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S1 

 

 

Figure S1. 1H NMR spectrum of H2P-4py in CDCl3 (400 MHz).  

 

 

Figure S2. 
13

C NMR and DEPT135 spectra of H2P-4py in CDCl3 (100 MHz).  
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Figure S3. 
1
H-

1
H COSY of H2P-4py in CDCl3 (400 MHz). 
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Figure S4. MALDI-TOF mass (matrix: dithranol) of H2P-4py. Top: found, bottom: simulated 

by [C52H47BrN5]
+
 ([M+H]

+
). 
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Figure S5. 
1
H NMR spectrum of H2P-5py in CDCl3 (400 MHz).  

 

 

 

Figure S6. 
13

C NMR and DEPT135 spectra of H2P-5py in CDCl3 (100 MHz). 
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Figure S7. 
1
H-

1
H COSY of H2P-5py in CDCl3 (400 MHz).  
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Figure S8. MALDI-TOF mass (matrix: dithranol) of H2P-5py. Top: found, bottom: simulated 

by [C52H47BrN5]
+
 ([M+H]

+
). 
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Figure S9. 
1
H NMR spectrum of H2P-6py in CDCl3 (400 MHz). Asterisks (*) indicate impurities. 

 

 

 

Figure S10. 
13

C NMR and DEPT135 spectra of H2P-6py in CDCl3 (100 MHz). 
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Figure S11. 
1
H-

1
H COSY of H2P-6py in CDCl3 (400 MHz).  
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Figure S12. MALDI-TOF mass (matrix: dithranol) of H2P-6py. Top: found, bottom: simulated 

by [C52H47BrN5]
+
 ([M+H]

+
). 
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Figure S13. Comparison of 
1
H NMR spectra among H2P-6py, H2P-5py, and H2P-4py in CDCl3 

(400 MHz).  
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Figure S14. 
1
H NMR spectrum of ZnP-4py in CDCl3 (400 MHz). 

 

 

Figure S15. 
13

C NMR and DEPT135 spectra of ZnP-4py in CDCl3 (100 MHz). Asterisks (*) 

indicate hexane. 
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Figure S16. 
1
H-

1
H COSY of ZnP-4py in CDCl3 (400 MHz). 
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Figure S17. MALDI-TOF mass (matrix: dithranol) of ZnP-4py. Top: found, bottom: simulated 

by [C52H44BrN5Zn]
+
 ([M]

+
). 
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Figure S18. 
1
H NMR spectrum of ZnP-5py in CDCl3 (400 MHz). 

 

 

Figure S19. 
13

C NMR and DEPT135 spectra of ZnP-5py in CDCl3 (100 MHz + a drop of 

methanol-d4).  
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Figure S20. 
1
H-

1
H COSY of ZnP-5py in CDCl3 (400 MHz). 
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Figure S21. MALDI-TOF mass (matrix: dithranol) of ZnP-5py. Top: found, bottom: simulated 

by [C52H44BrN5Zn]
+
 ([M]

+
). 
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Figure S22. 
1
H NMR spectrum of ZnP-6py in CDCl3 (400 MHz). 

 

 

Figure S23. 
13

C NMR and DEPT135 spectra of ZnP-6py in CDCl3 (100 MHz). 
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Figure S24. 
1
H-

1
H COSY of ZnP-6py in CDCl3 (400 MHz).  
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Figure S25. MALDI-TOF mass (matrix: dithranol) of ZnP-6py. Top: found, bottom: simulated 

by [C52H44BrN5Zn]
+
 ([M]

+
). 
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Figure S26. Comparison of 
1
H NMR spectra among ZnP-6py, ZnP-5py, and ZnP-4py in CDCl3 

(400 MHz).  
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Figure S27. 
1
H NMR spectrum of ZnP-4Bpy in CDCl3 (400 MHz). Asterisks (*) indicate 

impurities.  

 

 

Figure S28. 
13

C NMR and DEPT135 spectra of ZnP-4Bpy in CDCl3 (100 MHz). 
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Figure S29. 
1
H-

1
H COSY of ZnP-4Bpy in CDCl3 (400 MHz). 
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Figure S30. MALDI-TOF mass (matrix: dithranol) of ZnP-4Bpy. Top: found, bottom: simulated 

by [C57H49N6Zn]
+
 ([M+H]

+
). 
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Figure S31. 
1
H NMR spectrum of ZnP-5Bpy in CDCl3 (400 MHz). Asterisks (*) indicate 

impurities.  

