Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information

A Cu^ICo^{II} cryptate for the visible-light driven reduction of CO₂

Julia Jökel,^a Esma Birsen Boydas,^b Joël Wellauer,^c Oliver S. Wenger,^c Marc Robert,^{d,e} Michael Roemelt^{*b} and Ulf-Peter Apfel^{*a,f}

^aFraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany. E-mail: ulf-peter.apfel@umsicht.fraunhofer.de, ulf.apfel@rub.de

^bInstitute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany.

^cDepartment of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.

^dUniversité Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75013 Paris, France.

^eInstitut Universitaire de France (IUF), F-76006 Paris, France.

^f Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.

Figure S1 UV/vis/NIR spectra of **Cu^ICo^{II}-{N^SN^N}**_m in MeCN (0.6 mM) under Ar (dark blue), after 24 h under Ar in solution (light blue), purging with CO₂ for 5 min (green) and after 24 h irradiation under Ar (λ = 450 nm, 1200 mcd) (light green).

Figure S2 (A) IR spectra of $Cu^{I}Co^{II}-\{N^{S}N^{N}\}_{m}$ in the absence and presence of CO₂. (B) ESI-MS spectrum of a CO₂-purged MeCN/H₂O (4:1) solution of $Cu^{I}Co^{II}-\{N^{S}N^{N}\}_{m}$.

Figure S3 (A) GCMS traces of the calibration standard (total ion count and mass count at m/z = 46) containing 38.8 μ g mL⁻¹ formic acid, acetic acid and propionic acid in MeCN/H₂O (4:1) as well as of the liquid phase of the photochemical cell containing 2 μ M **Cu¹Co^{II}-{N^SN^N}_m**, 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA in MeCN/H₂O (4:1) after 24 h irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²). In each case, 1 mL sample was acidified with 100 μ L conc. H₂SO₄ before measurement. (B) Mass spectra of formic acid, acetic acid and propionic acid from GCMS measurement of the calibration standard shown in (A). (C) Mass spectrum of acetaldehyde from GC-MS measurement of the photosystem shown in (A). (D) Calibration curve from GC-MS analysis of 1 mL calibration standards containing formic acid (7.76, 38.8, 54.3, 77.6, 155,233, 310 μ g mL⁻¹) in MeCN/H₂O (4:1) acidified with 100 μ L conc. H₂SO₄.

Figure S4 (A) GCMS traces of the calibration standard (total ion count and mass count at m/z = 41) containing 79.2 µg mL⁻¹ formic acid derivatised with *n*-propanol to propyl formate in MeCN/H₂O (4:1) as well as of the liquid phase of the photochemical cell containing 2 µM **Cu^ICo^{II}-{N^SN^N}**_m, 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA in MeCN/H₂O (4:1) after 24 h irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²). In each case, 400 µL sample was treated with 500 µL *n*-propanol and 100 µL 10% aq. *p*-toluene sulfonic acid. (B) Mass spectrum of propyl formate from GCMS measurement of the calibration standard shown in (A). (C) Calibration curve from GC-MS analysis of 400 µL calibration standard containing formic acid (1.58, 5.00, 15.8, 47.5, 79.2, 158, 317, 475, 634, 792 µg mL⁻¹), 500 µL *n*-propanol and 100 µL 10% aq. *p*-toluene sulfonic acid in MeCN/H₂O (4:1).

Figure S5 Determination of the number of incident photons using $K_3[Fe(C_2O_4)_3]\cdot 3H_2O$ as chemical actinometer.¹ Therefore, 2 mL containing 0.15 M $K_3[Fe(C_2O_4)_3]\cdot 3H_2O$ in 0.05 M H_2SO_4 were either irradiated with visible light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²) for 30 s or kept in the dark. Of both samples, 36 µL were subsequently added to 0.4 mL of 0.1% phenanthroline in 0.5 M H_2SO_4 buffered with sodium acetate (2.75 M) and diluted with 4.564 mL water. Each experiment was repeated two times. The absorbance was subsequently measured (blue: dark sample, green: irradiated sample) and the photon flux was determined using the literature-known procedure.¹

Figure S6 Photocatalytic evolution of CO (green) and H₂ (blue) after 24 h catalysed by **Cu^ICo^{II}**-{**N**^S**N**^N}_m (2 μ M) in a CO₂-saturated MeCN/H₂O (4:1) solution containing 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA under irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²) as well as a series of blind experiments in which one component described above was omitted individually.

