Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information (ESI)

2D Nanosheets of Layered Double Perovskites: Synthesis, Photostable Bright Orange Emission and Photoluminescence Blinking

Aditya Bhardwaj,^{a,‡} Kaushik Kundu,^{a,‡} Ranjan Sasmal, ^a Paribesh Acharyya,^a Jayita Pradhan,^a Simanta Kalita,^b Sarit S. Agasti,^{*,a,b} and Kanishka Biswas^{*,a}

^aNew Chemistry Unit and School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.

* E-mail: sagasti@jncasr.ac.in; *E-mail: kanishka@jncasr.ac.in

^bChemistry and Physics of materials Unit, JNCASR, Jakkur P.O., Bangalore 560064, India.

[‡] These authors contributed equally to this work

EXPERIMENTAL SECTION

Reagents. Cesium carbonate (Cs₂CO₃, 99.9% Sigma Aldrich), bismuth acetate [Bi(OAc)₃, >99.99% Sigma Aldrich], manganese acetate [Mn(OAc)₂,> 98% Sigma-Aldrich], cadmium acetate dihydrate [Cd(OAc)₂·2H₂O, 98% Alfa Aesar], manganese chloride (MnCl₂, >99% Sigma Aldrich), cesium chloride (CsCl, >99.99% Sigma Aldrich), bismuth chloride (BiCl₃,>99.99% Sigma Aldrich), cadmium chloride (CdCl₂, >99.99% Sigma-Aldrich trace metal basis), benzoyl chloride (ACS reagent, 99%, Sigma-Aldrich), 1-octadecene (ODE, technical grade, 90%), oleylamine (OAm, technical grade, 90%), oleic acid (OA, technical grade, 90%), toluene (ACS reagent, ≥99.5%, Sigma-Aldrich), and isopropanol (ACS reagent, ≥99.5%, Sigma-Aldrich) were used as received without further purification.

Synthesis of Cs₄CdBi₂Cl₁₂ and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ by solid-state mechanochemistry. Precisely, 135.8 mg (0.8 mmol) of CsCl, 37.0 mg (0.2 mmol) of CdCl₂, 127.2 mg (0.4 mmol) BiCl₃ were grounded mechanically for 2 hours in a mortar pestle to synthesize Cs₄CdBi₂Cl₁₂. Similarly, 138 mg (0.8 mmol) of CsCl, 22.5 mg (0.12 mmol) of CdCl₂, 129.2 mg (0.4 mmol) BiCl₃, 10.3 mg (0.08 mmol) of MnCl₂ for were grounded together for the synthesis of Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂. The synthesis were carried out at ambient conditions.

Colloidal synthesis of nanosheets (NSs) of Cs₄CdBi₂Cl₁₂ and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂. In a typical synthesis, 65.16 mg (0.2 mmol) of Cs₂CO₃, 26.65 mg (0.1 mmol) of Cd(OAc)₂.2H₂O, and 77.22 mg (0.2 mmol) of Bi(OAc)₃ for Cs₄CdBi₂Cl₁₂; and 65.16 mg (0.2 mmol) of Cs₂CO₃, 15.99 mg (0.06 mmol) of Cd(OAc)₂.2H₂O, 6.92 mg (0.04 mmol) of Mn(OAc)₂, and 77.22 mg (0.2 mmol) of Bi(OAc)₃ for Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ were taken in 10 ml of ODE into a 50 ml tri-necked round bottom flask in Schlenk line. The sealed flask was then allowed to vacuum at 70°C with continued stirring for 30 mins. Then, 1 ml of OA and 0.5 ml of OAm were injected. Subsequently, the temperature was raised to 120°C and kept for 1 hour in N₂ environment. After that, temperature of the reaction was raised to 135°C and 1 ml of benzoyl chloride was quickly injected into the reaction mixture. The reaction was then immediately quenched in an ice water bath. The precipitates were extracted *via* centrifuging at 8000 rpm for 10 mins after which the solution was washed several times with isopropanol, which was then dispersed in toluene for further studies. The reaction scheme has been shown in Scheme S1.

