Electronic Supplementary Information

Metal-organic framework-derived CoN_x nanoparticles on N-doped carbon for selective N-alkylation of aniline

Ved Vyas,^a Priyanka Maurya,^a and Arindam Indra^{a*}

^aDepartment of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, U.P, India. E- mail: <u>arindam.chy@iitbhu.ac.in</u>

Chemicals

Cobalt(II) nitrate hexahydrate (Co(NO₃)₂.6H₂O), methanol, toluene and silica gel were purchased from Merck. 2methylimidazole was purchased from Avra. Chloroform-D was purchased from Sigma Aldrich. Vulcan-XC-72R carbon was purchased from CABOT corporation. Alcohols and amines were obtained commercially from various chemical companies (Sigma Aldrich, Avra, and SRL). All catalytic experiments were carried out in a pressure sealed tube (Ace pressure tube, volume 15 mL, from Sigma).

Instruments

High resolution X-ray diffractions (HR-XRD) of the catalysts were carried out in Rigaku SmartLab 9kW Powder X-ray diffractometer (RIGAKU Corporation).

Scanning Electron Microscopy (FE-SEM) studies were carried out in Nova Nano SEM 450, FEI Company of USA (S.E.A.) PTE, LTD. Energy dispersive X-ray spectroscopy (EDX) images were collected by Team Pegasus Integrated EDS-EBSD with Octane plus and Hikari Pro EDX System. Elemental mapping was performed with the analyzer attached to SEM. TEM studies were carried out on Tecnai G2 20 TWIN transmission electron microscope connected with an energy-dispersive X-ray spectrometer (EDAX, r-TEM SUTW).

The X-ray photoelectron spectroscopy (XPS) measurements were performed in a K-Alpha X-ray photoelectron spectrometer from Thermo Fisher Scientific. The binding energies were calibrated using the C 1s peak located at 284.6 eV as the reference. Raman spectra were recorded in an STR-300 spectrometer (AIRIX Corp.) with a 532 nm excitation source.

¹H-NMR spectra were recorded on AVH D 500 AVANCE III HD 500 MHZ, One Bay NMR Spectrometer from Bruker Bio Spin International. The Chemical shifts were reported in ppm. Coupling constants are expressed in Hertz (Hz). The following abbreviations are used: s = singlet, bs = broad singlet d = doublet, t = triplet and m = multiple. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra (CDCl₃: $\delta_{\rm H}$ = 7.28-7.29 ppm, $\delta_{\rm C}$ = 77.01-77.16 ppm).

The GC-MS analyses were recorded on Agilent 5977B instrument. Conversion and yields were determined by GC-FID, HP-5MS UI chromatograph with FID detector, (HP-5MS UI .025µ, 30 m x 0.25 mm) capillary column.

Experimental

Synthesis of ZIF-67@C1

200 mg Vulcan carbon was dispersed in 30 mL methanol and stirred for 30 minutes. $Co(NO_3)_2.6H_2O$ (1.00 mmol) was added to the previous dispersion of Vulcan and stirred for 10 minutes to form the dispersion A. 2-methylimidazole (4 mmol) was dissolved in 20 mL methanol and stirred for 10 minutes to get the solution B. Then, solution B was added to A at a time and stirred for 24 h. The precipitate of ZIF-67@C was obtained. The precipitate was collected by centrifugation (14000 rpm for 15 minutes) and washed five times with methanol. The obtained precipitate was dried at 60 °C in a hot air oven over night.

Synthesis of CoN_x@NC¹

200 mg of ZIF-67@C was ground in a mortar pestle to get a fine powder. The powder was placed in a crucible boat and heated at 800 °C in the presence of N₂ for 3 h (in a tubular furnace with heating rate: 5 °C/min from 35 °C). The furnace was allowed to cool down to room temperature. The black powder was collected and denoted as $CoN_x@NC$.

Similarly, $CoN_x@NC-1$ and $CoN_x@NC-2$ were prepared from ZIF-67@C by changing the pyrolysis temperature to 700 °C and 900 °C, respectively.

Synthesis of Co@C²

200 mg Vulcan carbon was dispersed in 30 mL methanol and stirred for 30 minutes. $Co(NO_3)_2.6H_2O$ (1.00 mmol) was added to the previous dispersion of Vulcan and stirred for 10 minutes to form the dispersion A. NaBH₄ (2 mmol) was dissolved in 20 mL methanol and stirred for 1 minute to form the solution B. The solution B was added to A at a time and stirred for 24 h. The mixture yielded a black suspension of Co@C. The precipitate was collected by centrifugation (11000 rpm for 10 minutes) and washed five times with methanol. The obtained precipitate was dried at 60 °C in a hot air oven over night.

Figure S1. The PXRD patterns of ZIF-67@C and Vulcan carbon.

Figure S2. The PXRD pattern of $CoN_x@NC$. The PXRD of $CoN_x@NC$ showed that cobalt crystallized in pure facecenter cubic (*fcc*) phase (JCPDS: No.15-0806). The broad peak at $2\theta = 24.56^{\circ}$ is related to graphitic carbon.³

Figure S3. Raman spectra of $CoN_x@NC$ showing the peaks at 1322 and 1596 cm⁻¹ corresponding to D and G bands of graphitic carbon and peaks at 475 and 682 cm⁻¹ correspond to vibration modes of E_g and A_{1g} of metallic Co. The I_D/I_G of $CoN_x@NC$ catalyst is 1.59.⁴

Figure S4. FE-SEM images of the CoN_x@NC showed rhombic dodecahedron morphology at different resolutions.

Lsec: 41.0 0 Cnts 0.000 keV Det: Octane Plus Det

Figure S5. EDX spectrum of CoN_x@NC showing the presence of Co, C and N.

Figure S6. Elemental mapping of CoN_x@NC showing the homogeneously distributed of Co, C and N.

Figure S7. The average particles size of Co in CoN_x@NC is 6-7 nm.

Catalytic Test

N-alkylation of amines with alcohols was carried out in a 15 mL pressure sealed tube. In a typical experiment, the sealed tube was filled with 1 mmol benzyl alcohol, 0.5 mmol aniline, 10 mg catalyst ($CoN_x@NC$) and toluene (2 mL) was used as a solvent. Then, the tube was capped and placed in the oil bath preheated at 140 °C and the reaction was continued for 18-24 h with stirring (500 rpm). After the reaction, the sealed tube was cooled down to room temperature and the mixture was centrifuged to separate the solid catalyst. The liquid part was collected and worked up. The % of conversion and product yield was analyzed using an Agilent 7890 GC equipped with an HP-5MS UI (.025 μ , 30 m x 0.25 mm, -60 to 350 °C) capillary column and ¹H NMR.

After each amination test, the catalyst was washed with ethanol and separated by centrifugation several times and dried for overnight for further testing of the recyclability of the catalyst.

NH_2 + HO CoN _x @NC, Toluene + N + N + N + N + N + N + N + N + N +						
Ani	line Benzyl alcohol	140 °C		1		2
	Denzyi arconor			1		2
Entry	Catalyst	Base	Solvent	Conv. (%)	Yield 1	Yield 2
					(%)	(%)
Variat	ion of catalyst		1	-		
1.	CoN _x @NC	tert-BuOK	Toluene	>99	99	0
2.	CoN _x @NC-1	tert-BuOK	Toluene	96	87	9
3.	CoN _x @NC-2	tert-BuOK	Toluene	>99	90	9
4.	Co@C	tert-BuOK	Toluene	87	65	22
5.	Vulcan carbon	tert-BuOK	Toluene	35	28	7
6.	Co-ZIF@C	tert-BuOK	Toluene	56	46	9
7.	Co(NO ₃) ₂ .6H ₂ O	tert-BuOK	Toluene	44	36	8
Variat	ion of base	•				
8.	CoN _x @NC	-	Toluene	85	56	29
9.	CoN _x @NC	K ₂ CO ₃	Toluene	54	40	14
10.	CoN _x @NC	Cs ₂ CO ₃	Toluene	65	56	9
11.	CoN _x @NC	КОН	Toluene	86	73	13
12.	CoN _x @NC	tert-BuOK	Toluene	>99	99	0
Variat	ion of catalyst amount					-
13.	CoN _x @NC (5 mg)	tert-BuOK	Toluene	85	76	8
14.	CoN _x @NC (10 mg)	tert-BuOK	Toluene	>99	99	0
15.	CoN _x @NC (15 mg)	tert-BuOK	Toluene	>99	92	6
Variat	ion of solvent					
16.	CoN _x @NC	tert-BuOK	CH ₃ CN	54	43	9
17.	CoN _x @NC	tert-BuOK	Dioxane	91	80	11
18.	CoN _x @NC	tert-BuOK	THF	97	86	11
19.	CoN _x @NC	tert-BuOK	Toluene	>99	99	0

Reaction conditions: Benzyl alcohol (1 mmol), aniline (0.5 mmol), catalyst (10 mg), toluene (2 mL), *tert*-BuOK (0.5 mmol), temperature (140 °C) and time 18 h. Conversion and selectivity were detected by GC-MS and ¹H-NMR.

Figure S8. Progress of the N-alkylation reaction of aniline and benzyl alcohol with time. Reaction conditions: Benzyl alcohol (1 mmol), aniline (0.5 mmol), catalyst (10 mg), toluene (2 mL), *tert*-BuOK (0.5 mmol), temperature (140 °C) and time 18 h. Conversion and selectivity were detected by GC-MS.

Figure S9. Sequence of the reaction involved as detected by ¹H NMR.

Figure S10: Recycling test of $CoN_x@NC$ for the synthesis of N-benzylaniline. Reaction conditions: 1 mmol benzyl alcohol, 0.5 mmol aniline, 10 mg catalyst, 0.5 mmol *tert*-BuOK, 2 mL toluene, 140 °C, 24 h. Conversions and yields are based on aniline and determined by GC.

Table S2: Characterization of the products by ¹H NMR and ¹³C NMR

Note: For some compounds intensity of -NH peak is poor and hence not properly visible in ¹HNMR.

3a: N-benzylaniline	¹ H NMR (500 MHz, CDCb): δ 7,43-7,31 (m, J = 7,1 Hz, 5H), 7,23 (m,
<u>^</u>	J = 7.4 Hz, 2H), 6.77 (m, $J = 7.3$ Hz, 1H), 6.69 (d, $J = 8.5$ Hz, 2H), 4.38
H T	(s. 2H), 4.07 (s. 1H).
	¹³ C NMR (126 MHz, CDCl ₃): δ 148.12, 139.40, 129.24, 128.6, 127.48,
	127.20, 117.53, 112.81, 48.28.
3a	Yield of product: 99%, 90.2 mg and 0.49 mmol
3b: N-(4methoxybenzyl) aniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.33 (d, $J = 8.6$ Hz, 2H), 7.21 (d, $J = 8.5$,
0011	7.4 Hz, 2H), 6.92 (d, $J = 8.7$ Hz, 2H), 6.75 (m, $J = 7.3$ Hz, 1H), 6.67 (d,
H OCH3	J = 7.6 Hz, 2H), 4.29 (s, 2H), 3.98 (s, 1H), 3.84 (s, 3H).
Ń Ń	¹³ C NMR (126 MHz, CDCl ₃) δ 158.89, 148.24, 131.44, 129.28, 128.84,
	117.53, 114.05, 112.86, 55.33, 47.82.
3b	Yield of product: 97%, 103.6 mg and 0.48 mmol
3c: N-(2,4-dimethoxybenzyl) aniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.26–7.20 (m, 2H), 7.19 (d, $J = 1.2$ Hz,
	2H), 6.71 (t, <i>J</i> = 6.8 Hz, 1H), 6.68 (d, <i>J</i> = 7.6 Hz, 2H), 6.50 (d, <i>J</i> = 2.3 Hz,
H OCH3	1H), 6.46 (m, J = 8.3, 2.4 Hz, 2H), 4.28 (s, 2H), 3.86 (s, 3H), 3.82 (s, 3H),
	3.41 (s, 1H).
осн3	¹³ C NMR (126 MHz, CDCl ₃) δ 160.22, 158.45, 148.52, 129.71, 129.16,
3c	119.80, 117.30, 113.12, 103.92, 98.65, 55.39, 43.18.
	Yield of product: 88%, 107.1 mg and 0.44 mmol
3d: N-(4-methylbenzyl) aniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.34 (t, J = 7.7 Hz, 2H), 7.25 (dd, J =
н	13.3, 5.9 Hz, 4H), 6.79 (m, <i>J</i> = 10.2 Hz, 1H), 6.71 (d, <i>J</i> = 7.3 Hz, 2H),
	4.36 (s, 2H), 4.04 (s, 1H), 2.44 (s, 3H).
	¹³ C NMR (126 MHz, CDCl ₃) δ 148.31, 136.92, 136.46, 129.35, 127.59,
24	117.56, 112.92, 48.14, 21.18.
	Yield of product: 88%, 86.8 mg and 0.44 mmol
3e: N-(4-chlorobenzyl) aniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.33 (d, 4H), 7.25–7.18 (m, 2H), 6.76 (t,
	J = 7.3 Hz, 1H), 6.64 (d, J = 8.4 Hz, 2H), 4.34 (s, 2H), 4.09 (s, 1H).
H T	¹³ C NMR (126 MHz, CDCl ₃) δ 147.94, 138.12, 132.98, 129.42, 128.84,
	117.92, 113.00, 47.72.
	Yield of product: 86%, 94.0 mg and 0.43 mmol
<u>3e</u>	
3f: N-(3-chlorobenzyl)aniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.40 (s, 1H), 7.28 (t, 3H), 7.24–7.18 (m,
H	2H), 6.77 (m, <i>J</i> = 7.3 Hz, 1H), 6.65 (d, <i>J</i> = 7.7 Hz, 2H), 4.35 (s, 2H), 4.12
N N	(s, 1H).
	¹³ C NMR (126 MHz, CDCl ₃) δ 147.79, 141.75, 134.54, 129.89, 129.31,
3f	127.40, 125.41, 117.87, 112.91, 47.80.
51	Yield of product: 84%, 91.8 mg and 0.42 mmol.

3g: N-(pyridine-2-ylmethyl) aniline	¹H NMR (500 MHz, CDCl₃) δ 8.60 (m, 1H), 7.66 (td, <i>J</i> = 1.8, 7.7 Hz,
	1H), 7.36 (dt, <i>J</i> = 1.0, 7.8 Hz, 1H), 7.23–7.17 (m, 3H), 6.74 (m,1H), 6.69
H T	(t, J = 7.7 Hz, 2H), 5.12-4.62 (m, 1H), 4.49 (s, 2H).
N	¹³ C NMR (126 MHz, CDCl ₃) & 158.91, 149.58, 148.26, 137.06, 129.63,
	122.50, 121.99, 117.99, 113.44, 49.67.
3g	Vield of product: 83%, 76.4 mg and 0.415 mmol.
3h: 4-methoxy-N-(pyridin-2-ylmethyl)	¹ H NMR (500 MHz, CDCl ₃) δ 8.60 (d, J = 5.6 Hz, 1H), 7.65 (t, J = 7.7
aniline	Hz, 1H), 7.36 (d. $J = 7.6$ Hz, 1H), 7.22–7.16 (m. 1H), 6.80 (d. $J = 8.9$ Hz,
	2H), 6.65 (d. <i>J</i> = 8.0 Hz, 2H), 4.44 (s, 2H), 3.86 (s, 1H), 3.76 (s, 3H).
	13 C NMR (126 MHz, CDCl ₃) & 158.89, 152.26, 149.21, 142.19, 136.64.
N [×]	122.07. 121.68. 114.92. 114.33. 55.79. 50.28.
H ₃ CO	Vield of product: 81% 86.5 mg and 0.40 mmol
3h	Tield of product. 0176, 00.5 mg and 0.10 million
3i: N-benzylpyridin-2-amine	¹ H NMR (500 MHz, CDCl ₃) δ 8.11 (d, J = 4.2 Hz, 1H), 7.49–7.31 (m,
H H	5H), 7.32–7.26 (m, 1H), 6.67–6.56 (m, 1H), 6.39 (d, J = 8.4 Hz, 1H), 5.11
	(s, 1H), 4.53 (d, $J = 4.7$ Hz, 2H).
	¹³ C NMR (126 MHz, CDCl ₃) δ 158.74, 148.17, 139.24, 137.68, 128.75,
3i	127.41, 113.23, 106.89, 46.42.
	Yield of product: 82%, 75.5 mg and 0.41 mmol.
	1 ,
3j: N-methylaniline	¹ H NMR (500 MHz, CDCl₃) δ 7.27 (t, <i>J</i> = 7.9 Hz, 2H), 6.79 (t, <i>J</i> = 8.3
3j: N-methylaniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.27 (t, <i>J</i> = 7.9 Hz, 2H), 6.79 (t, <i>J</i> = 8.3 Hz, 1H), 6.69 (d, <i>J</i> = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H).
3j: N-methylaniline	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76.
3j: N-methylaniline	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol
3j: N-methylaniline	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol
3j: N-methylaniline H 3j 3j 3k: N-allylaniline	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹H NMR (500 MHz, CDCl₃): δ 6 81 (d, J = 9.0 Hz, 2H), 6 63 (d, J = 8.9)
3j: N-methylaniline H 3j 3j 3k: N-allylaniline	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹H NMR (500 MHz, CDCl₃): δ 6.81 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 5.99 (ddd, J = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, J = 17.2, 1.7)
3j: N-methylaniline H 3j 3j 3k: N-allylaniline H	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹H NMR (500 MHz, CDCl₃): δ 6.81 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 5.99 (ddd, J = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, J = 17.2, 1.7 Hz, 1H), 5.19 (dd, J = 10.3, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, J = 5.5 Hz)
3j: N-methylaniline H 3j 3j 3k: N-allylaniline H N N	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹H NMR (500 MHz, CDCl₃): δ 6.81 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 5.99 (ddd, J = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, J = 17.2, 1.7 Hz, 1H), 5.19 (dd, J = 10.3, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, J = 5.5 Hz, 2H).
3j: N-methylaniline H 3j 3j 3k: N-allylaniline H ₂ CO	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹H NMR (500 MHz, CDCl₃): δ 6.81 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 5.99 (ddd, J = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, J = 17.2, 1.7 Hz, 1H), 5.19 (dd, J = 10.3, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, J = 5.5 Hz, 2H). ¹³C NMR (126 MHz, CDCL): δ 152 25 (s) 142 32 (s) 135 84 (s) 116 14
3j: N-methylaniline H 3j 3j 3k: N-allylaniline H H ₃ CO 3k	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹H NMR (500 MHz, CDCl₃): δ 6.81 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 5.99 (ddd, J = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, J = 17.2, 1.7 Hz, 1H), 5.19 (dd, J = 10.3, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, J = 5.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 152.25 (s), 142.32 (s), 135.84 (s), 116.14 (s), 114.90 (s), 114.36 (s), 55.82 (s), 47.58 (s)
3j: N-methylaniline H J 3j 3k: N-allylaniline H H_3CO 3k	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹H NMR (500 MHz, CDCl₃): δ 6.81 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 5.99 (ddd, J = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, J = 17.2, 1.7 Hz, 1H), 5.19 (dd, J = 10.3, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, J = 5.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 152.25 (s), 142.32 (s), 135.84 (s), 116.14 (s), 114.90 (s), 114.36 (s), 55.82 (s), 47.58 (s). Vield of product: 55% 41.6 mg and 0.27 mmol
3j: N-methylaniline H 3j: N-methylaniline 3j 3k: N-allylaniline H H ₃ CO 3k 3l: 4-methoxy-N-(prop-2-yn-1-yl)	 ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 2H), 6.79 (t, J = 8.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹H NMR (500 MHz, CDCl₃): δ 6.81 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 5.99 (ddd, J = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, J = 17.2, 1.7 Hz, 1H), 5.19 (dd, J = 10.3, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, J = 5.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 152.25 (s), 142.32 (s), 135.84 (s), 116.14 (s), 114.90 (s), 114.36 (s), 55.82 (s), 47.58 (s). Yield of product: 55%, 41.6 mg and 0.27 mmol.
3j: N-methylaniline H 3j: N-methylaniline 3j 3k: N-allylaniline H H ₃ CO 3k 3l: 4-methoxy-N-(prop-2-yn-1-yl) aniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.27 (t, <i>J</i> = 7.9 Hz, 2H), 6.79 (t, <i>J</i> = 8.3 Hz, 1H), 6.69 (d, <i>J</i> = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹ H NMR (500 MHz, CDCl ₃): δ 6.81 (d, <i>J</i> = 9.0 Hz, 2H), 6.63 (d, <i>J</i> = 8.9 Hz, 2H), 5.99 (ddd, <i>J</i> = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, <i>J</i> = 17.2, 1.7 Hz, 1H), 5.19 (dd, <i>J</i> = 10.3, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, <i>J</i> = 5.5 Hz, 2H). ¹³ C NMR (126 MHz, CDCl ₃): δ 152.25 (s), 142.32 (s), 135.84 (s), 116.14 (s), 114.90 (s), 114.36 (s), 55.82 (s), 47.58 (s). Yield of product: 55%, 41.6 mg and 0.27 mmol. ¹ H NMR (500 MHz, CDCl ₃): ¹ H NMR (500 MHz, CDCl ₃) δ 6.85 (d, <i>J</i> = 9.0 Hz, 2H), 6.70 (d, <i>J</i> = 9.0 Hz, 2H), 3.91 (s, 2H), 3.78 (s, 3H), 2.24 (s)
3j: N-methylaniline H J 3j 3k: N-allylaniline H $H_{3}CO$ 3k 3l: 4-methoxy-N-(prop-2-yn-1-yl) aniline H	¹ H NMR (500 MHz, CDCl ₃) δ 7.27 (t, <i>J</i> = 7.9 Hz, 2H), 6.79 (t, <i>J</i> = 8.3 Hz, 1H), 6.69 (d, <i>J</i> = 7.8 Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹ H NMR (500 MHz, CDCl ₃): δ 6.81 (d, <i>J</i> = 9.0 Hz, 2H), 6.63 (d, <i>J</i> = 8.9 Hz, 2H), 5.99 (ddd, <i>J</i> = 15.7, 10.4, 5.2 Hz, 1H), 5.31 (dd, <i>J</i> = 17.2, 1.7 Hz, 1H), 5.19 (dd, <i>J</i> = 10.3, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, <i>J</i> = 5.5 Hz, 2H). ¹³ C NMR (126 MHz, CDCl ₃): δ 152.25 (s), 142.32 (s), 135.84 (s), 116.14 (s), 114.90 (s), 114.36 (s), 55.82 (s), 47.58 (s). Yield of product: 55%, 41.6 mg and 0.27 mmol. ¹ H NMR (500 MHz, CDCl ₃): ¹ H NMR (500 MHz, CDCl ₃) δ 6.85 (d, <i>J</i> = 9.0 Hz, 2H), 6.70 (d, <i>J</i> = 9.0 Hz, 2H), 3.91 (s, 2H), 3.78 (s, 3H), 2.24 (s, 1H)
3j: N-methylaniline H 3j: N-methylaniline 3j 3k: N-allylaniline H H ₃ CO 3k 3l: 4-methoxy-N-(prop-2-yn-1-yl) aniline H N N N N N N N N N N N N N	¹ H NMR (500 MHz, CDCl ₃) δ 7.27 (t, $J = 7.9$ Hz, 2H), 6.79 (t, $J = 8.3$ Hz, 1H), 6.69 (d, $J = 7.8$ Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹ H NMR (500 MHz, CDCl ₃): δ 6.81 (d, $J = 9.0$ Hz, 2H), 6.63 (d, $J = 8.9$ Hz, 2H), 5.99 (ddd, $J = 15.7$, 10.4, 5.2 Hz, 1H), 5.31 (dd, $J = 17.2$, 1.7 Hz, 1H), 5.19 (dd, $J = 10.3$, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, $J = 5.5$ Hz, 2H). ¹³ C NMR (126 MHz, CDCl ₃): δ 152.25 (s), 142.32 (s), 135.84 (s), 116.14 (s), 114.90 (s), 114.36 (s), 55.82 (s), 47.58 (s). Yield of product: 55%, 41.6 mg and 0.27 mmol. ¹⁴ H NMR (500 MHz, CDCl ₃): ¹ H NMR (500 MHz, CDCl ₃) δ 6.85 (d, $J = 9.0$ Hz, 2H), 6.70 (d, $J = 9.0$ Hz, 2H), 3.91 (s, 2H), 3.78 (s, 3H), 2.24 (s, 1H).
3j: N-methylaniline H J 3j 3k: N-allylaniline H $H_{3}CO$ 3k 3l: 4-methoxy-N-(prop-2-yn-1-yl) aniline H N N N N N N N N	¹ H NMR (500 MHz, CDCl ₃) δ 7.27 (t, $J = 7.9$ Hz, 2H), 6.79 (t, $J = 8.3$ Hz, 1H), 6.69 (d, $J = 7.8$ Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹ H NMR (500 MHz, CDCl ₃): δ 6.81 (d, $J = 9.0$ Hz, 2H), 6.63 (d, $J = 8.9$ Hz, 2H), 5.99 (ddd, $J = 15.7$, 10.4, 5.2 Hz, 1H), 5.31 (dd, $J = 17.2$, 1.7 Hz, 1H), 5.19 (dd, $J = 10.3$, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, $J = 5.5$ Hz, 2H). ¹³ C NMR (126 MHz, CDCl ₃): δ 152.25 (s), 142.32 (s), 135.84 (s), 116.14 (s), 114.90 (s), 114.36 (s), 55.82 (s), 47.58 (s). Yield of product: 55%, 41.6 mg and 0.27 mmol. ¹ H NMR (500 MHz, CDCl ₃): ¹ H NMR (500 MHz, CDCl ₃) δ 6.85 (d, $J = 9.0$ Hz, 2H), 6.70 (d, $J = 9.0$ Hz, 2H), 3.91 (s, 2H), 3.78 (s, 3H), 2.24 (s, 1H). ¹³ C NMR (126 MHz, CDCl ₃): δ 153.01, 140.97, 115.14, 114.86, 81.43, 71.26, 55.73, 34.60
3j: N-methylaniline H $\downarrow \downarrow$ N 3j 3k: N-allylaniline H H_3CO H_3C	¹ H NMR (500 MHz, CDCl ₃) δ 7.27 (t, $J = 7.9$ Hz, 2H), 6.79 (t, $J = 8.3$ Hz, 1H), 6.69 (d, $J = 7.8$ Hz, 2H), 3.71 (s, 1H), 2.89 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 149.42, 129.26, 117.29, 112.48, 30.76. Yield of product: 72%, 39.1 mg and 0.36 mmol ¹ H NMR (500 MHz, CDCl ₃): δ 6.81 (d, $J = 9.0$ Hz, 2H), 6.63 (d, $J = 8.9$ Hz, 2H), 5.99 (ddd, $J = 15.7$, 10.4, 5.2 Hz, 1H), 5.31 (dd, $J = 17.2$, 1.7 Hz, 1H), 5.19 (dd, $J = 10.3$, 1.5 Hz, 1H), 3.77 (s, 3H), 3.76 (d, $J = 5.5$ Hz, 2H). ¹³ C NMR (126 MHz, CDCl ₃): δ 152.25 (s), 142.32 (s), 135.84 (s), 116.14 (s), 114.90 (s), 114.36 (s), 55.82 (s), 47.58 (s). Yield of product: 55%, 41.6 mg and 0.27 mmol. ¹ H NMR (500 MHz, CDCl ₃): ¹ H NMR (500 MHz, CDCl ₃) δ 6.85 (d, $J = 9.0$ Hz, 2H), 6.70 (d, $J = 9.0$ Hz, 2H), 3.91 (s, 2H), 3.78 (s, 3H), 2.24 (s, 1H). ¹³ C NMR (126 MHz, CDCl ₃): δ 153.01, 140.97, 115.14, 114.86, 81.43, 71.26, 55.73, 34.60.

