium-catalysed ring expansion reactions

General procedure 1 for ring expansion reactions

To a dried Schlenk tube was added $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(5 \mathrm{~mol} \%)$ followed by the sequential addition of dry solvent, $\mathrm{P}(\mathrm{OEt})_{3}(20 \mathrm{~mol} \%)$ and morpholine ($40 \mathrm{~mol} \%$). The mixture was stirred at rt for 5 min , forming a yellow solution. Substrate (1 equiv.) in dry solvent was added followed by TFA (1 equiv). The Schlenk tube was sealed and the stirred mixture heated to the specified temperature. After 16 h the reaction was cooled and the mixture was taken up in DCM (15 mL) and washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The phases were separated, and the aq. phases extracted with DCM (15 mL). The combined organic phase was dried over $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude product which was purified by silica gel chromatography.

Compound 8a: 2,3,4,7-tetrahydro-N-benzyl-azepane-O-benzyl-5-carboxylate.

Following general procedure 1 employing $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}\left(2.75 \mathrm{mg}, 7.5 \times 10^{-3} \mathrm{mmol}\right)$ $\mathrm{DCM},(0.7 \mathrm{~mL}), \mathrm{P}(\mathrm{OEt})_{3}(5 \mu \mathrm{~L}, 0.029 \mathrm{mmol})$, morpholine $(5 \mu \mathrm{~L}, 0.057 \mathrm{mmol})$, substrate $7 \mathbf{7 a}(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ and TFA ($\left.11 \mu \mathrm{~L}, 1.4 \times 10^{-1} \mathrm{mmol}\right)$. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol containing $1 \% \mathrm{Et}_{3} \mathrm{~N}, 5 \%$ to 20% as eluent) afforded product as a clear oil ($38 \mathrm{mg}, 95 \%$). $\nu_{\max } / \mathrm{cm}^{-1}$ (neat) $3030,2829,2807,2775$, 1703,$1453 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.74\left(\mathrm{p}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.71-2.61$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.85\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.29\left(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH}=\mathrm{CCO}_{2}\right)$, $3.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 6.98(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C})$), $7.42-7.19(\mathrm{~m}, 10 \mathrm{H}$, $\left.\left.\mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 25.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) 26.4 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 53.1\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{C}\right), 57.6$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 61.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 66.6\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 127.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.9-128.2\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 136.4\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $136.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 139.0\left(\mathrm{CH}=\mathrm{CqCO}_{2}\right) 141.2\left(\mathrm{CH}=\mathrm{CCO}_{2}\right), 167.8\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2} 322.1807$; found 322.1808.

Compound (\pm)-8b: 7-methyl-2,3,4,7-tetrahydro-N-benzyl-azepane-O-benzyl-5-carboxylate.

Following general procedure 1 , substrate $7 \mathbf{b}(79 \mathrm{mg}, 0.24 \mathrm{mmol})$ was heated and stirred at $40{ }^{\circ} \mathrm{C}$ for 17 h in DCM. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $1: 19$ to $1: 4$ as eluent) afforded the title compound ($63 \mathrm{mg}, 80 \%$) as a clear oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3031,2927,2849,1703,1495,1369 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $1.31(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, \mathrm{Me}), 1.43-1.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH} H\right), 1.62-1.77(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH} H\right), 2.57\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right) 2.80-2.90(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 3.00(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=14.0,4.1 \mathrm{~Hz}, \mathrm{NCHH}) 3.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}$, NCHHPh), $3.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.77\left(1 \mathrm{H}\right.$, pent, J = $\left.7.1 \mathrm{~Hz}, \mathrm{NCHCH}_{3}\right), 5.18(2 \mathrm{H}, \mathrm{AB}$ q, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 6.86\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right), 7.18-7.41\left(10 \mathrm{H}, 10 \times \mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101\right.$ $\mathrm{MHz}) 17.7(\mathrm{Me}), 21.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 26.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 52.1\left(\mathrm{NCH}_{2}\right), 53.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 56.9$ $\left(\mathrm{NCHCH}_{3}\right), 66.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3-128.7\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 134.2\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 136.4\left(\mathrm{Cq}_{\mathrm{Ar}}\right)$, $140.2 \mathrm{R}\left(\mathrm{CH}=\mathrm{CCO}_{2}\right), 147.1\left(\mathrm{CH}=\mathrm{CHCO}_{2}\right), 167.9\left(\mathrm{CO}_{2} \mathrm{Bn}\right) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}$ 336.1964; found 336.1962 .

Compound (\pm)-8c: 7-benzyl-2,3,4,7-tetrahydro-N-(4-methoxybenzyl)-azepane-O-(4-methoxybenzyl)-5-carboxylate.

Following general procedure 1 , substrate ($60 \mathrm{mg}, 0.13 \mathrm{mmol}$) was heated and stirred at $40^{\circ} \mathrm{C}$ for 3 days in DCM. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, 1:9 to 3:7 as eluent) afforded product as a clear oil ($25.6 \mathrm{mg}, 43 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $2930,2835,1703,1612,1511,1453,1245 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.38-1.47(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH} H\right), 1.70\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH} H\right), 2.53(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.79-2.93\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCHHCH}_{2}\right.$ and CHCHH and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 3.02-3.12(2 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHHCH}_{2}$ and CHCHH), $3.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, \mathrm{NCHHPh})$,
$3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{NCH}) 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 6.80(2 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 6.85-6.92\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CCO}_{2}\right.$ and $\left.2 \times \mathrm{CH} H_{\mathrm{Ar}}\right), 7.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.17-7.32(7 \mathrm{H}, \mathrm{m}, 7 \mathrm{x} \mathrm{CH} \mathrm{Ar}) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 20.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 26.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $39.0\left(\mathrm{CHCH}_{2} \mathrm{Ph}\right), 52.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 52.7\left(\mathrm{NCH}_{2}\right), 55.3$ and $55.4(2 \times \mathrm{OMe}), 62.9(\mathrm{NCH}), 66.4\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right)$, 113.7 , , $114.0\left(C H_{\mathrm{Ar}}\right), 126.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.9\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 135.4$ $\left(\mathrm{CH}=\mathrm{CCO}_{2}\right), 139.5\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 145.6\left(\mathrm{CH}=\mathrm{CCO}_{2}\right), 158.6\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 159.6\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 167.8\left(\mathrm{CO}_{2}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$ $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{4} 472.2488$; found 472.2492 .

Compound (\pm)-8e: 7-methyl-2,3,4,7-tetrahydro-N-(4-methoxybenzyl)-azepane-O-(4-methoxybenzyl)-5-carboxylate.

Following general procedure 1, compound $7 \mathrm{e}(317 \mathrm{mg}, 0.77 \mathrm{mmol})$ was heated to $40{ }^{\circ} \mathrm{C}$ for 15 h in dry DCM. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol; $1: 9$ to $3: 7$ as eluent) afforded product as a clear oil ($240 \mathrm{mg}, 76 \%$). $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) 1.28(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, M e), 1.41-1.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right), 1.55-1.73$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right), 2.53\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.4,10.5, \mathrm{CHH}-\mathrm{C}_{\mathrm{q}}=\right), 2.77-2.86(2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH} H \mathrm{NCH}_{2}$ and $\left.\mathrm{C} H \mathrm{H}-\mathrm{C}_{\mathrm{q}}=\right), 2.97\left(1 \mathrm{H}, \mathrm{dt}, J 13.8,4.3 \mathrm{~Hz}, \mathrm{NCHHCH}_{2}\right), 3.60(1 \mathrm{H}, \mathrm{d}, J$ $13.6 \mathrm{~Hz}, \mathrm{NCHHAr}), 3.49(1 \mathrm{H}, \mathrm{d}, J 13.7 \mathrm{~Hz}, \mathrm{NCHHAr}), 3.71-3.82(7 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OMe}$ and CHMe$), 5.06$ $-5.15\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ar}\right), 6.80-6.84\left(3 \mathrm{H}, \mathrm{m},=\mathrm{CH}\right.$ and $\left.2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 6.87-6.92\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.18-7.22\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$ and $7.29-7.34\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 17.6(\mathrm{CHMe})$, $21.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}-\mathrm{C}_{\mathrm{q}}=\right), 52.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 52.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.4(\mathrm{OMe}), 56.3(\mathrm{OMe}), 66.5$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 113.7\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 114.0\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.8\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 132.2$ $\left(\mathrm{C}_{\mathrm{q}}\right), 134.7\left(\mathrm{CH}=C_{\mathrm{q}}\right), 147.0(=C \mathrm{H}), 158.6\left(C_{\mathrm{q}} \mathrm{OMe}\right), 159.6\left(C_{\mathrm{q}} \mathrm{OMe}\right)$ and $168.0\left(\mathrm{CO}_{2} \mathrm{PMB}\right)$; HRMS $\left(E S I^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{4} 396.2176$; found 396.2170.

2 mmol scale ring expansion with reduced ($\mathbf{5} \mathbf{~ m o l} \% \mathrm{Pd}$) catalyst loading

Following a modified general procedure 1 , compound $7 \mathbf{e}(884 \mathrm{mg}, 2.20 \mathrm{mmol})$ was heated to $40{ }^{\circ} \mathrm{C}$ for 15 h in dry $\mathrm{DCM}(11+18 \mathrm{~mL})$ using $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}(20.5 \mathrm{mg}, 0.56 \mathrm{mmol}), \mathrm{P}(\mathrm{OEt})_{3}(38 \mu \mathrm{~L}, 0.22 \mathrm{mmol})$, morpholine ($78.6 \mu \mathrm{~L}, 0.91 \mathrm{mmol}$) and TFA ($172 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$). Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O}$ /petrol; 1:9 to $1: 4$ to $3: 7$ as eluent) afforded the product as a clear oil (646 mg , 73%). Spectral data was as reported above.

Compound (土)-8f: 7-methyl-2,3,4,7-tetrahydro-N-(4-methoxybenzyl)-azepane-O-(4-methoxybenzyl)-5-carboxylate amide.

Following general procedure 1 , substrate $7 \mathrm{e}(57.7 \mathrm{mg}, 0.15 \mathrm{mmol})$ was stirred at $40{ }^{\circ} \mathrm{C}$ for 15 h in MeCN . Purification by silica gel chromatography ($\mathrm{NH}_{3} / \mathrm{EtOH} / \mathrm{DCM}, 1: 99$ to 4:96 as eluent) afforded product as a clear oil (31 mg , 54%). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3315,2928,2835,1651,1612,1510,1463,1300,1244$. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.27(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CHMe}), 1.42-1.51(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH} H\right), 1.73\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH} H\right), 2.53\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.72$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.2 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.82(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.2,10.9,4.1 \mathrm{~Hz}, \mathrm{NCHH}), 2.98(1 \mathrm{H}$, $\mathrm{td}, \mathrm{J}=14.1,4.2 \mathrm{~Hz}, \mathrm{NCH} H), 3.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{NCHHPh})$, $3.69-3.83(7 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{ArOMe}$ and CHMe$), 4.35-4.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CONHCH}_{2}\right), 5.97(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}$, CONH), $6.18(\mathrm{CH}=\mathrm{CCON}), 6.82\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 6.87\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.17$ $-7.27\left(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{\mathrm{Ar}}\right)$. HRMS (ESI $) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} 395.2335$; found 395.2333.

Compound (\pm)-8g: 2,3,4,7-tetrahydro-N-(benzyl)-5-phenylazepane.

Ph Following general procedure 1 , substrate $7 \mathbf{f}(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ was heated to $75^{\circ} \mathrm{C}$ for 17.5 h in dry $\mathrm{MeCN}(2.0 \mathrm{~mL})$. Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ in petrol containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}, 5: 95$ to $1: 4$ as eluent) afforded product as a clear oil ($38 \mathrm{mg}, 95 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2970, 2802, 1601, 1493, 1446 and 1365 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.81(2 \mathrm{H}$, dd, 5.5, 5.3, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $2.72-2.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.99\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.6, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $3.33\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1, \mathrm{NCH}_{2}=\mathrm{CH}=\right), 3.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.93(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0,=\mathrm{CH}), 7.20-$ $7.28(2 \mathrm{H}, \mathrm{m})$ and $7.28-7.38(8 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 25.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 32.2$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 52.8\left(\mathrm{NCH}_{2}=\mathrm{CH}=\right), 58.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 60.3\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 125.9\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 126.8$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0(=\mathrm{CH}), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 129.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 139.3$ $\left(C_{q}=\mathrm{CH}\right), 144.3\left(\mathrm{C}_{\mathrm{q}}\right)$ and $146.4\left(\mathrm{C}_{\mathrm{q}}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N} 264.1752$; found 264.1750.

