Supplementary Information

Fig. S1 The total reaction probabilities for the total angular momentum $J_{\mathrm{tot}}=0,10,15$, $20,25,30,40,60$, and 80 for the initial ground rovibrational state as a function of collision energy.

Fig. S2 Product HF vibrational state-resolved ICS as a function of collision energy calculated with $9 J_{\text {tot }}(0,10,15,20,25,30,40,60,80)$, in comparison with those calculated with only $5 J_{\text {tot }}(0,20,40,60,80)$.

Fig. S3 Normalized HF vibrational populations as a function of collision energy for the title reaction, in comparison with the QCT results in Ref 45.

Fig. S4 3-dimensional representation of the correlated ICS of the product pair of $\mathrm{HF}\left(v^{\prime}\right)$ and $\mathrm{CD}_{3}\left(v_{2}\right)$ at the collision energy of 0.121 eV .

Fig. S5 3-dimensional representation of the correlated ICS of the product pair of $\mathrm{HF}\left(v^{\prime}\right)$ and $\mathrm{CD}_{3}\left(v_{2}\right)$ at the collision energy of $0.0145 \mathrm{eV}, 0.1 \mathrm{eV}, 0.2 \mathrm{eV}$ and 0.3 eV , that the sum of correlated HF vibration populations for each CD_{3} state at a given $\mathrm{E}_{\mathbf{c}}$ are scaled to unity.

Table S1. Energy disposal (in eV) into $\mathrm{HF}\left(v^{\prime}\right)+\mathrm{CD}_{3}\left(v_{2}\right)$ products when HF vibrationally excited from $v^{\prime}=0$ to 3 .

HF state	$v^{\prime}=0$	$v^{\prime}=1$	$v^{\prime}=2$	$v^{\prime}=3$
$\mathrm{E}_{\mathrm{HF}}\left(v^{\prime}\right)$	0	0.491	0.96	1.409
$\mathrm{E}_{\mathrm{c}}=0.0145 \mathrm{eV}$				
$<\mathrm{E}_{v 2}>\mathrm{CD}^{2}$	0.399	0.298	0.2	-
$<\mathrm{E}_{v 2}>\mathrm{CD}^{2}+\mathrm{E}_{\mathrm{HF}}\left(v^{\prime}\right)$	0.399	0.789	1.16	-
$\mathrm{E}_{\mathrm{c}}=0.1 \mathrm{eV}$				
$<\mathrm{E}_{v 2}>\mathrm{CD} 3$	0.368	0.276	0.171	-
$<\mathrm{E}_{v 2}>\mathrm{CD}^{2}+\mathrm{E}_{\mathrm{HF}}\left(v^{\prime}\right)$	0.368	0.767	1.132	-
$\mathrm{E}_{\mathrm{c}}=0.2 \mathrm{eV}$				
$<\mathrm{E}_{v 2}>\mathrm{CD} 3$	0.364	0.263	0.153	0.036
$<\mathrm{E}_{v 2}>\mathrm{CD} 3+\mathrm{E}_{\mathrm{HF}}\left(v^{\prime}\right)$	0.364	0.754	1.114	1.445
$\mathrm{E}_{\mathrm{c}}=0.3 \mathrm{eV}$				
$<\mathrm{E}_{v 2}>\mathrm{CD} 3$	0.359	0.25	0.143	0.049
$<\mathrm{E}_{v 2}>\mathrm{CD} 3+\mathrm{E}_{\mathrm{HF}}\left(v^{\prime}\right)$	0.359	0.741	1.104	1.458

Table S2. Energy disposal (in eV) into $\mathrm{HF}\left(v^{\prime}\right)+\mathrm{CD}_{3}\left(v_{2}\right)$ products when CD_{3} vibrationally excited from $v_{2}=0$ to 9 .

