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1 The Distribution of Geometric Deviations

Two measures are defined to quantify the geometric deviations between the low-level and high-level

critical point geometries: mass-weighted root-mean-squared-displacement (RMSD) and maximum

reactive bond length change (MBLC). Both RMSD and MBLC between the transition states

optimized at GFN2-xTB and B3LYP-D3/TZVP levels of theory are mainly distributed among 0

and 1Å, which illustrates the rationality of setting the outlier threshold to 1Å(Fig. S1 a-b).

The uncertainty of the ∆2 model can be estimated from the standard deviation of eight models

that comprise the ensemble model. For 35137 of 36358 reactions (97%) in the test set, the prediction

error is within three standard deviations (Fig. S1c), while the remaining 3% of reactions indicate a

systematic inaccuracy. A residual number of unintended transition states being within the training

and testing datasets cannot be ruled out, which may explain these errors. Some specific outliers

are also discussed below.
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Figure S1: Statistics of the geometric deviations and prediction uncertainty. Distributions of root-
mean-squared-displacement (RMSD, a) and maximum reactive bond length change (MBLC, b) of
GFN2-xTB optimized and B3LYP-D3/TZVP optimized geometries. (c) Correlation between the
prediction uncertainty estimated by the ensemble model and the actual deviation (i.e. reference
DFT-level energy minus the average prediction of the ensemble model). Two lines (y=x and y=3x)
are added to compare the actual deviation and the model uncertainty.

2 Prediction of Enthalpies of Reaction

In the main text, the activation energy is predicted by feeding the single-point energies of equi-

librium structures (ESs) and transition states (TSs) into the ∆2 model. Similarly, the enthalpies

of reaction (∆Hr) can be predicted by feeding the ∆2 model enthalpies of equilibrium structures.

Interestingly, the deviation of the ES prediction (MAE of 0.4 kcal/mol) is much smaller than the

TS prediction (MAE of 1.2 kcal/mol, Fig. S2a) when predicting the single-point energy, indicating

that the prediction of ∆Hr is an easier task compared to that of ∆E†.

To train the ∆Hr model, the energy deviations change from SPEDFT − SPExTB into HDFT −
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SPExTB, where HDFT is computed as the single point energy plus the zero point energy correc-

tion and the room temperature thermal contributions to the molecular enthalpy estimated using

a harmonic partition function calculated based on the normal mode frequencies.The model archi-

tecture remained unchanged. With a single ∆Hr model, the MAE reaches 0.58 kcal/mol, within

the expected accuracy of DFT (Fig. S2b).
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Figure S2: Prediction of enthalpies of reaction. (a) Error distribution of single point energy
prediction on equilibrium structures (blue) and transition states (orange). (b) Bivariate kernel
density estimations show the correlation between enthalpies of reaction computed using ground-
truth DFT (x axes) and the ∆2 model (y axes).

3 Analysis of Outliers

This section discusses reactions that are outliers in terms of the activation energy deviation between

the ground-truth DFT and the ∆2 model prediction. Reactions with deviations larger than 20

kcal/mol were regarded as outliers for this analysis.

In total 14 reactions (only counting the forward direction) have a > 20 kcal/mol deviation

in the predicted activation energy (Fig. S4), and these deviations are all derived from the TS

single-point energy predictions. To analyze the source of this inaccuracy, the geometric differences
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of GFN2-xTB optimized- and B3LYPD3-TZVP optimized-TSs were analyzed in detail (Fig. S4).

Although both the RMSD and MBLC of these 14 pairs of geometries are smaller than 1Å, the

comparison of specific TS geometries indicates that all but one TS (R7) have different chemistries

at the two levels of theory. For example, in R1, the xTB-level TS includes an allene-like structure

that leads to a linear alignment of the entire backbone, while the DFT-level TS is more flexible

and stable. Similarly, in R2, the xTB- and DFT-level TSs contain three- and four-membered

ring-like structures, respectively, which explains the overestimation of the TS energy using the

xTB-optimized TS geometry as the model input. In addition, different reaction mechanisms of

the two levels of the theory, such as different bond-breaking and bond-forming orders, also affect

the energy prediction (e.g., R3, R4, R5, R8, R12). These outliers illustrate a limitation of the ∆2

model, namely that it is difficult for the model to provide accurate predictions when the low level

of theory is exhibits qualitatively different TS chemistry from the high level of theory.
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Figure S3: Geometric analysis of 14 outliers (deviation > 20 kcal/mol) with respect to the activa-
tion energy prediction of the ∆2 model.
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4 Timing Benchmarks

In order to assess the time cost involved in running the ∆2 ML model, we conducted an ensemble

model evaluation, composed of eight individual models, across four different systems (Table S1).