Compound (\pm)-8h: 7-methyl-2,3,4,7-tetrahydro-N-(benzyl)-5-phenylazepane.

Following general procedure 1 , substrate $Z-7 \mathrm{~g}$ ($57 \mathrm{mg}, 0.2 \mathrm{mmol}$) was heated and stirred at $80{ }^{\circ} \mathrm{C}$ for 15 h in MeCN. Purification by silica gel chromatography ($\mathrm{EtOAc} /$ petrol containing $2 \% \mathrm{Et}_{3} \mathrm{~N}, 1: 9$ to $3: 7$ as eluent) afforded product as a clear oil ($40 \mathrm{mg}, 70 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3024,2922,2845,1599,1493,1451 . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) 1.35-1.49\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH} M e\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), 1.94(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=12.1 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), 2.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.8,6.6 \mathrm{~Hz},=\mathrm{C}_{\mathrm{q}} \mathrm{PhCH} H\right), 2.83-2.93(1 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{C}_{\mathrm{q}} \mathrm{PhCH} H\right), 3.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.9 \mathrm{~Hz}, \mathrm{NCHH}), 3.11(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.3,8.3 \mathrm{~Hz}, \mathrm{NCHH}), 3.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $13.8 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.94(1 \mathrm{H}, \mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{NCHMe}), 5.79$ (1 H , d, $\left.\mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 7.19-7.47(10 \mathrm{H}, \mathrm{m}, 10 \mathrm{x} \mathrm{CH} \mathrm{Ar}) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 19.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $20.3(\mathrm{CHMe}), 32.5\left(\mathrm{C}_{\mathrm{q}} \mathrm{PhCH}_{2}\right), 50.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 53.6\left(\mathrm{NCH}_{2}\right), 56.5(\mathrm{NCHMe}), 125.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8$ and $126.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3$ and 128.4 and $128.9\left(3 \times \mathrm{CH}_{\mathrm{Ar}}\right), 133.6\left(\mathrm{CH}=\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 140.9\left(\mathrm{CH}=C_{\mathrm{q}} \mathrm{Ph}\right), 144.0$ and $144.1\left(2 \times \mathrm{C}_{\mathrm{qAr}}\right)$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N} 278.1909$; found 278.1906.

Compound ($\mathbf{\pm}$)-8i: 7-methyl-2,3,4,7-tetrahydro-N-(benzyl)-5-phenylazepine.

A flame dried Schlenk tube underwent three vacuum/argon cycles. To this tube $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}\left(2.8 \mathrm{mg}, 7.5 \times 10^{-3} \mathrm{mmol}\right)$ was added followed by one more vacuum/argon cycle before adding dry $\mathrm{MeCN}(0.7 \mathrm{~mL})$ with stirring. $\mathrm{P}(\mathrm{OEt})_{3}(5 \mu \mathrm{~L}, 2.9$ $\times 10^{-2} \mathrm{mmol}$) was added followed by morpholine ($5 \mu \mathrm{~L}, 5.7 \times$ $10^{-2} \mathrm{mmol}$). The mixture was stirred at rt for 5 min until a yellow solution had formed. $400 \mu \mathrm{~L}(\sim 60 \%)$ of the catalyst mixture was removed. Substrate $\boldsymbol{E} \mathbf{- 7 g}(17 \mathrm{mg}, 0.061 \mathrm{mmol})$ was dissolved in dry $\mathrm{MeCN}(1 \mathrm{~mL})$ under argon and added to the Schlenk tube. TFA $(4.7 \mu \mathrm{~L}, 0.061 \mathrm{mmol})$ was added. The mixture was heated to $80{ }^{\circ} \mathrm{C}$. after 15 h the reaction was allowed to cool to rt . Standard work up gave a dark oil. ${ }^{1} \mathrm{H}$ NMR yield using DMF as internal standard showed a 66% yield.

Compound (土)-8i: 7-methyl-2,3,4,7-tetrahydro-N-(methyl)-5-phenylazepane.

Following general procedure 1 , substrate $7 \mathrm{~h}(44.2 \mathrm{mg}, 0.22 \mathrm{mmol})$ was heated to $80^{\circ} \mathrm{C}$ in MeCN for 15 h . Purification by silica gel chromatography $\left(\mathrm{EtOH} / \mathrm{NH}_{3} / \mathrm{DCM}+0.5 \%\right.$ $\mathrm{Et}_{3} \mathrm{~N}, 1: 99$ to 5:95 as eluent) afforded the product as a yellow oil (30 mg. 68\%). $v_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1}$ (neat) 3022, 2959, 2926, 2842, 2793, 1598, 1492, 1445; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.28$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH} M e), 1.41-1.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.84-1.97(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.65-2.87\left(2 \mathrm{H}, \mathrm{m},=\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}\right), 3.15-3.22(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2}\right), 3.79\left(1 \mathrm{H}, \mathrm{p}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 7.18-7.36\left(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 19.9$ $(\mathrm{CHMe}), 20.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 32.5\left(\mathrm{C}_{\mathrm{q}}(\mathrm{Ph}) \mathrm{CH}_{2}\right), 35.4(\mathrm{NMe}), 56.7(\mathrm{NCHMe}), 59.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 125.9$ $\left(C H_{\mathrm{Ar}}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{CH}=\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 144.1\left(C_{\mathrm{qAr}}\right), 144.5\left(\mathrm{CH}=C_{\mathrm{q}} \mathrm{Ph}\right) ;$ HRMS $\left(E S I^{+}\right)$ $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N} 202.1597$; found 202.1593.

Compound (\pm)-8j: 7-isobutyl-2,3,4,7-tetrahydro-N-(benzyl)-5-phenylazepine.

Following general procedure 1, Substrate $7 \mathbf{i}(58 \mathrm{mg}, 0.18 \mathrm{mmol})$ was heated to 80 ${ }^{\circ} \mathrm{C}$ for 16.5 h in MeCN. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, 1:99 to 1:4 as eluent) afforded the product as a clear oil ($30 \mathrm{mg}, 52 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film): 3050, 2952, 2923, 1452 and 1365; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 0.94(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4$, CHMeMe), $0.96(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5, \mathrm{CH} M e \mathrm{Me}), 1.28-1.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH} H\right), 1.47$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.0,7.1, \mathrm{NCHCHH}$), 1.70 (1 H , dt, J 14.3, 7.2, NCHCHH), $1.80-1.97$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}_{2}$ and $\mathrm{NCH}_{2} \mathrm{CHH}$), 2.76 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.7,6.3, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H$), 2.86 (1 H , app. t, J 13.3, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}$), 2.97 (1 H , dd, J 14.6, 12.1, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.13 (1 H , d, J 14.6, NCHHCH_{2}), 3.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8$, NCHHPh), 3.69 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0$, NCHHPh), 3.79 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{NCH}$), $5.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8,=\mathrm{CH}), 7.18-7.36(8 \mathrm{H}, \mathrm{m})$ and $7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 19.1$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.8(\mathrm{Me}), 23.1(\mathrm{Me}), 25.1\left(\mathrm{CHMe}_{2}\right), 32.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 43.7\left(\mathrm{NCHCH}_{2}\right), 50.0$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 54.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 58.6(\mathrm{NCH}), 125.9\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3(2 \times$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.9\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $133.3(=\mathrm{CH}), 141.0\left(C_{\mathrm{q}}=\mathrm{CH}\right)$, $144.1\left(\mathrm{C}_{\mathrm{q}}\right)$ and $144.5\left(\mathrm{C}_{\mathrm{q}}\right)$; HRMS (ESI ${ }^{+}$m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N} 320.2378$; found 320.2374.

Compound (\pm)-8k: 6-methyl-2,3,4,7-tetrahydro-N-(benzyl)-5-phenylazepine.

Following general procedure 1, Substrate $7 \mathbf{i}(58 \mathrm{mg}, 0.18 \mathrm{mmol})$ was heated to $80^{\circ} \mathrm{C}$ for 16.5 h in MeCN . Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $5: 95$ to 4:6 as eluent) afforded the title compound ($30 \mathrm{mg}, 40 \%$) as a pale yellow semi-solid. $v_{\text {max }} / \mathrm{cm}^{-1}($ film $) 2922,1599,1492,1453$ and $1440 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.55(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.79\left(2 \mathrm{H}, \mathrm{p}, J 5.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.54-2.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.94(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J} 5.5, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.32 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} 2-\mathrm{CMe}$), 3.73 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}$), $7.11-7.41$ (10 H , $\mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 22.1(\mathrm{Me}), 26.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 35.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $58.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 59.5\left(\mathrm{NCH}_{2} \mathrm{CMe}\right), 60.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 126.0\left(1 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(1 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.1(2 \times$ $\mathrm{CH}_{\text {Ar }}$), $128.2\left(2 \times \mathrm{CH}_{\text {Ar }}\right), 128.3\left(2 \times \mathrm{CH}_{\text {Ar }}\right), 129.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 132.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $139.3\left(\mathrm{C}_{\mathrm{q}}\right), 139.8\left(\mathrm{C}_{\mathrm{q}}\right)$ and $145.3\left(\mathrm{C}_{q}\right)$; HRMS (ESI ${ }^{+}$) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N} 292.2067$; found 292.2059.

Compound (\pm)-81: $\quad 7$-methyl-2,3,4,7-tetrahydro-N-(5-methyl-2-furyl)-azepane-O-methyl-5carboxylate.

Following general procedure 1 , substrate $7 \mathrm{k}\left(31 \mathrm{mg}, 1.2 \times 10^{-1} \mathrm{mmol}\right)$ was heated and stirred at $80{ }^{\circ} \mathrm{C}$ for 15 h in MeCN. General work up gave a yellow oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $1: 9$ to 1:1 as eluent) afforded product as a clear oil ($17.6 \mathrm{mg}, 57 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 2925, 2850, 1708, 1567, 1435, 1369, 1255. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $1.30(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH} M e), 1.39-1.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH} H\right), 1.68(1 \mathrm{H}$, $\left.\mathrm{q}, \mathrm{J}=12.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH} H\right), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.4$. $\left.10.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.82\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15.6,7.6,2.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.94(1 \mathrm{H}$, ddd, 14.3 , $10.6,3.6 \mathrm{~Hz}, \mathrm{NCH} H), 3.14(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.1,4.1 \mathrm{~Hz}, \mathrm{NCH} H), 3.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.2 \mathrm{~Hz}, \mathrm{NCHHAr}), 3.64$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.2 \mathrm{~Hz}, \mathrm{NCHHAr}$), $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), $3.81(1 \mathrm{H}, \mathrm{p}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}), 5.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.2.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.03\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.77\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101\right.$ $\mathrm{MHz}) 13.8$ (ArMe), $18.5(\mathrm{CHMe}), 20.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 26.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 45.3\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 52.1$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 53.2\left(\mathrm{NCH}_{2}\right), 56.0(C H M e), 107.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 109.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.1\left(\mathrm{CH}=C \mathrm{CO}_{2}\right), 146.5$ $\left(C H=C_{C O}^{2}\right), 151.1\left(\mathrm{Cq}_{\mathrm{Ar}^{\prime}}\right), 151.9\left(\mathrm{Cq}_{\mathrm{Ar}^{\prime}}\right)$, $168.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} 264.1600$; found 264.1595.