¹ P. G. Alsabeh, A. Rosas-Hernández, E. Barsch, H. Junge, R. Ludwig and M. Beller, *Catal. Sci. Technol.*, 2016, **6**, 3623–3630.

Figure S7 Photocatalytic evolution of CO (green) and H₂ (blue) after 24 h catalysed by **Cu^ICo^{II}**-{**N**^S**N**^N}_m (2 μ M) in the presence of 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA under irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²) in different mixtures of CO₂saturated MeCN/H₂O (only MeCN, 9:1, 4:1, 1:1).

Figure S8 Mass spectrum of the generated gas from the photocatalytic experiment catalysed by $Cu^{I}Co^{II}-\{N^{S}N^{N}\}_{m}$ (2 μ M) in a ¹²CO₂- and ¹³CO₂-saturated MeCN/H₂O (4:1) solution containing 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA under irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²) after 24 h.

Figure S9 (A) HPLC traces of 1 mg/mL [Ru(phen)₃](PF₆)₂, TEOA and **Cu^ICo^{II}-{N^sN^N}**_m in MeCN/H₂O (4:1) as well as of the photocatalytic solutions containing 2 mM **Cu^ICo^{II}-{N^sN^N}**_m, 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA in MeCN/H₂O (4:1) without irradiation and after 24 h irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²). (B) ESI-MS (top: negative ion mode, bottom: positive ion mode) of the catalyst and TEOA containing fraction collected during HPLC analysis shown in (A).

Figure S10 UV/vis spectrum of 0.02 mM [Ru(phen)₃](PF₆)₂ in MeCN/H₂O (4:1) during the time course of blue LED light irradiation (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²).

Figure S11 Particle size analysis of the photocatalytic solution containing 2 μ M **Cu^ICo^{II}-{N^sN^N}**_m, 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA in MeCN/H₂O (4:1) after 24 h irradiation by blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²) by laser diffraction.

Figure S12 Amount of CO generated from the photocatalytic experiment catalysed by 2μ M **Cu^ICo^{II}-**{**N**^s**N**^N}_m within a CO₂-saturated MeCN/H₂O (4:1) solution containing 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA under irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²) during 2-56 h. After 26 and 52 h, fresh [Ru(phen)₃](PF₆)₂ (50 µL of a 16 mM solution) was added to the completed catalytic system for reactivation.

Figure S13 Amount of CO generated from the photocatalytic experiment catalysed within a CO₂saturated MeCN/H₂O (4:1) solution containing 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA under irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²) during 2-24 h in dependence of the concentration of the catalyst **Cu^ICo^{II}-{N^SN^N}**_m (0.5, 1.0, 1.5 and 2 µM).

Figure S14 Cyclic voltammograms of (A) 1mM **Cu^ICo^{II}-{N^SN^N}**_m in MeCN under Ar or CO₂ atmosphere and of 1 mM **Cu^I-{N^SN^N}**_m (dashed light blue), **Co^{II}-{N^SN^N}**_m (dashed green) and **Cu^ICo^{II}-{N^SN^N}**_m (blue) in MeCN/H₂O (4:1) with 0.1 M [^{*n*}Bu₄N]PF₆ as supporting electrolyte with 100 mV s⁻¹ under Ar atmosphere (B) or in the presence of CO₂ (C).

Figure S15 Linear sweep voltammograms of the herein investigated metal complexes (1 mM) in MeCN/H₂O (4:1) with 0.1 M [$^{n}Bu_{4}N$]PF₆ as supporting electrolyte with 100 mV s⁻¹ under inert conditions (blue) or in the presence of CO₂ (green).

Figure S16 Luminescence quenching of at 472 nm excited $[Ru(phen)_3](PF_6)_2$ by $Cu^lCo^{ll}-\{N^sN^N\}_m$ in MeCN. (A) The emission decay was monitored at 620 nm in the absence (grey) and in the presence of different concentrations of $Cu^lCo^{ll}-\{N^sN^N\}_m$ (green). (B) Stern-Volmer plot with the calculated corresponding quenching rate constant k_q .

