$\mathrm{Cu} / \mathrm{Pd}$-Catalyzed Arylboration of a 1-Silyl-1,3-Cyclohexadiene for Stereocontrolled and Diverse Cyclohexane/ene Synthesis

Phillip F. Crook, Alan R. Lear, Suman Das, and M. Kevin Brown*
Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405.

Table of Contents

General Information: 2
Reagents 2
Two Step Synthesis of Silyl-Substituted Dienes. 5
Titration of Silyl-Lithium Reagents 6
Procedure A: General Procedure for the Arylboration of Silyl-Substituted Dienes 8
Screening for the Arylboration of Silyl-Substituted Dienes. 9
Scope Examples for Arylboration of Silyl-Substituted Dienes 11
Further Functionalization of the Alkyl Boronic Ester Products 17
Further Functionalization of the Vinyl Silane Products 20
Sequential Functionalization of the C-Si and C-B Bonds and Gram-Scale Utility 26
Enantioselective Example 30
Screening for the Arylboration of Silyl-Enol-Ether Diene 31
Limitations of the Method 32
Citations 33
HPLC Data and NMR Spectra 34

General Information:

Infrared (IR) spectra were recorded on Bruker Tensor II FT-IR Spectrometer, $\mathrm{v}_{\text {max }}$ in cm^{-1}. Bands are characterized as broad (br), strong (s) for $>70 \%$ transmittance, medium (m) for 40-70\% transmittance, and weak (w) for $<40 \%$ transmittance. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at room temperature on a Varian $1400(400 \mathrm{MHz})$, Varian VXR400 (400 MHz), Varian $1500(500 \mathrm{MHz})$, a Varian $1600(600 \mathrm{MHz})$ spectrometer, and/or a Bruker Ascend ${ }^{T M} 500 \mathrm{MHz}$ (equipped with cryoprobe). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \lambda 7.26 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet, app. = apparent), coupling constants (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian $1400(100 \mathrm{MHz})$, Varian $1500(125 \mathrm{MHz})$, and/or a Bruker Ascend ${ }^{\text {TM }} 500 \mathrm{MHz}(125 \mathrm{MHz}$, equipped with cryoprobe) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl_{3} : $\delta 77.16 \mathrm{ppm}$). Unless otherwise noted, all reactions have been carried out with distilled and degassed solvents under an atmosphere of dry N_{2} in oven- $\left(135{ }^{\circ} \mathrm{C}\right)$ and flame-dried glassware with standard vacuum-line techniques. Tetrahydrofuran (THF) was purified under a positive pressure of dry argon by passage through two columns of activated alumina. Toluene was purified under a positive pressure of dry argon by passage through columns of activated alumina and Q5 (Grubbs apparatus). All work-up and purification procedures were carried out with reagent grade solvents (purchased from Sigma-Aldrich) in air. Standard column chromatography techniques were carried out using ZEOprep 60/40-63 $\mu \mathrm{m}$ silica gel. For samples that were unstable on silica, purification was done using neutral aluminum oxide (activated, Brockmann I 58 Å pore size, Oakwood). For difficult separations, medium-pressure liquid chromatography (MPLC) was performed using a Teledyne ISCO CombiFlash Rf 150 instrument. Optical rotations were measured on a PerkinElmer 241 polarimeter at 589 nm wavelength (sodium D-line) using a standard 10 cm cell (1 mL). Specific rotations, [$\alpha]_{\mathrm{D}}{ }^{20}$, are reported in degree $\mathrm{mL} /(\mathrm{g} \cdot \mathrm{dm})$ at the specific temperature. Concentrations (c) are given in grams per 100 mL of the specific solvent. Chiral HPLC analysis was performed on an Agilent 1220 Infinity LC system.

Reagents

Acrylamide was purchased from TCI and used as received.
Ad-Pyr-CuCl was prepared according to the literature. ${ }^{[1]}$
APhos was purchased from STREM and used as received.
APhos-PdG3 was prepared according to the literature. ${ }^{[2]}$
(rac)-BINAP was purchased from CombiBlocks and used as received.
BINAP-CuCl was prepared according to the literature. ${ }^{[3]}$
1,1'-Bis(diphenylphosphino)ferrocene (dppf) was purchased from STREM and used as received.
Bis(pinacolato)diboron ($\mathbf{B}_{2} \mathbf{p i n}_{2}$) was purchased from Oakwood and purified by
recrystallization in pentane prior to use.
4-bromoanisole was purchased from TCl and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
Bromobenzene was purchased from Sigma Aldrich and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.

5-Bromobenzo[d][1,3]dioxole was purchased from Ambeed and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use. 3-Bromo-4-chlorophenol was purchased from CombiBlocks and used as received. 1-bromo-2-fluorobenzene was purchased from Sigma Aldrich and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
1-bromo-4-fluorobenzene was purchased from Sigma Aldrich and purified by recrystallization in EtOH prior to use.
1-bromo-4-fluorobenzene was purchased from TCI and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
3-bromofuran was purchased from CombiBlocks and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA ̊$ MS prior to use.
2-bromo-6-methoxypyridine was purchased from CombiBlocks and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
5-bromo-2-methoxypyridine was purchased from CombiBlocks and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
1-Bromo-2-methylprop-1-ene was purchased from CombiBlocks and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
5-bromo-1-methyl-1H-pyrrolo[2,3-b]pyridine was prepared according to the literature. ${ }^{[4]}$
2-bromonaphthalene was purchased from Oakwood and purified by recrystallization in EtOH prior to use.
5-bromo-2-(piperidin-1-yl)pyridine was purchased from AOBChem and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
N -Bromosuccinimide was purchased from Oakwood and was purified by recrystallization in $\mathrm{H}_{2} \mathrm{O}$ prior to use.
3-bromothiophene was purchased from Sigma Aldrich and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
2-bromotoluene was purchased from Oakwood and by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
Cesium carbonate was purchased from STREM and used as received.
chlorodimethyl(phenyl)silane was purchased from Oakwood and was purified by short path distillation under vacuum before use.
Co(acac) $)_{2}$ was purchased from Sigma Aldrich and dried under vacuum at $70^{\circ} \mathrm{C}$ overnight prior to use.
Copper (I) chloride was purchased from STREM and purified by trituration twice with aqueous HCl , twice with EtOH , and twice with $\mathrm{Et}_{2} \mathrm{O}$ in that order before drying under vacuum overnight. Copper (I) iodide was purchased from Alfa Aesar and used as received.
(cyclohexa-1,3-dien-1-yloxy)triisopropylsilane was prepared according to the literature. ${ }^{[5]}$
Cyclohex-2-en-1-one was purchased from Oakwood and used as received.
\mathbf{N}, \mathbf{N} '-Dimethylethylenediamine was purchased from CombiBlocks and used as received.
2,4-dinitrophenyl hypochlorothioite was purchased from Sigma Aldrich and used as received.
Dppf-PdG3 was prepared according to the literature. ${ }^{[2]}$
Ethoxyethene was purchased from Sigma Aldrich and used as received.
Furan was purchased from Sigma Aldrich and used as received.
1,1,1,3,3,3-Hexafluoro-2-propanol was purchased from Oakwood and used as received.
$30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}$ was purchased from Macron and used as received.

IMes-CuCl was prepared according to the literature. ${ }^{[6]}$
lodine was purchased from Alfa Aesar and used as received.
N -iodosuccinimide was purchased from Oakwood and used as received.
$\left[\operatorname{lr}\left(\mathbf{d F}\left(\mathrm{CF}_{3}\right) \mathbf{p p y}\right)_{2}(\mathbf{d t b b p y})\right] \mathrm{PF}_{6}$ was purchased from STREM and used as received.
Lithium rod was purchased from STREM and used as received.
2,6-Lutidine (2,6-dimethylpyridine) was purchased from Oakwood and used as received.
McQuade-CuCl was prepared according to the literature. ${ }^{[7]}$
Methanol Anhydrous was purchased from Neta Scientific and used as used as received.
4-Methoxybenzyl chloride was purchased from AK Scientific and used as received.
Methyl 4-bromobenzoate was purchased from CombiBlocks and used as received.
Methylcyclohex-2-en-1-one was prepared according to the literature. ${ }^{[8]}$
Methylmagnesium bromide solution ($\mathbf{3 . 0} \mathbf{~ M ~ i n ~} \mathrm{Et}_{2} \mathrm{O}$) was purchased from Sigma Aldrich and used as received.
6-Mes-CuCl was prepared according to the literature. ${ }^{[9]}$
Morpholine was purchased from Alfa Aesar and was purified by distillation under vacuum prior to use.
Naphthyl-Pyr-CuCl was prepared according to the literature. ${ }^{[1]}$
n-butyl lithium solution (2.5 M in hexanes) was purchased from Sigma Aldrich and used as received.
$\mathrm{NiCl}_{2} \cdot$ glyme was purchased from STREM and used as received.
(R,R)-NORPHOS was purchased from STREM and used as received.
NorPhos-CuCl was prepared according to the literature.
$\mathrm{PCy}_{3}-\mathrm{PdG3}$ was prepared according to the literature. ${ }^{[2]}$
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was purchased from STREM and used as received.
Potassium carbonate was purchased from EMD and dried in an oven at $80^{\circ} \mathrm{C}$ overnight prior to use.
Phenylacetylene was purchased from Sigma Aldrich and used as received.
Phenylmagnesium bromide ($\mathbf{3 . 0} \mathbf{M}$ in $\mathrm{Et}_{2} \mathbf{O}$) was purchased from Sigma Aldrich and used as received.
$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}$ was purchased from STREM and used as received.
QPhos was purchased from STREM and used as received.
QPhos-PdG3 was prepared according to the literature. ${ }^{[10]}$
RuPhos was purchased from Sigma Aldrich and used as received.
RuPhos-PdG3 was prepared according to the literature. ${ }^{[2]}$
SIMes-CuCl was prepared according to the literature. ${ }^{[6]}$
$\mathrm{SIPr}-\mathrm{CuCl}$ was prepared according to the literature. ${ }^{[6]}$
Sodium methoxide was purchased from Sigma Aldrich and used as received.
Sodium tert-butoxide was purchased from STREM and used as received.
Sodium tert-pentoxide ($\mathrm{NaO}^{\mathrm{t}} \mathbf{A m y l}$) was purchased from Alfa Aesar and used as received.
tert-Bu-Pyr-CuCl was prepared according to the literature ${ }^{[1]}$
tertbutyl hydrogen peroxide (5.5 M in nonane) was purchased from Sigma Aldrich and used as received.
tert-butyllithium solution (1.7M in pentane) was purchased from Sigma Aldrich and used as received.
Tricyclohexylphosphine (PCy_{3}) was purchased from STREM and used as received.
Triethylamine was purchased from EMD and purified by distillation over calcium hydride before use.

Triethylsilane $\left(\mathrm{Et}_{3} \mathrm{SiH}\right)$ was purchased from TCl and purified by neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipette onto activated $4 \AA$ MS prior to use.
(1,3,5-trimesityl-1 λ^{1}-pyridin-2-yl)copper chloride (Mes-Pyridylidene-CuCl or Mes-Pyr-
$\mathbf{C u C l})$ was prepared according to the literature. ${ }^{[1]}$
XantPhos-CuCl was prepared according to the literature. ${ }^{[11]}$
XPhos was purchased from Sigma Aldrich and used as received.
XPhos-PdG3 was prepared according to the literature. ${ }^{[2]}$
Zinc (II) Chloride was purchased from Alfa Aesar and used as received.

Two Step Synthesis of Silyl-Substituted Dienes

(3.4 eq)

ii) 2-cyclohexenone (1.0 eq)

THF, $-78^{\circ} \mathrm{C}$ to r.t., 20 h

3

1-(dimethyl(phenyl)silyl)cyclohex-2-en-1-ol (3)

This procedure was adapted from the literature. ${ }^{[12]}$ A 100 mL round bottom flask equipped with a magnetic stir bar was flam-dried under vacuum. Li^{0} rod ($1.00 \mathrm{~g}, 140 \mathrm{mmol}, 8.00 \mathrm{eq}$) was cut up into small chunks and added to the round bottom before sealing the flask with a rubber septum and purging it with an argon balloon. Anhydrous hexanes (18 mL) was added and the solution was stirred rapidly for 15 minutes before the hexanes was removed via syringe. Then, anhydrous THF (18 mL) was added to the flask under argon. The mixture was then cooled to $0^{\circ} \mathrm{C}$ with an ice bath before adding the $\mathrm{Me}_{2} \mathrm{PhSiCl}(10 \mathrm{~mL}, 61 \mathrm{mmol}, 3.4 \mathrm{eq})$. The reaction mixture was sonicated for 1 hour at $0^{\circ} \mathrm{C}$, and then stirred rapidly at $0^{\circ} \mathrm{C}$ for 5 hours in an ice bath. A small aliquot was taken out of the reaction and titrated using the method below. 1.3 eq of the silyl lithium reagent was transferred to a flame-dried 200 mL round bottom flask dropwise over 30 min at $-78^{\circ} \mathrm{C}$ to a solution of 2-cyclohexenone ($1.7 \mathrm{~mL}, 18 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (18 mL). The reaction was allowed to warm to room temperature over 20 hours and then quenched slowly with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The two phases were separated, and the aqueous phase was backextracted twice with EtOAc ($2 \times 40 \mathrm{~mL}$), and the combined organic layers were washed with brine (100 mL), dried with MgSO_{4}, filtered, and concentrated in-vacuo. The crude product was purified by MPLC with $0-8 \% \mathrm{Et}_{2} \mathrm{O} /$ Hexanes gradient as the eluent to provide 2.91 g of the title compound as a clear, light-yellow oil in 70\% yield. IR (neat): 3444 (w, br), 3014 (w), 2934 (w), 1706 (w), 1427 (w), 1246 (m), 1108 (m), 929 (w), 905 (w), 828 (m), 805 (s), 773 (s), 731 (s), 699 (s), 655 (m), 473 (m) cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.63-7.57$ (m, 2H), $7.40-7.32(\mathrm{~m}$, $3 \mathrm{H}), 5.85$ (ddd, $J=9.9,4.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 1 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 136.5,134.8,130.6,130.4,129.4,127.8,64.4,32.8,25.3$, 17.6, -5.6, -5.8 ppm . HRMS (El+) m/z: matched on [M]+; Calc for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi}$: 232.1278; Found: 232.1274.