Compound (\pm)-8m: 7-methyl-2,3,4,7-tetrahydro-N-(2-pyridyl)-azepane-O-methyl-5-carboxylate.
 Following general procedure 1, substrate $\mathbf{7 l}(49 \mathrm{mg}, 0.19 \mathrm{mmol})$ was heated and stirred at $45{ }^{\circ} \mathrm{C}$ for 15 h in DCM. Purification by silica gel chromatography $\left(\mathrm{NH}_{3} . \mathrm{EtOH} / \mathrm{DCM}, 1: 99\right.$ to 5:95 as eluent) afforded product as a clear oil (24 mg , 49\%). (51) $v_{\max } / \mathrm{cm}^{-1}$ (neat) 2929, 2851, 1706, 1650, 1589, 1433, 12588. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.30(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, M e), 1.42-1.53(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH} H\right), 1.65-1.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.54(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.78-2.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 3.04(1 \mathrm{H}$, dt, $\mathrm{J}=13.9,4.3 \mathrm{~Hz}, \mathrm{NCHH}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.74-3.84\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Pyr}\right.$ and NCHMe$), 6.8\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right), 7.11\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.62\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 18.0$ $(M e), 21.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 26.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 52.0\left(\mathrm{CO}_{2} \mathrm{Me}\right), 53.2\left(\mathrm{NCH}_{2}\right), 55.5\left(\mathrm{NCH}_{2} \mathrm{Pyr}\right), 56.8$ $(\mathrm{NCHMe}), 121.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.9\left(\mathrm{CH}=\mathrm{CCO}_{2}\right), 136.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 146.7\left(\mathrm{CH}=\mathrm{CCO}_{2}\right), 149.2$ $\left(C H_{A r}\right), 160.9\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 168.5\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ 261.160303; found 261.1601.
9.9.2 Compound ($\mathbf{\pm})$-8n: 2,3,4,7-tetrahydro-N-(2-bromobenzyl)-azepane-O-methyl-5-carboxylate.

Following general procedure 1 , substrate $7 \mathbf{m}(42 \mathrm{mg}, 0.13 \mathrm{mmol})$ was heated to $70{ }^{\circ} \mathrm{C}$ in MeCN for 15 h . Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, 1:99 to 1:9 as eluent) afforded product as a clear oil ($35 \mathrm{mg}, 83 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (neat) 2929, 2844, 2806, 2774, 17-6, 1434, 1261, 1225; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.75(2 \mathrm{H}$, $\left.\mathrm{p}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.65-2.68\left(2 \mathrm{H}, \mathrm{m},=\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}\right), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}=\right), 3.32\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.72$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 6.93\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right), 7.10\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH} \mathrm{Ar}), 7.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right.$, $101 \mathrm{MHz}) 25.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 26.2\left(\mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CH}_{2}\right), 52.0\left(\mathrm{CO}_{2} \mathrm{Me}\right), 53.2\left(\mathrm{NCH}_{2} \mathrm{CH}=\right)$, $57.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $60.3\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 124.4\left(\mathrm{C}_{\mathrm{qAr}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.5\left(=C_{\mathrm{q}} \mathrm{CO}_{2}\right)$, $138.5\left(\mathrm{C}_{q \mathrm{Ar}}\right), 140.8\left(\mathrm{CH}=\mathrm{CCO}_{2}\right), 168.5\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Br}$ 324.0599; found 324.0591.

Compound 80.

Following general procedure 1 , substrate $7 \mathrm{n}(52.8 \mathrm{mg}, 0.17 \mathrm{mmol})$ was heated to 80 ${ }^{\circ} \mathrm{C}$ for 16 h in MeCN . Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, $1: 9$ to $1: 4$ as eluent) afforded the product as a clear oil ($38 \mathrm{mg}, 72 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (neat) 3081 , $3058,3025,2854,2796,1598,1493,1446 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.18-1.52(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2 \text { (cyclohexyl) }}$ and $\left.2 \times \mathrm{CH} H_{\text {(cyclohexyl) }}\right), 1.62-1.98\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2 \text { (cyclohexyl) }}\right.$ and 2 x $\left.\mathrm{CH} H_{\text {(cyclohexyl) }}\right), 2.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{PhCH} H\right), 2.45(1 \mathrm{H}, \mathrm{dq}, 11.5 \mathrm{~Hz}, \mathrm{~J}=11.5$, $3.9 \mathrm{~Hz}, \mathrm{NCHCH}), 2.76(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=11.6,3.6 \mathrm{~Hz}, \mathrm{NCHCH}), 3.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.9,5.3 \mathrm{~Hz}, \mathrm{NCHH})$, $3.26\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{PhCHH}\right), 3.50(1 \mathrm{H}, \mathrm{dd}, 16.1,6.4 \mathrm{~Hz}, \mathrm{NCHH}), 3.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.1 \mathrm{~Hz}$, NCHHPh), $3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.1 \mathrm{~Hz}, \mathrm{NCHHPh}), 5.87\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}{ }_{\mathrm{q}} \mathrm{Ph}\right), 7.19-7.40(10 \mathrm{H}$, $\left.\mathrm{m}, 10 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 21.4\left(\mathrm{CH}_{2 \text { (cyclohexyl }}\right), 26.3\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right)$, $27.2\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right), 33.0$ $(\mathrm{NCHCH}), 33.2\left(\mathrm{C}_{\mathrm{q}} \mathrm{PhCH}_{2}\right), 34.1\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right), 46.8\left(\mathrm{NCH}_{2}\right), 57.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 63.9(\mathrm{NCH}), 125.9$ $\left(C H_{\mathrm{Ar}}\right), 126.8,128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 140.3\left(\mathrm{CH}=C_{\mathrm{q}} \mathrm{Ph}\right), 144.0\left(C_{\mathrm{qAr}}\right), 144.9\left(C_{\mathrm{qAr}}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)$ $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{~N}_{20} \mathrm{~N}$ 318.2222; found 318.2212.

Compound 8p.

Following general procedure 1 , substrate $7 \mathbf{7 0}(56 \mathrm{mg}, 0.17 \mathrm{mmol})$ was heated to 80 ${ }^{\circ} \mathrm{C}$ in DCE for 63 h . Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petrol, 0.5:99.5 to $1: 9$ as eluent) afforded the title compound as a clear oil $(18.4 \mathrm{mg}, 33 \%$, d.r. $=9: 1$). $[\alpha]^{20}{ }_{\mathrm{D}}=-108.4(c 0.19, \mathrm{DCM}) . v_{\max } / \mathrm{cm}^{-1}$ (neat) $3061,3025,2928,2856$, 1492, 1481; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.13-1.38\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}\right.$ and $\mathrm{CH}_{2 \text { (cyclohexyl) }} 2 \mathrm{x}$ $\left.\mathrm{CHH}_{\text {(cyclohexyl) }}\right), 1.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.8 \mathrm{~Hz}, \mathrm{NCHCHH}), 1.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CHCHCH} H_{\text {(cyclohexyl) }}\right)$, $1.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{NCHCH}_{2} \mathrm{CHH}\right), 2.11\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{NC}_{\mathrm{q}} \mathrm{CHH}\right), 2.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.9$ $\left.\mathrm{Hz},=\mathrm{C}_{\mathrm{q}} \mathrm{CHH}\right), 2.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{NCHCH}), 2.67(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.3,3.5 \mathrm{~Hz}, \mathrm{NCH}), 3.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=13.3 \mathrm{~Hz},=\mathrm{C}_{\mathrm{q}} \mathrm{CH} H\right), 3.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.3 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.3 \mathrm{~Hz}, \mathrm{NCHHPh}), 4.05$ $(1 \mathrm{H}, \mathrm{p}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 5.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} \mathrm{q}_{\mathrm{q}} \mathrm{Ph}\right), 7.12-7.42\left(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 21.3(\mathrm{CHMe}), 21.6\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right), 26.9\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right), 27.3(\mathrm{NCHCH}), 27.7$ $\left(\mathrm{CH}_{2 \text { (cyclohexyl) }}\right)$, $33.1\left(=\mathrm{C}_{\mathrm{q}} C \mathrm{H}_{2}\right), 48.2(C \mathrm{HMe}), 50.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.1(\mathrm{NCH}), 125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 142.2\left(C_{\mathrm{qAr}}\right), 143.5\left(=\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 144.4\left(C_{\mathrm{qAr}}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)$ $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N} 332.238$; found 332.2377. Stereochemistry was assigned via NMR spectroscopy as shown in S81-85.

Compound (\pm)-8q: 2,3,4,5,8-pentahydro-N-(benzyl)-6-phenyl-azacylco-oct-6-ene.

Ph Following general procedure 1 , substrate $7 \mathbf{p}(78 \mathrm{mg}, 0.28 \mathrm{mmol})$ was heated to $80^{\circ} \mathrm{C}$ in MeCN for 15 h . Purification by silica gel chromatography ($\mathrm{EtOH} / \mathrm{NH}_{3}: \mathrm{DCM}, 1: 99$ to 5:95 as eluent) afforded the title compound as a light-yellow oil. ($53 \mathrm{mg}, 68 \%$) (58) $v_{\text {max }}$ $/ \mathrm{cm}^{-1}$ (film) $2919,2803,1598,1493,1451$ and $1347 ; \delta_{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.67-1.80$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.70-2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.87\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5,=\mathrm{C}_{\mathrm{q}}-\mathrm{CH}_{2}\right), 3.32$ $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1, \mathrm{NCH}_{2}-\mathrm{CH}=\right), 3.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.93(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,=\mathrm{CH})$ and $7.21-$ $7.42(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 24.3\left(\mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}-\mathrm{C}_{\mathrm{q}}=\right)$, 51.3 $\left(\mathrm{NCH}_{2}-\mathrm{CH}=\right), 54.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 61.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 124.5(=\mathrm{CH}), 126.0\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 126.9$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 129.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 139.8\left(C_{\mathrm{q}}=\mathrm{CH}\right), 142.6\left(\mathrm{C}_{\mathrm{q}}\right)$ and $143.9\left(\mathrm{C}_{\mathrm{q}}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N} 278.1909$; found 278.1906.

Compound (\pm)-8r: 8-methyl-2,3,4,5,8-pentahydro-N-(benzyl)-6-phenyl-azacylco-oct-6-ene.
 Following general procedure 1 , substrate $7 \mathbf{q}(41.8 \mathrm{mg}, 0.14 \mathrm{mmol})$ was heated to 80 ${ }^{\circ} \mathrm{C}$ for 16 h in MeCN . Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, 1:99 to $1: 1$ as eluent) afforded the product as a clear oil $(8.4 \mathrm{mg}, 20 \%) . v_{\max } / \mathrm{cm}^{-1}$ (neat); δ_{H} $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ; 1.37(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CHMe}), 1.46-1.63(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.79-1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.53-2.66(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}$ and
 d, J = 13.3 Hz, NCHHPh), $3.79-3.94(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHHPh}$ and NCHMe), $5.75(1 \mathrm{H}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CPh}), 7.13-7.46\left(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ; 19.1(\mathrm{CHMe}), 22.9\left(\mathrm{NCH}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 28.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 29.0\left(\mathrm{C}_{\mathrm{q}} \mathrm{PhCH}_{2}\right), 51.4(\mathrm{NCHCH}=), 53.1\left(\mathrm{NCH}_{2}\right), 65.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 126.2$ $\left(C H=\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 126.8$ and $126.9\left(2 \times C \mathrm{H}_{\mathrm{Ar}}\right), 128.3$ and $128.4\left(2 \times C \mathrm{H}_{\mathrm{Ar}}\right), 129.0\left(2 \times C \mathrm{H}_{\mathrm{Ar}}\right), 140.6$ $\left(\mathrm{CH}=C_{\mathrm{q}} \mathrm{Ph}\right), 143.7\left(C_{\mathrm{qAr}}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N} 292.2067$; found 292.2059 .

Compound (S)-8b: 7-methyl-2,3,4,7-tetrahydro-N-benzyl-azepane-O-benzyl-5-carboxylate.

Following general procedure 1 , substrate $(R)-7 b(80 \mathrm{mg}, 0.25 \mathrm{mmol})$ was heated and stirred at $40{ }^{\circ} \mathrm{C}$ for 15 h in DCM. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $1: 9$ as eluent) to afford the title compound as clear oil $(63 \mathrm{mg}, 79 \%)$. $[\alpha]^{20}{ }_{D}=-8.6(c 0.224, \mathrm{DCM})$. Analytical data was as reported above. Samples suitable for XRD were produced by slow evaporation from petrol. The compound was analysed by HPLC under the following conditions: Mobile phase: 98% Water $+1 \%$ acetic acid, 2% acetonitrile $+1 \%$ acetic acid. Flow rate: $0.75 \mathrm{~mL} / \mathrm{min}$. Injection volume: $100 \mu \mathrm{~L}$. Detector: 254 nm . Column: (R,R)-WHELK-01, 30 cm . Column temperature: $26^{\circ} \mathrm{C}$.

Racemic standard of $\mathbf{8 b}$.

Signal 1: MWD1 A, Sig=254,4 Ref=off
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
----|-------|----|------|---------------------------|-|-|
16.494 BB 0.1265271 .2066731 .4937863 .3991
28.218 BB 0.0658156 .5701935 .2924036 .6009

Totals : 427.7768666 .78618
Enantio-enriched 8b from the above reaction.