Figure S17 Luminescence quenching of at 472 nm excited $[Ru(phen)_3](PF_6)_2$ by TEOA in MeCN. (A) The emission decay was monitored at 620 nm in the presence of different concentrations of TEOA. (B) Stern-Volmer plot with the calculated corresponding quenching rate constant k_q .

Figure S18 Cyclic voltammogram of $[Ru(phen)_3](PF_6)_2$ in MeCN/H₂O (4:1) with 0.1 M [^{*n*}Bu₄N]PF₆ as supporting electrolyte with 100 mV s⁻¹ under inert conditions.

Figure S19 Proposed reaction mechanism for CO_2 reduction with $Cu^{I}Co^{II}-\{N^{S}N^{N}\}_{m}$. Energies are given in kcal mol⁻¹.

Table S1 Redox potential of the $Co^{II/I}$ couple within $Cu^ICo^{II}-\{N^SN^N\}_m$ in the presence of various small molecules/anions or of the empty cavity.

	Redox potential [V]
empty	-0.98
CO	-0.19
CO ₂	-0.77
MeCN	-1.27
OH⁻	-1.90

Table S2 Binding energy of CO to the Co-site of Cu^ICo^{II}-{N^SN^N}_m in the initial or single-reduced state.

	Binding energy [kcal mol ⁻¹]				
Cu ⁱ Co ⁱⁱ	-9.58				
Cu ^I Co ^I	27.8				

Figure S20 Mononuclear model system Cu¹-{N^S}.

Figure S21 CO₂ binding modes within (A) $Cu^{I}Co^{II}-\{N^{S}N^{N}\}_{m}$ and (B) $Cu^{I}Co^{II}-\{N^{S}N^{N}\}_{p}$ in the initial, non-reduced state.

Table S3 Cu-Co distance in $Cu^{I}Co^{II}-\{N^{S}N^{N}\}_{m}$ and $Cu^{I}Co^{II}-\{N^{S}N^{N}\}_{p}$ in the empty cavity or in the presence of various small molecules or anions bound to one or both metals.

	d [Å]						
	Cu ^I Co ^{II} -{N ^S N ^N } _m	Cu ^I Co ^{II} -{N ^S N ^N } _p					
empty	6.21	6.51					
CO ₂	5.87	6.62					
CO2-	4.60	6.32					
MeCN	5.94	6.66					
OH-	5.57	6.06					
HCO₃ [−]	5.45	6.19					

Figure S22 Photocatalytic evolution of CO (green) and H₂ (blue) after 24 h catalysed by **Cu^ICo^{II}**-{**N**^S**N**^N}_m, **Co^{II}Co^{II}**-{**N**^S**N**^N}_m, **Co^{II}Co^{II}**-{**N**^S**N**^N}_m, **Zn^{II}Co^{II}**-{**N**^S**N**^N}_m and **Co^{II}**-{**N**^S**N**^N}_m (2 μ M) in the presence of 0.4 mM [Ru(phen)₃](PF₆)₂ and 0.3 M TEOA under irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²) in CO₂-saturated MeCN/H₂O (4:1).

Figure S23 ESI-MS spectra of (A) Co^{II}Co^{II}-{N^sN^N}_m and (B) Zn^{II}Co^{II}-{N^sN^N}_m.

Figure S24 EPR spectra of (A) Co^{II}Co^{II}-{N^SN^N}_m and (B) Zn^{II}Co^{II}-{N^SN^N}_m in frozen MeCN (1 mM).

Figure S25 UV/vis/NIR spectra of Co^{II}Co^{II}-{N^SN^N}_m (green) and Zn^{II}Co^{II}-{N^SN^N}_m (blue) in MeCN (0.6 mM).

Table S4 Experimental data after 24 h photocatalysis with the standard procedure: ${}^{*}0.4 \text{ mM} [\text{Ru}(\text{phen})_3](\text{PF}_6)_2$, 0.3 M TEOA, MeCN/H₂O (4:1), CO₂, irradiation with blue LED light (λ = 450 nm, 1200 mcd, irradiation area 0.8 cm²). The given values are averaged over three experiments with typical uncertainties of ±2-8%.