(3.4 eq)

THF, $-78^{\circ} \mathrm{C}$ to r.t., 20 h

1-(dimethyl(phenyl)silyl)-5-methylcyclohex-2-en-1-ol (SI 1)
This procedure was adapted from the literature. ${ }^{[12]}$ A 100 mL round bottom flask equipped with a magnetic stir bar was flam-dried under vacuum. Li^{0} rod ($0.60 \mathrm{~g}, 87 \mathrm{mmol}, 8.0 \mathrm{eq}$) was cut up into small chunks and added to the round bottom before sealing the flask with a rubber septum and purging it with an argon balloon. Anhydrous hexanes (11 mL) was added and the solution was stirred rapidly for 15 minutes before the hexanes was removed via syringe. Then, anhydrous THF (11 mL) was added to the flask under argon. The mixture was then cooled to $0^{\circ} \mathrm{C}$ with an ice bath before adding the $\mathrm{Me}_{2} \mathrm{PhSiCl}(6.2 \mathrm{~mL}, 37 \mathrm{mmol}, 3.4 \mathrm{eq})$. The reaction mixture was sonicated for 1 hour at $0^{\circ} \mathrm{C}$, and then stirred rapidly at $0^{\circ} \mathrm{C}$ for 5 hours in an ice bath. A small aliquot was taken out of the reaction and titrated using the method below. 1.3 eq of the silyl lithium reagent was transferred to a flame-dried 200 mL round bottom flask dropwise over 30 min at $-78^{\circ} \mathrm{C}$ to a solution of 5 -methylcyclohex-2-en-1-one ($1.2 \mathrm{~g}, 11 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (18 mL). The reaction was allowed to warm to room temperature over 20 hours and then quenched slowly with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The two phases were separated, and the aqueous phase was back-extracted twice with EtOAc ($2 \times 20 \mathrm{~mL}$), and the combined organic layers were washed with brine (50 mL), dried with MgSO_{4}, filtered, and concentrated in-vacuo. The crude product was partially purified by MPLC with $0-8 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent. The final product was a mixture of two diastereomers and other unknown impurities but was moved forward and fully purified after elimination of the allylic alcohol. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.59 (ddd, J = 9.5, 7.5, 2.1 Hz, 5H), 7.37 (h, J = 5.2 Hz, 11H), 5.87 (ddd, J = 9.7, 5.8, 2.0 Hz , $1 \mathrm{H}), 5.77-5.67(\mathrm{~m}, 3 \mathrm{H}), 5.60(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H})$, $1.78-1.41(\mathrm{~m}, 10 \mathrm{H}), 1.30-1.17(\mathrm{~m}, 5 \mathrm{H}), 0.99-0.93(\mathrm{~m}, 5 \mathrm{H}), 0.91-0.85(\mathrm{~m}, 6 \mathrm{H}), 0.38(\mathrm{dd}, \mathrm{J}$ $=7.2,1.7 \mathrm{~Hz}, 10 \mathrm{H}), 0.34$ (dd, $\mathrm{J}=6.6,1.7 \mathrm{~Hz}, 6 \mathrm{H}$).

Titration of Silyl-Lithium Reagents

Due to the mixture of the siyl-lithium reagent with a siloxide, a double titration method is required to determine the concentration of the silyl-lithium. This procedure was adapted from the literature. ${ }^{[13]}$ Approximately 2 mg of phenolphthalein and 3 mL of DI water were added to a 10 mL round bottom flask with a magnetic stir bar. Approximately 2 mg of phenolphthalein and 3 mL of dibromomethane were added to a separate 10 mL round bottom flask with a magnetic stir bar. 0.25 mL of the silyl lithium reagent was quenched in each RBF. 2 mL of water was added to the round bottom flask with dibromomethane and it was shaken vigorously. Each RBF was titrated with 0.1 M HCl in DI water. The first titration is the concentration of the silyl-lithium reagent plus the siloxide reagent. The second titration removes the silyl-lithium reagent through lithium halogen exchange, so this titration determines the concentration of just the siloxide reagent. The difference between the two titrations is the final concentration of the silyl-lithium reagent.

(2.0 eq)
NEt_{3} (2.5 eq), DCM (1 M)
$0^{\circ} \mathrm{C}$ to r.t., 16 h

2
cyclohexa-1,3-dien-1-yldimethyl(phenyl)silane (2)

This procedure was adapted from the literature. ${ }^{[14]}$ To a flame-dried, 200 mL round bottom flask equipped with a magnetic stir bar was added 1-(dimethyl(phenyl)silyl)cyclohex-2-en-1-ol (19.5 g, $83.8 \mathrm{mmol}, 1.00 \mathrm{eq}$), triethyl amine ($29.2 \mathrm{~mL}, 210 \mathrm{mmol}, 2.50 \mathrm{eq}$), and DCM (85 mL). The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and 3,4-dinitrophenylhypochlorothioite (39.3 g , $168 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added slowly in portions to the reaction mixture at $0^{\circ} \mathrm{C}$. The flask was sealed with a rubber septum, and the solution was then allowed to warm to room temperature and stir overnight under an atmosphere of nitrogen. The reaction mixture was then diluted with pentane (80 mL) and passed through a pad of silica gel with 100% pentane as the eluent to provide 9.3460 g of the title compound as a clear, colorless oil in 52% yield (average of two runs). IR (neat): 3067 (w), 3036 (w), 3016 (w), 2955 (w), 2925 (w), 2868 (w), 2819 (w), 1427 (m), 1246 (m), 1072 (m), 1038 (m), $999(\mathrm{~m}), 770(\mathrm{~s}), 748(\mathrm{~m}), 728(\mathrm{~m}), 695(\mathrm{~s}), 470(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$

NMR (500 MHz, CDCl $)_{3}$: $\delta 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.24(\mathrm{dq}, \mathrm{J}=4.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98$ (ddt, J = 9.6, 4.9, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.91 (ddt, J = 8.5, 4.3, 2.1 Hz, 1H), 2.17-2.04 (m, 4H), 0.36 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3): δ 138.4, 137.1, 134.2, 133.8, 129.1, 128.3, 127.9, 124.9, 24.4, 22.3, -3.5 ppm . HRMS (El+) m/z: matched on [M]+; Calc for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Si}$: 214.1172; Found: 214.1182. Note: the addition of 3,4-dinitrophenylhypochlorothioite is highly exothermic and evolves a gas, so the flask should not be sealed immediately after its addition.

$\mathrm{NEt}_{3}(2.5 \mathrm{eq}), \mathrm{DCM}$ (1 M)
$0^{\circ} \mathrm{C}$ to r.t., 16 h

19
dimethyl(5-methylcyclohexa-1,3-dien-1-yl)(phenyl)silane (19)
This procedure was adapted from the literature. ${ }^{[14]}$ To a flame-dried, 200 mL round bottom flask equipped with a magnetic stir bar was added 1-(dimethyl(phenyl)silyl)-5-methylcyclohex-2-en-1ol ($1.23 \mathrm{~g}, 4.99 \mathrm{mmol}, 1.00 \mathrm{eq}$), triethyl amine ($29.2 \mathrm{~mL}, 210 . \mathrm{mmol}, 2.50 \mathrm{eq}$), and DCM (85 mL). The solution was then cooled to $0^{\circ} \mathrm{C}$ in an ice bath and 3,4 -dinitrophenylhypochlorothioite
($39.3 \mathrm{~g}, 168 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added slowly in portions to the reaction mixture at $0^{\circ} \mathrm{C}$. The flask was sealed with a rubber septum, and the solution was then allowed to warm to room temperature and stir overnight under an atmosphere of nitrogen. The reaction mixture was then diluted with pentane (80 mL) and passed through a pad of silica gel with 100% pentane as the eluent to provide 0.4096 g of the title compound as a clear, colorless oil in 16% yield over two steps. IR (neat): 3020 (w), 2954 (w), 2870 (w), 1427 (m), 1246 (m), 1107 (m), 811 (s), 726 (m), 697 (s), 468 (m), 413 (m) cmn. ${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $_{3}$): $\delta 7.56-7.48$ (m, 2H), 7.38 - 7.31 (m, 3H), $6.23-6.19(\mathrm{~m}, 1 \mathrm{H}), 5.92$ (ddd, J = 9.5, 4.8, 2.1 Hz, 1H), 5.74 (dd, J = 9.5, 3.4 Hz, 1H), $2.35-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.33,136.47,135.04,134.17,133.34,129.06,127.87$, 123.86, 33.02, 27.93, 19.79, -3.51, -3.63 ppm. HRMS (El+) m/z: matched on [M]+; Calc for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Si}$: 228.1329; Found: 228.1331. Note: the addition of 3,4-dinitrophenylhypochlorothioite is highly exothermic and evolves a gas, so the flask should not be sealed immediately after its addition.

Procedure A: General Procedure for the Arylboration of Silyl-Substituted Dienes

In an N_{2}-filled glovebox, to a flame-dried $16 \times 100 \mathrm{~mm}$ screw cap vial with a magnetic stir bar, was added APhos-PdG3 ($5.1 \mathrm{mg}, 8.0 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$), Mes-Pyridylidene-CuCl ($11 \mathrm{mg}, 20$. $\mu \mathrm{mol}, 5.0 \mathrm{~mol} \%$), $\mathrm{B}_{2} \mathrm{pin}_{2}(152 \mathrm{mg}, 0.600 \mathrm{mmol}, 1.50 \mathrm{eq}$), $\mathrm{NaOtBu}(57.7 \mathrm{mg}, 0.600 \mathrm{mmol}, 1.50$ eq), and aryl bromide ($0.600 \mathrm{mmol}, 1.50 \mathrm{eq}$, if it is a solid) in that order. The $16 \times 100 \mathrm{~mm}$ screw cap vial was sealed with a rubber septum, lined with Teflon tape, removed from the glove box, and placed under a positive pressure of N_{2}. To the screw cap vial was added toluene (3 $\mathrm{mL})$, the silyl diene ($0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$), and the aryl bromide ($0.600 \mathrm{mmol}, 1.50 \mathrm{eq}$, if it is a liquid) before rinsing the sides of the vial with toluene (1 mL). The septum was then quickly replaced with a Teflon lined screw cap and the reaction was stirred at $30^{\circ} \mathrm{C}$ for 12 hours. After 12 hours, the reaction was quenched with aq $1 \mathrm{M} \mathrm{HCl}(4 \mathrm{~mL})$, the two phases were separated, and the aqueous phase was back extracted with $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{EtOAc}(2 \times 4 \mathrm{~mL})$. The combined organic phases were dried with MgSO_{4}, filtered, and concentrated in-vacuo. (Note: $\mathrm{NaO}^{\text {t }} \mathrm{Amyl}$
or $\mathrm{NaO}^{\text {tBu }}$ can be used as the base without a significant change to the yield and selectivity of the reaction.)
If \mathbf{R} is a hydroxyl group: the crude product was redissolved in THF (2 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath, and $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.10 \mathrm{~mL}, 4.0 \mathrm{mmol}, 10 \mathrm{eq}, 30 \%\right.$ wt in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{NaOH}(2$ $\mathrm{mL}, 2 \mathrm{mmol}, 5 \mathrm{eq}, 1 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$) were added before allowing the reaction to warm to room temperature and stir for 3 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. The two phases were separated, and the aqueous phase was back extracted twice with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$. The combine organic phases were dried over MgSO_{4}, filtered, and concentrated in-vacuo. The crude product mixture was purified by MPLC as described below.