Signal 1: MWD1 A, Sig=254,4 Ref=off
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
----|-------|----|-------|----------|----------|---------|
16.511 BB $0.12919 .073269 .88302 \mathrm{e}-15.2562$
28.177 BV R 0.0684163 .5477635 .0880794 .7438

Totals : 172.6210236 .07637

Compound (\boldsymbol{R})-8b: 7-methyl-2,3,4,7-tetrahydro-N-benzyl-azepane-O-benzyl-5-carboxylate
 Following general procedure 1, the substrate $(R)-7 \mathbf{s}(86.8 \mathrm{mg}, 0.26 \mathrm{mmol})$ was heated at $40^{\circ} \mathrm{C}$ in DCM for 16 h . Purification of crude by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{Petrol}\right.$, $1: 9$ to $3: 7$ as eluent) afforded the title compound as a clear oil $(66 \mathrm{mg}, 76 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=$ $+8.3(c 0.124, \mathrm{DCM})$. All other spectral data was as given above.

3.11 Derivatisation reactions.

Compound (\pm)-16a

To a stirred solution of compound $\mathbf{8 b}(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ and N -(methoxymethyl)- N (trimethylsilylmethyl)benzylamine $15(100 \mu \mathrm{~L}, 90 \%$ purity, 0.35 mmol$)$ in $\mathrm{DCM}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen was added TFA $(10 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$ and the reaction allowed to warm to rt overnight. After 22 h further N-(methoxymethyl)- N-(trimethylsilylmethyl)benzylamine ($50 \mu \mathrm{~L}, 90 \%$ purity, 0.18 mmol) was added and the reaction stirred for a further 14 h . The mixture was diluted with $\mathrm{DCM}(15 \mathrm{~mL})$ and
washed with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{DCM}(15 \mathrm{~mL})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a yellow oil. Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petrol, $15: 85$ to $3: 7$ as eluent) afforded the product as a clear oil ($50 \mathrm{mg}, 87 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $2926,1728,1494,1454,1364$ and $1190 ; \underline{\delta}_{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.15(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{Me})$, 1.27-1.35 (1H, m, CH2 CHHCH2), $1.49\left(1 \mathrm{H}\right.$, ddd, $\left.J 14.3,13.8,10.2, \mathrm{CH}_{2} \mathrm{CHHCH}_{2}\right), 1.69(1 \mathrm{H}$, app. t, J $\left.12.9, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 1.88(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.3, \mathrm{NCHHCH}), 2.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.6, \mathrm{NCHHC} \mathrm{C}_{\mathrm{q}}\right), 2.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $\left.14.2,6.4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.51\left(1 \mathrm{H}\right.$, ddd, J 14.5, 11.0, 3.0, $\left.\mathrm{NCHHCH}_{2}\right), 2.78(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.5,3.7$, $\left.\mathrm{NCHHCH}_{2}\right), 2.98(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 10.9,6.4, \mathrm{CHMe}), 3.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.3, \mathrm{NCHHCH}), 3.31(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 10.2,8.0$, $\mathrm{NCHCH}), 3.34\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5, \mathrm{NCHHC}_{q}\right), 3.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2$, NCHHPh), $3.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.3, \mathrm{NCHHPh})$, $3.59(1 H, d$, J 13.2, NCHHPh $), 3.80(1 H, ~ d, ~ J ~ 14.4, ~ N C H H P h), ~ 5.15-5.26 ~(2 H, ~ A B-q, ~ O C H ~ 2), ~ 7.15-~$ $7.29\left(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{\mathrm{Ar}}\right)$ and $7.31-7.36\left(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz} 20.6(\mathrm{Me}), 22.6\right.$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 33.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 46.7(\mathrm{NCHCH}), 48.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 52.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 56.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $59.2(\mathrm{NCHMe}), 59.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 61.0\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 66.9\left(\mathrm{OCH}_{2}\right), 67.3\left(\mathrm{NCH}_{2} \mathrm{C}_{\mathrm{q}}\right), 126.5\left(1 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.0\left(1 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(1 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.58\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.63(4$ $\left.\times \mathrm{CH}_{\mathrm{Ar}}\right), 136.4\left(\mathrm{C}_{\mathrm{q}}\right), 138.8\left(\mathrm{C}_{\mathrm{q}}\right), 141.3\left(\mathrm{C}_{\mathrm{q}}\right)$ and $176.9\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} 469.2855$; found 469.2858. Stereochemistry was determined as shown on pages S86-90.

Compound (\pm)-16b
$\mathrm{PMBO}_{2} \mathrm{C}$

To a stirred solution of compound $8 \mathbf{8 e}(51.5 \mathrm{mg}, 0.13 \mathrm{mmol})$ and N -(methoxymethyl)- N-(trimethylsilylmethyl)benzylamine 15 (73.2 $\mu \mathrm{L}, ~ 90 \%$ purity, 0.26 mmol$)$ in $\mathrm{DCM}(3.2 \mathrm{~mL})$ at rt under argon, TFA $(11 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$ was added. The mixture was stirred for 4 h , diluted with $\mathrm{DCM}(15 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The aq. phase was extracted further with $\operatorname{DCM}(15 \mathrm{~mL})$, the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude yellow oil (136 mg). Purification by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{CHCl}_{3}, 0: 100\right.$ to $1: 4$ as eluent $)$ afforded the product as a clear oil ($55 \mathrm{mg}, 80 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat); 2960, 2928, 2834, 2787, 1725, 1611, $1510,1453,1364 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CHMe}), 1.23-1.32(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), 1.38-1.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.67\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=13.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 1.88(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=9.2 \mathrm{~Hz}, \mathrm{CHCH} H \mathrm{NBn}), 2.00\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CHH}\right), 2.12-2.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right)$, $2.48\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.6 \mathrm{~Hz}, \mathrm{NCHHCH}_{2}\right), 2.76(1 \mathrm{H}, \mathrm{dt}, 14.6,4.0 \mathrm{~Hz}, \mathrm{NCHHCH} 2), 2.96(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=12.7$, $6.6, \mathrm{~Hz}, \mathrm{CHMe}), 3.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CHCHHNBn}), 3.23-3.42\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CH} H\right.$ and CHCHHN and NCHHArOMe) and NCHHPh $, 3.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{NCHHPh}), 3.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $13.2 \mathrm{~Hz}, \mathrm{NCHHArOMe}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 5.15 ($2 \mathrm{H}, \mathrm{A} / \mathrm{B}$ q, $\mathrm{CO}_{2} \mathrm{CH}_{2}$), 6.80 $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.10\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \times \mathrm{CH} \mathrm{H}_{\mathrm{Ar}}\right)$, $7.22-7.32\left(7 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 20.7(\mathrm{CHMe}), 22.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 33.9$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 46.6\left(\mathrm{CHCH}_{2}\right), 48.1\left(\mathrm{NCH}_{2} \mathrm{PhOMe}\right), 51.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 55.4(\mathrm{ArOMe}), 56.3\left(\mathrm{C}_{\mathrm{q}} \mathrm{CO}_{2}\right)$, $59.2(\mathrm{CHMe}), 61.0\left(\mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CH}_{2} \mathrm{~N}\right)$, $66.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 67.3\left(\mathrm{CHCH}_{2} \mathrm{~N}\right), 113.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 113.9\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.0\left(C H_{\mathrm{Ar}}\right), 128,3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(C_{\mathrm{qAr}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{CH}_{\mathrm{Ar}}\right) 130.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.0\left(C_{\mathrm{qAr}}\right), 138.8$ $\left(C H_{\mathrm{Ar}}\right), 158.4\left(C_{\mathrm{qAr}}\right), 159.6\left(C_{q A r}\right), 176.9\left(\mathrm{CO}_{2}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2}$ 529.3068; found 529.3070. Stereochemistry was determined in an analogous manner to the compound above as shown in S91-94.

Compound 16b: via in situ [3+2] trapping

A flame dried Schlenk tube underwent three vacuum/argon cycles. To this tube $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}(2.0$ $\mathrm{mg}, 5.5 \times 10^{-3} \mathrm{mmol}$) was added followed by one more vacuum/argon cycle before adding dry DCM (0.5 mL) with stirring. $\mathrm{P}(\mathrm{OPh})_{3}(5.8 \mu \mathrm{~L}, 0.022 \mathrm{mmol})$ was added followed by morpholine $(3.7 \mu \mathrm{~L}, 0.042 \mathrm{mmol})$. The mixture was stirred at rt for 5 mins until yellow solution had formed. Substrate $7 \mathrm{e}\left(42 \mathrm{mg}, 1.1 \times 10^{-1} \mathrm{mmol}\right)$ was dissolved in dry DCM (1.1 mL) under argon and added to the Schlenk tube. TFA ($8.4 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) was added, the tube sealed and
heated to $40{ }^{\circ} \mathrm{C}$. After 2.5 h the mixture was cooled to $30{ }^{\circ} \mathrm{C}$, and N -(methoxymethyl)- N (trimethylsilylmethyl)benzylamine $\mathbf{1 5}$ ($62.5 \mu \mathrm{~L}, 90 \%$ purity, 0.22 mmol) and TFA ($4.2 \mu \mathrm{~L}, 0.055$ mmol) added. These additions were repeated after a further 2 h and 4 h . After 16 h the mixture was cooled to rt, washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and extracted with DCM ($2 \times 15 \mathrm{~mL}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give an orange oil (${ }^{1} \mathrm{H}$ NMR yield using DMF as internal standard. 79\%). Purification by silica gel chromatography ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{CHCl}_{3}, 1: 99$ to 1:3 as eluent) afforded analytically pure material as a clear oil ($38 \mathrm{mg}, 65 \%$).

Compound (\pm)-17

To a stirred solution of compound $\mathbf{1 6 b}(54 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2.6$ mL) at rt under argon, 1 -chloroethyl chloroformate ($47 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) was added dropwise. The mixture was stirred for 3 h then evaporated. The residue was redissolved in MeOH (3.1 mL) under argon and stirred for 20 h then evaporated. The resulting secondary amine salt was dissolved in $\mathrm{DCM}(3 \mathrm{~mL})$ at rt with stirring under argon, $\mathrm{Et}_{3} \mathrm{~N}(56 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ was added and the mixture cooled to $0{ }^{\circ} \mathrm{C}$. Pivaloyl chloride $(18.4 \mu \mathrm{~L}, 0.15$ $\mathrm{mmol})$ was added dropwise and the mixture allowed to warm to rt over 4 h . The mixture was diluted with DCM (15 mL), washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The aq. phase was extracted once more with $\operatorname{DCM}(15 \mathrm{~mL})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ to give a clear oil. Purification by silica gel chromatography ($\mathrm{EtOH} / \mathrm{NH}_{3} / \mathrm{DCM}, 1: 99$ to 4:96 as eluent) afforded the product as a clear oil ($35 \mathrm{mg}, 67 \%$ over 3 steps). $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 2957, 2933, 2836, 1724, 1611, 1511, 1409, 1245; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz})$ (rotameric) $1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CHMe}), 1.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{COC}(M e)_{3}\right), 1.48-1.67(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2}\right), 1.89\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.00-2.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.53-2.66$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.81-2.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHMe}\right.$ and $\left.\mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CHHN}\right), 3.39-3.63\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right.$ and $\mathrm{CHCH}_{2} \mathrm{~N}$ and CHCHHN and $\left.\mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CHHN}\right), 3.75-3.85(7 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArOMe}$ and CHCHHN), $5.08\left(2 \mathrm{H}, \mathrm{A} / \mathrm{B} \mathrm{q}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 6.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \times \mathrm{CH} \mathrm{H}_{\mathrm{Ar}}\right)$, $7.12\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 7.27\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ; 15.1$ $(\mathrm{NCHMe}), 23.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 27.6\left(\mathrm{C}_{\mathrm{q}}\left(\mathrm{Me}_{3}\right)\right.$, $38.9\left(\mathrm{C}_{\mathrm{q}}(\mathrm{Me})_{3}\right), 39.4(\mathrm{CHMeCH}), 50.2\left(\mathrm{C}_{\mathrm{q}}\left(\mathrm{CO}_{2}\right) \mathrm{CH}_{2}\right)$, $50.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 51.2\left(\mathrm{CHCH}_{2} \mathrm{~N}\right), 52.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 55.2(\mathrm{ArOMe})$, $56.4\left(\mathrm{C}_{\mathrm{q}} \mathrm{CO}_{2}\right), 59.7(\mathrm{NCHMe}), 66.7$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 113.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $158.7\left(C_{\text {qAr }}\right), 159.8\left(C_{\mathrm{qAr}}\right), 175.3\left(\mathrm{NCO}_{2}\right), 176.3\left(\mathrm{C}_{\mathrm{q}} \mathrm{CO}_{2}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{5} 523.3174$; found 523.3176.