 

 

Figure S32. 
13

C NMR and DEPT135 spectra of ZnP-5Bpy in CDCl3 (100 MHz). Asterisks (*) 

indicate hexane.  
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Figure S33. 
1
H-

1
H COSY of ZnP-5Bpy in CDCl3 (400 MHz).  
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Figure S34. MALDI-TOF mass (matrix: dithranol) of ZnP-5Bpy. Top: found, bottom: simulated 

by [C57H48N6Zn]
+
 ([M]

+
) and [C57H49N6Zn]

+
 ([M+H]

+
). 
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Figure S35. 
1
H NMR spectrum of ZnP-6Bpy in CDCl3 (500 MHz).  

 

 

Figure S36. 
13

C NMR and DEPT135 spectra of ZnP-6Bpy in CDCl3 (125 MHz). 
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Figure S37. 
1
H-

1
H COSY of ZnP-6Bpy in CDCl3 (500 MHz).  



 

S29 

 

 

 

 

 

 

 

 

 

 

Figure S38. MALDI-TOF mass (matrix: dithranol) of ZnP-6Bpy. Top: found, bottom: simulated 

by [C57H49N6Zn]
+
 ([M+H]

+
). 
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Figure S39. Comparison of 
1
H NMR spectra among ZnP-6Bpy, ZnP-5Bpy, and ZnP-4Bpy in 

CDCl3 (400 MHz).  
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Figure S40. 
1
H NMR spectrum of ZnP-4Bpy=ReBr in CDCl3 (500 MHz). Asterisks (*) indicate 

impurities. 

 

 

Figure S41. 
13

C NMR and DEPT135 spectra of ZnP-4Bpy=ReBr in CDCl3 (125 MHz).  
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Figure S42. 
1
H-

1
H COSY of ZnP-4Bpy=ReBr in CDCl3 (500 MHz).  
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Figure S43. MALDI-TOF mass (matrix: DCTB) of ZnP-4Bpy=ReBr. Top: found, bottom: 

simulated by [C60H48BrN6O3ReZn]
+
 ([M]

+
). 
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Figure S44. IR spectra of ZnP-4Bpy and ZnP-4Bpy=ReBr in KBr pellet. 
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Figure S45. 
1
H NMR spectrum of ZnP-5Bpy=ReBr in CDCl3 (400 MHz). Asterisks (*) indicate 

impurities. 

 

 

Figure S46. 
13

C NMR and DEPT135 spectra of ZnP-5Bpy=ReBr in CDCl3 (100 MHz).  
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Figure S47. 
1
H-

1
H COSY of ZnP-5Bpy=ReBr in CDCl3 (400 MHz). 
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Figure S48. MALDI-TOF mass (matrix: DCTB) of ZnP-5Bpy=ReBr. Top: found, bottom: 

simulated by [C60H48BrN6O3ReZn]
+
 ([M]

+
). 
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Figure S49. IR spectra of ZnP-5Bpy and ZnP-5Bpy=ReBr in KBr pellet. 
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Figure S50. 
1
H NMR spectrum of ZnP-6Bpy=ReBr in CDCl3 (500 MHz). Asterisks (*) indicate 

impurities. 

 

 

Figure S51. 
13

C NMR and DEPT135 spectra of ZnP-6Bpy=ReBr in DMF-d7 (125 MHz).  
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Figure S52. 
1
H-

1
H COSY of ZnP-6Bpy=ReBr in DMF-d7 (500 MHz).  
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Figure S53. MALDI-TOF mass (matrix: DCTB) of ZnP-6Bpy=ReBr. Top: found, bottom: 

simulated by [C60H48BrN6O3ReZn]
+
 ([M]

+
). 
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Figure S54. IR spectra of ZnP-6Bpy and ZnP-6Bpy=ReBr in KBr pellet. 
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Figure S55. Comparison of 1H NMR spectra among ZnP-6Bpy=ReBr (500 MHz), ZnP-

5Bpy=ReBr (400 MHz), and ZnP-4Bpy=ReBr (500 MHz) in CDCl3. Asterisk marks (*) indicate 

toluene. 
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Figure S56. 1H NMR spectrum of ZnP-5Bpy=ReMeCN in CDCl3 (400 MHz). Asterisks (*) 

indicate impurities.  
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Figure S57. 
1
H-

1
H COSY of ZnP-5Bpy=ReMeCN in CDCl3 (400 MHz).  
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Figure S58. IR spectra in the CO stretching region of ZnP-5Bpy=ReMeCN and ZnP-5Bpy=ReBr 

in CH3CN (400 MHz). 
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Figure S59. 1H NMR spectrum of ZnP-6Bpy=ReMeCN in CDCl3 (400 MHz). Asterisks (*) 

indicate impurities.  
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Figure S60. 
1
H-

1
H COSY of ZnP-6Bpy=ReMeCN in CDCl3 (400 MHz). 
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Figure S61. IR spectra in the CO stretching region of ZnP-6Bpy=ReMeCN and ZnP-6Bpy=ReBr 

in CH3CN (400 MHz). 
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Figure S62. Comparison of 1H NMR spectra among H2P-4py, ZnP-4py, ZnP-4Bpy and ZnP-

4Bpy=ReBr in CDCl3. Asterisk marks (*) indicate toluene. 

 

 

Figure S63. Comparison of 1H NMR spectra among H2P-5py, ZnP-5py, ZnP-5Bpy, ZnP-

5Bpy=ReBr and ZnP-5Bpy=ReMeCN in CDCl3.  
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Figure S64. Comparison of 1H NMR spectra among H2P-6py, ZnP-6py, ZnP-6Bpy, ZnP-

6Bpy=ReBr and ZnP-6Bpy=ReMeCN in CDCl3. 
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Figure S65. IR spectral changes of (a) ZnP-5Bpy=ReMeCN and (b) ZnP-6Bpy=ReMeCN dissolved 

in Ar-saturated DMA for 2 h. Concentrations of the dyads: 11 mM. 

. 
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Figure S66. UV-vis absorption spectra in DMA of (a) ZnP-phen and ZnP-phen=Re, (b) ZnP-

4Bpy and ZnP-4Bpy=ReBr, (c) ZnP-5Bpy and ZnP-5Bpy=ReBr, (d) ZnP-6Bpy and ZnP-

6Bpy=ReBr. 
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Figure S67. The center-to-center distances between the Zn and Re atoms in the dyads. Calculation 

method: B3LYP/LANL2DZ (Re) / 6-31G(d) (H, C, N, O, Br, Zn) using PCM with the default 

parameter for DMA. The Zn porphyrins without the DMA coordination were calculated.  
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Figure S68. UV-vis absorption spectra in DMA of (a) ZnP-5Bpy=ReBr and ZnP-5Bpy=ReDMA, 

(b) ZnP-6Bpy=ReBr and ZnP-6Bpy=ReDMA.  
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Figure S69. Fluorescence spectra in DMA (λex = 560 nm) of (a) ZnP-4Bpy and ZnP-4Bpy=ReBr, 

(b) ZnP-5Bpy and ZnP-5Bpy=ReBr, (c) ZnP-6Bpy and ZnP-6Bpy=ReBr. (d) Overlay of all 

fluorescence spectra. 
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Figure S70. Fluorescence decay profiles of ZnP-nBpy (n = 4, 5, and 6) in DMA. The excitation 

wavelength was 406 nm and instrumental response function was FWHM = 70 ps (blue lines). The 

decay profiles were fitted with one component (red lines). 
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Figure S71. Fluorescence decay profiles of ZnP-4Bpy=ReBr and ZnP-5Bpy=ReBr in DMA. The 

excitation wavelength was 406 nm and instrumental response function was FWHM = 70 ps (blue 

lines). The decay profiles were fitted with one component (red lines). 

 

 



 

S59 

 

 

Figure S72. Fluorescence decay profiles of ZnP-6Bpy=ReBr in DMA. The excitation wavelength 

was 406 nm and instrumental response function was FWHM = 70 ps (blue lines). The decay 

profiles were fitted with two components (red lines). 

 

 

Figure S73. The fitting curves by changing the major component in Figure S70 (red lines) with 5 

ps (black lines) and 25 ps (blue lines).  

  



 

S60 

 

 

 

 

 

 

Figure S74. Emission spectra in DMA (λex = 560 nm) under air and Ar atmospheres at 298 K of 

(a) ZnP-4Bpy=ReBr, (b) ZnP-5Bpy=ReBr, and (c) ZnP-6Bpy=ReBr. The long-lived excited state 

of the T1 of the porphyrin is efficiently quenched by O2 in air.  

(a) (b)

(c)
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Figure S75. Emission spectra in Ar-saturated DMA (λex = 560 nm) of (a) ZnP-5Bpy=ReBr and 

ZnP-5Bpy=ReDMA, (b) ZnP-6Bpy=ReBr and ZnP-6Bpy=ReDMA. 
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Figure S76. (a) CVs (Scan rate =100 mV s
−1

) and (b) DPVs of ZnP-nBpy=ReBr, ZnP-nBpy, and 

fac-Re(bpy)(CO)3Br (0.5 mM) in DMA under Ar atmosphere with 0.1 M 
n
Bu4NPF6 as a 

supporting electrolyte.  
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Table S1. Electrochemical properties in DMA at 298 K
a 

 E
1/2

red
 /V E(3ZnP*/ZnP–) /V 

b
 

ZnP-4Bpy −1.84, −2.24, −2.43 −0.20 

ZnP-4Bpy=ReBr −1.68, −1.83, −1.97, −2.42 n.d. c 

ZnP-5Bpy −1.85, −2.24, −2.44 −0.21 

ZnP-5Bpy=ReBr −1.64, −1.82, −2.34, −2.43 n.d. c  

ZnP-6Bpy −1.87, −2.26 −0.23 

ZnP-6Bpy=ReBr −1.76, −1.96, −2.45 n.d. c 

ZnP-phen −1.79, −2.10, −2.33 −0.15 

ZnP-phen=Re −1.71, −1.894, −2.23 n.d. c 

a E1/2 vs. Fc/Fc+. b Excited state reduction potentials of the Zn porphyrin units were calculated 

from E1/2
red + E00 (1.64 eV, see: Y. Kuramochi, Y. Fujisawa, A. Satake, J. Am. Chem. Soc. 2020, 

142, 705). c Not determined. 
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Figure S77. (Left) Energy levels of the frontier orbitals of ZnP-nBpy=ReBr (n = 4 (green), 5 

(blue), and 6 (red)) obtained from DFT calculations and redox potentials obtained from DPV 

measurement in DMA. The structures without (a, b) and with (c, d) the axial-coordinated DMA 

were optimized at the B3LYP/LANL2DZ/6-31G(d) level without (a, c) and with (b, d) using PCM 

with the default parameter for DMA. (Right) Redox potentials obtained from the DPV 

measurements. The trends of the HOMO energy levels among the 4-, 5- and 6-positions were well 

consistent with the experimental results when the solvent effect was considered.   
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Figure S78. Energy level diagrams and frontier orbitals of ZnP-nBpy=ReBr (n = 4, 5, and 6) with 

axial-coordinated DMA. The structures were optimized at the B3LYP/LANL2DZ/6-31G(d) level 

using PCM with the default parameter for DMA (isovalue = 0.02). DMA coordination to the Zn 

porphyrin can occur from above and below the direction of the Re complex units (the more stable 

structures are shown in this figure). The HOMO and LUMO energy levels are unaffected by the 

DMA coordination direction. 
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Figure S79. Spin density plots of the OERS of the ZnP-nBpy=Re series with and without the Br 

ligand, the DMA adducts, and their TEOA and CO2 adducts. The Zn porphyrin units have the 

axial-coordinated DMA. The structures were optimized at the B3LYP/6-31G+(d)/LANL2DZ 

levels using PCM with the default parameter for DMA.  
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Figure S80. (a) CVs (Scan rate =100 mV s
−1

) and (b) DPVs of ZnT(tBuP)P and ZnTPP (3.0 mM) 

in DMA under Ar atmosphere with 0.1 M 
n
Bu4NPF6 as a supporting electrolyte. Due to the very 

low solubility of ZnTMP in DMA, the CV measurement could not be performed. 
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Figure S81. Energy diagrams of ZnP-nBpy=ReBr (n = 4, 5, and 6) and ZnP-phen=Re (phen), 

and BIH in DMA at 298 K. The energy level of the T1 of the zinc porphyrin (1.6 eV) was estimated 

from the value of ZnP-phen=Re (See: Y. Kuramochi, Y. Fujisawa, A. Satake, J. Am. Chem. Soc. 