Screening for the Arylboration of Silyl-Substituted Dienes

The following reactions were performed using Procedure A above with bromobenzene (0.60 $\mathrm{mmol}, 1.5 \mathrm{eq}$), no oxidation of the boronic ester, and the given copper (I) catalysts (0.02 mmol , $5 \mathrm{~mol} \%$) and palladium (0) precatalysts ($0.008 \mathrm{mmol}, 2 \mathrm{~mol} \%$). The yields of these runs were determined by GC with dodecane as the internal standard corrected by a burn factor. The best examples from the screen where also analyzed by ${ }^{1} \mathrm{H}$ NMR with nitromethane as the internal standard:

Entry	Pd-Cat.	Cu-Cat.	Yield	d.r.
1	dppf-PdG3	IMes-Cu-CI	5\% ${ }^{\text {a }}$	1:2 ${ }^{\text {a }}$
2	RuPhos-PdG3	IMes-CuCl	<2\% ${ }^{\text {a }}$	n.d.
3	PCy $\mathbf{3}_{3}$-PdG3	IMes-CuCI	72\% ${ }^{\text {a }}$	$3: 1^{\text {a }}$
4	XPhos-PdG3	IMes-CuCI	63\% ${ }^{\text {a }}$	3:1 ${ }^{\text {a }}$
5	XPhos-PdG3	SIMes-CuCl	92\% ${ }^{\text {b }}$	3:1 ${ }^{\text {b }}$
6	APhos-PdG3	IMes-CuCl	78\% ${ }^{\text {b }}$	12:1 ${ }^{\text {b }}$
7	APhos-PdG3	SIPr-CuCl	28\% ${ }^{\text {a }}$	6:1 ${ }^{\text {a }}$
8	APhos-PdG3	XantPhos-CuCl	<2\% ${ }^{\text {a }}$	n.d.
9	APhos-PdG3	NorPhos-CuCl	<2\% ${ }^{\text {a }}$	n.d.
10	APhos-PdG3	BINAP-CuCI	<2\% ${ }^{\text {a }}$	n.d.
11	APhos-PdG3	Mes-Pyr-CuCl	90\% ${ }^{\text {b }}$	40:1 ${ }^{\text {b }}$
12	APhos-PdG3	6-Mes-CuCl	74\% ${ }^{\text {b }}$	43:1 ${ }^{\text {b }}$
13	APhos-PdG3	${ }^{\text {tBu-Pyr-CuCl }}$	<2\% ${ }^{\text {a }}$	n.d.
14	APhos-PdG3	Ad-Pyr-CuCl	<2\% ${ }^{\text {a }}$	n.d.
15	APhos-PdG3	Naphthyl-Pyr-CuCl	<2\% ${ }^{\text {a }}$	n.d.
16	APhos-PdG3	McQuade-CuCl	93\% ${ }^{\text {b }}$	40:1 ${ }^{\text {b }}$

a) corrected yield and/or dr determined by GC with dodecane as the internal standard. b) yield and/or dr determined by NMR with dibromomethane as the internal standard.

Scope Examples for Arylboration of Silyl-Substituted Dienes

4b
(\pm)-5-(dimethyl(phenyl)silyl)-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-ol (4b) The tile compound was prepared by Procedure A above with $2(86 \mu \mathrm{~L} 0.40$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) and bromobenzene ($63 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.5 \mathrm{eq}$). The crude product was purified by MPLC with $0-10 \%$ EtOAc/Hexanes gradient as the eluent to provide 108.6 mg of the title compound as a white solid in 65% yield (average of two runs). IR (neat): 3259 (br, w), 3084 (w), 3065 (w), 3024 (w), 3002 (w), 2947 (w), 2928 (w), 2887 (w), 2834 (w), 1874 (w), 1809 (w), 1613 (w), 1601 (w), 1488 (w), 1450 (w), 1426 (w), 1352 (w), 1301 (w), 1245 (w), 1167 (w), 1107 (m), 1086 (w), 1069 (w), 1032 (m), 998 (w), 973 (m), 938 (w), 907 (w), 827 (m), 810 (m), 763 (w), 731 (m), 697 (s), 651 (m), 617 (w), 516 (m), 469 (w), 438 (w), $415(\mathrm{w}) \mathrm{cm}^{-}$ ${ }^{1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.42$ (m, 2H), $7.31-7.27$ (m, 4H), $7.22-7.12$ (m, 4H), $5.87-5.84(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{ddt}, \mathrm{J}=8.1,4.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 2 \mathrm{H}), 0.29(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.1,138.5,138.3,137.9,134.0,129.2,128.9,128.7,128.0,127.1,73.9$, $53.3,30.2,27.0,-3.3,-3.4 \mathrm{ppm}$. HRMS (ESI) \mathbf{m} / \mathbf{z} : matched on $[\mathrm{M}+\mathrm{Na}]+$; Calc for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ONaSi}$: 331.1489; Found: 331.1490.

5
(\pm)-5-(dimethyl(phenyl)silyl)-4'-methoxy-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-ol (5)
The tile compound was prepared by Procedure A above with 2 (86 $\mu \mathrm{L} 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 4-Bromoanisole ($75 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.5$ eq). The crude product was purified by MPLC with $0-10 \%$ $\mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 93.3 mg of the title compound as a white solid in 69% yield (average of two runs). IR (neat): 3380 (br, w), 3067 (w), 3047 (w), 3001 (w), 2953 (w), 2927 (w), 2834 (w), 1611 (w), 1509 (m), 1427 (w), 1300 (w), 1244 (m), 1034 (m), 828 (s), 805 (s), 752 (s), 729 (s), 698 (s), 655 (m), $537(\mathrm{~m}), 473(\mathrm{~m}), 441(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $_{3}$): $\delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33$ $(\mathrm{m}, 3 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.94-5.89(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.68$ (ddt, J $=11.2,8.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dq}, \mathrm{J}=8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H})$, 1.99 (ddt, J = 12.4, 6.4, 3.3 Hz, 1H), $1.72-1.62$ (m, 2H), 0.36 (br s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $_{3}$): $\delta 158.8,138.9,138.3,137.7,135.0,134.0,129.6,129.2,128.0,114.3,74.0,55.5$, 52.4, 30.2, 27.0, -3.3, -3.4 ppm . HRMS (APCI) m/z: matched on $[\mathrm{M}+\mathrm{H}]+$; Calc for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}$: 339.1775; Found: 339.1777.

6
(土)-5-(dimethyl(phenyl)silyl)-4'-fluoro-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-ol (6)
The tile compound was prepared by Procedure A above with $2(86 \mu \mathrm{~L}$ $0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 1-Bromo-4-fluorobenzene ($66 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$, $1.5 \mathrm{eq})$. The crude product was purified by MPLC with $0-10 \%$ $\mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 96.6 mg of the title compound as a white solid in 74\% yield (average of two runs). IR (neat): 3263 (br, w), 3068 (w), 2947 (w), 1885 (w), 1507 (m), 1452
(w), 1246 (m), 1154 (m), 1031 (m), 974 (m), $895(\mathrm{w}), 830(\mathrm{~m}), 808(\mathrm{~m}), 731(\mathrm{~m}), 695(\mathrm{~m}), 651$ (m), 523 (m), $468(\mathrm{~m}), 468(\mathrm{~m}), 441(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.84(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{tt}, \mathrm{J}=$ $11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{ddt}, \mathrm{J}=8.1,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H})$, $2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta 163.0,161.1,138.8(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 138.3(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 134.0,130.0(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz})$, 129.2, 128.0, 115.7 (d, J = 20.8 Hz), 73.9, 52.4, 30.3, 27.0, -3.3, $-3.4 \mathrm{ppm} .{ }^{19}$ F NMR (400 MHz , CDCl_{3}): $\delta-116.19 \mathrm{ppm}$. HRMS (EI+) m/z: matched on [M - H]+; Calc for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{FOSi}$: 325.1418; Found: 325.1417.

(\pm)-5-(dimethyl(phenyl)silyl)-4'-(trifluoromethyl)-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-ol (7)

The tile compound was prepared by Procedure A above with 2 (86 $\mu \mathrm{L} 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 1-Bromo-4-chlorobenzene ($66 \mu \mathrm{~L}, 0.60$ $\mathrm{mmol}, 1.5 \mathrm{eq})$. The crude product was purified by MPLC with $0-10 \%$ $\mathrm{EtOAc} / \mathrm{Hexanes}$ gradient as the eluent to provide 120.5 mg of the title compound as a light-yellow solid in 80% yield (average of two runs). IR (neat): 3346 (br, w), 3068 (w), 3048 (w), 3007 (w), 2954 (w), 2923 (w), 2861 (w), 2838 (w), 1614 (w), 1427 (w), 1416 (w), 1322 (s), 1248 (m), 1161 (m), 1121 (s), 1107 (s), 1066 (m), 1017 (m), $831(\mathrm{~m}), 809(\mathrm{~m}), 772(\mathrm{~m}), 730(\mathrm{~m}), 698(\mathrm{~m}), 656(\mathrm{~m}), 610(\mathrm{~m}), 588(\mathrm{~m}), 516(\mathrm{~m}), 474(\mathrm{~m})$, $447(\mathrm{~m}), 415(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}$, 2H), $7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.91-5.85(\mathrm{~m}, 1 \mathrm{H}), 3.73$ (ddd, J=11.1, 8.1, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.99$ (ddt, J = 12.4, $6.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 2 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.5$, $138.9,138.0,137.4,134.0,129.3(q, J=32.4 \mathrm{~Hz}), 129.2,129.0,128.0,125.7(q, J=3.8 \mathrm{~Hz})$, 124.4 ($q, J=271.6 \mathrm{~Hz}$), 73.7, $53.0,30.5,27.0,-3.3,-3.4 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$ 62.5 (s) ppm. HRMS (ESI) m/z: matched on [M - H]+; Calc for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{OSi}$: 375.1397; Found: 375.1387.

8
(\pm)-5-(dimethyl(phenyl)silyl)-2'-methyl-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-ol (8)
The tile compound was prepared by Procedure A above with 2 ($86 \mu \mathrm{~L} 0.40$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) and 2 -Bromotoluene ($72 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.5 \mathrm{eq}$). The crude product was purified by MPLC with $0-10 \%$ EtOAc/Hexanes gradient as the eluent to provide 100.6 mg of the title compound as a white solid in 78% yield (average of two runs). IR (neat): 3360 (br, w), 3066 (w), 2860 (w), 1650 (w), 1586 (w), 1246 (m), 997 (m), 770 (s), 754 (s), 459 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCI_{3}): ס 7.57 - 7.49 (m, 2H), $7.39-7.34$ (m, 3H), 7.23 $7.10(\mathrm{~m}, 4 \mathrm{H}), 5.93-5.86(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{ddt}, \mathrm{J}=10.4,6.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dt}, \mathrm{J}=7.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.97$ (dddd, $\mathrm{J}=12.9,5.6,4.2,3.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.72 (dtd, J = 12.7, 9.8, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.65 (br s, 1H), 0.37 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 141.1,138.8,138.3,137.4,137.2,134.0,130.7,129.1,128.2,128.0,126.8,126.5$, 73.5, 48.8, 29.9, 26.4, 20.1, -3.3, -3.4 ppm. HRMS (El+) m/z: matched on [M]+; Calc for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{OSi}$: 322.1747 ; Found: 322.1746.

9
(\pm)-5-(dimethyl(phenyl)silyl)-2'-fluoro-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-ol (9)
The tile compound was prepared by Procedure A above with 2 ($86 \mu \mathrm{~L} 0.40$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) and 2-Bromo-1-fluorobenzene ($66 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.5 \mathrm{eq}$). The crude product was purified by MPLC with $0-10 \%$ EtOAc/Hexanes gradient as the eluent to provide 101.9 mg of the title compound as a white solid in 78\% yield (average of two runs). IR (neat): 3357 (br ,w), 3067 (w), 2835 (w), 1615 (w), 1584 (w), 1488 (m), 1246 (m), 1225 (m), 971 (m), 828 (s), 807 (s), 771 (s), 754 (s), 729 (s), 471 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H})$, 7.19 (dd, J = 7.4, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (td, J = 7.4, 1.2 Hz, 1H), 7.07 (ddd, J = 9.7, 8.2, 1.3 Hz, 1H), $5.91-5.84(\mathrm{~m}, 1 \mathrm{H}), 3.85$ (ddd, J = 10.6, 7.6, 3.2 Hz, 1H), 3.72 (dq, J = 7.9, 2.6 Hz, 1H), $2.40-$ $2.30(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{ddt}, \mathrm{J}=12.8,5.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H})$, 0.38 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 162.5,160.6,138.2$ (d, J = 7.2 Hz), 137.3, 134.0, 129.9 (d, J = 4.3 Hz), 129.8, 129.2, $128.5(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$), 128.0, $124.5(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz})$, 115.7 ($\mathrm{d}, \mathrm{J}=22.5 \mathrm{~Hz}$), 72.6, 46.0, 30.3, 26.5, $-3.3,-3.4 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$ $117.98-118.03(\mathrm{~m})$ ppm. HRMS (APCI) m/z: matched on $[\mathrm{M}+\mathrm{H}]+$; Calc for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{OFSi}$: 327.1575; Found: 327.1577.

10
(\pm)-4-(dimethyl(phenyl)silyl)-2-(naphthalen-2-yl)cyclohex-3-en-1-ol (10)
The tile compound was prepared by Procedure A above with 2 (86 $\mu \mathrm{L} 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 2-Bromonaphthalene ($124.2 \mathrm{mg}, 0.60$ $\mathrm{mmol}, 1.5 \mathrm{eq})$. The crude product was purified by MPLC with 0$10 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 110.4 mg of the title compound as a white solid in 77% yield (average of two runs). IR (neat): 3331 (br, w), 3059 (w), 2850 (w), 1447 (w), 1303 (w), 1067 (w), 854 (m), 804 (m), 744 (m), 699 (m), 477 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H})$, $7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 4 \mathrm{H}), 6.04-5.97(\mathrm{~m}, 1 \mathrm{H}), 3.84$ (ddd, J $=11.1,8.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dq}, \mathrm{J}=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 1 \mathrm{H})$, 2.04 (ddt, J = 12.3, 5.5, 3.3 Hz, 1H), $1.82-1.68(\mathrm{~m}, 2 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $_{3}$): $\delta 140.5,138.4,138.3,138.2,134.0,133.6,132.7,129.2,128.7,128.0$, $127.8,127.7,127.5,126.5,126.3,125.8,73.6,53.4,30.2,27.0,-3.3 \mathrm{ppm}$. HRMS (El+) m/z: matched on $[\mathrm{M}]+$; Calc for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{OSi}$: 358.1747; Found: 358.1750.

(\pm)-4-(dimethyl(phenyl)silyl)-2-(1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)cyclohex-3-en-1-ol (11)
The tile compound was prepared by Procedure A above with 2 (86 $\mu \mathrm{L} 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 2-bromo-6-methoxypyridine (130 mg , $0.60 \mathrm{mmol}, 1.5 \mathrm{eq})$. The crude product was purified by MPLC with 0$50 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 74.0 mg of the title compound as a yellow oil in 51% yield (average of two runs). IR (neat): 3412 (br, w), 3034 (w), 2920 (w), 1710 (s), 1516 (w), 1404
(m), 1354 (m), 1219 (m), 1082 (w), 962 (w), 813 (m), 729 (m), $700(\mathrm{~m}), 529(\mathrm{~m}) \mathrm{cm}^{-1}$. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41$ - $7.32(\mathrm{~m}$, 3H), 7.16 (t, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.40(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.91$ (m, 1H), 3.87 (s, 3H), 3.77 (ddd, J = 11.1, 8.0, 3.2 Hz, 1H), $3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.96(\mathrm{~m}, 2 \mathrm{H})$, $1.77-1.67(\mathrm{~m}, 1 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.4,143.6,138.6$, $138.2,138.1,134.0,130.0,129.7,129.2,128.6,128.0,120.7,99.2,74.3,50.9,31.4,30.3,27.0$, -3.4 ppm . HRMS (APCI) m/z: matched on $[\mathrm{M}+\mathrm{H}]+$; Calc for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ON}_{2} \mathrm{Si}$: 363.1887; Found: 363.1888.

12
(\pm)-4-(dimethyl(phenyl)silyl)-2-(furan-3-yl)cyclohex-3-en-1-ol (12)
The tile compound was prepared by Procedure A above with $2(86 \mu \mathrm{~L} 0.40$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) and 3-Bromofuran ($54 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.5 \mathrm{eq}$). The crude product was purified by MPLC with $0-10 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 90.7 mg of the title compound as a light-yellow oil in 76% yield (average of two runs). IR (neat): 3357 (br, w), 3134 (w), 2836 (w), 1614 (w), 1427 (w), 1246 (m), 959 (m), 808 (s), 771 (s), 728 (s), 698 (s), 599 (m), $474(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53$ - 7.48 (m, 2H), 7.41 (t, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (dd, J = 4.9, $1.9 \mathrm{~Hz}, 3 \mathrm{H}$), 7.32 (dt, J = 1.5, 0.7 $\mathrm{Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, \mathrm{J}=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.68$ (ddd, J = 10.7, 7.9, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (dq, J = 8.0, 2.5 Hz, 1H), $2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{ddt}, \mathrm{J}=12.6,5.7,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.64(\mathrm{dtd}, \mathrm{J}=12.6,10.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.36(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 143.6,140.0,138.2,137.8,137.6,134.0,129.2,128.0,126.5,110.1,72.3,43.4$, 29.9, 26.6, -3.3, -3.4 ppm. HRMS (El+) m/z: matched on [M]+; Calc for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}$: 298.1384; Found: 298.1376.

13
(\pm)-4-(dimethyl(phenyl)silyl)-2-(thiophen-3-yl)cyclohex-3-en-1-ol (13) The tile compound was prepared by Procedure A above with $2(86 \mu \mathrm{~L} 0.40$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) and 3 -Bromothiophene ($56 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.5 \mathrm{eq}$). The crude product was purified by MPLC with $0-10 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 93.1 mg of the title compound as a yellow oil in 74\% yield (average of two runs). IR (neat): 3216 (br, w), 3132 (w), 2837 (w), 1485 (w), 1352 (w), 1243 (w), 1164 (w), 828 (m), 803 (m), 771 (m), $733(\mathrm{~m}), 697(\mathrm{~m}), 478(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.56-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{dd}, \mathrm{J}=4.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=$ $3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (dd, J = 5.0, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.99-5.93(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{tt}, \mathrm{J}=10.7,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46$ (dt, J = 8.1, 2.7 Hz, 1H), $2.38-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.99$ (ddt, J = 12.5, $5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (br s, 1H), 1.66 (dtd, J = 13.0, $10.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 0.37 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $_{3}$): $\delta 143.7,138.2,137.9,137.6,134.0,129.2,128.0,127.5,126.3,121.9$, 72.9, 48.3, 29.9, 26.7, -3.4 ppm. HRMS (ESI) m/z: matched on [M + Na]+; Calc for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ONaSSi}$: 337.1053; Found: 337.1053.

14 (\pm)-4-(dimethyl(phenyl)silyl)-2-(2-methylprop-1-en-1-yl)cyclohex-3-en-1-ol (14)
The tile compound was prepared by Procedure A above with 2 ($86 \mu \mathrm{~L}$ $0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 1-bromo-2-methylprop-1-ene ($62 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$, $1.5 \mathrm{eq})$. The crude product was purified by MPLC with $0-15 \%$ EtOAc/Hexanes gradient as the eluent to provide 66.7 mg of the title compound as a yellow oil in 58% yield (average of two runs). IR (neat): 3373 (br, w), 3067 (w), 2920 (w), 1609 (w), 1427 (m), 1246 (m), 1110 (m), 1043 (m), 960 (m), 828 (m), 805 (s), 770 (m), 728 (m), $698(\mathrm{~s}), 638$ (m), $471(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.74$ $-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.91(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{ddd}, \mathrm{J}=11.1,8.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{tq}, \mathrm{J}=10.1,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{ddt}, \mathrm{J}=12.3,6.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.34(\mathrm{br} \mathrm{s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 138.7,138.4,136.7,135.7,134.0,129.0,127.9,125.9,72.3,46.2,29.9,27.0,26.2$, 18.5, -3.3, -3.4 ppm . HRMS (APCI) m/z: matched on [M - H]+; Calc for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{OSi}$ 285.1669; Found: 269.1721.

15

(\pm)-4-(dimethyl(phenyl)silyl)-2-(6-methoxypyridin-3-

 yl)cyclohex-3-en-1-ol (15)The tile compound was prepared by Procedure A above with 2 (86 $\mu \mathrm{L} 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 5-bromo-2-methoxypyridine ($78 \mu \mathrm{~L}, 0.60$ $\mathrm{mmol}, 1.5 \mathrm{eq})$. The crude product was purified by MPLC with 0 $30 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 74.8 mg of the title compound as a yellow oil in 66\% yield (average of two runs). IR (neat): 3337 (br, w), 3008 (w), 2947 (w), 1605 (m), 1490 (s), 1390 (m), 1291 (m), 1246 (m), 1111 (m), 1028 (m), $970(\mathrm{~m})$, 829 (m), 808 (s), 729 (s), 698 (s), 655 (w), 473 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}$, 1 H), 7.36 (dd, J = 4.9, $1.9 \mathrm{~Hz}, 3 \mathrm{H}$), 6.74 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.88-5.83$ (m, 1H), 3.94 (s, 3H), 3.67 (ddd, J = 10.9, 8.0, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.29(\mathrm{dt}, \mathrm{J}=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.28-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{ddt}, \mathrm{J}=12.4,5.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 2 \mathrm{H}), 0.37(\mathrm{br} \mathrm{s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta 163.4,146.6,138.8,138.7,137.9,137.7,133.9,131.2,129.2,127.9$, $111.0,73.5,53.5,49.7,30.4,26.9,-3.4,-3.5 \mathrm{ppm}$. HRMS (ESI) m/z: matched on $[\mathrm{M}+\mathrm{H}]+$; Calc for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{NSi}$: 340.1727; Found: 340.1729.

16

(土)-4-(dimethyl(phenyl)silyl)-2-(6-(piperidin-1-yl)pyridin-3-yl)cyclohex-3-en-1-ol (16)

The tile compound was prepared by Procedure A above with 2 ($86 \mu \mathrm{~L} 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 5-bromo-2-(piperidin-1-yl)pyridine ($103 \mu \mathrm{~L}, 0.600 \mathrm{mmol}, 1.50 \mathrm{eq}$). The crude product was purified by MPLC with $0-15 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 97.3 mg of the title compound as a yellow oil in 62% yield (average of two runs). IR (neat): 3346 (br, w), 2997 (w), 2929 (w), 2851 (w), 1604 (w), 1491 (m), 1404 (w), 1311 (w), 1241 (m), 1110 (w), 1024 (w), 932 (w), 809 (m), 770 (m), 698
(m), 471 (w) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.84(\mathrm{~m}, 1 \mathrm{H})$, 3.64 (ddd, J = 10.9, 8.0, 3.2 Hz, 1H), 3.49 (t, J = 4.7 Hz, 4H), 3.19 (dq, J = 8.2, 2.5 Hz, 1H), 2.37 $-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.97$ (ddt, J = 12.5, 6.6, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.72-1.58$ (m, 7H), 0.35 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 159.0,147.8,138.3,138.1,138.0,137.6,133.9$, 129.1, 127.9, 126.5, 107.4, 75.1, 73.5, 49.7, 46.6, 30.1, 26.8, 25.6, 24.9, 24.8, -3.4 ppm. HRMS (ESI) m/z: matched on $[\mathrm{M}+\mathrm{H}]+$; Calc for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{ON}_{2} \mathrm{Si}$: 393.2357; Found: 393.2361.

17
(\pm)-4-(dimethyl(phenyl)silyl)-2-(6-methoxypyridin-2-yl)cyclohex-3-en-1-ol (17)
The tile compound was prepared by Procedure A above with 2 (86 $\mu \mathrm{L} 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 2-bromo-6-methoxypyridine ($74 \mu \mathrm{~L}, 0.60$ $\mathrm{mmol}, 1.5 \mathrm{eq})$. The crude product was purified by MPLC with $0-$ $15 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 74.8 mg of the title compound as a yellow oil in 55% yield (average of two runs). IR (neat): 3394 (br, w), 3067 (w), 2948 (w), 1577 (m), 1464 (m), 1246 (m), 1038 (m), 802 (s), 728 (s), 698 (s), 472 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl_{3}): $\delta 7.56$ (t, J = $\left.7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55-7.50(\mathrm{~m}$, 2H), $7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.07(\mathrm{~m}, 1 \mathrm{H})$, $4.36(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.86$ (ddd, $\mathrm{J}=11.8,8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (ddt, J = 8.4, 4.0, 2.1 Hz, $1 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{qd}, \mathrm{J}=11.8,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 0.40$ (s, 3H), 0.39 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): ס 163.4, 160.6, 139.7, 139.1, 138.1, 135.8, 134.0, 129.2, 127.9, 113.6, 109.0, 72.3, 53.4, 52.2, 30.5, 26.8, -3.3, -3.4 ppm. HRMS (ESI) m/z: matched on [M + H]+; Calc for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{NSi}$: 340.1727; Found: 340.1729.

18
(\pm)-2-(benzo[d][1,3]dioxol-5-yl)-4-(dimethyl(phenyl)silyl)cyclohex-3-en-1-ol (18)
The tile compound was prepared by Procedure A above with 2 (86 $\mu \mathrm{L} 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 5-bromobenzo[d][1,3]dioxole ($72 \mu \mathrm{~L}, 0.60$ $\mathrm{mmol}, 1.5 \mathrm{eq})$. The crude product was purified by MPLC with $0-15 \%$ $\mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 93.1 mg of the title compound as a yellow oil in 66% yield (average of two runs). IR (neat): 3365 (br, w), 3008 (w), 2889 (w), 1608 (w), 1484 (s), 1427 (m), 1232 (s), 1111 (w), 1037 (s), 934 (m), 806 (s), 728 (m), 698 (s), $636(\mathrm{w}), 474(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56-7.48(\mathrm{~m}$, 2H), 7.36 (dd, J = 4.3, 2.1 Hz, 3H), $6.81-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.86(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{ddd}, \mathrm{J}=11.1,8.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (ddt, J = 8.2, 4.1, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.36-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.00$ (ddt, J = 12.3, 6.1, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) : 148.1, 146.6, 138.5, 138.2, 138.0, 136.9, 134.0, 129.2, 127.9, 121.8, 108.6, 108.5, 101.2, 73.8, 52.9, 30.2, 27.0, -3.3, -3.4 ppm. HRMS (EI+) m/z: matched on [M]+; Calc for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}$: 352.1489; Found: 352.1496.

20
(\pm)-5-(dimethyl(phenyl)silyl)-3-methyl-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-ol (20)
The tile compound was prepared by Procedure A above with 19 (91 mg , $0.40 \mathrm{mmol}, 1.0 \mathrm{eq})$ and bromobenzene ($63 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.5 \mathrm{eq}$). The crude product was purified by MPLC with $0-10 \%$ EtOAc/Hexanes gradient as the eluent to provide 80.0 mg of the title compound as a light-yellow oil in 62\% yield (average of two runs). IR (neat): 3268 (br, w), 3064 (w), 2900 (w), 1615 (w), 1492 (w), 1435 (m), 1255 (m), 1108 (m), 1020 (m), 851 (m), 807 (m), 726 (m), 698 (s), 655 (m), $548(\mathrm{~m}), 478(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$): $\delta 7.56-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.89$ ($\mathrm{s}, 1 \mathrm{H}$), $3.33(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.81(\mathrm{~m}, \mathrm{~J}=5.5,4.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.64 (br s, 1H), 1.04 (d, J = $5.5 \mathrm{~Hz}, 3 \mathrm{H}$), 0.34 ($\mathrm{s}, 6 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 143.4, 139.3, 138.3, 137.6, 134.0, 129.2, 128.9, 128.7, 128.0, 127.1, 79.2, 53.8, 36.7, 35.7, 17.9, -3.3, -3.4 ppm . HRMS (APCI) m/z: matched on [M - OH]+; Calc for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{Si}$: 305.1720; Found: 305.1722. Note: unlike the other substrates that have a d.r. $\mathbf{2 0}$. 1 , this substrate has a d.r. of $13: 1$ relative to the methyl group. Stereochemistry is assumed to be trans relative to the existing stereocenter due to steric repulsion of the boryl cupration step.

Further Functionalization of the Alkyl Boronic Ester Products

4a
dimethyl(phenyl)((\pm)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,4,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)silane (4a)
The tile compound was prepared by Procedure A above without oxidation of the boronic ester using $2(86 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 1.0 \mathrm{eq})$ and bromobenzene ($63 \mu \mathrm{~L}, 600 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$). The crude product was purified by MPLC with 0-2.5\% EtOAc/Hexanes gradient as the eluent to provide 136.9 mg of the title compound as a colorless oil in 82% yield (average of two runs). IR (neat): 3050 (w), 2976 (w), 2913 (w), 1740 (w), 1600 (w), 1371 (m), 1317 (m), 1245 (m), 1142 (m), 1110 (m), 966 (w), 810 (m), 698 (s), 473 (w) cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.36$ - 7.32 (m, 3H), $7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}$, $1 \mathrm{H}), 6.18-6.04(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dq}, \mathrm{J}=8.9$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.11$ (m, $1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.62$ (dddd, J = 13.0, 10.9, $9.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25$ (ddd, J = 11.6, 9.2, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.15 (s, 6H), 1.12 (s, 6 H), 0.34 (s, 3H), 0.32 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 146.8,141.3,138.9,137.0$, $134.1,128.9,128.4,128.3,127.8,126.1,83.1,44.8,26.9,24.9,24.7,23.7,-3.3,-3.4 \mathrm{ppm}$ (the carbon directly bonded to boron was not seen due to quadrupole relaxation). HRMS (APCI) \mathbf{m} / \mathbf{z} : matched on $[\mathrm{M}+\mathrm{H}]+$; Calc for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{BSi}$: 419.2572; Found: 419.2577.

methyl(\pm)-4'-(dimethyl(phenyl)silyl)-1',2',5',6'-tetrahydro-[1,1':2',1'-terphenyl]-4carboxylate (22)

This procedure was adapted from the literature. ${ }^{[15]}$ In an argon filled glovebox, to a 3-dram vial with a magnetic stir bar was added $4 \mathrm{a}(170 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(2.2 \mathrm{mg}, 2.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%)$, and methyl-4-bromobenzoate (43 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$. The vial was sealed with a rubber septum and removed from the glove box. Anhydrous DMF ($1 \mathrm{~mL}, 0.1 \mathrm{M}$) and morpholine ($26 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$) were added to the vial. In a N_{2}-filled glove box, to a separate 1 -dram vial was added $\mathrm{NiCl}_{2} \cdot g l y m e ~(2.2 \mathrm{mg}, 10$. $\mu \mathrm{mol}, 5.0 \mathrm{~mol} \%$) and 4,4'-Di-tert-butyl-2,2'-dipyridyl ($2.7 \mathrm{mg}, 10 . \mu \mathrm{mol}, 5.0 \mathrm{~mol} \%$). Anhydrous DMF (1 mL) was added to the 1 -dram vial, it was sonicated for 15 minutes, and then heated to $100^{\circ} \mathrm{C}$ with a heat gun to ensure complete complexation before transferring the solution from the 1 -dram vial to the reaction mixture. The reaction was then irradiated for 4 h with 450 nm light in an IPR. The reaction was then quenched with aq $\mathrm{LiCl}(2 \mathrm{~mL}, 10 \%$ by volume) and extracted three times with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in-vacuo. The crude product was purified by flash column chromatography with \% EtOAc/Hexanes as an isocratic eluent to provide 17.1 mg of the title compound as a light-yellow oil in 20\% yield. IR (neat): 3066 (w), 3024 (w), 2922 (w), 1720 (s), 1609 (w), 1434 (w), 1275 (s), 1180 (w), 1111 (m), 1073 (w), 815 (w), 768 (m), 699 (s), 475 (w) cm^{-1}. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.33$ $(\mathrm{m}, 3 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.17-6.11(\mathrm{~m}, 1 \mathrm{H})$, 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.51 (dd, J = 9.9, 2.6 Hz, 1H), 2.77 (td, J = 10.1, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 2 \mathrm{H})$, 1.95 (dt, J = 9.7, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 0.39 (s, 3H), $0.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathbf{~ N M R ~ (1 2 6 ~ M H z , ~} \mathrm{CDCl}_{3}$): δ 167.2, 151.0, 144.1, 140.4, 138.3, 137.5, 133.9, 129.4, 129.0, 128.3, 128.1, 127.9, 127.8, 127.6, 126.2, 51.9, 51.2, 49.4, 30.0, 27.5, -3.4, -3.5 ppm. HRMS (APCI) m/z: matched on [M + H]+; Calc for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}$: 427.2088; Found: 427.2088.

((\pm)-6-(furan-2-yl)-1,4,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)dimethyl(phenyl)silane (23)

This procedure was adapted from the literature. ${ }^{[16]}$ A solution of furan ($7.1 \mathrm{mg}, 95 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) in THF (0.25 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with n -BuLi ($38 \mu \mathrm{~L}, 95 \mu \mathrm{~mol}, 1.2 \mathrm{eq}, 2.5 \mathrm{M}$ in hexanes). The cooling bath was removed, and the mixture was stirred at room temperature for 1 hour. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $4 \mathrm{a}(33.2 \mathrm{mg}, 79.3 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ was added dropwise as a solution in THF (0.50 mL). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . A solution of N -bromosuccinimide ($17 \mathrm{mg}, 95 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) in THF (0.25 mL) was added dropwise. After 1 hour at $-78{ }^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$ was added and the reaction mixture was allowed to warm to room temperature. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The layers were separated, and the aqueous layer was back extracted twice with $\mathrm{Et}_{2} \mathrm{O}(2 \times 4 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in-vacuo. The crude product was purified by MPLC with 0-2\% EtOAc/Hexanes gradient as the eluent to provide 13.6 mg of the title compound as a yellow oil in 48% yield. IR (neat): 3066 (w), 3025 (w), 2924 (w), 1600 (w), 1491 (w), 1427 (w), 1247 (w), 1111 (w), 998 (w), 814 (m), 728 (m), 699 (s), $598(\mathrm{w}), 472(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58$ - 7.51 (m, 2H), $7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.18$ (dd, J = 3.2, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.88$ (td, J = 10.3, 3.2 Hz, 1H), 2.27-2.18 (m, 2H), $1.98(\mathrm{dq}, \mathrm{J}=13.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}$, 1H), 0.37 (s, 6H), 0.36 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 158.5,144.8,140.7,140.0$, $138.5,137.4,134.1,129.1,128.3,128.2,127.9,126.4,110.0,104.9,48.5,42.3,28.0,26.9$, 3.3, -3.4 ppm . HRMS (APCI) m/z: matched on [M + H]+; Calc for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{OSi}$: 359.1826; Found: 359.1829 .

Further Functionalization of the Vinyl Silane Products

24
(\pm)-3-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohexan-1-one (24)
This procedure was adapted from the literature. ${ }^{[17]}$ A flame-dried $16 \times 100 \mathrm{~mm}$ screw cap vial with a magnetic stir bar was charged with $\mathrm{Co}(\mathrm{acac})_{2}(2.1 \mathrm{mg}, 8.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ in a N_{2}-filled glove box. The vial was sealed with a rubber septum and lined with Teflon tape. The vial was then removed from the glove box and placed under a positive pressure of N_{2}. The vial was then charged sequentially with $\mathbf{4 a}(33.3 \mathrm{mg}, 80.0 \mu \mathrm{~mol}, 1.00$ equiv), 1,1,1,3,3,3-Hexafluoro-2propanol ($1 \mathrm{~mL}, 0.1 \mathrm{M}$), triethylsilane ($64 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 5.0$ equiv), and a solution of tert-butyl hydroperoxide in nonane ($16 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 1.1$ equiv, $\sim 5.5 \mathrm{M}$). The vial was then purged three times with a balloon of O_{2}. The reaction mixture was stirred at room temperature for 6 hours with a O_{2} balloon. The product mixture was concentrated to dryness, the residue obtained was filtered through a short column of silica gel, and the short column was rinsed with 50% $\mathrm{EtOAc} / \mathrm{Hexanes}(100 \mathrm{~mL})$. The filtrates were combined, and the combined filtrates were concentrated. The crude product was purified by flash column chromatography with 10% EtOAc/Hexanes as an isocratic eluent to provide 19.1 mg of the title compound as a white solid in 80\% yield. IR (neat): 3028 (w), 2976 (w), 2924 (w), 1713 (m), 1372 (m), 1324 (m), 1141 (s), 975 (m), 853 (m), 758 (m), 698 (m), 669 (m), 543 (w), 496 (w), 443 (w) cm¹. ¹H NMR (500 MHz, CDCl $_{3}$): $\delta 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 3.04$ (td, J=12.1, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (ddd, $\mathrm{J}=14.1,4.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{td}, \mathrm{J}=12.9,6.2 \mathrm{~Hz}$, 1 H), 2.15 (ddt, J = 12.7, 6.1, 3.1 Hz, 1H), 1.78 (qd, $\mathrm{J}=12.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (td, J = 11.9, 3.1 $\mathrm{Hz}, 1 \mathrm{H}$), 0.99 (s, 6H), 0.96 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.1,144.4,128.6$, $127.4,126.8,83.3,50.8,47.1,42.0,27.7,24.5 \mathrm{ppm}$ (the carbon directly bonded to boron was not seen due to quadrupole relaxation, one carbon is missing likely due to methyl groups on the pinacol having the same chemical shift). HRMS (EI+) m/z: matched on [M]+; Calc for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~B}: 300.1895$; Found: 300.1901 .

25
2-((土)-5-iodo-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (25)
This procedure was adapted from the literature. ${ }^{[18]}$ To a flame-dried round bottom flask with a magnetic stir bar was added $4 \mathrm{a}(0.299 \mathrm{~g}, 714 \mu \mathrm{~mol}, 1.00 \mathrm{eq}), 1,1,1,3,3,3$-Hexafluoro-2-propanol (4.2 mL), and 2,6-dimethylpyridine ($33 \mu \mathrm{~L}, 286 \mu \mathrm{~mol}, 0.40 \mathrm{eq}$). The solution was then cooled to $0^{\circ} \mathrm{C}$, and N -iodosuccinimide ($241 \mathrm{mg}, 1.07 \mathrm{mmol}, 1.50 \mathrm{eq}$) was added in one portion. The reaction flask was purged with N_{2} and allowed to warm to room temperature while stirring for 18 hours. After 18 hours, the reaction mixture was diluted with DCM (5 mL), and the organic phase was washed with saturated sodium thiosulfate (5 mL), then saturated sodium bicarbonate (5 mL), and finally brine (5 mL). The organic layer was dried with magnesium sulfate, filtered, and concentrated in-vacuo. The crude product was purified by MPLC with 0 to 2% EtOAc/Hexanes gradient as the eluent to provide 262.9 mg of the title compound as a light-yellow oil in 88% yield (average of two runs). IR (neat): 3061 (w), 3027 (w), 2977 (w), 2926 (w), 2883 (w), 2246 (w), 1991 (w), 1722 (w), 1669 (w), 1631 (w), 1601 (w), 1451 (w), 1411 (w), 1377 (m), 1320 (m), 1257 (w), 1166 (w), 1141 (s), 1016 (w), 970 (m), 908 (m), 876 (w), 852 (m), 756 (w), 730 (s), 699 (s), 670 (m), 647 (m), 606 (w), 578 (w), 550 (w), 537 (w), 504 (w), 483 (w), 454 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $_{3}$): ס $7.29-7.23$ (m, 2H), $7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.41-6.37(\mathrm{~m}, 1 \mathrm{H}), 3.59$ (dq, J = 9.1, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}$, 6 H), 1.11 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.9,141.3,128.4,128.1,126.5,97.7$, 83.4, 47.4, 39.4, 26.0, 24.8, 24.7 ppm (the carbon directly bonded to boron was not seen due to quadrupole relaxation). HRMS (APCI) m/z: matched on $[\mathrm{M}+\mathrm{H}]+$; Calc for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{BI}$: 411.0987; Found: 411.0986.

26

4,4,5,5-tetramethyl-2-((土)-3',4',5',6'-tetrahydro-[1,1':3',1"-terphenyl]-4'-yl)-1,3,2dioxaborolane (26)

To a flame-dried 2-dram vial with a magnetic stir bar was added activated ZnCl_{2} ($55.0 \mathrm{mg}, 404$ $\mu \mathrm{mol}, 2.0 \mathrm{eq}$) in a N_{2}-filled glovebox. To a separate flame-dried 10 mL round bottom flask with a magnetic stir bar was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.7 \mathrm{mg}, 10.1 \mu \mathrm{~mol}, 5.00 \mathrm{~mol} \%)$ in a N_{2}-filled glovebox. Both the 2-dram vial and round bottom flask were capped with rubber septa, lined with Teflon tape, and removed from the glovebox. Anhydrous THF (0.40 mL) was added to the 2-dram vial, and it was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. $\mathrm{PhMgBr}(0.808 \mathrm{~mL}, 808 \mu \mathrm{~mol}, 4.00 \mathrm{eq}, 1 \mathrm{M}$ in THF) was added to the 2-dram vial and the solution was heated and stirred for 2 hours at $60^{\circ} \mathrm{C}$. To the 10 mL round bottom flask was added anhydrous THF (4 mL) and 25 ($82.8 \mathrm{mg}, 202 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$). The solids were allowed to settle in the 2-dram vial before transferring the supernatant dropwise to the 10 mL round bottom flask. The solid in the 2 -dram vial was rinsed with another portion of anhydrous THF (0.40 mL) before letting the solid settle and transferring the supernatant dropwise to the 10 mL round bottom flask. The reaction was covered with aluminum foil and allowed to stir at room temperature overnight. After 18 hours, the reaction was quenched with water (4 mL), the two phases were separated, and the aqueous phase was back extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 4 \mathrm{~mL})$. The combined organic phases were washed with brine (12 mL), dried with magnesium sulfate, filtered, and concentrated in-vacuo. The crude product purified by MPLC with $0-2 \%$ EtOAc/Hexanes gradient as the eluent to provide 51.7 mg of the title compound as a light-yellow oil in 71\% yield (average of two runs). IR (neat): 3057 (w), 3027 (w), 2977 (w), 2924 (w), 2857 (w), 1599 (w), 1493 (w), 1450 (w), 1409 (w), 1380 (m), 1315 (m), 1269 (w), 1214 (w), 1140 (s), 1108 (w), 1074 (w), 1028 (w), 1003 (w), 975 (m), 908 (w), 880 (w), 856 (m), 750 (m), 697 (s), 671 (m), 579 (w), 537 (w), $455(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44$ - 7.40 (m, 2H), $7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16$ (ddd, J = 8.6, 5.7, 2.7 Hz, 1H), $6.16-$ $6.12(\mathrm{~m}, 1 \mathrm{H}), 3.68$ (dq, J = 9.2, 3.0 Hz, 1H), 2.57-2.44 (m, 2H), $2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 146.8,142.4,137.0,128.9,128.4,128.3,128.2,126.9,126.2,125.3,83.3,44.4,27.5,24.9$, 24.7, 24.1 ppm (the carbon directly bonded to boron was not seen due to quadrupole relaxation). HRMS (APCI) m/z: matched on $[M+H]+$; Calc for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2} B: 361.2333$; Found: 361.2337.

27

N-((土)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,4,5,6-tetrahydro-[1,1'-biphenyl]-3yl)acrylamide (27)
This procedure was adapted from the literature. ${ }^{[19]}$ To a flame-dried $16 \times 100 \mathrm{~mm}$ screw cap vial with a magnetic stir bar, in an N_{2}-filled glove box, was added Cul ($38.1 \mathrm{mg}, 200 . \mu \mathrm{mol}, 2.00$ eq), acrylamide ($14.2 \mathrm{mg}, 200 . \mu \mathrm{mol}, 2.00 \mathrm{eq}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(65.1 \mathrm{mg}, 200 . \mu \mathrm{mol}, 2.00 \mathrm{eq}$). The vial was sealed with a rubber septum and Teflon tape and then removed from the glove box and placed under a positive pressure of $\mathrm{N}_{2} .25(41.0 \mathrm{mg}, 100 . \mu \mathrm{mol}, 1.00 \mathrm{eq})$ in anhydrous THF (1 mL) and N, N^{\prime}-Dimethylethylenediamine ($21.5 \mu \mathrm{~L}, 200 . \mu \mathrm{mol}, 2.00 \mathrm{eq}$) were added. The rubber septum was quickly replaced with a Teflon-lined screw cap and the reaction was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to room temperature and filtered through celite. The reaction was then diluted with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and washed with water twice $(2 \times 2 \mathrm{~mL})$. The organic phase was dried with magnesium sulfate, filtered, and concentrated in-vacuo. The crude product was purified by flash column chromatography with $30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ as an isocratic eluent to provide 29.7 mg of the title compound as a yellow oil in 84% yield (average of two runs). IR (neat): 3267 (w), 2975 (w), 2928 (w), 2859 (w), 2363 (w), 2334 (w), 2160 (m), 1978 (m), 1869 (w), 1698 (w), 1661 (w), 1618 (w), 1541 (w), 1377 (m), 1230 (w), 1141 (m), 969 (w), 855 (w), 799 (w), 758 (w), 700 (m), 699 (w), 578 (w), 538 (w), 457 (w), 419 (m) cm¹. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $_{3}$): $\delta 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=$ $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 5.66(\mathrm{dd}, \mathrm{J}=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dq}, \mathrm{J}=9.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-$ $2.29(\mathrm{~m}, 2 \mathrm{H}), 1.89$ (ddt, J = 12.7, 6.1, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.78-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.19$ (m, 1H), 1.15 (s, 6H), 1.12 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.5,146.4,133.6,131.5,128.2$, 127.1, 126.2, 117.8, 83.3, 43.0, 29.8, 28.1, 24.9, 24.7, 23.6 (the carbon directly bonded to boron was not seen due to quadrupole relaxation). HRMS (ESI) m/z: matched on [M + Na]+; Calc for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NBNa}$: 376.2054; Found: 376.2058.

$\mathrm{NEt}_{3}(\mathbf{0 . 1} \mathrm{M}), 50^{\circ} \mathrm{C}, 1 \mathrm{~h}$

28

4,4,5,5-tetramethyl-2-((土)-5-(phenylethynyl)-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-yl)-1,3,2dioxaborolane (28)
This procedure was adapted from the literature. ${ }^{[20]}$ To a flame-dried $16 \times 100 \mathrm{~mm}$ screw cap vial with a magnetic stir bar was added $25(35.1 \mathrm{mg}, 85.6 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ as a solution in anhydrous DCM. The DCM was removed under vacuum and the vial was then taken into a $\mathrm{N}_{2}{ }^{-}$ filled glove box where Cul ($0.8 \mathrm{mg}, 4 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), and $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(1.2 \mathrm{mg}, 1.7 \mu \mathrm{~mol}, 2.0$ $\mathrm{mol} \%$) were added. The vial was then sealed with a rubber septum and Teflon tape, removed from the glove box, and put under a positive pressure of N_{2}. Phenylacetylene ($10 \mu \mathrm{~L}, 94 . \mu \mathrm{mol}$, 1.1 eq) and triethylamine (1 mL , freshly distilled over CaH_{2}) were added to the vial, and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 1 hour. The reaction was then cooled back to room temperature and filtered with $E t_{2} \mathrm{O}$. The solvent was removed in-vacuo, and the crude product was redissolved in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. Water (2 mL) was added, and the two phases were separated. The aqueous phase was then back extracted twice with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$. The combined organic layers were then washed once with Brine (6 mL), dried over MgSO_{4}, filtered, and concentrated in-vacuo. The crude product was purified by flash column chromatography with $2.5 \% \mathrm{EtOAc} /$ Hexanes as an isocratic eluent to provide 29.0 mg of the title compound as a clear, colorless oil in 88\% yield (average of two runs). IR (neat): 3026 (w), 2979 (w), 2923 (w), 1597 (w), 1490 (w), 1443 (w), 1410 (w), 1378 (m), 1322 (m), 1264 (m), 1232 (w), 1213 (w), 1166 (w), 1141 (m), 1107 (w), 1071 (w), 1027 (w), 968 (w), 914 (w), 882 (w), 856 (w), 735 (s), 701 (m), $691(\mathrm{~m}), 578(\mathrm{w}), 523(\mathrm{w}), 484(\mathrm{w}), 450(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.39(\mathrm{~m}$, 2H), $7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{dd}, \mathrm{J}=4.7,2.0 \mathrm{~Hz}$, 1 H), 3.61 (dq, J = 9.4, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.38-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.89$ (dtd, J = 11.9, 4.6, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.77-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 145.7,138.9,131.6,128.4,128.3,127.9,126.4,123.8,121.2,91.2,87.5,83.3,44.3$, 29.4, 24.9, 24.7, 23.7 ppm (the carbon directly bonded to boron was not seen due to quadrupole relaxation, one carbon is missing likely due to methyl groups on the pinacol having the same chemical shift). HRMS (ESI) m/z: matched on [M + H]+; Calc for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~B}$: 385.2333; Found: 385.2334 .

ii) $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \mathrm{w} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ NaOH (2.0 M in $\mathrm{H}_{\mathbf{2}} \mathrm{O}$)
THF, $0^{\circ} \mathrm{C}$ to r.t., 3 h

29
(3S,4R)-1-(dimethyl(phenyl)silyl)-3-(4-fluorophenyl) cyclohexane-1,4-diol (29)
The title compound was prepared according to the literature procedure. ${ }^{[21]}$ In a flame dried reaction tube, 6 ($85 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ eq.) dissolved in 3 mL of THF under N_{2} atmosphere at 0 ${ }^{\circ} \mathrm{C}, \mathrm{BH}_{3} / \mathrm{THF}(0.52 \mathrm{~mL}, 0.52 \mathrm{mmol}, 2.0$ eq. 1 M solution in THF) was added drop wise. The reaction was warmed room temperature and stirred for overnight. Then solvent was evaporated under reduced pressure and crude material was directly used for next step.

Next, the crude material from previous step was dissolved in 2 mL of THF followed by addition of 2 M NaOH solution. Then, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and 1.5 mL of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution was added. The reaction mixture was allowed to warm at room temperature and stir for 3 hours. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ then extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. The crude mixture was purified by flash column chromatography ($\mathrm{R}_{\mathrm{f}}=$ 0.25 in 40% ethyl acetate-Hexane) afforded 27.5 mg of 1,4 -diol product with 30% yield over two steps. IR: $3396(\mathrm{br}), 2927(\mathrm{~m}), 1509(\mathrm{~s}), 1427(\mathrm{~m}), 1221(\mathrm{~m}), 735(\mathrm{~m}) .{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{dd}, J=8.3,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}$, 2 H), 3.60 (td, $J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (ddd, $J=13.6,10.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.77$ (m, 4H), $1.73-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.36$ (s, 6H). ${ }^{13}$ CNMR (125 MHz, CDCl $_{3}$): $\delta 162.89,160.94,138.47(\mathrm{~d}, J=3.3 \mathrm{~Hz}$), 135.51, 134.66, 129.73, 129.62, 129.55, 128.14, 115.86, 115.69, 74.22, 65.25, 45.43, 40.50, 32.08, 28.08, -6.18, -6.30. HRMS (ESI, \mathbf{m} / \mathbf{z}): Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{FO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]: 367.1500$, found 367.1498

(\pm)-3',4',5',6'-tetrahydro-[1,1':3',1"-terphenyl]-4'-ol (SI 2)

In a 2-dram vial, $26(52.4 \mathrm{mg}, 145 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ was dissolved in THF (1 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath, and $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.05 \mathrm{~mL}, 2 \mathrm{mmol}, 10 \mathrm{eq}, 30 \%\right.$ wt in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and NaOH ($1 \mathrm{~mL}, 2 \mathrm{mmol}, 5 \mathrm{eq}, 1 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$) were added before allowing the reaction to warm to room
temperature and stir for 3 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$. The two phases were separated, and the aqueous phase was back extracted twice with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$. The combine organic phases were dried over MgSO_{4}, filtered, and concentrated in-vacuo. The crude product mixture was purified by MPLC with $0-15 \%$ EtOAc/Hexanes gradient as the eluent to provide 28.0 mg of the title compound as a white solid in 77% yield (average of two runs). Characterization data concurs with that found in the literature. ${ }^{[22]}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.18$ (m, 5H), $5.99-5.93(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.17$ $-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H})$.