Compound 18: Using enantioenriched $\mathbf{8 e}$

To a solution of $\mathbf{8 e}(32 \mathrm{mg}, 0.081 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ at rt under argon was added 1 -chloroethyl chloroformate ($40 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$) and the reaction stirred at rt . After 3 h the mixture was concentrated in vacuo and the residue dissolved in methanol $(2.5 \mathrm{~mL})$. After stirring for a further 3.5 h the reaction was concentrated in vacuo and the residue dissolved in $\mathrm{CHCl}_{3}(2.5 \mathrm{~mL})$ under argon. $\mathrm{Et}_{3} \mathrm{~N}(75 \mu \mathrm{~L}, 0.054 \mathrm{mmol})$ and $(+)$-CSA-Cl ($37 \mathrm{mg}, 0.15 \mathrm{mmol}$) were added and the reaction stirred at rt . After 3 h the reaction was worked up ($\mathrm{DCM} /$ sat. aq. NaHCO_{3}) and silica gel chromatography (EtOAc /petrol, 1:19 to 1:4 as eluent) afforded the title compound ($29 \mathrm{mg}, 73 \%$) as a yellow oil. d.r. $>9: 1$. $[\alpha]^{20} \mathrm{D}=+62.6$ (c $0.032, \mathrm{DCM}) . v_{\text {max }} / \mathrm{cm}^{-1}($ film $) 2954,1745,1707,1613,1515,1455,1334$ and $1240 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) 0.86(3 \mathrm{H}, \mathrm{s}, \mathrm{CMeMe}), 1.12(3 \mathrm{H}, \mathrm{s}, \mathrm{CMeMe}), 1.36-1.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{9} \mathrm{CH}_{2} \mathrm{CHHCH}\right), 1.39(3 \mathrm{H}, \mathrm{d}$, J 7.0, NCHMe), $1.62\left(1 \mathrm{H}\right.$, ddd, J 13.8, 9.3, 4.5, $\left.\mathrm{C}_{4} \mathrm{CHHCH}_{2} \mathrm{CH}\right), 1.69-1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH} H\right), 1.92$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.4, \mathrm{CHHC}=\mathrm{O}$), $1.96-2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CHH}\right.$ and $\left.\mathrm{C}_{4} \mathrm{CH}_{2} \mathrm{CHHCH}\right), 2.08(1 \mathrm{H}$, app. t, J 4.4, $\mathrm{CHCH}_{2} \mathrm{C}=\mathrm{O}$), $2.36(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 18.7,3.8, \mathrm{CHHC=O}), 2.46-2.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{q}} \mathrm{CHHCH}{ }_{2} \mathrm{CH}\right), 2.55-2.65$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H\right), 2.75\left(1 \mathrm{H}\right.$, ddd, J 16.7, $\left.6.5,2.9, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5$, CHHSO_{2}), $3.30\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5, \mathrm{CHHSO}_{2}\right), 3.28-3.35(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 3.72-3.79(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH})$, $4.82-4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHMe}), 5.04-5.12\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, \mathrm{CH}_{2} \mathrm{OAr}\right), 6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.1,1.9,=\mathrm{C} H), 6.86-$
$6.90\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$ and $7.28-7.31\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) 18.5(\mathrm{CHMe}), 19.9$ (CMeMe), $20.2(\mathrm{CMeMe})$, $23.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 25.4\left(\mathrm{C}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 27.0\left(\mathrm{C}_{9} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 27.3$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 42.7(\mathrm{CHHC}=\mathrm{O}), 42.8\left(\mathrm{NCH}_{2}\right), 43.0\left(\mathrm{CHCH}_{2} \mathrm{C}=\mathrm{O}\right), 47.9\left(\mathrm{CMe}_{2}\right), 49.7\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 52.6$ $(\mathrm{NCHMe}), 55.4(\mathrm{OMe})$, $58.6\left(C_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 66.8\left(\mathrm{CH}_{2} \mathrm{OAr}\right), 114.0\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{C}_{\mathrm{qAr}}\right), 130.2(2 \times$ $C H_{\text {Ar }}$), $133.3\left(C_{\mathrm{q}}=\mathrm{CH}\right), 142.8(=C H), 159.7\left(C_{\mathrm{q}} \mathrm{OMe}\right)$, $167.6\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$ and 215.4 (ketone); HRMS $(E S I+) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{~S} 490.2265$; found 490.2261.

Compound (\pm)-19

To a solution of $(\pm)-8 e(80 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ at rt under argon was added 1 -chloroethyl chloroformate ($80 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$) and the reaction stirred at rt . After 4 h the mixture was concentrated in vacuo the residue dissolved in methanol (2.5 mL). After stirring for a further 3.5 h the reaction was concentrated in vacuo and the residue dissolved in DCM (3 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ under argon and $\mathrm{Et}_{3} \mathrm{~N}(120 \mu 1,0.86 \mathrm{mmol})$ and 3,5-dibromobenzoyl chloride ($95 \mathrm{mg}, 0.32 \mathrm{mmol}$) added to the stirred mixture. After 75 min the reaction was partitioned between DCM and sat. aq. NaHCO_{3} and the organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evporated. Purification by silica gel chromatography (EtOAc/petrol, 1:9 to 3:7 as eluent) afforded the title compound ($108 \mathrm{mg}, 78 \%$) as a clear oil. $v_{\max } / \mathrm{cm}^{-}$ ${ }^{1}: 2935,1706,1632,1515,1408$ and $1245 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 3: 2$ mixture of rotamers $1.33(3 \mathrm{H}, \mathrm{d}$, J 6.7, Me, (minor)), 1.40 ($3 \mathrm{H}, \mathrm{d}$, J 7.2, Me (major)), $1.59-1.86$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$ (major and minor, plus $\mathrm{C}_{\mathrm{q}} \mathrm{CHH}$ (minor)), $2.18-2.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{9} \mathrm{CHH}\right.$ (minor)), $2.31-2.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{9} \mathrm{CHH}\right.$ (major)), 2.79 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.1, \mathrm{C}_{\mathrm{q}} \mathrm{CHH}$ (major)), 3.10 ($1 \mathrm{H}, \mathrm{dt}, J 14.3,7.3$, NCHH (minor)), $3.27-3.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right.$ (major)), 3.81 ($3 \mathrm{H}, \mathrm{s}$, OMe (major and minor), $4.31(1 \mathrm{H}, \mathrm{dd}, J 13.6,6.6 \mathrm{~Hz}, \mathrm{NCHH}$ (minor)), $4.48-$ $4.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}\right.$ (minor)), $5.05-5.18\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, \mathrm{OCH}_{2}\right.$ (major and minor)), $5.45-5.55(1 \mathrm{H}, \mathrm{m}$, NCH (major)), $6.58\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right.$ (minor)), $6.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right.$ (major)), $6.85-6.92(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}$ (major and minor) and $\mathrm{CH}_{\text {Ar }}$ (major and minor)), $7.27-7.35\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\text {Ar }}\right.$ (major and minor)), $7.37-7.45$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\mathrm{Ar}}\right.$ (major and minor)) and $7.70\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right.$ (major and minor)); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$ 18.4 (Me (major)), 19.4 (Me (minor)), 22.3 ($\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2}$ (major)), 25.3 ($\mathrm{C}_{\mathrm{q}} \mathrm{CH} 2$ (minor)), $26.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ (major and minor)), $39.7\left(\mathrm{NCH}_{2}\right.$ (minor)), $43.8\left(\mathrm{NCH}_{2}\right.$ (major)), $50.7(\mathrm{NCH}$ (major)), 55.4 (OMe (major and minor)), $55.5\left(\mathrm{NCH}(\right.$ minor $)$), $66.9\left(\mathrm{OCH}_{2}\right.$ (major)), $67.0\left(\mathrm{OCH}_{2}(\mathrm{minor})\right.$), 114.1 (= CH (major and minor)), 123.4 ($=C_{\mathrm{q}}$ (major)), 123.5 ($=C_{\mathrm{q}}$ (minor)), $128.0\left(2 \times \mathrm{CH}_{\text {Ar }}\right.$ (major)), $128.2\left(2 \times \mathrm{CH}_{\text {Ar }}\right.$ (minor) $)$, $130.3\left(2 \times \mathrm{CH}_{\text {Ar }}\right.$ (major and minor)), $131.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.1\left(\mathrm{C}_{\mathrm{q}}\right), 135.2\left(\mathrm{CH}_{\text {Ar }}\right.$ (major and minor)), 139.7 $\left(\mathrm{C}_{\mathrm{q}}\right), 140.0\left(\mathrm{C}_{\mathrm{q}}\right), 141.1\left(\mathrm{CH}_{\text {Ar }}\right.$ (minor)), $142.5\left(\mathrm{CH}_{\text {Ar }}\right.$ (major)), $159.8\left(\mathrm{C}_{\mathrm{q}} \mathrm{OMe}\right)$ (major and minor)), 167.1 ($\mathrm{C}=\mathrm{O}$ (major)), 167.3 ($\mathrm{C}=\mathrm{O}$ (minor)), 168.1 ($\mathrm{C}=\mathrm{O}$ (minor)) and 168.3 ($\mathrm{C}=\mathrm{O}$ (major)); HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{Br}_{2}$ 538.0053; found 538.0051.

Compound (\pm)-20

To a flame-dried Schlenk tube under argon were added $\mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{mg}, 0.022$ mmol), $\mathrm{PPh}_{3}(11.7 \mathrm{mg}, 0.044 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(48.4 \mathrm{mg}, 0.35 \mathrm{mmol})$ and tetrabutylammonium chloride ($17 \mathrm{mg}, 0.061 \mathrm{mmol}$). The flask was evacuated and backfilled with argon ($3 \times$) and dry $\mathrm{MeCN}(3 \mathrm{~mL}$) was added. The mixture was stirred for 2 min , a solution of substrate $\mathbf{8 n}(74.0 \mathrm{mg}, 0.228 \mathrm{mmol})$ in dry $\mathrm{MeCN}(6$ mL) added and the mixture heated to $80^{\circ} \mathrm{C}$. After 15 h the mixture was cooled, evaporated, and filtered through Celite, eluting with EtOAc. The filtrate was evaporated to give the crude product as a brown oil. Purification by silica gel chromatography ($\mathrm{EtOH} / \mathrm{NH}_{3}$ in $\mathrm{DCM}, 1 \%$ to 8% as eluent) afforded the title compound as a yellow oil ($22.4 \mathrm{mg}, 40 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (neat) 3057,3018 , $2924,2851,1703,1435,1231 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 2.09\left(1 \mathrm{H}\right.$, dddd, $\left.\mathrm{J}=17.0,7.8,4.9,2.3, \mathrm{NCH}_{2} \mathrm{CHH}\right)$, $2.48\left(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=17.1,10.8,3.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHH}\right)$), $3.11-3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.44(2 \mathrm{H}$, app. d, J = $\left.3.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.4 \mathrm{~Hz}, \mathrm{NCHHPh}), 4.16\left(1 \mathrm{H}, \mathrm{CHC}_{\mathrm{q}} \mathrm{CO}_{2}\right)$, $4.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.4 \mathrm{~Hz}, \mathrm{NCHHPh}), 7.00-7.09\left(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CH}_{\mathrm{Ar}}\right.$ and $\left.\mathrm{CH}=\mathrm{C}_{\mathrm{q}} \mathrm{CO}_{2}\right) 7.11-7.23(3 \mathrm{H}$, $\left.\left.\mathrm{m}, 3 \times \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) ; 26.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 35.1\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 51.2 \mathrm{NCH}_{2} \mathrm{CH}\right), 52.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$,
$53.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$, $53.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.2$ $\left(C_{\text {qAr }}\right), 135.2\left(C_{\mathrm{q}}=\mathrm{CH}\right), 140.0\left(C_{\text {qAr }}\right) 143.2\left(\mathrm{C}_{\mathrm{q}}=C \mathrm{H}\right)$ and $168.4\left(\mathrm{CO}_{2}\right)$; HRMS $\left(E S I^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} 244.1338$; found 244.1332.