Powder X-Ray diffraction. Rigaku Smart Lab diffractometer was used for collecting the PXRD patterns of all samples at room temperature using Cu K α radiation (λ =1.5406 Å) with accelerating voltage of 40 kV (current of 30 mA).

Inductively coupled plasma atomic emission spectroscopy (ICP-AES). The exact composition of the as-synthesized nanomaterials was measured based on ICP-AES data. The ICP-AES measurements were carried out using Perkin-Elmer Optima 7000DV instrument. The ICP-AES measurement was carried out by dissolving the powdered nanomaterials in aqua regia (HNO₃: HCI = 1:3) followed by diluting with millipore water. The Cs standard (1000 mg/L, Sigma-Aldrich), Cd standard (1000 mg/L, Sigma-Aldrich), Mn standard (1000 mg/L, Sigma-Aldrich), and Bi standard (1000 mg/L, Sigma-Aldrich) were utilized to determine the compositions in ICP. For the particular measurement, the error bar lies below 1.5 %.

Transmission electron microscopy (TEM). The TEM images of the synthesized Cs₄CdBi₂Cl₁₂ and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ nanostructures were acquired using a JEOL (JEM3010) TEM instrument (200 kV accelerating voltage) fitted with a Gatan CCD camera. Subsequently, the obtained images were analysed using the ImageJ software.

Thermogravimetric analysis (TGA). TGA was carried out using 2 STAR TGA instrument. Samples were heated at a rate of 5 °C min⁻¹ in the temperature range of 100-800 °C and in the N₂ atmosphere (40 mL min⁻¹).

Raman Spectroscopy. The Raman spectra were collected from Jobin-Yvon Horiba LabRAM HR evolution Raman spectrometer in backscattering geometry with 1800 gr/mm grating and Peltier cooled CCD detector using the excitation source of 514.5 nm (green laser) and 10s of acquisition time.

Field emission scanning electron microscopy (FESEM). A ZEISS Gemini SEM – Field emission scanning electron microscope was implemented to extract the FESEM images. Elemental mapping was carried out during FESEM imaging.

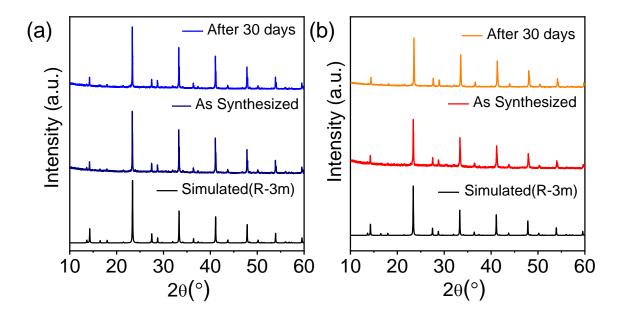
Electronic spectroscopy. The UV-Vis absorption spectra were measured using a PerkinElmer, Lambda-900 UV/vis/near-IR spectrometer. The diffuse reflectance measurement was performed in 250-800 nm range in the reflectance mode for obtaining optical bandgap.

The PL emission spectra of all samples in solid state as well as in solution phase (dispersed in toluene) and the excitation spectra were measured by PerkinElmer LS 55 luminescence spectrometer at different temperatures (25-85°C).

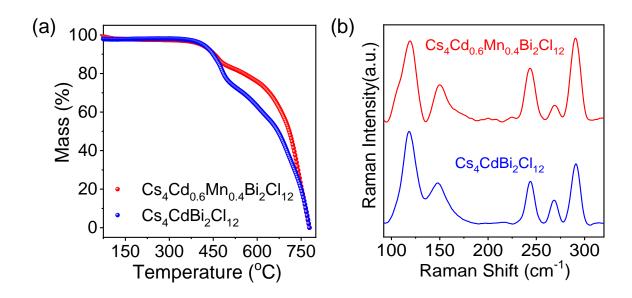
Low-temperature PL measurements. Edinburgh FLS1000 spectrofluorometer was implemented for low-temperature PL measurements at 77 K using a vacuum liquid-nitrogen cryostat.