2020, 142, 705). The energy levels of the charge-separated states from the ground state were 

calculated using E(ZnP/ZnP−) = −1.84 V for ZnP-4Bpy, −1.85 V for ZnP-5Bpy, and −1.87 V for 

ZnP-6Bpy, E(Re/Re−) = −1.68 V for ZnP-4Bpy=ReBr, −1.64 V for ZnP-5Bpy=ReBr, and −1.76 

V for ZnP-6Bpy=ReBr, and E(BIH+/BIH) = −0.10 V vs. Fc/Fc+.  
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Figure S82. Formation of the CO2-TEOA zwitterionic adduct.  
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Figure S83. Emission spectral changes during the measurements in DMA (λex = 560 nm) of (a) 

ZnP-5Bpy=ReBr (b) ZnP-5Bpy=ReDMA, (c) ZnP-6Bpy=ReBr, and (d) ZnP-6Bpy=ReDMA. Each 

measurement (scan) takes approximately five minutes. 
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Figure S84. Emission spectral change during the measurements in DMA-TEOA (4:1 v/v) (λex = 

560 nm) of ZnP-5Bpy=ReDMA. Each measurement (scan) takes approximately five minutes. The 

sample was prepared by dissolving ZnP-5Bpy=ReMeCN in DMA and then diluting with DMA-

TEOA. 
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Figure S85. Time dependence of CO formation during irradiation at 420 nm by LED lamps (Input 

power: 30 mW), in a merry-go-round irradiation apparatus, of CO2-saturated DMA solutions 

containing the dyad (0.05 mM) and BIH (0.05 M) in the presence of phenol (0.1 M). Green: ZnP-

4Bpy=ReBr, blue: ZnP-5Bpy=ReBr, red: ZnP-6Bpy=ReBr, black: ZnP-phen=Re. CO was 

selectively produced without forming detectable amounts of H2, CH4, and HCOOH. 

 

 

Figure S86. Time dependence of H2 formation during irradiation at 420 nm by LED lamps (Input 

power: 30 mW), in a merry-go-round irradiation apparatus, of CO2-saturated DMA-TEOA (4:1 

v/v) solutions containing the dyad (0.05 mM) and BIH (0.05 M). Green filled diamond: ZnP-

4Bpy=ReBr, blue filled square: ZnP-5Bpy=ReBr, red filled triangle: ZnP-6Bpy=ReBr, black 

filled circle: ZnP-phen=Re. Plot of ZnP-phen=Re (0.05 mM) in CO2-saturated DMA containing 

BIH (0.05 M) and phenol (0.1 M) was shown as black open circles.  
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Figure S87. UV-vis absorption spectra of CO2-saturated DMA-TEOA (4:1 v/v) solutions 

containing the dyad (0.05 mM) and BIH (0.05 M) after irradiation at 560 nm from LED lamps 

(input power: 30 mW) with a merry-go-round apparatus for 17 h.   
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Figure S88. UV-vis absorption spectral change during irradiation (0–60 min) at 420 nm (Xe lamp, 

1.810−7 einstein s−1) of CO2 saturated DMA–TEOA (4:1 v/v) solutions containing BIH (0.05 M) 

and ZnP-5Bpy=ReBr (0.05 mM). Purple dotted and solid lines show the spectra before and after 

the irradiation, respectively. 
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Figure S89. Plot of the ΦCO versus the initial concentration of BIH in the photocatalytic CO2 

reduction (Xe lamp, 420 nm, 3.6×10−8 einstein s−1) using the DMA solutions containing ZnP-

phen=Re (0.05 mM) and phenol (0.1 M). The quenching efficiency relative to ηq at [BIH] = 50 

mM was calculated using ηq = [BIH] KSV / (1 + [BIH] KSV). 
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Figure S90. A plausible reaction mechanism for the ZnP-nBpy=Re series in the absence of 

TEOA. The catalytic cycle is based on the following literature: Y. Kou, Y. Nabetani, D. Masui, T. 

Shimada, S. Takagi, H. Tachibana, H. Inoue, J. Am. Chem. Soc. 2014, 136, 6021–6030. 
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Figure S91. Turnover frequency (TOFCO) as a function of Br ion concentration during irradiation 

at 420 nm by LED lamps (input power: 0.5 mW), in a merry-go-round irradiation apparatus, of 

CO2-saturated DMA–TEOA (4:1 v/v) solutions containing ZnP-5Bpy=ReBr (0.05 mM) and BIH 

(0.05 M) with various amounts (0−1.5 mM) of hexadecyltrimethylammonium bromide. 
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Figure S92. Formation of the iminoester complex. 

 

 

 

 

 

 
Figure S93. IR spectral changes of (a) ZnP-5Bpy=ReDMA and (b) ZnP-6Bpy=ReDMA in Ar-

saturated DMA after addition of TEOA for 20 h to give a DMA-TEOA solution (400:1 v/v). 