4.0 NMR Spectra

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound S 11

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)\right.$ of compound S 11 CPM-232-F1
single pulse decoupled gated NOE

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{S 1 2}$

${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}\left(\mathbf{C D C l}_{3} \mathbf{1 0 0} \mathbf{M H z}\right)\right.$ of compound $\mathbf{S 1 2}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound S 13

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)\right.$ of compound S 13
CPM4-21-F1 1
single pulse decoupled gated NOE
single pulse decoupled gated NOE

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7a

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)\right.$ of compound 7a
single pulse decoupled gated NOE
Cn

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7b

${ }^{13} \mathbf{C ~ N M R}\left(\mathbf{C D C l}_{3}\left(\mathbf{C D C l}_{3} 100 \mathrm{MHz}\right)\right.$ of compound 7b

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7 c

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 7e

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7d

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)\right.$ of compound 7 d

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7e

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)\right.$ of compound 7e

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7 f

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 7 f

CPM4-77-F2
single pulse decoupled gated \qquad

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 71

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 71
CPM5-3-F1 1
single pulse decoupled gated NOE

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7 m

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)\right.$ of compound $\mathbf{7 m}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{7 n}$

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 7n
(
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound S 18

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound S 18

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{7 g}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 7 g

CPM5-77-F1
single pulse decoupled gated NOE

$\stackrel{\infty}{\stackrel{\infty}{+}}$

べल
$\stackrel{\circ}{\infty}$
$\stackrel{\text { ® }}{\stackrel{\circ}{\sim}} \stackrel{1}{1}$

[^1]${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $Z-7 \mathrm{~h}$

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound Z-7h

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $E-7 \mathrm{~h}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound $E-7 \mathrm{~h}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7 i

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 7 i

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{7 j}$

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 7 j

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{S 1 9}$
JK7-20f2
single_puls

\int

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound $\mathbf{S 1 9}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7 k

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 7 k

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound S 25
(
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} \mathbf{1 0 0} \mathbf{~ M H z}\right)$ of compound $\mathbf{S 2 5}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{S 2 2}$
CPM7-1-F1 1
single_pulse

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound $\mathbf{S 2 2}$

CPM7-1-F1 1
CPM7-1-F1 1
single pulse decoupled gate $\stackrel{\text { ® }}{\sim}$ NOE

ノ1 $\underset{\sim}{\sim}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7 o

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 7o

CPM8-66-F1
single pulse decoupled gated NOE

-0.00
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7 p

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 7 p
CPM7-79-F1
single pulse decoupled gated NOE

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z}\right)$ of compound $\mathbf{7 q}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound $7 q$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{7 r}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 7 r

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{S 2 7}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound $\mathbf{S 2 7}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 7s

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 7s

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8a

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8a

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8 b

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound $\mathbf{8 b}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8c

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 8c
CPM-JK-CH2-F2
single pulse decoupled gated NOE

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8e

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8e

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8 f

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 8 f
CPM5-17-F2 1
single pulse decoupled gated NOE

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8 g

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8 g

CPM5-84-F2 1
single pulse decoupled gated NOE

|

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 h}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8 h

CPM5-89-F2 1
single pulse decoupled gated NOE

ソノ

[^2]${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8 i

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8 i

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z}\right.$) of compound $\mathbf{8 j}$

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 8 j

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8 k

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound $\mathbf{8 k}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 81

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 100 \mathrm{MHz}$) of compound 8 I

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8 m

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound $\mathbf{8 m}$
CPM4-86-F1

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8 n

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8 n

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 q}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound $\mathbf{8 q}$

JK6－150f2 1
JK6－150f2 1
single pulse decoupled gated NOE

 こうに

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 r}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8 r

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 8o

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8 o

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} 400 \mathrm{MHz}$) of compound 8p

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 8 p

${ }^{1} \mathrm{H}$ COSY interactions of compound $\mathbf{8 p}$

${ }^{1} \mathbf{H}-{ }^{13} \mathbf{C}$ HSQC interactions of compound $\mathbf{8 p}$

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC interactions of compound $\mathbf{8 p}$

Red $=$ NOESY Blue = COSY Green $=\mathrm{HMBC}$

${ }^{1} \mathbf{H}$-NOESY interactions of bicyclic amine $\mathbf{8 p}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 16a

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 16 a

${ }^{1} \mathrm{H}$ COSY interactions of compound 16a

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC interactions of compound 16a

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC interactions of compound 16a

${ }^{1} \mathrm{H}$ NOESY interactions of bicyclic amine 16a

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 b}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 16 b

${ }^{1} \mathrm{H}$ COSY interactions of bicyclic amine 16 b

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC interactions of bicyclic amine 16 b

${ }^{1} \mathbf{H}$-NOESY interactions of bicyclic amine $\mathbf{1 6 b}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 17

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 17

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 18

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} 100 \mathrm{MHz}\right)$ of compound 18

${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z}\right)$ of compound 19 (3:2 mixture of rotamers)

${ }^{13} \mathbf{C ~ N M R ~ (C D C l ~} \mathbf{3}_{3} 100 \mathrm{MHz}$) of compound 19 (3:2 mixture of rotamers)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 400 \mathrm{MHz}\right)$ of compound 20

5.0 X-ray Crystallography Data

Experimental

Single crystal diffraction data were collected at 150 K on a XtaLAB Synergy HyPix-Arc 100 diffractometer using copper radiation ($\lambda_{\mathrm{CuK} \mathrm{\alpha}}=1.54184 \AA$) equipped with an Oxford Cryosystems CryostreamPlus open-flow N_{2} cooling device. Intensities were corrected for absorption using a multifaceted crystal model created by indexing the faces of the crystal for which data were collected. ${ }^{13}$ Cell refinement, data collection and data reduction were undertaken via the software CrysAlisPro. ${ }^{14}$

All structures were solved using XT^{15} and refined by XL^{16} using the Olex2 interface. ${ }^{17}$ All nonhydrogen atoms were refined anisotropically and hydrogen atoms were positioned with idealised geometry, with the exception of those bound to heteroatoms, the positions of which were located using peaks in the Fourier difference map. The displacement parameters of the hydrogen atoms were constrained using a riding model with $U_{(H)}$ set to be an appropriate multiple of the $U_{\text {eq }}$ value of the parent atom.

Table 1 : Crystal data and structure refinement for (S)-8b jkpw001_lt_fa.

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}$
Formula weight	335.43
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	P21
a/Å	6.9158(3)
b/Å	7.5748(3)
c/Å	17.5449(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.912(3)
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{3}$	915.73(6)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.217
μ / mm^{-1}	0.606
F(000)	360.0
Crystal size/mm ${ }^{3}$	$0.25 \times 0.18 \times 0.05$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 10.12$ to 153.884	
Index ranges	$-8 \leq \mathrm{h} \leq 8,-9 \leq \mathrm{k} \leq 8,-21 \leq 1 \leq 21$
Reflections collected	10179
Independent reflections	$3474{\left[\mathrm{R}_{\text {int }}=0.0379, \mathrm{R}_{\text {sigma }}=0.0335\right] ~}_{\text {] }}$
Data/restraints/parameters	3474/187/228
Goodness-of-fit on F^{2}	1.079
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0459, \mathrm{wR}_{2}=0.1257$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0484, \mathrm{wR}_{2}=0.1277$
Largest diff. peak/hole / e $\AA^{-3} 0.19 /-0.26$	
Flack parameter	0.1(2)

Table 1 : Crystal data and structure refinement for jkpw003_fa.

Empirical formula	$\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{Cl}_{2} \mathrm{NO}_{9} \mathrm{~S}$
Formula weight	730.71
Temperature/K	150.0(2)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a/A	7.14570(10)
b/Å	14.9447(3)
c/A	$33.7430(7)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma{ }^{\circ}$	90
Volume/ A 3	3603.43(12)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.347
μ / mm^{-1}	2.613
$\mathrm{F}(000)$	1552.0
Crystal size/mm ${ }^{3}$	$0.25 \times 0.07 \times 0.01$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 5.238$ to 156.494	
Index ranges	$-3 \leq \mathrm{h} \leq 8,-14 \leq \mathrm{k} \leq 18,-40 \leq 1 \leq 36$
Reflections collected	18158
Independent reflections	$7049\left[\mathrm{R}_{\text {int }}=0.0363, \mathrm{R}_{\text {sigma }}=0.0422\right]$
Data/restraints/parameters	7049/788/554
Goodness-of-fit on F^{2}	1.057
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0530, \mathrm{wR}_{2}=0.1233$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0617, \mathrm{wR}_{2}=0.1275$
Largest diff. peak/hole / e $\AA^{-3} 0.49 /-0.35$	
Flack parameter	0.032(8)

6.0 Density Functional Theory Data

All DFT calculations were carried out using the Gaussian16 software package. ${ }^{18}$ For each compound, conformation searches were performed using the confab method in Open Babel, ${ }^{19}$ using RMSD and energy cut-offs of $1.0 \AA$ and $5.0 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. All identified conformers were then optimised in the gas phase at the B3LYP/6-31g(d) level, ${ }^{20,21}$ as used successfully in previous ring expansion studies. ${ }^{22}$ Vibrational calculations were used to verify the identification of minimum energy geometries by the absence of any calculated negative frequencies, and to determine the Gibbs energy of each structure at 298.15 K .

7b (G = -1058.21093 На)

C	1.014147	1.644109	2.748339
C	0.128722	2.226709	1.622414
C	1.753053	0.454465	2.099772
N	1.489522	0.575990	0.657968
C	0.142723	1.164687	0.487867
C	-0.930758	0.090597	0.797284
C	-0.083248	1.786653	-0.875174
C	0.871230	2.208996	-1.707043
C	1.812016	-0.614490	-0.120284
C	3.307568	-0.865972	-0.235327
C	3.786278	-2.176938	-0.347835
C	5.147939	-2.431387	-0.517264
C	6.056767	-1.373060	-0.565970
C	5.591471	-0.062360	-0.443840
C	4.228225	0.188510	-0.281862
O	-1.339688	-0.557643	-0.315505
O	-1.301400	-0.198971	1.918920
C	-2.288191	-1.650947	-0.134684
C	-3.715750	-1.173596	-0.225075
C	-4.367369	-1.128744	-1.464020
C	-5.684627	-0.679308	-1.558819
C	-6.365500	-0.269972	-0.410670
C	-5.723977	-0.311322	0.829170
C	-4.406371	-0.759995	0.922489
C	0.617134	2.883801	-3.024652
H	0.409920	1.302169	3.591049
H	1.713908	2.398289	3.121498
H	0.565040	3.143837	1.218818
H	-0.888476	2.450676	1.952772
H	1.367907	-0.500248	2.496193
H	2.833673	0.468505	2.274177
H	-1.128289	1.925793	-1.149755
H	1.913524	2.063172	-1.427507
H	1.391451	-0.475805	-1.122838
H	1.334089	-1.521654	0.295965
H	3.084589	-3.007509	-0.301347

H	5.499070	-3.456669	-0.602598
H	7.118521	-1.568293	-0.691662
H	6.292116	0.768510	-0.473249
H	3.865276	1.206277	-0.172871
H	-2.083835	-2.127824	0.825571
H	-2.051643	-2.340050	-0.948170
H	-3.839069	-1.450467	-2.358884
H	-6.179696	-0.652363	-2.525921
H	-7.392953	0.077244	-0.481536
H	-6.251109	0.004344	1.725628
H	-3.899910	-0.783252	1.882741
H	-0.454363	2.990987	-3.225227
H	1.063576	2.318227	-3.853760
H	1.069839	3.884474	-3.051079

8b (G = -1058. 213183 Ha)