Entry	Catalyst	Deviation from standard procedure [*]	Conc. [µM]	Turnover frequency [min ⁻¹]		Amount of product [µmol] (TON)		Selectivity	Quantum
				СО	H ₂	СО	H ₂	CO [%]	yield [%]
1	Cu ^I Co ^{II} -{N ^S N ^N } _m	-	2	1.60	3.28·10 ⁻²	9.22 (2305)	0.189 (47.25)	98	0.15
2	-	-	-	0	8.85·10 ⁻³	0 (0)	0.0510 (12.75)	-	0
3	Cu ⁱ Co ⁱⁱ -{N ^s N ^N } _m	w/o [Ru(phen)₃](PF ₆)₂	2	0	1.54·10 ⁻³	0 (0)	0.00888 (2.220)	-	0
4	Cu ^I Co ^{II} -{N ^S N ^ℕ } _m	w/o TEOA	2	0	1.43·10 ⁻³	0 (0)	0.00821 (2.053)	-	0
5	Cu ^I Co ^{II} -{N ^S N ^N } _m	w/o irradiation	2	0	0	0 (0)	0 (0)	-	0
6	Cu ^I Co ^{II} -{N ^S N ^N } _m	Ar instead CO ₂	2	0	0	0 (0)	0 (0)	-	0.001
7	Cu ⁱ Co ⁱⁱ -{N ^s N ^N } _m	MeCN	2	3.84·10 ⁻²	8.44·10 ⁻³	0.221 (55.25)	0.0485 (12.13)	82	0.004
8	Cu ⁱ Co ⁱⁱ -{N ^s N ^N } _m	MeCN/H ₂ O (9:1)	2	1.08	4.34·10 ⁻²	6.23 (1558)	0.250 (62.50)	96	0.10
9	Cu ^I Co ^{II} -{N ^S N ^N } _m	MeCN/H ₂ O (1:1)	2	1.37·10 ⁻²	3.85·10 ⁻²	0.0791 (19.78)	0.0222 (5.550)	78	0.002
10	Cu ^I Co ^{II} -{N ^S N ^N } _m	+ 100 μL Hg ⁰	2	1.27	3.72·10 ⁻²	7.34 (1835)	0.214 (53.50)	97	0.12
11	Cu ^ı -{N ^s N ^N } _m	-	2	8.06·10 ⁻³	4.84·10 ⁻³	0.0464 (11.60)	0.0279 (6.975)	62	0.001
12	Co [∥] -{N ^s N ^ℕ } _m	-	2	0.99	2.34·10 ⁻²	5.70 (1425)	0.135 (33.75)	98	0.09
13	Cu ^I Co ^{II} -{N ^S N ^N } _₽	-	2	0.48	1.17.10-2	2.78 (695.0)	0.0671 (16.78)	98	0.04
14	Cu ⁱ Co ⁱⁱ -{N ^s N ^N } _m	-	1.5	1.13	1.97·10 ⁻²	4.87 (1623)	0.0851 (28.37)	98	0.08
15	Cu ^I Co ^{II} -{N ^S N ^N } _m	-	1.0	1.09	2.17·10 ⁻²	3.13 (1565)	0.0626 (31.30)	98	0.05
16	Cu ^I Co ^{II} -{N ^S N ^N } _m	-	0.5	1.15	2.92·10 ⁻²	1.66 (1660)	0.0421 (42.10)	98	0.03
17	Co [∥] Co [∥] -{N ^ℕ N ^ℕ } _m	-	2	2.01	6.51·10 ⁻²	11.6 (2900)	0.375 (93.75)	97	0.19
18	Co [∥] Co [∥] -{N ^s N ^ℕ } _m	-	2	1.11	3.11.10-2	6.39 (1598)	0.179 (44.75)	97	0.10
19	Zn [∥] Co [∥] -{N ^s N ^ℕ } _m	-	2	1.08	2.78·10 ⁻²	6.21 (1553)	0.160 (40.00)	97	0.10