These systems were chosen to represent a range of geometries (TSs), system sizes, and potential

use cases. The time expense incurred was broken down into three components: data loading,

model loading, and AIMNet2 execution. The initial two tasks were carried out on a single-CPU,

while the final step was performed on a V100 GPU.

Table S1: Summary of ∆2 model walltime and scaling behavior. All walltimes are reported without
parallelization (i.e., single-core equivalent walltimes).

Test
System

Number
of TS

Data
Loading (s)

Model
Loading (s)

AIMNNET2
Executing (s)

Total
Time (s)

Walltime
per TS (ms)

Glucose 123 0.14 2.98 0.58 3.70 30.08
YARPv2.0 460 0.24 2.91 26.57 29.72 64.61
RGD1-10k 10,000 10.89 2.81 29.19 42.89 4.29
RGD1-100k 100,000 595.46∗ 2.89 45.01 643.36 64.34

The significant increase in AIMNet2 execution time when moving from the Glucose system to

the YARPv2.0 system can be attributed to AIMNet2’s method of bundling input geometries with

the same number of atoms. As a result, the test transition states in the Glucose system, each

containing 24 atoms, can be processed all at once. Additionally, the noticeable rise in data loading

time in the RGD1-100k scenario indicates room for further improvement in the CPU-end workflow

when dealing with large amounts of data. Conversely, model execution itself is stunningly fast in

all cases.
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5 Error Estimation of ∆ Model

To estimate the minimum errors for a ∆ model trained to predict energies at a given geometry

rather than at different fixed-points, the deviations between the B3LYP-D3/TZVP//GFN2-xTB

energies and the B3LYP-D3/TZVP//B3LYP-D3/TZVP energies were computed at 200 pairs of

low-level/high-level TSs from RGD1. To ensure that these samples spanned the range of struc-

tural deviations available in the dataset, the transition states in RGD1 were sorted into five

bins (evenly distributed from 0-1Å) based on RMSD and MBLC, the two metrics of geomet-

ric deviations. This produced two separate binnings of the RGD1 dataset, each with five bins.

20 TSs that were optimized at GFN2-xTB level of theory were randomly selected from each

of the 10 bins for a B3LYP-D3/TZVP single-point energy evaluation, for a total of 200 struc-

tures. The associated B3LYP-D3/TZVP//B3LYP-D3/TZVP energies for each of these TSs were

already available in the dataset. The deviations between the these single-point energies and the

B3LYP-D3/TZVP//B3LYP-D3/TZVP energies were computed and presented in Figures 5c-d for

comparison with the distribution of ∆2 model errors over the testing dataset.
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6 Other Figures
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Figure S4: Illustration of the maximum reactive bond length change (MBLC) metric. The bond
lengths of three reactive bonds, namely (A,C), (B,D) and (C,D), are computed for the GFN2-xTB
optimized (bottom left) and DFT optimized (bottom right) TSs. In this case, the maximum bond
length change is 0.58 Å, corresponding to the bond between atoms C and D.

7



a b
Δ
E
†
P
re
d
(k
c
a
l/
m
o
l)

ΔE†DFT(kcal/mol)

Δ
E
†
P
re
d
(k
c
a
l/
m
o
l)

ΔE†DFT(kcal/mol)
Δ
E
†
P
re
d
(k
c
a
l/
m
o
l)

ΔE†DFT(kcal/mol)

Figure S5: Performance of the ∆2 model on external test sets. Bivariate kernel density estimations
show correlation between activation energies computed at ground-truth DFT (x axes) and the ∆2

model (y axes) when testing on (a) unimolecular decomposition networks and (b) glucose pyrolysis
reactions. The units for mean absolute error (MAE) and root mean squared error (RMSE) are
kcal/mol.
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Figure S6: Performance analysis of the ∆2 model on the external testing sets as a function of
training data size.
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