C	0.141651	-2.104162	-1.304962
C	-0.329333	-0.825886	-0.640668
C	0.726171	-3.114765	-0.306907
C	2.172509	-2.814180	0.112655
N	2.470888	-1.386076	0.226606
C	1.573954	-0.587208	1.078306
C	0.269715	-0.228258	0.404157
C	-1.595285	-0.256098	-1.194235
C	3.888637	-1.150720	0.506204
C	4.355371	0.254753	0.166975
C	5.228930	0.940210	1.018472
C	5.709332	2.207963	0.681925
C	5.312607	2.810285	-0.512064
C	4.433759	2.137468	-1.365457
C	3.960628	0.869870	-1.029344
O	-2.239126	-0.783097	-2.085645
O	-1.956673	0.917960	-0.618957
C	-3.188356	1.526640	-1.089565
C	-4.380704	1.097760	-0.269396
C	-4.776958	1.846344	0.845625
C	-5.872642	1.453036	1.614825
C	-6.585441	0.302081	1.274221
C	-6.197803	-0.451269	0.163758
C	-5.102287	-0.056649	-0.604298
C	1.334845	-1.138039	2.506983
H	0.881151	-1.876130	-2.084978
H	-0.717375	-2.543636	-1.818778
H	0.712274	-4.120281	-0.746216
H	0.069411	-3.158760	0.570257
H	2.848870	-3.204080	-0.659298
H	2.407030	-3.375864	1.037684
H	2.090133	0.373177	1.206322
H	-0.218111	0.644938	0.830108

H	4.451729	-1.864410	-0.110440
H	4.164043	-1.381208	1.553482
H	5.537571	0.476784	1.953493
H	6.387080	2.725513	1.356033
H	5.681262	3.798289	-0.775147
H	4.116945	2.602118	-2.295808
H	3.267631	0.347685	-1.682545
H	-3.317111	1.274700	-2.143715
H	-3.010405	2.599699	-0.986730
H	-4.224405	2.745314	1.110540
H	-6.171156	2.045445	2.475775
H	-7.441246	-0.004973	1.869783
H	-6.751600	-1.346562	-0.106586
H	-4.791467	-0.644040	-1.463044
H	0.783015	-2.082742	2.493994
H	0.752772	-0.421774	3.097552
H	2.286348	-1.300631	3.025569

7d (G = - 1478.892052 Ha$)$

C	-1.124954	-0.559151	2.087227
C	-0.853309	0.913674	1.737380
C	-0.023352	-1.343979	1.339443
N	0.652733	-0.354850	0.482677
C	-0.163466	0.848389	0.335994
C	-1.307561	0.774821	-0.718670
C	0.635238	2.106554	0.052623
C	1.932406	2.272618	0.346831
C	1.330891	-0.885198	-0.691206
C	2.508468	-1.784580	-0.350346
C	2.834080	-2.859282	-1.179398
C	3.944863	-3.672421	-0.933463
C	4.751509	-3.417197	0.180159
C	4.430782	-2.350224	1.031907
C	3.327844	-1.549161	0.764731
O	5.856287	-4.144830	0.527530
C	6.224646	-5.234995	-0.299549
O	-1.667563	-0.495384	-0.995517
O	-1.850545	1.748822	-1.200744
C	-2.801116	-0.674803	-1.902764
C	-4.114205	-0.700047	-1.168900
C	-4.869781	0.464081	-0.998376
C	-6.085419	0.446589	-0.311249
C	-6.561551	-0.757074	0.223084
C	-5.812434	-1.932942	0.061147
C	-4.607397	-1.898017	-0.626601
O	-7.732254	-0.893113	0.908787
C	-8.536633	0.260043	1.103426
C	2.739592	3.484599	0.136403
C	2.216293	4.688362	-0.372891

C	3.030009	5.803038	-0.551223
C	4.388688	5.748709	-0.224766
C	4.923993	4.564666	0.282620
C	4.107490	3.448596	0.460098
H	-2.113266	-0.862405	1.730492
H	-1.098769	-0.729632	3.167910
H	-0.132234	1.357791	2.430027
H	-1.749584	1.540578	1.730129
H	-0.461056	-2.157396	0.741713
H	0.704577	-1.798578	2.021835
H	0.053299	2.905738	-0.396576
H	2.466351	1.432121	0.785988
H	1.688953	-0.026080	-1.273382
H	0.638710	-1.444434	-1.344729
H	2.209962	-3.074289	-2.044641
H	4.160697	-4.496106	-1.604660
H	5.061170	-2.171560	1.897874
H	3.078720	-0.734300	1.438111
H	7.121081	-5.665076	0.151472
H	6.455665	-4.907910	-1.322408
H	5.436775	-5.999546	-0.337603
H	-2.595580	-1.634353	-2.381693
H	-2.769505	0.122725	-2.646811
H	-4.496537	1.401629	-1.399315
H	-6.646450	1.367486	-0.200832
H	-6.200310	-2.856934	0.478328
H	-4.038836	-2.817169	-0.750155
H	-9.408866	-0.075930	1.666970
H	-8.865450	0.688706	0.147620
H	-8.006498	1.029308	1.680120
H	1.163046	4.753462	-0.629860
H	2.602621	6.721266	-0.946132
H	5.020808	6.621479	-0.364807
H	5.978407	4.507855	0.540492
H	4.531873	2.527517	0.853299

8d (G = -1478.886972 Ha$)$
$\begin{array}{llll}\text { C } & 1.056846 & -0.739474 & 2.275598\end{array}$
C $\quad-0.204079 \quad-0.525687 \quad 1.461738$
$\begin{array}{llll}\text { C } & 1.813924 & 0.567949 & 2.549798\end{array}$
C $\quad 2.637595 \quad 1.080757 \quad 1.354072$
N $\quad 2.113904 \quad 0.680191 \quad 0.045001$
$\begin{array}{llll}\text { C } & 0.743321 & 1.112607 & -0.288373\end{array}$
C $\quad-0.326623 \quad 0.310104 \quad 0.415766$
C $\quad-1.397648$-1.299445 1.928530
$\begin{array}{llll}0 & -2.502106 & -1.107681 & 1.167222\end{array}$
$0 \quad-1.391959 \quad-2.041224 \quad 2.895125$
$\begin{array}{llll}\text { C } & -3.687869 & -1.826768 & 1.596442\end{array}$

C	-4.818875	-1.464579	0.676886
C	-5.246403	-2.341106	-0.320842
C	-6.294021	-2.011840	-1.185837
C	-6.928772	-0.771924	-1.055835
C	-6.508164	0.122286	-0.058016
C	-5.469993	-0.225417	0.793315
0	-7.959768	-0.340235	-1.838186
C	-8.429999	-1.199550	-2.864471
C	3.087734	0.942181	-1.021761
C	4.301323	0.032295	-0.955165
C	4.152974	-1.352753	-0.836646
C	5.256497	-2.207724	-0.822920
C	6.547259	-1.674251	-0.934033
C	6.712595	-0.287994	-1.052450
C	5.600552	0.547170	-1.059308
0	7.697285	-2.412805	-0.933282
C	7.589238	-3.820975	-0.808359
C	0.484795	2.628992	-0.217262
C	0.818224	3.439075	-1.313313
C	0.639546	4.821778	-1.268816
C	0.113622	5.422542	-0.123578
C	-0.236297	4.628481	0.969002
C	-0.053941	3.245156	0.920114
H	1.717528	-1.454157	1.767674
H	0.764181	-1.204920	3.220288
H	2.501250	0.423227	3.392818
H	1.094019	1.327089	2.876037
H	3.641802	0.648978	1.410848
H	2.762609	2.176389	1.430194
H	0.620752	0.847239	-1.348715
H	-1.309990	0.414987	-0.035464
H	-3.896676	-1.552646	2.635506
H	-3.474305	-2.899585	1.575308
H	-4.756910	-3.306069	-0.431259
H	-6.600947	-2.721131	-1.945834
H	-7.015866	1.077836	0.028552
H	-5.153686	0.475033	1.562621
H	-9.241683	-0.661107	-3.357038
H	-8.816262	-2.142863	-2.456084
H	-7.643558	-1.420184	-3.598354
H	3.426870	1.994638	-1.034365
H	2.573797	0.775230	-1.977908
H	3.153397	-1.768139	-0.741517
H	5.100499	-3.276441	-0.727344
H	7.719417	0.110614	-1.130372
H	5.744727	1.622090	-1.146664
H	8.611713	-4.203033	-0.828157
H	7.023166	-4.259508	-1.641148
H	7.113882	-4.108409	0.139076
H	1.213050	2.980447	-2.216981

H	0.902755	5.428298	-2.131626
H	-0.030569	6.499059	-0.087098
H	-0.658250	5.084270	1.861111
H	-0.351840	2.635681	1.768190

```
7f(G = -1038.330826 Ha)
```

C	3.496723	-2.083638	-0.607676
C	2.173584	-2.732154	-1.083529
C	3.052285	-1.013145	0.418868
N	1.651427	-0.664642	0.094367
C	1.050137	-1.970976	-0.311015
C	-0.194365	-1.751642	-1.230571
C	0.631978	-2.761609	0.922722
C	0.527966	-2.295320	2.171324
C	0.110669	-3.112703	3.360830
C	1.585167	0.410199	-0.913241
C	1.959895	1.760027	-0.327936
C	2.827756	2.617874	-1.012317
C	3.130726	3.884535	-0.506427
C	2.570103	4.307803	0.698415
C	1.705797	3.456775	1.393004
C	1.404259	2.194480	0.883981
0	-0.132611	-1.830408	-2.453301
N	-1.334209	-1.416260	-0.567909
C	-2.593226	-1.142810	-1.247396
C	-3.371667	-0.016094	-0.596777
C	-2.757041	1.206450	-0.290819
C	-3.488918	2.245868	0.281890
C	-4.848993	2.080636	0.555988
C	-5.469801	0.868046	0.256128
C	-4.732841	-0.172797	-0.312747
H	4.026826	-1.625874	-1.449800
H	4.181826	-2.808241	-0.156121
H	2.136907	-3.807170	-0.880035
H	2.014411	-2.596808	-2.155134
H	3.668885	-0.110973	0.410759
H	3.084087	-1.426212	1.431703
H	0.389651	-3.807167	0.722660
H	0.778751	-1.250243	2.350247
H	-0.129621	-4.144395	3.081986
H	-0.770161	-2.679049	3.853464
H	0.905740	-3.142390	4.118216
H	0.556854	0.468052	-1.281542
H	2.211200	0.210808	-1.799560
H	3.269417	2.292140	-1.951814
H	3.808326	4.536079	-1.052284
H	2.806213	5.291247	1.096406
H	1.266969	3.778342	2.334377
H	0.742506	1.526136	1.427213

H	-1.320158	-1.452124	0.443078
H	-3.215580	-2.048172	-1.280790
H	-2.332493	-0.903460	-2.283793
H	-1.698818	1.342504	-0.498071
H	-2.996679	3.187196	0.511780
H	-5.418914	2.891300	1.002079
H	-6.526211	0.727568	0.469568
H	-5.220737	-1.118364	-0.539579

8f (G = -1038.333464 Ha)
C $\quad 0.070940 \quad-0.194134 \quad 0.818453$
C $\quad 0.334550 \quad-1.233397 \quad-0.258607$

C $\quad-0.874990 \quad-0.705070 \quad 1.918071$
C $\quad-2.360655-0.674606 \quad 1.538477$
$\mathrm{N} \quad-2.628679$-1.001856 0.138288
C $\quad-2.039161 \quad-2.249849-0.374184$
C $\quad-0.566721 \quad-2.128560 \quad-0.691723$
C $\quad 1.699294 \quad-1.334999 \quad-0.899266$
$0 \quad 2.067859 \quad-2.323111 \quad-1.531842$
N $\quad 2.514130 \quad-0.239973 \quad-0.744250$
C $\quad 3.826174 \quad-0.155384 \quad-1.370902$
$\begin{array}{llll}C & 4.856649 & 0.491830 & -0.467071\end{array}$
C $5.069024 \quad 0.013804 \quad 0.834043$
C $6.031349 \quad 0.596617 \quad 1.656848$
$\begin{array}{llll}C & 6.798972 & 1.667936 & 1.191202\end{array}$
$\begin{array}{llll}C & 6.595326 & 2.151277 & -0.101025\end{array}$
C $\quad 5.627564 \quad 1.566917 \quad-0.921672$
C $\quad-4.050212 \quad-0.848020 \quad-0.177414$
C $\quad-4.503339 \quad 0.603191 \quad-0.193702$
$\begin{array}{llll}C & -3.758465 & 1.570481 & -0.882583\end{array}$
$\begin{array}{llll}C & -4.195008 & 2.892947 & -0.943031\end{array}$
C $\quad-5.386542 \quad 3.269822 \quad-0.316689$
C $\quad-6.133792 \quad 2.315178 \quad 0.372939$
$\begin{array}{llll}C & -5.690733 & 0.991559 & 0.434852\end{array}$
$\begin{array}{llll}C & -2.340709 & -3.527898 & 0.447852\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.329575 & 0.735160 & 0.387405\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.022769 \quad 0.065751 & 1.297068\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.752502 & -0.094899 & 2.821830\end{array}$
H -0.563658 -1.720345 2.190438
H -2.744902 0.339864 1.694286
$\begin{array}{llll}\mathrm{H} & -2.924604 & -1.326320 & 2.234483\end{array}$
H -2.515831 -2.404298 -1.352632
H $\quad-0.198788$-2.860503 -1.409116
$\begin{array}{llll}\mathrm{H} & 2.139868 \quad 0.603849 & -0.335448\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.767834 & 0.396567 & -2.320000\end{array}$
H $4.101255 \quad-1.184617$-1.620589
$\begin{array}{llll}\mathrm{H} & 4.472457 & -0.818688 & 1.198419\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.186016 & 0.213057 & 2.662111\end{array}$
$\begin{array}{ll}\mathrm{H} & 7.549160 \quad 2.122041 \\ 1.833110\end{array}$