Concentrations of the dyads: 9 mM. 
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Figure S94. UV-vis absorption spectra of ZnP-5Bpy=ReBr in DMA, DMA-TEOA (4:1 v/v), 

and dichloromethane. 
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Figure S95. UV-vis absorption spectral changes of (a) ZnP-5Bpy=ReDMA, (b) ZnP-5Bpy=ReBr, 

(c) ZnP-5Bpy, and (d) ZnP-6Bpy=ReDMA (3 μM) in Ar-saturated dichloromethane during 

addition of TEOA. Insets show magnifications of the Soret band region. 
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Figure S96. Comparison of the relative absorption changes at the Soret bands of ZnP-

5Bpy=ReDMA, ZnP-5Bpy=ReBr, ZnP-5Bpy, and ZnP-6Bpy=ReDMA in Ar-saturated 

dichloromethane during addition of TEOA. [TEOA] = (a) 0−20 μM, (b) 0−100 μM. 
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Figure S97. The Benesi-Hildebrand plots of (a) ZnP-5Bpy=ReDMA, (b) ZnP-5Bpy=ReBr, (c) 

ZnP-5Bpy, and (d) ZnP-6Bpy=ReDMA in Ar-saturated dichloromethane during addition of TEOA. 
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Figure S98. UV-vis absorption spectral changes of (a) ZnP-5Bpy=ReBr, (b) ZnP-5Bpy=ReDMA 

(3 μM) in Ar-saturated dichloromethane during addition of DMA. Insets show magnifications of 

the Soret band region. Absorption changes at the Soret bands of (c) ZnP-5Bpy=ReBr and (d) ZnP-

5Bpy=ReDMA. Insets show the Benesi-Hildebrand plots. The apparent binding constants (Kapp
DMA) 

were estimated to be 34 and 29 M−1 for ZnP-5Bpy=ReBr and ZnP-5Bpy=ReDMA, respectively.  
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Proportion of Zn porphyrin with TEOA coordination in DMA-TEOA 

The apparent binding constants of Zn porphyrins with TEOA and DMA were defined to be the 

following equations (S1) and (S2): 

 

The apparent binding constants of ZnP-5Bpy=ReDMA in dichloromethane were estimated to be 

Kapp = 330 M−1 and Kapp
DMA = 29 M−1 for TEOA and DMA, respectively. The equilibrium constant 

between the TEOA- and DMA-coordinated Zn porphyrins was defined to be equation (S3): 

 

In a mixed solvent of DMA-TEOA (4:1 v/v), the concentrations of DMA and TEOA were 

calculated to be 8.63 M and 1.51 M, respectively. Since [DMA], [TEOA] >> [ZnP-DMA], [ZnP-

TEOA], the equation S3 became K = [Zn-DMA]/[ZnP-TEOA] × 0.18. By using S1 and S2, K = 

Kapp
DMA / Kapp and the ratio of the TEOA- and DMA-coordinated Zn porphyrins was expressed as 

equation S4.  

 

Therefore, the proportions of the TEOA- and DMA-coordinated Zn porphyrins were estimated to 

be 67% and 33% in Ar-saturated DMA-TEOA (4:1 v/v), respectively. When the value under CO2 

atmosphere was used (Kapp = 760 M−1), the proportion of the TEOA-coordinated Zn porphyrin 

increased to be 82% in CO2-saturated DMA-TEOA (4:1 v/v). Here, the value of K estimated from 

the titrations in dichloromethane was much smaller than the value (K =1000) in DMA from the 

IR spectra, suggesting that TEOA is deprotonated and more strongly bound to the dyad in the 

DMA-TEOA mixed solution.  
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Figure S99. UV-vis absorption spectral changes of (a) ZnP-5Bpy=ReBr, (b) ZnP-5Bpy=ReDMA 

(3 μM) in CO2-saturated dichloromethane during addition of TEOA. Insets show magnifications 

of the Soret band region. Absorption changes at the Soret bands of (c) ZnP-5Bpy=ReBr and (d) 

ZnP-5Bpy=ReDMA. Insets show the Benesi-Hildebrand plots. 
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Figure S100. A plausible reaction mechanism for ZnP-5Bpy=Re in the presence of TEOA. The 

catalytic cycle is based on the following literature: K. Kamogawa, Y. Shimoda, K. Miyata, K. 

Onda, Y. Yamazaki, Y. Tamaki, O. Ishitani, Mechanistic Study of Photocatalytic CO2 Reduction 

Using a Ru(ii)-Re(i) Supramolecular Photocatalyst. Chem. Sci. 2021, 12, 9682−9693. 

 

 

 

 

 

Catalytic cycle