4a: N-benzyl-4-methoxyaniline1H N	MR (500 MHz, CDCl₃): δ 7.48-7.39 (m, 4H), 7.35 (t, <i>J</i> = 6.7 Hz,
1H),	5.86 (d, <i>J</i> = 8.8 Hz, 2H), 6.68 (d, <i>J</i> = 8.7 Hz, 2H), 4.35 (s, 2H), 3.81
H (s, 3H	I), 3.63 (s, 1H).
	MR (126 MHz, CDCl₃) δ 152.25, 142.55, 139.81, 128.68, 127.63,
H ₂ CO 127.2	4, 114.99, 114.19, 55.85, 49.28.
4a Yield	of product: 92%, 98.1 mg and 0.46 mmol.
4b: N-benzyl-2-methoxyaniline ¹ H N	MR (500 MHz, CDCl₃) δ 7.38 (m, J = 7.3 Hz, 5H), 6.89 (t, J = 7.6
H Hz, 1	H), 6.84 (d, $J = 7.8$ Hz, 1H), 6.73 (t, $J = 7.5$ Hz, 1H), 6.65 (d, $J =$
N. 7.8 H	z, 1H), 4.69 (s, 1H), 4.40 (s, 2H), 3.90 (s, 3H).
$\left \begin{bmatrix} & & \\ & & \end{bmatrix} \right ^{13}$ C N	MR (126 MHz, CDCl₃) δ 146.90, 139.69, 138.23, 128.69, 127.63,
OCH ₃ 127.2	3, 121.39, 116.76, 110.21, 109.50, 55.52, 48.16.
4b Yield	of product: 86%, 91.7 mg and 0.40 mmol.
4c: N-benzyl-3-methylaniline ¹ H N	MR (500 MHz, CDCl₃) δ 7.40-7.25 (m, 5H), 7.15-7.06 (m, 1H),
6.63 (t, J=0.8, 1H), 6.57-6.50 (m, 2H), 4.38 (s, 2H), 4.02 (s, 1H), 2.35 (s,
3H).	
∫ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	MR (126 MHz, CDCl₃) δ 148.31, 139.65, 139.13, 129.25, 128.72,
127.6	3, 127.29, 118.62, 113.73, 110.05, 48.42, 21.75.
4c Yield	of product: 80%, 78.9 mg and 0.40 mmol.
4d: N-benzyl-4-fluoroaniline	MR (500 MHz, CDCl₃) δ 7.38-7.30 (m, 4H), 7.30-7.25 (m, 1H),
H 6.95-	6.92 (d, <i>J</i> = 7.7 Hz, 2H), 6.62-6.57 (d, <i>J</i> = 13.1 Hz, 2H), 4.33 (s, 2H),
3.97 ((s, 1H).
F 13C N	MR (126 MHz, CDCl₃) δ 156.68, 154.81, 144.35, 139.10, 128.53,
4d 127.3	5, 115.44, 113.53, 48.78.
Yield	of product: 84%, 84.5 mg and 0.40 mmol.
4e: N-benzyl-2-chloroaniline	MR (500 MHz, CDCl₃) δ 7.45–7.39 (m, 3H), 7.39–7.29 (m, 5H),
	- 6.71 (d, 1H), 4.77 (s, 1H), 4.39 (s, 2H).
1 ³ C N	MR (126 MHz, CDCl₃) δ 143.38, 137.66, 131.78, 129.94, 129.02,
	7, 127.42, 119.50, 117.83, 112.31, 47.95.
4e Yield	of product: 81%, 88.16 mg and 0.405 mmol
4f: N honzyl 4 obloroonilino	
	MR (500 MHz, CDCl₃) δ 7.38 (d, $J = 4.6$ Hz, 4H), 7.32 (dd, $J = 8.7$,
	z, 1H), 7.14 (d, $J = 8.9$ Hz, 2H), 6.57 (d, $J = 8.9$ Hz, 2H), 4.32 (s,
	4.07 (s, 1H).
	IVIK (120 IVIHZ, CDCI₃) \circ 140./0, 139.13, 129.12, 128./6, 12/.45, 2, 112.09, 49.27
4f 122.1	2, 113.98, 48.37.
375.11	of products 820/ 88.2 mc and 0.405 mms1