H	7.184823	2.986027	-0.471230
H	5.469946	1.949707	-1.927843
H	-4.702572	-1.417150	0.512913
H	-4.213719	-1.274311	-1.175769
H	-2.828658	1.272681	-1.359295
H	-3.606937	3.632019	-1.481534
H	-5.726922	4.300902	-0.364541
H	-7.058600	2.599233	0.868572
H	-6.274441	0.251412	0.978526
H	-1.884653	-3.490066	1.441782
H	-1.944517	-4.411807	-0.064113
H	-3.421362	-3.665430	0.568430
7h (G = -830.366829 Ha)			
C	0.391557	0.083607	2.888891
C	1.255429	-0.959483	2.135323
C	-0.489847	0.717898	1.791902
N	-0.376751	-0.208859	0.664959
C	1.038739	-0.683647	0.616638
C	1.997743	0.386779	0.047257
C	1.090547	-2.004514	-0.129642
C	2.110674	-2.518696	-0.821931
C	2.115617	-3.889345	-1.437818
C	-1.005490	0.233172	-0.570190
C	-2.522555	0.271557	-0.472167
C	2.765936	1.225151	0.870422
C	3.564564	2.240452	0.338116
C	3.616341	2.447740	-1.038792
C	2.860381	1.626399	-1.876443
C	2.065587	0.614206	-1.339635
C	-3.242605	1.329350	-1.037881
C	-4.638720	1.346762	-1.001054
C	-5.334609	0.304723	-0.387808
C	-4.624729	-0.752572	0.187456
C	-3.231090	-0.768916	0.143871
H	0.997162	0.842933	3.393704
H	-0.217444	-0.403061	3.656692
H	0.887522	-1.967382	2.346655
H	2.314418	-0.945785	2.405509
H	-0.125723	1.728935	1.532299
H	-1.539355	0.816040	2.085896
H	0.192171	-2.605704	0.021511
H	3.014838	-1.927450	-0.962035
H	1.170087	-4.414225	-1.264268
H	2.926588	-4.505469	-1.025836
H	2.283467	-3.838685	-2.522260
H	-0.721276	-0.481916	-1.354179
H	-0.641540	1.222624	-0.902362
H	2.756542	1.092474	1.946566
H	4.148501	2.867294	1.007401

H	4.238887	3.235429	-1.454756
H	2.890647	1.769383	-2.953761
H	1.499906	-0.022011	-2.011834
H	-2.704562	2.148319	-1.510932
H	-5.180448	2.177973	-1.445402
H	-6.420928	0.317289	-0.353705
H	-5.159209	-1.566677	0.670973
H	-2.673808	-1.582060	0.600324

8h (G = -830.370586)

C	1.485629	1.443208	-1.223426
C	1.641039	0.481140	-0.054514
C	0.804806	2.768632	-0.847579
C	-0.725839	2.679463	-0.768172
N	-1.212804	1.402645	-0.248557
C	-0.654334	0.961560	1.043389
C	0.724734	0.346100	0.921050
C	2.886325	-0.339827	0.002070
C	-0.720021	2.004975	2.185715
C	-2.672565	1.318854	-0.303981
C	-3.208228	-0.102102	-0.250246
C	-4.356036	-0.402395	0.491662
C	-4.890158	-1.693041	0.494226
C	-4.274143	-2.704835	-0.242509
C	-3.122289	-2.417208	-0.979864
C	-2.595005	-1.126531	-0.984797
C	2.825697	-1.708359	0.319749
C	3.981855	-2.483829	0.401758
C	5.231429	-1.910371	0.162210
C	5.310843	-0.554472	-0.161156
C	4.153404	0.218212	-0.245213
H	0.926328	0.951567	-2.032002
H	2.475768	1.656814	-1.639011
H	1.052567	3.539500	-1.588734
H	1.222039	3.115744	0.105026
H	-1.135188	2.772652	-1.782908
H	-1.110812	3.549680	-0.201488
H	-1.301511	0.131436	1.355122
H	0.972823	-0.311671	1.754194
H	-0.072199	2.865671	1.992761
H	-0.393555	1.551788	3.128533
H	-1.743880	2.369209	2.330261
H	-2.977397	1.770006	-1.258364
H	-3.168200	1.922362	0.480967
H	-4.837320	0.381967	1.072568
H	-5.782288	-1.907534	1.077153
H	-2.684679	-3.711218	-0.239524
H	-10564	-3.201388	-1.553229
-0.899841	-1.544825		

H	1.854359	-2.166996	0.481440
H	3.904059	-3.541152	0.642421
H	6.133264	-2.513918	0.221074
H	6.278430	-0.094043	-0.344597
H	4.240830	1.275807	-0.479173

7q (G = -830.358078)

C	0.058490	2.451212	-1.442150
C	0.289089	0.940207	-1.429101
N	0.307837	0.426361	-0.056522
C	-0.975199	0.592621	0.687834
C	-1.249845	2.131457	0.692549
C	-1.232291	2.794864	-0.693986
C	-0.715515	0.232397	2.146021
C	-2.160514	-0.227692	0.113364
C	-1.511847	-0.440367	2.977230
C	1.039364	-0.832418	0.059194
C	2.549776	-0.653476	-0.033795
C	3.190788	0.443375	0.555992
C	4.580029	0.562455	0.515602
C	5.352714	-0.415411	-0.115379
C	4.723909	-1.509946	-0.710240
C	3.332836	-1.622952	-0.671382
C	-2.042019	-1.620112	-0.052634
C	-3.085874	-2.389656	-0.565040
C	-4.295948	-1.791619	-0.918609
C	-4.446233	-0.418731	-0.738393
C	-3.394785	0.347368	-0.228137
H	0.016004	2.814336	-2.476889
H	0.914092	2.939465	-0.957500
H	1.260929	0.711321	-1.877693
H	-0.477145	0.432167	-2.044325
H	-0.457283	2.584740	1.299908
H	-2.190161	2.330676	1.217092
H	-1.335078	3.881277	-0.575256
H	-2.089227	2.462499	-1.291550
H	0.218060	0.651292	2.523949
H	-2.454143	-0.875879	2.659242
H	-1.238488	-0.574277	4.020585
H	0.733489	-1.572984	-0.700995
H	0.800457	-1.272259	1.034915
H	2.584573	1.208632	1.031452
H	5.061366	1.421338	0.976985
H	6.435067	-0.321550	-0.147913
H	5.314274	-2.272555	-1.211963
H	2.847690	-2.475322	-1.143344
H	-1.130918	-2.123022	0.245104
H	-2.952954	-3.462593	-0.678973
H	-5.111320	-2.389119	-1.317508

H	-5.385284	0.066745	-0.991956
H	-3.560411	1.409080	-0.091369

8q ($G=-830.361959$)

C	-0.427309	1.807968	1.179304
N	-1.246015	0.774860	0.543963
C	-0.628302	0.085821	-0.603852
C	0.788168	-0.380921	-0.356823
C	1.938672	0.319785	-0.387275
C	2.124962	1.811531	-0.643883
C	0.916490	2.732442	-0.888195
C	0.020820	3.019803	0.335102

C $\quad 3.218558 \quad-0.425425 \quad-0.161013$
C -3.586607 $0.032157 \quad 0.130521$
C $\quad-3.536786$-1.027667 1.046059
C $\quad-4.464272-2.066817 \quad 0.980684$
C $\quad-5.460086-2.061112 \quad 0.000216$
C $\quad-5.516274 \quad-1.011703 \quad-0.917364$

C	-4.581762	0.024336	-0.852616

C	3.464186	-1.633253	-0.837289

C $\quad 5.388551 \quad-0.669582 \quad 0.924318$

C	4.209831	0.046411	0.716997

H	0.457163	1.317735	1.597563

H	-1.001824	2.182519	2.036101

H $\quad-0.687250 \quad 0.698197 \quad-1.518984$

H	-1.242225	-0.798558	-0.805716

H 0.874151 -1.434221 -0.096142
H $\quad 0.321591 \quad 2.358484$-1.725754

H	1.320455	3.694698	-1.231262

H	-0.858373	3.587234	0.000190

H	0.567756	3.689806

H	-2.674743	1.796737	-0.689460

H $\quad-2.939282 \quad 1.852841 \quad 1.053894$
H -2.751770 -1.030633 1.796926
H -6.282117 -1.001389 -1.688855
H $\quad-4.625410 \quad 0.836860 \quad-1.575341$
H $\quad 2.724228 \quad-1.999930$-1.542972
H 4.809001 -3.277269 -1.175182
H $\quad 6.533572 \quad-2.424884 \quad 0.406747$

H	6.132564	-0.288596	1.619306

H	4.052287	0.970197
1.266375		

7.0 References

1) D. Halilovic, M. Budanovic, Z. R. Wong, R. D. Webster, J. Huh, and M. C. Stuparu, J. Org. Chem. 2018, 83, 3529.
2) C. J. Evoniuk, M. Ly and I. V. Alabugin, Chem. Commun. 2015, 51, 12831.
3) T. Shioiri, Y. Terao, N. Irako and T. Aoyama, Tetrahedron, 1998, 54, 15701.
4) Y. L. Xiao and P. H. Liu, Angew. Chem. Int. Ed. 2008, 47, 9722.
5) B. Su, M. Deng and Q. M. Wang, Eur. J. Org. Chem. 2013, 1979.
6) a) H. Bittermann and P. Gmeiner, J. Org. Chem. 2006, 71, 97; b) C. Reuter, R. Opitz, A. Soicke, S. Dohmen, M. Barone, S. Chiha, M. T. Klein, J. M. Neudorfl, R. Kuhne and H. G. Schmalz, Chem. Eur. J. 2015, 21, 8464.
7) G. D. Artman, R. J. Rafferty and R. M. William, Org. Synth. 2009, 86, 262.
8) R. K. Dieter and S. J. Li, J. Org. Chem. 1997, 62, 7726.
9) N. S. Sheikh, D. Leonori, G. Barker, J. D. Firth, K. R. Campos, A. J. H. M. Meijer, P. O'Brien and I. Coldham, J. Am. Chem. Soc. 2012, 134, 5300.
10) T. K. Beng, J. S. Woo and R. E. Gawley, J. Am. Chem. Soc. 2012, 134, 14764.
11) F. J. Sayago, M. I. Calaza, A. I. Jiménez and C. Cativiela, Tetrahedron, 2009, 65, 5174.
12) J. Maury and J. Clayden, J. Org. Chem. 2015, 80, 10757.
13) R. C. Clark and J. S. Reid, Acta Cryst. 1995, A51, 887.
14) CrysAlisPro. Rigaku Oxford Diffraction.
15) G. M. Sheldrick, Acta Cryst. 2015, A71, 3.
16) G. M. Sheldrick, Acta Cryst. 2008, A64, 112.
17) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
18) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 16, Revision C.01, 2019.
19) N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, J. Cheminform. 2011, 3, 33.
20) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
21) C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785.
22) A. Lawer, R. G. Epton, T. C. Stephens, K. Y. Palate, M. Lodi, E. Marotte, K. J. Lamb, J. K. Sangha, J. M. Lynam and W. P. Unsworth, Chem. Eur. J. 2020, 26, 12674.

[^0]: ${ }^{\text {a }}$ Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.

[^1]:

[^2]:

