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S1. UNITARY COUPLED CLUSTER CALCULATIONS

In Table S1, we report additional calculations with the unitary coupled cluster ansatz (qUCCSD). In the case of
ethene, unrestriction is necessary to approach the FCI energy E = −77.629025 Hartree, although it produces a spin-
contaminated state with ⟨S2⟩ ≃ 0.98. In the cases of cyclobutadiene and benzene, we observe no spin contamination,
and good agreement between all the implementations of qUCCSD and with the FCI energies of E = −153.339314
and E = −230.238284148 Hartree, respectively.

molecule flavor formula ordering energy [Eh]
C2H4 R Trotter d+s -77.529519
C2H4 R Trotter s+d -77.529519
C2H4 R Suzuki d+s -77.529521
C2H4 R Suzuki s+d -77.523434
C2H4 U Trotter d+s -77.626017
C2H4 U Trotter s+d -77.626017
C2H4 U Suzuki d+s -77.626017
C2H4 U Suzuki s+d -77.626017
C4H4 R Trotter d+s -153.337269
C4H4 R Trotter s+d -153.337274
C4H4 R Suzuki d+s -153.337274
C4H4 R Suzuki s+d -153.337275
C4H4 U Trotter d+s -153.337275
C4H4 U Trotter s+d -153.337275
C4H4 U Suzuki d+s -153.337275
C4H4 U Suzuki s+d -153.337275
C6H6 R Trotter d+s -230.236417
C6H6 R Trotter s+d -230.236396
C6H6 R Suzuki d+s -230.236417
C6H6 R Suzuki s+d -230.236396
C6H6 U Trotter d+s -230.236431
C6H6 U Trotter s+d -230.236430
C6H6 U Suzuki d+s -230.236431
C6H6 U Suzuki s+d -230.236430

TABLE S1. qUCCSD calculations carried out in this study. “flavor” refers to a restricted closed-shell (R) or
unrestricted (U) implementation. “formula” refers to whether the exponential of the cluster operator is

approximated with a Trotter or Suzuki decomposition. “ordering” refers to the ordering of operators (exponentials
of doubles followed by singles, d+s, or viceversa, s+d) in the product formula approximation.
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S2. DISSOCIATION OF ETHENE

In Figure S1 we study the dissociation of ethene using the LUCJ ansatze with L = 1, 2, 3, 4. For L = 1, the
accuracy of LUCJ is very limited, with all-to-all, square, and hex ansatzes overestimating the dissociation energy by
50 milliHartree, and heavy-hex by more than 100 milliHartree. The accuracy of LUCJ improves with increasing L.
With the exception of heavy-hex, all ansatzes with L = 2 differ from FCI by less than 1.6 milliHartree.
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FIG. S1. Potential energy curve of ethene in a (4e,4o) active space, using the LUCJ ansatz with all-to-all,
square-lattice, hex-lattice, and heavy-hex lattice (green, blue, orange, red markers denoted “a-to-a”, “s”, “h”, and

“h-h” for brevity) connectivity and L = 1, 2, 3, 4 (up-, right-, down-, left-pointing triangles respectively).
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S3. ADDITIONAL LUCJ CALCULATIONS

In Figures S2 and S3 we report additional LUCJ calculations for the H2 and LiH molecules, in a basis of two Lowdin
orbitals and three natural orbitals in the A1 irrep of the C∞v group, respectively.
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0.00

0.02

0.04

0.06

0.08

0.10

E
-E

F
C
I[
E
h
]

0.00

0.02

0.04

0.06

0.08

0.10

E
-E

F
C
I[
E
h
]

0.00

0.02

0.04

0.06

0.08

0.10

E
-E

F
C
I[
E
h
]

FIG. S2. Potential energy curve of H2 in a (2e,2o) active space of Löwdin orbitals, using the LUCJ ansatz with
all-to-all, square-lattice, hex-lattice connectivity (top, middle, bottom), with or without Jαα and X terms.
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FIG. S3. Potential energy curve of LiH in a (2e,2o) active space of natural orbitals, using the LUCJ ansatz with
all-to-all, square-lattice, hex-lattice connectivity (top, middle, bottom), with or without Jαα and X terms. All curves
except those without Jαα and X terms and hex-lattice connectivity (green lines, bottom panels) agree with FCI within
10−6 Hartree.
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S4. COMPUTATIONAL DETAILS FOR CLASSICAL SIMULATION OF THE LUCJ ANSATZ

For single-point calculations, when initializing e.g. a LUCJ/hex calculation from parameters of a converged
LUCJ/square calculation, we permuted orbitals so that p ∈ S corresponded to the largest values of |Jµ

pp,αβ |. The
indices of the qubits associated with the active-space orbitals of cyclobutadiene, stretched ethene, and benzene are
shown in Figure S4. This choice does not affect the LUCJ energy, as orbital permutations can be subsumed in the

change-of-basis operators eK̂µ , but may affect parameter optimization.

(0,0,1,1) (1,1,0,0) (2,2,2,2) (3,3,3,3)

(0,0,1,1) (1,1,3,3) (2,2,0,0) (3,3,2,2)

(0,0,1,1) (1,1,0,0) (2,2,2,2) (3,3,4,4) (4,4,3,3) (5,5,5,5)

FIG. S4. Molecular orbitals for cyclobutadiene (top), stretched ethene (middle), and benzene (bottom), and indices
of the qubits associated with them in LUCJ ansatzes with all-to-all, square-lattice, hexagonal-lattice and heavy-hex
lattice topologies (left to right, in round brackets).

Simulating the LUCJ ansatz involves the application of the unitaries eK̂µ and eiĴµ on a wavefunction, where

K̂µ =
∑
pq,σ

Kµ
pq â

†
pσâqσ , Ĵµ =

∑
pq,στ

Jµ
pq,στ n̂pσn̂qτ . (S1)

Because these unitaries conserve particle number and the Z-component of spin, we can restrict the simulation to the
subspace spanned by basis vectors with the same particle number and spin as the initial state. The dimension of this
subspace is D =

(
N
Nα

)(
N
Nβ

)
where N is the number of orbitals, Nσ is the number of particles of spin σ, and

(
n
k

)
is the

binomial coefficient. The basis vectors are indexed by pairs of bitstrings (Iα, Iβ), where Iσ is a bitstring of length N
whose j-th bit is 1 if and only if orbital j of spin σ is occupied, and we use the notation j ∈ Iσ to indicate this is
the case. The coefficient corresponding to the basis vector (Iα, Iβ) is denoted γIα,Iβ , or simply γI if we wish to ignore
the spin. This wavefunction representation is the same as that used in classical full configuration-interaction (FCI)
calculations, so existing FCI code can be repurposed. To this end, we used the open-source software package PySCF
in our simulations [1]. To simulate the LUCJ ansatz, we considered two methods.

A. Taylor series method

The exponential action of the operators (S1) can be approximated using a Taylor series expansion. This method
requires only the ability to apply the operators (S1) to a wavefunction. Because similar operations are also performed
in classical FCI calculations, it was relatively straightforward to implement these operations using PySCF. The
application of a single term in a sum incurs a computational cost scaling as O(DN2). To achieved a fixed precision, a
constant number of terms in the Taylor series needs to be included. In practice, we found that fewer than 100 terms
were needed to achieve a convergence threshold of 10−12 as measured by the Euclidean norm of the residual vector.
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B. Exact method via unitary decompositions

We also considered simulation methods inspired by quantum circuit implementations of the unitaries. These
methods utilize a decomposition of the unitary into a sequence of basic operations and directly apply these operations
by updating the coefficients stored in the state vector. While these methods have the same asymptotic complexity as
the Taylor series method, the constant factors are much smaller, and we found that in practice they were on the order
of a hundred times faster. In the following sections, we describe how to implement each of the two kinds of unitaries.

1. Orbital rotation

The unitary eK̂µ represents a rotation of the orbital basis. It can be decomposed as

eK̂µ = P1 · · · PNG1 · · · GNG
, (S2)

where each Pj is a phase operator of the form

Pj =
∏
σ

exp
(
iφj â

†
jσâjσ

)
(S3)

and each Gj is a Givens rotation operator acting on neighboring fermionic modes [2, 3]. A Givens rotation operator
G acting on modes p and q has the action (

Gâ†pσG†

Gâ†qσG†

)
= G

(
â†pσ

â†qσ

)
, (S4)

where G is a 2× 2 unitary matrix of the form

G =

(
c s

−s∗ c

)
. (S5)

The number of Givens rotations is NG = N(N − 1)/2. The Givens rotation matrices and phase angles can be
calculated from the matrix eK

µ

using the procedure described in Ref. [3]. Once these quantities are calculated, the
orbital rotation can be achieved by applying the sequence of operations given by Eq. (S2) directly on the state vector.
In the following, we will describe how to apply the operations considering a single spin. The full operation is achieved
by applying the single-spin operation for both spins in sequence.

Let γI denote a coefficient of the original state vector and γ′
I a coefficient of the transformed state vector. Applying

a phase operator Pj amounts to multiplying by a phase the coefficients corresponding to basis states in which the
corresponding orbital is occupied:

γ′
I =

{
eiφγI if j ∈ I

γI otherwise.
(S6)

Applying a Givens rotation G acting on neighboring modes p and q is achieved by rotating the subspaces spanned by
basis vectors in which exactly one of these modes is occupied:

γ′
I =


cγI + sγIp 7→q

if p ∈ I and q /∈ I

−s∗γIq 7→p
+ cγI if q ∈ I and p /∈ I

γI otherwise.

(S7)

Here, the notation Ip 7→q denotes the bitstring obtained from I by setting bit p to 0 and bit q to 1. Since there are
O(N2) total operations to apply, the compute time for performing a full orbital rotation is O(DN2).

2. Diagonal Coulomb operator

The unitary eiĴµ is equal to a product of commuting terms where each term has the form exp(iφn̂pσn̂qτ ) for some
angle φ. This term is a diagonal operator with the following action:

γ′
Iα,Iβ

=

{
eiφγIα,Iβ if p ∈ Iσ and q ∈ Iτ
γIα,Iβ otherwise.

(S8)
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The number of terms is O(N2), so the total compute time is O(DN2).
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