Sequential Functionalization of the C-Si and C-B Bonds and Gram-Scale Utility

DMF (0.5 M)
r.t., 22 h

30

2-bromo-1-chloro-4-((4-methoxybenzyl)oxy)benzene (30)

This procedure was adapted from the literature. ${ }^{[23]}$ In a nitrogen-filled glove box, to a flame-dried 100 mL round bottom flask with a magnetic stir bar, was added 3-bromo-4-chlorophenol (4.00 $\mathrm{g}, 19.3 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.00 \mathrm{~g}, 28.9 \mathrm{mmol}, 1.50 \mathrm{eq})$. The flask was sealed with a rubber septum and removed from the glove box to be placed under a positive pressure of N_{2}. Anhydrous DMF (40 mL) was added to flask. 4-methoxybenzylchloride ($3.2 \mathrm{~mL}, 24 \mathrm{mmol}, 1.2$ eq) was added dropwise and the reaction was stirred at room temperature for 22 hours. The reaction was then diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and washed twice with aqueous $\mathrm{LiCl}(2 \times 40 \mathrm{~mL}$, 10% by volume). The organic phase was then dried with MgSO_{4}, filtered, and concentrated invacuo. The crude product was recrystallized in ethanol to produce 5.37 g of the title compound as a crystalline-white solid in 85\% yield (average of two yields). IR (neat): 3093 (w), 3006 (w), 2952 (w), 2932 (w), 2835 (w), 1879 (w), 1610 (w), 1584 (m), 1511 (m), 1462 (m), 1375 (m), 1284 (m), 1224 (s), 1173 (m), 1119 (m), 1009 (s), 863 (m), 807 (s), 657 (m), 558 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)_{3}$: $\delta 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H})$, 6.86 (dd, J = 8.9, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.95 (s, 2H), 3.82 (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.8, 157.9, 130.6, 129.5, 128.2, 126.2, 122.7, 120.0, 115.8, 114.4, 70.5, 55.5 ppm. HRMS (APCI) m/z: matched on [M - H]+; Calc for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{BrCl}$: 324.9625; Found: 324.9626.

31
((\pm)-2'-chloro-5'-((4-methoxybenzyl)oxy)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,4,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)dimethyl(phenyl)silane (31)
The title compound was prepared by Procedure A above with 2 $(1.07 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $30(2.46 \mathrm{~g}, 7.50 \mathrm{mmol}, 1.50$ eq). The crude product was purified by MPLC with $0-8 \%$ $\mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 2.179 g of the title compound as a crystalline, colorless solid to a clear, colorless oil in 74\% yield (average of two runs). IR (neat): 3069 (w), 2975 (w), 2931 (w), 2834 (w), 2361 (w), 2335 (w), 2161 (w), 2025 (w), 1974 (w), 1880 (w), 1614 (w), 1593 (w), 1571 (w), 1514 (m), 1463 (m), 1406 (w), 1376 (m), 1316 (m), 1301 (m), 1246 (s), 1217 (m), 1167 (m), 1142 (s), 1110 (m), 1036 (m), 1008 (m), 968 (w), 913 (w), 874 (w), 852 (w), 809 (s), 773 (m), 731 (m), 699 (m), 646 (m), 578 (w), 519 (w), 477 (m), $450(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22$ (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.94-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, \mathrm{J}=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.04 (dt, J = 4.1, 2.1 Hz, 1H), $4.91(\mathrm{~s}, 2 \mathrm{H}), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}$, 2H), $1.70-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 12 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 159.6,157.2,144.5,139.4,138.8,138.4,134.1,130.1,129.4$, $129.0,128.9,127.9,125.5,116.6,114.2,114.0,83.2,70.0,55.5,40.5,26.5,24.8,24.7,21.5,-$ $3.4,-3.5 \mathrm{ppm}$ (the carbon directly bonded to boron was not seen due to quadrupole relaxation). HRMS (ESI) m/z: matched on [M + Na]+; Calc for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{BCINaSi}: 611.2526$; Found: 611.2532.

SI 3
2-((土)-2'-chloro-5-iodo-5'-((4-methoxybenzyl)oxy)-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (SI 3)
This procedure was adapted from the literature. ${ }^{[18]}$ To a flame-dried round bottom flask with a magnetic stir bar was added $31(2.039 \mathrm{~g}, 3.461 \mathrm{mmol}, 1.000 \mathrm{eq}), 1,1,1,3,3,3$-Hexafluoro-2propanol (20 mL), and 2,6-dimethylpyridine ($0.16 \mathrm{~mL}, 1.4 \mathrm{mmol}, 0.40 \mathrm{eq}$). The solution was then cooled to $0^{\circ} \mathrm{C}$, and N -iodosuccinimide ($1.17 \mathrm{~g}, 5.19 \mathrm{mmol}, 1.50 \mathrm{eq}$) was added in one portion. The reaction flask was purged with N_{2} and allowed to warm to room temperature while stirring for 18 hours. After 18 hours, the reaction mixture was diluted with DCM (20 mL), and
the organic phase was washed with saturated sodium thiosulfate (20 mL), then saturated sodium bicarbonate (20 mL), and finally brine (20 mL). The organic layer was dried with magnesium sulfate, filtered, and concentrated in-vacuo. The crude product was purified by MPLC with $0-8 \% \mathrm{EtOAc} /$ Hexanes gradient as the eluent to provide 1.5877 g of the title compound as a clear, light-yellow oil in 79\% yield (average of two runs). IR (neat): 3042 (w), 2976 (w), 2930 (w), 2835 (w), 1737 (w), 1594 (w), 1514 (m), 1464 (m), 1406 (w), 1372 (m), 1321 (m), 1247 (m), 1167 (m), 1140 (s), 1025 (m), 970 (m), 849 (m), 819 (m), 736 (m), 669 (m), $520(\mathrm{w}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ $-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, \mathrm{J}=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-6.27(\mathrm{~m}, 1 \mathrm{H}), 4.98$ (d, J = $11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.96(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.47(\mathrm{~m}$, 2H), $1.75-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.18$ (appt d, 12H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta 159.7,157.3,142.6,139.5,130.3,129.5,128.8,125.1,116.9,114.2,113.9,98.8$, $83.5,70.2,55.5,43.3,39.1,24.8,24.7,24.1 \mathrm{ppm}$ (the carbon directly bonded to boron was not seen due to quadrupole relaxation). HRMS (ESI) m/z: matched on [M + Na]+; Calc for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{BCIINa}$: 603.0941; Found: 603.0945.

32
2-((土)-2'-chloro-5'-((4-methoxybenzyl)oxy)-5-methyl-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (32)
To a flame-dried 25 mL round bottom flask with a magnetic stir bar was added activated ZnCl_{2} ($390 \mathrm{mg}, 2.8 \mathrm{mmol}, 1.1 \mathrm{eq}$) in a N_{2}-filled glovebox. To a separate flame-dried 200 mL round bottom flask with a magnetic stir bar was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(150 \mathrm{mg}, 0.13 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ in a N_{2}-filled glovebox. Both round bottom flasks were capped with rubber septa, lined with Teflon tape, and removed from the glovebox. Anhydrous THF (6 mL) was added to the 25 mL round bottom flask, and it was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. $\mathrm{MeMgBr}(1.9 \mathrm{~mL}, 2.2 \mathrm{eq}, 3.0$ molar in $\mathrm{Et}_{2} \mathrm{O}$) was added to the 25 mL round bottom flask and the solution was stirred for 15 minutes at $0^{\circ} \mathrm{C}$. To the 200 mL round bottom flask was added anhydrous THF (60 mL) and SI 3 (1.50 g , $2.58 \mathrm{mmol}, 1.00 \mathrm{eq}$). The solids were allowed to settle in the 25 mL round bottom flask before transferring the supernatant dropwise to the 200 mL flask. The solid in the 25 mL flask was rinsed with another portion of anhydrous THF (6 mL) before letting the solid settle and transferring the supernatant dropwise to the 200 mL flask. The reaction was covered with aluminum foil and allowed to stir at room temperature overnight. After 18 hours, the reaction was quenched with water (60 mL), the two phases were separated, and the aqueous phase was back extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 60 \mathrm{~mL})$. The combined organic phases were washed with brine
(150 mL), dried over MgSO_{4}, filtered, and concentrated in-vacuo. The crude product purified by MPLC with $0-6 \%$ EtOAc/Hexanes gradient as the eluent to provide 1.0139 g of the title compound as a white solid in 84\% yield (average of two runs). IR (neat): 3042 (w), 2976 (w), 2928 (w), 2872 (w), 2834 (w), 1613 (w), 1514 (m), 1463 (m), 1377 (m), 1304 (m), 1247 (m), 1141 (s), 1009 (m), 968 (w), 859 (m), 821 (m), 734 (m), 665 (m), 519 (w) cm ${ }^{-1}$. ${ }^{1}$ H NMR (500 MHz, CDCl $_{3}$): $\delta 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (dd, J = $8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (d, J = 11.1 Hz, 1H), $3.98-3.93$ (m, 1H), 3.81 (s, 3H), 1.96 (dq, J = 17.8, 9.2 Hz, 2H), 1.71 (s, 3H), $1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.6,157.2,145.2,135.7,129.9,129.5,129.0,125.5,123.8,117.1,114.1$, 113.1, $83.2,70.1,55.4,39.4,29.8,24.8,24.7,24.1,21.7 \mathrm{ppm}$ (the carbon directly bonded to boron was not seen due to quadrupole relaxation). HRMS (APCI) m/z: matched on [M + H]+; Calc for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{BCl}$: 469.2311; Found: 469.2307.

33

1-((土)-2'-chloro-5'-((4-methoxybenzyl)oxy)-5-methyl-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-yl)ethan-1-one (33)
This procedure was adapted from the literature. ${ }^{[24]}$ To a flame dried 100 mL round bottom flask with a magnetic stir bar was added ethoxyethene ($0.83 \mathrm{~mL}, 8.7 \mathrm{mmol}, 8.0 \mathrm{eq}$) and anhydrous THF (14 mL). The flask was then cooled to $-78^{\circ} \mathrm{C}$, and ${ }^{\mathrm{t}} \mathrm{BuLi}(3.85 \mathrm{~mL}, 5.46 \mathrm{mmol}, 5.00 \mathrm{eq}, 1.42$ M in pentane) was added dropwise. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. The reaction was then allowed to warm to $0^{\circ} \mathrm{C}$ and stir for an additional 1 hour. The flask was then cooled back to $-78^{\circ} \mathrm{C}$, and $32(512 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.00 \mathrm{eq})$ was added dropwise as a solution in anhydrous THF (5.7 mL). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour, and then warmed to room temperature and stirred for 1 hour. The solution was then cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{I}_{2}(1.39 \mathrm{~g}, 5.46 \mathrm{mmol}, 5.00 \mathrm{eq})$ was added as a solution in anhydrous THF (11 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour, and then warmed to room temperature and stirred for 1 hour. A solution of anhydrous $\mathrm{NaOMe}(472 \mathrm{mg}, 8.74 \mathrm{mmol}, 8.00 \mathrm{eq}$) in anhydrous $\mathrm{MeOH}(14$ mL) was then added to the reaction at room temperature, and the resulting solution was stirred overnight. After 18 hours, the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$. The two phases were separated, and the aqueous phase was back extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ (2 $\times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered, and concentrated invacuo. The crude product was redissolved in anhydrous THF (10 mL) and HCl , ($1.11 \mathrm{~mL}, 1.11$ mmol, 1.02 eq, 1 M solution in $\mathrm{H}_{2} \mathrm{O}$). The reaction was stirred at room temperature for 30 minutes, and then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The two phases were separated, and the
aqueous phase was back extracted twice with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combine organic phases were dried over MgSO_{4}, filtered, and concentrated in-vacuo. The crude product was purified by MPLC with 0-10\% gradient as the eluent to provide 365.1 mg of the title compound as a white solid in 88\% yield (average of two runs). IR (neat): 3085 (w), 3036 (w), 3012 (w), 2967 (w), 2937 (w), 2896 (w), 2839 (w), 1710 (m), 1601 (w), 1568 (w), 1514 (m), 1467 (m), 1251 (m), 1176 (m), 1014 (m), 865 (m), 829 (m), 806 (m), 720 (w), 666 (m), 534 (w), 474 (w), $435(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.36-7.31$ (m, 2H), 7.24 (d, J = $\left.8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.94-6.88$ (m, 2H), 6.83 (d, J = 3.0 Hz, 1H), 6.76 (dd, J = 8.7, 3.0 Hz, 1H), $5.30-5.24$ (m, 1H), 4.96 (d, J = 11.3 $\mathrm{Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.11$ (s, 3H), $2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{dq}, \mathrm{J}=12.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.4,159.7,157.5,143.0,135.5,130.4,129.5,128.8,125.4,121.9$, $117.4,114.2,113.7,70.2,55.5,52.4,39.5,28.5,28.1,23.8,22.6 \mathrm{ppm}$. HRMS (ESI) m/z: matched on [M + Na]+; Calc for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{CINa}$: 407.1384; Found: 407.1386.