Lifetime measurements. The time-resolved PL decay plots were collected by using Edinburgh FLS1000 spectrofluorometer coupled with pulsed xenon microsecond flash-lamp at 298 K and 77 K.

X-ray photoelectron spectroscopy. XPS measurement was performed using Kratos Axis Ultra DLP instrument that houses the Al K alpha (1486.6eV) radiation with spot size of 300 μ m \times 700 μ m. All XPS signals were calibrated by setting the Carbon 1s signal to 284.8 eV.


Atomic force microscopy (AFM). AFM measurement was carried out using a Bruker Innova Microscope in tapping mode containing antimony doped Silicon tip and data was analysed with NanoScope software.

Fourier transform infrared spectroscopy (FTIR). FTIR spectra was recorded in the range of 400-4000 cm⁻¹ with the utilization of Bruker Optics Alpha-P FTIR spectrophotometer equipped with an attenuated total reflectance (ATR) module.


Electron paramagnetic resonance (EPR). EPR spectra were taken for solid sample in JES-X320 instrument (using X-band microwave ES-11030MWU JEOL Resonance).

Super-resolved fluorescence imaging and time-resolved single particle tracking. The toluene-dispersed samples were drop casted on coverslip at certain concentrations and were left to dry in atmospheric conditions. ZEISS ELYRA PS1 system was used for fluorescence microscopy of nanosheet samples. It makes use of Plan-Apochromat 100x/1.46 Oil DIC M27 objective. The bright field and fluorescence microscopy were taken for the visualization of both the samples (i.e., Cs₄CdBi₂Cl₁₂ and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂). Structured illumination microscopy (SIM) method with excitation using 405 nm laser, appropriate emission filter (BP 575–650 + LP 755) and CMOS camera were used for fluorescence microscopy. The entire experiment was performed with a laser power density of 13.7 W.cm⁻². Second, the blinking studies of individual nanosheet sample were carried out using total

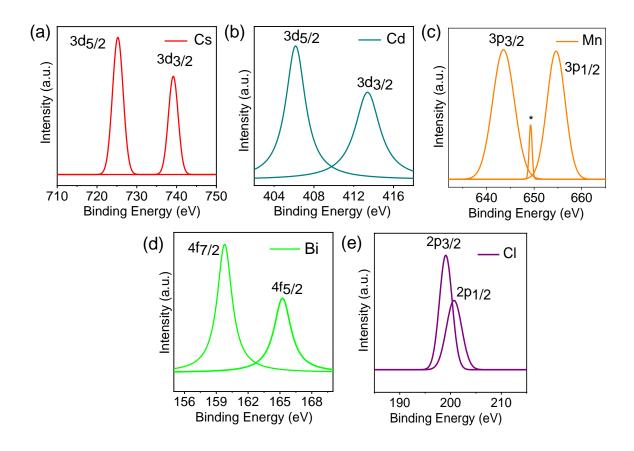
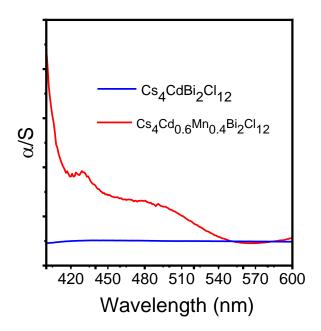
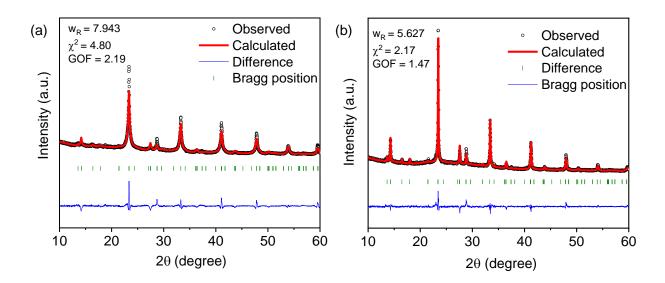
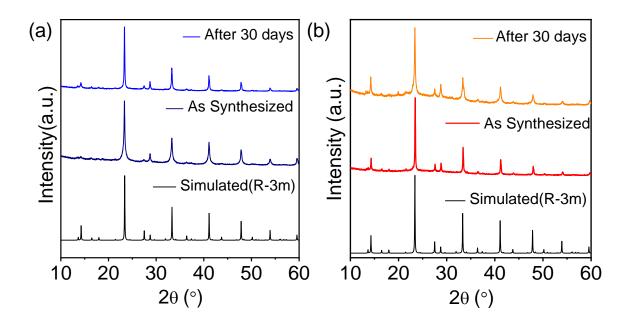

internal reflection (TIRF) mode. The time-dependent PL emission for NSs was recorded for 10000 frames with integration time of 30 ms. Laser power density was kept 37.8 W.cm⁻² throughout the blinking study. Electron multiplication (EM) gain was kept at 50 in the experiment. The time trace of PL emission and photon counts were evaluated by using ZEN 2.0 software. ImageJ software was used for image processing and other calculations on the nanosheet's dimensions. The data in TIRF mode is acquired under very high-power laser illumination. As a quantitative comparison, the excitation power was 13.7 W.cm⁻² for the SIM imaging, whereas 37.8 W.cm⁻² was used for acquiring image. Due to the use of high-power laser illumination the background increased. It is believed that the increase in background fluorescence contributed to the appearance of very small size spots in the imaging field of view. Therefore, we concentrated our investigation on much brighter and large size spots that are observed during SIM imaging.

Fig. S1. PXRD pattern of mechanochemically synthesized **(a)** Cs₄CdBi₂Cl₁₂, and **(b)** Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ bulk powders after 30 days exposure to ambient conditions.

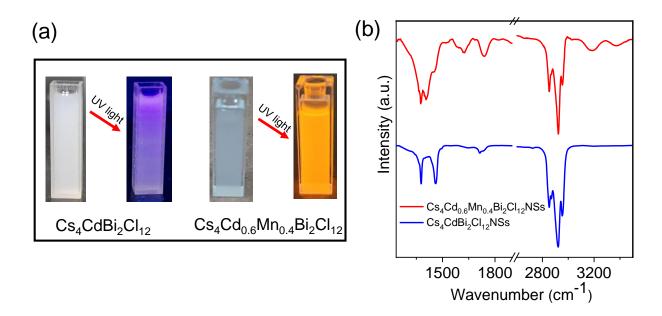
Fig. S2. (a) Thermogravimetric analysis (TGA), and (b) Raman spectra of Cs₄CdBi₂Cl₁₂ and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ powder samples.

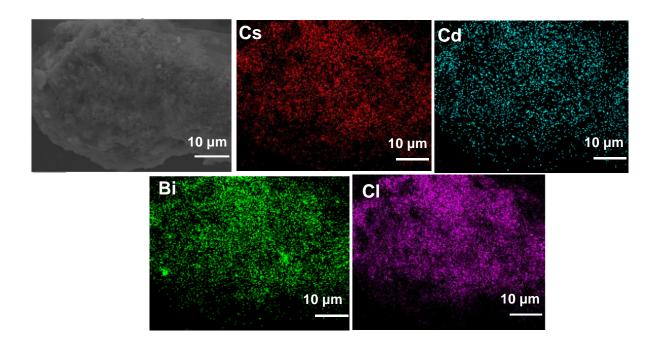
Fig. S3. XPS spectra of Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ bulk powders for **(a)** Cs 3d, **(b)** Cd 3d, **(c)** Mn 2p, **(d)** Bi 4f, and **(e)** Cl 2p. The asterisk in (c) denotes the satellite peak in case of Mn²⁺.


Fig. S4. Zoomed version of solid-state UV/Vis absorption spectra of Cs₄CdBi₂Cl₁₂ and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ bulk powders.

$$Cs_2CO_3 + \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$


Scheme S1. Detailed colloidal synthesis scheme for nanostructured Cs₄Cd_{1-x}Mn_xBi₂Cl₁₂ (x = 0 and 0.4) samples through solution phase hot-injection method.


Fig. S5. Rietveld refinement of **(a)** Cs₄CdBi₂Cl₁₂, and **(b)** Cs₄Cd_{0.67}Mn_{0.33}Bi₂Cl₁₂ nanosheet (NS) samples.

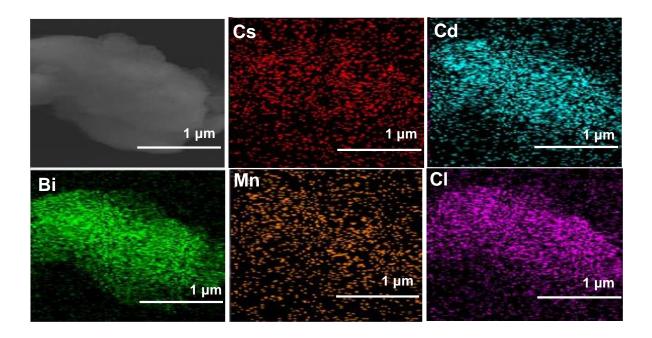

Fig. S6. PXRD pattern of hot-injection synthesized **(a)** Cs₄CdBi₂Cl₁₂, and **(b)** Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ nanosheet samples after 30 days exposure to ambient conditions.

Fig. S7. (a) Physical appearances of nanosheet (NS) samples dispersed in toluene under ambient conditions and inside the UV chamber. **(b)** FTIR spectra of Cs₄CdBi₂Cl₁₂ and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ samples synthesized by hot-injection method.

Fig. S8. FESEM image of Cs₄CdBi₂Cl₁₂ sample and corresponding elemental colour mapping through EDAX.

Fig. S9. FESEM image of $Cs_4Cd_{0.6}Mn_{0.4}Bi_2Cl_{12}$ sample and corresponding elemental colour mapping through EDAX.

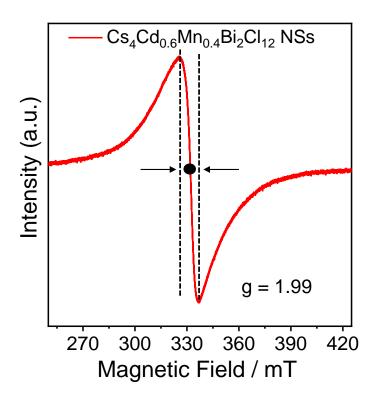
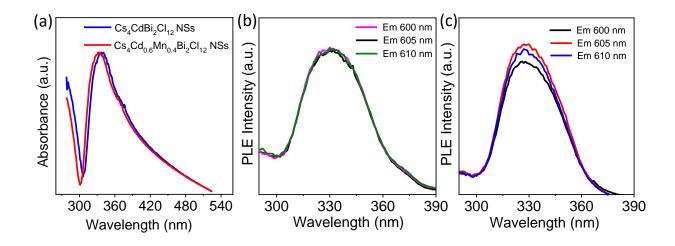
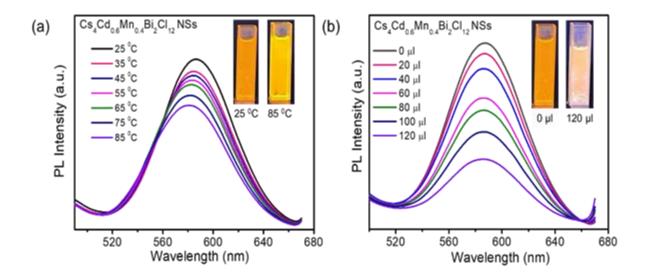
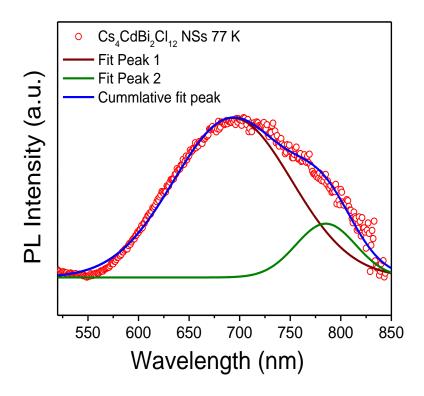
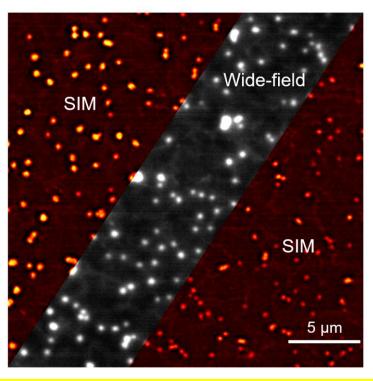
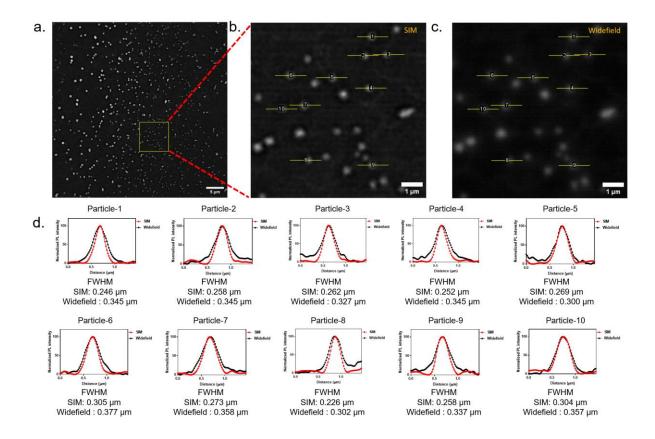
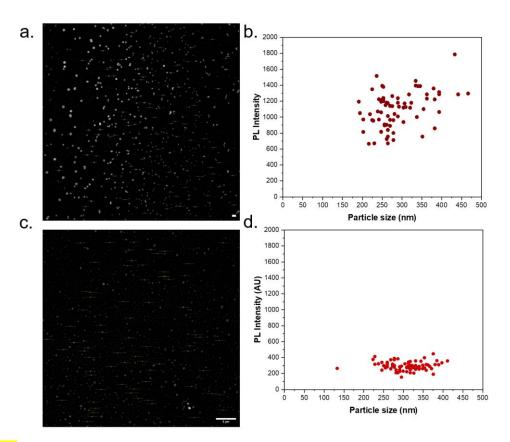




Fig. S10. EPR spectra of hot-injection synthesized Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ NS sample.

Fig. S11. (a) Electronic absorption spectra of Cs₄CdBi₂Cl₁₂ and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ nanosheets (NSs). The emission wavelength dependent PL excitation (PLE) spectra of **(b)** Cs₄CdBi₂Cl₁₂, and **(c)** Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ nanosheets (NSs).

Fig. S12. (a) Temperature dependent PL spectra of Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ nanosheets (NSs). (b) The change in PL intensity of Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ NSs with addition of water. The inset in the respective plots shows the physical appearance of NS solution before and after the study.


Fig. S13. Deconvoluted PL spectra of Cs₄CdBi₂Cl₁₂ nanosheets (NSs) at 77 K.

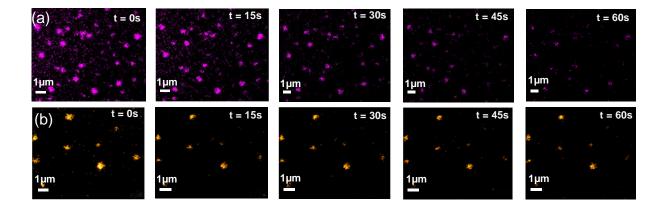

Fig. S14. Comparison between SIM and corresponding wide-field fluorescence image of the Mn-substituted nanosheets.

Fig. S15. a) Image of the Mn-substituted nanosheets. b) Zoomed in SIM image of the highlighted yellow square region from image a. c) Corresponding widefield image of the highlighted yellow square region from image a. d) Comparison of sizes of the particles in the SIM and widefield image. The plots are generated by plotting the intensity values from the representative 10 highlighted particles (yellow lines in image b and c). The full width at half maxima (FWHM) from the Gaussian fit of this cross-sectional profile was reported as the size of the NSs.

Fig. S16. a) SIM image of the Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ nanosheets (scale bar = 1 μm). b) Scatter plot for the intensity vs sizes of the Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ nanosheets. 75 particles were chosen for analysis. c) SIM image of the Cs₄CdBi₂Cl₁₂ nanosheets (scale bar = 5 μm). d) Scatter plot for the intensity vs sizes of the Cs₄CdBi₂Cl₁₂ nanosheets. 75 particles were chosen for analysis.

Fig. S17. Temporal snapshots of PL images from nanosheet samples extracted at an interval of 15s each for **(a)** Cs₄CdBi₂Cl₁₂, and **(b)** Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ up to 60s.

Table S1. ICP-AES analysis for elemental composition in Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ nanosheet (NS) sample.

Elements	Cs	Bi	Cd	Mn	Cd (%)*	Mn (%)*
Conc. (mg/L)	90.68 mg/L	67.73 mg/L	9.62 mg/L	2.47 mg/L	66.70	33.29

^{*}Nominal composition is Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂, whereas the actual composition from ICP-AES analysis is found to be Cs₄Cd_{0.67}Mn_{0.33}Bi₂Cl₁₂.

Table S2. Rietveld refinement parameters of Cs₄CdBi₂Cl₁₂ nanosheet (NS) sample.

Space group: R-3m; a =	b = 7.611(5) Å, c = 37.24(6) Å,
$\alpha = \beta =$	90°; γ = 120°;

Atom	x	у	Z	Occupancy	U _{iso} (Å ²)
Bi	0.333333	0.666667	0.4123(5)	1	0.0275
Cs	-0.333333	0.333333	0.457(4)	1	0.0488
Cs	0.000	0.000	0.374(4)	1	0.0478
Cd	0.000	0.000	0.500	0.99	0.0247
Cd	0.666667	0.333333	0.333333	0.017	0.0247
CI	0.15(6)	0.31(12)	0.459(7)	1	0.0540
CI	0.503(13)	0.497(13)	0.374(7)	1	0.0536

Table S3. Rietveld refinement parameters of Cs₄Bi₂Cd_{0.67}Mn_{0.33}Cl₁₂ nanosheet (NS) sample.

Space group: R-3m; a = b = 7.6148(17) Å, c = 37.267(17) Å, α = β = 90°; γ = 120°;

Atom	x	у	Z	Occupancy	U _{iso} (Ų)
Bi	0.333333	0.666667	0.4126(3)	1	0.0275
Cs	-0.333333	0.333333	0.4567(21)	1	0.0488
Cs	0.000	0.000	0.3747(19)	1	0.0478
Cd	0.000	0.000	0.5000	0.66	0.0247
Mn	0.000	0.000	0.5000	0.33	0.0247
Cd	0.666667	0.333333	0.333333	0.017	0.0247
CI	0.156(27)	0.31(5)	0.460(3)	1	0.0540
CI	0.500(7)	0.500(7)	0.376(4)	1	0.1287

Table S4. Comparative PLQY values along with the thickness of reported perovskite nanosheet (NS) or nanoplate (NPL) samples.

System	Thickness	PLQY	Ref.
	1.2 nm	32%	
	3.2 nm	38%	ACS Appl. Mater.
2D NSs of	4.8 nm	43%	Interfaces 2020, 12,
CH ₃ NH ₃ PbBr ₃	6.4 nm	59%	6283-6297
	8.4 nm	78%	
2D NSs of (PEA) ₂ PbI ₄	2.0 ± 0.1 nm	34.5%	Angew. Chem. Int. Ed.
$(PEA = C_8H_9NH_3)$			2017, 56, 4252 –4255
(C ₄ H ₉ NH ₃) ₂ PbBr ₄ NSs	~1.6 nm (±0.2	~26%	Science 2015, 349, 1518-
	nm)		1521
CsPbBr₃ NSs	2.8-4.2 nm	63%	ACS Nano 2019, 13, 2520-2525
2D CsPbBr₃ NSs	~ 3 nm	6-10%	Nanoscale, 2016, 8, 13589-13596
Phase-changed white			ACS Energy Lett. 2022, 7,
hexagonal	1.32 nm	25%	3, 975–983
nanosheets (2D			
octylammonium tin			
iodide)			
$(OA)_2SnI_4$ $(OA =$	~4 nm	~64%	Angew. Chem. Int. Ed.
octylammonium) NSs		00 ==0/	2023, e202301684
CdCl ₂ -4HP (4-		63.55%	
hydroxypyridine)			Angew. Chem. Int. Ed.
Micro/Nanosheets		25.200/	2019, 58, 15128-15135
CdBr ₂ -4HP (4-		25.36%	
hydroxypyridine)			
Micro/Nanosheets CsPbBr ₃ NPLs	~5.5 nm	0.7%	ACS None 2016, 10, 2649
CSPDDI3 INPLS	~5.5 1111	0.7%	ACS Nano 2016, 10, 3648- 3657
2D NPLs of CsPbBr ₃	5 monolayer	84.4 ±	J. Am. Chem. Soc. 2015,
	thick	1.8%	137, 16008-16011
	4 monolayer	44.7 ±	
	thick	2.6%	
	3 monolayer thick	10 ± 0.5%	
CsPbBr₃ NPLs	5 monolayers	31%	J. Am. Chem. Soc. 2016, 138, 1010-1016
$L_2[FAPbBr_3]PbBr_4$ (n = 2) NPLs		22%	ACS Nano 2016, 10, 7830-7839
L ₂ [MAPbBr ₃]PbBr ₄ (n = 2) NPLs		6%	
Cs4Cd _{0.6} Mn _{0.4} Bi ₂ Cl ₁₂	11.35 nm	20.56%	Our work

Table S5. Fitted values of transient PL decay plot by a biexponential decay, relative amplitude of individual components, and the average lifetime of Cs₄CdBi₂Cl₁₂ (pristine), and Cs₄Cd_{0.6}Mn_{0.4}Bi₂Cl₁₂ (Mn-substituted) nanosheet (NS) samples at 298 K and 77 K.

System	Temp. (K)	Monitoring Wavelength/nm	τ ₁ / μs	A ₁ /%	τ ₂ / μs	A ₂ /%	τ _{avg} / μs
Pristine	298	600	10.49	49.54	444.9	50.46	435.07
Mn-substituted	298	600	125.3	11.30	482.2	88.70	470.76
Pristine	77	700	12.40	11.09	1103	88.91	1101.47
Pristine	77	760	4.7	54.83	12.95	45.17	10.43
Mn-substituted	77	625	469.2	10.73	1246	89.27	1212.36