4g: N-benzyl-2,4,5-trichloroaniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.42-7.33 (m, 6H), 6.71 (s, 1H), 4.76 (s,
H H	1H), 4.38 (s, 2H).
	¹³ C NMR (126 MHz, CDCl ₃) δ 137.68, 131.80, 129.96, 129.04, 127.88,
	127.43, 119.53, 117.86, 112.33, 47.97.
CI CI	Yield of product: 81%, 116.23 mg and 0.40 mmol.
4g	
4h: N-benzyl-2-nitroaniline	¹ H NMR (600 MHz, CDCl ₃) δ 8.46 (s, 1H), 8.22 (d, $J = 8.6$ Hz, 1H),
	7.43 – 7.31 (m, 6H), 6.84 (d, 1H), 6.69 (, 1H), 4.57 (s, 2H).
N	¹³ C NMR (151 MHz, CDCl ₃) δ 145.27, 137.37, 136.24, 132.29, 128.95,
	127.72, 127.06, 126.89, 115.74, 114.21, 47.11.
1102	Yield of product: 72%, 82.2 mg and 0.36 mmol.
4h	
4i: 4-methoxy-N-(4-methylbenzyl)	¹ H NMR (500 MHz, CDCl ₂) δ 7.29 (d, $J = 9.0$ Hz, 2H), 7.18 (d, $J = 7.9$
aniline	Hz, 2H), 6.81 (d, $J = 8.9$ Hz, 2H), 6.64 (d, $J = 8.9$ Hz, 2H), 4.27 (s, 2H),
H L	3.78 (s, 3H), 2.38 (s, 3H).
N N	¹³ C NMR (126 MHz. CDCl ₃) δ 152.26. 142.65. 136.93. 136.71. 129.39.
H ₂ CO	127.68, 115.02, 114.24, 55.94, 49.13, 21.23.
4i	Yield of product: 89%, 101.4 mg and 0.44 mmol.
4j: 4-methyl-N-(4-methylbenzyl)	¹ H NMR (500 MHz, CDCl ₃) δ 7.33 (d, <i>J</i> = 7.7 Hz, 2H), 7.22 (d, <i>J</i> = 7.6
aniline	Hz, 2H), 7.05 (d, <i>J</i> = 7.9 Hz, 2H), 6.63 (d, <i>J</i> = 8.1 Hz, 2H), 4.32 (s, 2H),
	3.91 (s, 1H), 2.41 (s, 3H), 2.31 (s, 3H).
	¹³ C NMR (126 MHz, CDCl ₃) δ 146.07, 136.81, 136.66, 129.79, 129.33,
4	127.56, 126.71, 113.06, 48.46, 21.15, 20.45.
T)	Yield of product: 88%, 73.23 mg and 0.44 mmol.
4l: 4-chloro-N-(4-methylbenzyl)	¹ H NMR (500 MHz, CDCl ₃) δ 7.29-7.26 (m, 2H), 7.20 (d, $J = 7.4$ Hz,
aniline	2H), 7.15 (d, <i>J</i> = 8.8 Hz, 2H), 6.58 (d, <i>J</i> = 8.8 Hz, 2H), 4.29 (s, 2H), 4.05
H	(s, 1H), 2.39 (s, 3H).
	¹³ C NMR (126 MHz, CDCl ₃) δ 146.74, 137.05, 135.89, 129.39, 129.07,
CI	127.44, 122.03, 113.92, 48.13, 21.13.
41	Yield of product: 84%, 97.5 mg and 0.42 mmol.
Am: A bromo N (A mothylbonzyl)	
aniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.31-7.25 (m, 4H), 7.20 (d, J = 7.8 Hz,
H H	2H), 6.53 (d, <i>J</i> = 8.8 Hz, 2H), 4.29 (s, 2H), 4.07 (s, 1H), 2.39 (s, 3H).
N N	¹³ C NMR (126 MHz, CDCl ₃) & 147.16, 137.08, 135.83, 131.94, 129.41,
	12/.44, 114.44, 109.05, 48.02, 21.13
Br	Yield of product: 81%, 112.1 mg and 0.406 mmol.
4m 4n: N_(4_methovybenzyl) 2	
methoxyaniline	'H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.7

H OCH ₃	Hz, 2H), 6.87 (t, $J = 7.6$ Hz, 1H), 6.81 (d, $J = 9.2$ Hz, 1H), 6.70 (t, $J = 8.5$
N N	Hz, 1H), 6.64 (d, <i>J</i> = 9.2 Hz, 1H), 4.63 (s, 1H), 4.30 (s, 2H), 3.86 (s, 3H),
	3.83 (s, 3H).
OCH3	¹³ C NMR (126 MHz, CDCl ₃) δ 158.92, 146.91, 138.30, 131.68, 128.96,
4n	121.40, 116.72, 114.14, 110.20, 109.49, 55.48, 47.66.
	Yield of product: 86%, 104.8 mg and 0.43 mmol.
40: N-(4-methoxybenzyl)-4-	¹ H NMR (500 MHz, CDCl₃) δ 7.30 (d, $J = 8.6$ Hz, 2H), 6.89 (d, $J = 6.8$
metnoxyaniine	Hz, 2H), 6.79 (d, <i>J</i> = 8.9 Hz, 2H), 6.62 (d, <i>J</i> = 8.9 Hz, 2H), 4.22 (s, 2H),
H OCH3	3.81 (s, 3H), 3.75 (s, 3H).
Ň Ň	¹³ C NMR (126 MHz, CDCl ₃) δ 158.84, 152.19, 142.55, 131.70, 128.86,
	114.93, 114.08, 55.84, 55.32, 48.76.
$H_3CO \sim 40$	Yield of product: 89%, 108.3 mg and 0.44 mmol.
4p: N-(4-methoxybenzyl)-3-	¹ H NMR (500 MHz, CDCl ₃) δ 7.31 (d, $J = 8.7$ Hz, 2H), 7.09 (t, $J = 7.7$
methylaniline	Hz, 1H), 6.91 (d, $J = 8.7$ Hz, 2H), 6.57 (d, $J = 7.4$ Hz, 1H), 6.51-6.46 (m,
H OCH3	2H), 4.26 (s, 2H), 3.97 (s, 1H), 3.83 (s, 3H), 2.30 (s, 3H).
Ň N	¹³ C NMR (126 MHz, CDCl ₃) & 158.96, 148.36, 139.17, 131.63, 129.27.
	128.98, 118.64, 114.14, 113.78, 110.13, 55.44, 47.99, 21.77.
4n	Yield of product: 86%, 98.12 mg and 0.43 mmol.
4q: 2,4,5-trichloro-N-(4-	¹ H NMP (500 MHz CDCL) $\& 7.36$ (s 1H) 7.29 (d $I = 5.3$ Hz 2H)
methoxybenzyl) aniline	6.93 (d I = 8.7 Hz, 2H) 6.72 (s, 1H) 4.66 (s, 1H) 4.30 (s, 2H) 3.84 (s)
H OCH ₃	3H)
	¹³ C NMR (126 MHz CDCL) & 159 21 143 32 131 66 129 82 129 50
CI	Vield of product: 81% 128.7 mg and 0.40 mmol
4q	The of product of 70, 1200 mg and of to minor
4r: 4-bromo-N-(3,4-dimethoxybenzyl) aniline	¹ H NMR (500 MHz, CDCl ₃) δ 7.31-7.22 (d, 2H), 6.91 (d, $J = 8.3$ Hz,
OCH ₃	2H), 6.87 (s, 1H), 6.53 (d, <i>J</i> = 8.7 Hz, 2H), 4.24 (s, 2H), 4.05 (s, 1H), 3.89
	(s, 6H).
OCH ₃	¹³ C NMR (126 MHz, CDCl ₃) δ 149.25, 148.39, 147.16, 131.94, 131.39,
Br	119.65, 116.71, 114.47, 111.32, 110.74, 77.06, 55.91, 48.18.
4r	Yield of product: 79%, 127.65 mg and 0.39 mmol.
5a: 1-phenyl-1H-benzimidazole	¹ H NMR (500 MHz, DMSO-D _c) δ 12 95 (brs. 1H) 8 21 (d. J = 7.1 Hz
H	2H), $7.73 - 7.47$ (m, 5H), 7.22 (d, 2H).
	¹³ C NMR (125 MHz, DMSO-D ₄) δ 151.72, 144.27, 135.44, 130.67
	130 30 129 41 126 92 122 72 122 20 119 29 111 82
	Yield of product: 86%, 83.5 mg and 0.43 mmol.
5b: 2-(4-methoxyphenyl)-1H-	¹ H NMR (600 MHz, DMSO-D ₆) δ 12.78 (brs. 1H), 8.17 (d. J = 8.1 Hz.
benzimidazole	