Enantioselective Example

1) McQuade-CuCl (5 mol\%) Aphos-PdG3 (2 mol\%)

THF, 3 h

McQuade-CuCl

APhos-PdG3
(1S,2R)-5-(dimethyl(phenyl)silyl)-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2-ol (4b)
In an N_{2}-filled glovebox, to a flame-dried $16 \times 100 \mathrm{~mm}$ screw cap vial with a magnetic stir bar, was added APhos-PdG3 ($5.1 \mathrm{mg}, 8.0 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$), McQuade-CuCl ($11 \mathrm{mg}, 20 . \mu \mathrm{mol}, 5.0$ $\mathrm{mol} \%), \mathrm{B}_{2} \mathrm{pin}_{2}(152 \mathrm{mg}, 0.600 \mathrm{mmol}, 1.50 \mathrm{eq})$, and $\mathrm{NaOtAmyl}(57.7 \mathrm{mg}, 0.600 \mathrm{mmol}, 1.50 \mathrm{eq})$ in that order. The $16 \times 100 \mathrm{~mm}$ screw cap vial was sealed with a rubber septum, lined with Teflon tape, removed from the glove box, and placed under a positive pressure of N_{2}. To the screw cap vial was added toluene (3 mL), the $2(86 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$), and bromobenzene (63 $\mu \mathrm{L}, 0.60 \mathrm{mmol}, 1.5 \mathrm{eq}$) before rinsing the sides of the vial with toluene (1 mL). The septum was then quickly replaced with a Teflon lined screw cap and the reaction was stirred at $30^{\circ} \mathrm{C}$ for 12 hours. After 12 hours, the reaction was quenched with aq $1 \mathrm{M} \mathrm{HCl}(4 \mathrm{~mL})$, the two phases were separated, and the aqueous phase was back extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 4 \mathrm{~mL})$. The combined organic phases were dried with MgSO_{4}, filtered, and concentrated in-vacuo. The crude product was redissolved in THF (2 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. $\mathrm{H}_{2} \mathrm{O}_{2}(0.10 \mathrm{~mL}$, $4.0 \mathrm{mmol}, 10 \mathrm{eq}, 30 \% \mathrm{wt}$ in $\mathrm{H}_{2} \mathrm{O}$) and $\mathrm{NaOH}\left(2 \mathrm{~mL}, 2 \mathrm{mmol}, 5 \mathrm{eq}, 1 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}$) were added before allowing the reaction to warm to room temperature and stirred for 3 hours. The reaction
was quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. The two phases were separated, and the aqueous phase was back extracted twice with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$. The combine organic phases were dried over MgSO_{4}, filtered, and concentrated in-vacuo. The crude product mixture was purified by MPLC with $0-10 \%$ EtOAc/Hexanes gradient as the eluent to provide 65 mg of the title compound as a white solid in 53% yield. The Enantiomeric mixture was then analyzed by HPLC.

Screening for the Arylboration of Silyl-Enol-Ether Diene

Cu-Cat. (5 mol\%)
Pd-Cat. (2 mol\%)
$\mathrm{NaO}^{t} \mathrm{Bu}(1.5 \mathrm{eq}), \mathrm{PhBr}(1.5 \mathrm{eq})$
$\mathrm{B}_{2} \mathrm{pin}_{2}(1.5 \mathrm{eq})$
Toluene (0.1 M), $30^{\circ} \mathrm{C}, 12 \mathrm{~h}$

The following reactions were performed using Procedure A above with bromobenzene (0.60 $\mathrm{mmol}, 1.5 \mathrm{eq}$), no oxidation of the boronic ester, and the given copper (I) catalysts (0.02 mmol , $5 \mathrm{~mol} \%$) and palladium (0) precatalysts ($0.008 \mathrm{mmol}, 2 \mathrm{~mol} \%$) and. The yields of these runs were determined by GC with dodecane as the internal standard corrected by a burn factor. The best examples from the screen where also analyzed by ${ }^{1} \mathrm{H}$ NMR with nitromethane as the internal standard:

Entry	Cu Cat	Pd G3 PreCat	GC Yield	d.r.
1	SIMes-CuCI	APhos-PdG3	$<2 \%$	n.d.
2	SIMes-CuCI	XPhos-PdG3	8%	$2: 1$
3	SIMes-CuCI	QPhos-PdG3	$<2 \%$	n.d.
4	SIPr-CuCl	APhos-PdG3	$<2 \%$	n.d.
5	SIPr-CuCI	XPhos-PdG3	8%	$4: 1$
6	SIPr-CuCI	QPhos-PdG3	$<2 \%$	n.d.
7	Mes-Pyr-CuCI	APhos-PdG3	n.d.	$4: 1$
8	Mes-Pyr-CuCI	XPhos-PdG3	17% a	$6.5: 1.7: 1$
9	Mes-Pyr-CuCI	QPhos-PdG3	2%	$5: 1$

GC yields and d.r. were determined using dodecane as an internal standard. These yields were uncorrected. a) Entry 8 was also analyzed by ${ }^{1} \mathrm{H}$ NMR with nitromethane as the internal standard to determine a more accurate yield of 13%.

Limitations of the Method

Some limitation of the method included the synthesis and employment of other silyl-dienes. Substitution of the silyl-diene with a methyl group in the C-6 position underwent silyl-lithium addition smoothly, but the elimination product was not able to be isolated with reasonable purity due to the highly non-polar nature of these dienes. Methyl substitution on C-3 lead to a mixture of two diene isomers that were not separable by column chromatography. Exchanging the methyl group with a phenyl group on C-3 because it lacks a proton for deprotonation did not generate the desired 1,2-addition product. We hypothesize that 1,4 -addition was the primary side product. Finally, we successfully synthesized the silyl-diene with methyl substitution on C4, but this substrate was unreactive in the optimized arylboration conditions. We hypothesize that this is due to steric repulsion between the boryl-copper intermediate with the reactive alkene.

Citations

[1] Y. Huang, M. K. Brown, Angew Chem Int Ed., 2019, 58, 6048.
[2] N. C. Bruno, M. T. Tudge, S. L. Buchwald, Chem Sci, 2013, 4, 916.
[3] X. Li, M. Jiang, X. L. Zhu, X. Y. Song, Q. R. Deng, J. Lv, D. S. Yang, Org Chem Front, 2022, 9, 386.
[4] S. Verdonck, S. Y. Pu, F. J. Sorrell, J. M. Elkins, M. Froeyen, L. J. Gao, L. I. Prugar, D. E. Dorosky, J. M. Brannan, R. Barouch-Bentov, S. Knapp, J. M. Dye, P. Herdewijn, S. Einav, S. De Jonghe, J Med Chem, 2019, 62, 5810.
[5] S. Botov, E. Stamellou, S. Romanski, M. Guttentag, R. Alberto, J. M. Neudorfl, B. Yard, H. G. Schmalz, Organometallics, 2013, 32, 3587.
[6] S. Diez-Gonzalez, E. C. Escudero-Adan, J. Benet-Buchholz, E. D. Stevens, A. M. Z. Slawin, S. P. Nolan, Dalton T, 2010, 39, 7595-7606.
[7] K. M. Logan, M. K. Brown, Angew Chem Int Ed., 2017, 56, 851.
[8] B. D. Chong, Y. I. Ji, S. S. Oh, J. D. Yang, W. Baik, S. Koo, J Org Chem, 1997, 62, 9323.
[9] J. W. Hall, D. Bouchet, M. F. Mahon, M. K. Whittlesey, C. S. J. Cazin, Organometallics, 2021, 40, 1252.
[10] J. X. Xie, X. Liu, N. Zhang, S. Y. Choi, G. B. Dong, JAm Chem Soc, 2021, 143, 19311.
[11] K. Semba, T. Fujihara, T. H. Xu, J. Terao, Y. Tsuji, Adv Synth Catal, 2012, 354, 1542.
[12] D. Ni, M. K. Brown, ACS Catal, 2021, 11, 1858.
[13] I. Fleming, R. S. Robers, S. C. Smith, J. Chem. Soc., Perkin Trans. 1, 1198, 1209.
[14] H. J. Reich, S. Wollowitz, J Am Chem Soc, 1982, 104, 7051.
[15] E. Speckmeier, T. C. Maier, J Am Chem Soc, 2022, 144, 9997.
[16] M. Odachowski, A. Bonet, S. Essafi, P. Conti-Ramsden, J. N. Harvey, D. Leonori, V. K. Aggarwal, J Am Chem Soc, 2016, 138, 9521.
[17] X. S. Ma, S. B. Herzon, J Org Chem, 2016, 81, 8673.
[18] E. A. Ilardi, C. E. Stivala, A. Zakarian, Org Lett, 2008, 10, 1727.
[19] W. W. Zhang, S. L. Zhang, B. J. Li, Angew Chem Int Ed., 2020, 59, 6874.
[20] X. Du, H. Chen, Y. Liu, Chemistry, 2008, 14, 9495.
[21] Soderquist, A. John. and Brown, C. Herbert. J. Org. Chem., 1980, 45, 3571-3578.
[22] S. R. Sardini, M. K. Brown, J Am Chem Soc, 2017, 139, 9823.
[23] A. Ilangovan, K. Anandhan, M. P. Kaushik, Tetrahedron Lett, 2015, 56, 1080.
[24] R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-Gauthier, H. K. Scott, V. K. Aggarwal, Angew Chem Int Ed Engl, 2011, 50, 3760.

HPLC Data and NMR Spectra

Data File C: \CHEM32\2\DATA\ARL\ARL-II-21300013.D
Sample Name: ARL-II-213-HPLC-A

Additional Info : Peak(s) manually integrated

Area Percent Report				
Sorted By	:	Signal		
Multiplier:		1.0000		
Dilution:		1.0000		
Use Multiplier s Dilution Factor with ISTDs				
Signal 1: VWD1 A, Wavelength=254 nm				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \quad[\mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Width } \\ & {[\text { min }]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{8} \end{gathered}$
$1 \quad 12.296 \mathrm{BV}$	0.2459	476.03647	29.55855	48.8845
213.027 VB	0.2690	497.76160	28.06006	51.1155
Totals :		973.79807	57.61860	

Data File C: \CHEM32\2\DATA \ARL\ARL-II-213_F002.D
Sample Name: ARL-II-213-HPLC-F


```
Acq. Operator : SYSTEM Seq. Iine : I
Acq. Instrument : 1220 HPLC Location : Vial 81
Injection Date : 11/7/2019 12:18:01 PM Inj : 1
    Inj Volume : 10.000 \mul
Acq. Method : C:\CHEM32\2\METHODS\MLC VARIABLE,M
Last changed : 11/6/2019 12:10:57 PM by SYSTEM
Analysis Method : C:\CHEM32\2\METHODS\DEF_LC.M
Last changed : 8/17/2020 3:31:15 PM by SYSTEM
(modified after loading)
Sample Info : Lux 3u Cellulose-2, 95.0:5.0 HEX:IPA, 0.5ml/min, 254 n
    m
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	Signal		
Multiplier:		$:$	1.0000
Dilution:		$:$	1.0000
Use Multiplier	5	Dilution Factor	with
ISTDs			

Signal 1: VWD1 A, Wavelength=254 nm

Peak $+$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA} U^{*} s\right]} \end{gathered}$	Height [mAU]	Area
1	12.299	BV	0.2464	9354.02832	567.06604	94.1810
2	13.063	VV	0.2946	577.93622	28.73856	5.8190
Total	s :			9931.96454	595.80460	

CDCl3, 101 MHz
CDCI3, 500 MHz
CDCI3, 500 MHz

CDCI3, 500 MHz

CDCL3, 126 MHz

CDCI3, 376 MHz

CDCl3, 376 MHz

CDCI3, 500 MHz

CDCl3, 400 MHz

CDCl3, 151 MHz

CDCl3, 101 MHz
CDCl3, 500 MHz

CDCI3, 500 MHz

CDCl3, 126 MHz

CDCI3, 500 MHz

CDCl3, 500 MHz

CDCl3, 500 MHz