CD_{3} state	$v_{2}=0$	$v_{2}=1$	$v_{2}=2$	$v_{2}=3$	$v_{2}=4$	$v_{2}=5$	$v_{2}=6$	$v_{2}=7$	$v_{2}=8$	$v_{2}=9$
$\mathrm{E}_{\mathrm{CD} 3}\left(v_{2}\right)$	0	0.056	0.119	0.186	0.257	0.331	0.407	0.486	0.567	0.649
$\mathrm{E}_{\mathrm{c}}=0.0145 \mathrm{eV}$										
$<\mathrm{E}_{v}>_{\mathrm{HF}}$	0.956	0.947	0.935	0.929	0.917	0.919	0.892	0.469	0.465	0.471
$<\mathrm{E}_{v}>_{\mathrm{HF}}+\mathrm{E}_{\mathrm{CD} 3}\left(v_{2}\right)$	0.956	1.004	1.054	1.115	1.174	1.25	1.3	0.955	1.031	1.12
$\mathrm{E}_{\mathrm{c}}=0.1 \mathrm{eV}$										
$<\mathrm{E}_{v}>_{\mathrm{HF}}$	1.328	0.937	0.929	0.908	0.879	0.827	0.755	0.583	0.443	0.416
$<\mathrm{E}_{v}>_{\mathrm{HF}}+\mathrm{E}_{\mathrm{CD} 3}\left(v_{2}\right)$	1.328	0.993	1.048	1.095	1.136	1.158	1.162	1.069	1.01	1.065
$\mathrm{E}_{\mathrm{c}}=0.2 \mathrm{eV}$										
$<\mathrm{E}_{v}>_{\mathrm{HF}}$	1.27	1.198	0.971	0.873	0.808	0.715	0.616	0.542	0.509	0.324
$<\mathrm{E}_{v}>_{\mathrm{HF}}+\mathrm{E}_{\mathrm{CD} 3}\left(v_{2}\right)$	1.27	1.254	1.09	1.059	1.065	1.046	1.023	1.028	1.076	0.973
$\mathrm{E}_{\mathrm{c}}=0.3 \mathrm{eV}$										
$<\mathrm{E}_{v}>_{\mathrm{HF}}$	1.23	1.143	1	0.864	0.745	0.657	0.549	0.477	0.462	0.292
$<\mathrm{E}_{v}>_{\mathrm{HF}}+\mathrm{E}_{\mathrm{CD} 3}\left(v_{2}\right)$	1.23	1.199	1.119	1.05	1.003	0.989	0.956	0.963	1.029	0.941

A. Numerical parameters

The numerical parameters used in reactant Jacobi coordinates are as following: A total number of 280 sine basis functions covering a range from 3.0 to 19.8 bohrs were used for R with 140 grid points in the interaction region. For the r dimension, 100 basis functions were used in the range of [1.0,11.0] bohrs in the interaction region, while 6 basis functions were used in the asymptotic region. The number of basis functions for the umbrella motion was 16 . The rotational basis functions were constrained by the parameters, $J_{\max }=204, l_{\max }=180, j_{\max }=24$. The center of the prepared Gaussian wave packet was located at $R_{0}=18.0$ bohrs, with the width of $\delta=0.2 \mathrm{bohr}$, and the central energy of $E_{0}=0.15 \mathrm{eV}$. For total angular momentum $J_{\mathrm{tot}}=0$, we propagated the wave packets for 150,000 a.u. of time with a time step of 10 to converge the reaction probabilities. The absorption potential on the r coordinate for the MRPD calculation takes the form

$$
V_{p}(r)=C\left(\frac{r-r^{0}}{\Delta r}\right)^{n},
$$

with $r^{0}=9.0$ a.u., $\Delta r=2.0$ a.u., $C=0.04$, and $n=1.5$. To minimize the computational cost, the coordinate transformation is carried out at every 8 propagation time steps. Continuous propagation in the product Jacobi coordinates only involves a total number of 300 sine functions for the translational coordinate in a range of $[3.0,21.0]$ bohrs and 7 vibrational basis functions for HF bond. The number of basis functions for the umbrella motion was 11 . The rotational basis functions were constrained by the parameters, $J_{\max }^{\prime}=54, l_{\text {max }}^{\prime}=30$, and $j_{\max }^{\prime}=24$. A dividing surface is placed at $R^{\prime}=15.5$ bohr to extract S matrix elements. The number of K^{\prime}-blocks included in the product calculation increases with the total angular momentum, from 1 for $J_{\text {tot }}=0$, up to 6 for $J_{\text {tot }}=80$.