H	2H), 7.60 (d, 2H), 7.21 (m, 2H), 7.15 (d, 2H), 3.88 (s, 3H).
	Yield of product: 84%, 94.2 mg and 0.42 mmol.
5c: 2-(4-flurophenyl)-1H-	¹ H NMR (600 MHz, DMSO-D ₆) δ 12.75 (brs, 1H), 8.13 (d, J = 8.7 Hz,
benzimidazoie	2H), 7.56 – 7.53 (m, 2H), 7.25 (d, 2H), 7.20 (d, 2H).
H	¹³ C NMR (150 MHz, DMSO-D ₆) δ 163.11, 161.49, 160.06, 151.74,
	133.48, 130.59, 130.53 128.48, 123.44, 115.84, 115.67.
	Yield of product: 78%, 82.7 mg and 0.39 mmol.

¹H and ¹³C NMR spectra of the products

0.0

90 80 f1 (ppm)

90 80 f1 (ppm)

f1 (ppm)

Figure S9: Step 1. ¹H NMR data

Reference

- 1 C. Li, Y. Meng, S. Yang and H. Li, *ChemCatChem*, 2021, **13**, 5166–5177.
- 2 X. Song, S. Sun, W. Zhang and Z. Yin, J. Colloid Interface Sci., 2004, 273, 463–469.
- 3 X. Liu, L. Xu, G. Xu, W. Jia, Y. Ma and Y. Zhang, ACS Catal., 2016, 6, 7611–7620.
- 4 Y. Xue, N. N. T. Pham, G. Nam, J. Choi, Y. Y. Ahn, H. Lee, J. Jung, S. G. Lee and J. Lee, *Chem. Eng. J.*, 2021, **408**, 127305.