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Figure S1. The benchmark of the EnzyKR classifier. The performance is evaluated by area under 
the curve (AUC) benchmark. The red bar represents the original EnzyKR model, which achieves 
an AUC of 0.87. The orange bar shows a version of EnzyKR model using evolutionary scaling 
modeling 2 (ESM-2) embedding1 for input enzyme sequences instead of one-hot CNN encoding, 
which results in an AUC of 0.81. The yellow bar illustrates a model employing CNN, instead of 
GNN, for one-hot encoding of SMILES strings, which yields an AUC of 0.78. The green bar shows 
a model that excludes substrate-enzyme distance maps from the EnzyKR model, which achieves 
an AUC of 0.59. The blue bar corresponds to a model excluding SMILES strings from the classifier 
input, which results in an AUC of 0.63. The dark blue bar indicates a model that excludes enzyme 
sequences from the model, achieving an AUC of 0.26. The purple bar represents a model that 
excludes dihedral angles from the model, which resultS in an AUC of 0.85.  

Text S1. An alternative sequence encoder for EnzyKR. Using Evolutionary Scaling Modeling-2 
(ESM2) embedding for encoding the input enzyme sequences achieves an AUC of 0.81 in the 
reactive binding pose classification task. The result is comparable to the original architecture with 
the CNN encoder. This demonstrates the robustness of the model, particularly in scenarios that 
require alternative sequence encodings for sequences derived from different sources. Our analysis 
also highlights the importance of encoding structural information, particularly atomic distance 
maps representing substrate-enzyme interactions, as the second most influential feature. In contrast, 
dihedral angles have minimal impact on the classification of enzyme-substrate poses, but is likely 
important for prediction of outcomes of kinetic resolution due to its sharp differentiation of 
substrate chirality. Furthermore, the inclusion of SMILES strings significantly enhances the 
model's ability to learn enzyme-substrate pairs, with the exclusion of SMILES strings resulting in 
a notable AUC drop to 0.63. The utilization of graph convolution layers for encoding substrate 
SMILES strings further enhances the classifier's performance, underscoring the importance of 
tailored encoding strategies for chemical data. These findings offer insights into the feature 
dependencies of the EnzyKR classifier, guiding model construction and data preprocessing 
strategies in the future. 

Text S2. The method used to obtain substrate 3D structure. The substrate SMILES string was 
converted into 2D connectivity graph with RDKit (https://www.rdkit.org/).2 For a given substrate 
graph, the molecules can be categorized as two parts, including: nodes (atom) and edges 
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(connectivity). The nodes use one hot embedding to generate the atom tensor with a dimension of 
10. The edges are directly encoded to the graph neural network based on the order of atom tensor 
in the substrate graph3. The nodes and edges were then fed into the graph convolution layer after 
a ReLU activation function. For the enantiomeric reactions listed in Figure 4 of the main text, we 
first constructed the substrates using ChemDraw 22.0.04 and obtained the SMILES strings using 
Chemdraw. We then converted the SMILES strings to sdf files for subsequent docking simulations. 
 
Text S3. The method used to obtain the substrate-enzyme complexes. The hydrolase-substrate 
complexes were constructed with RosettaLigand docking protocol.5 First, we adopted the enzyme 
PDB ID from IntEnzyDB6 and then applied the clean_pdb.py script in Rosetta to downloaded the 
structure file. The substrate coordinate files were downloaded from the PubChem by searching the 
substrate names stored in IntEnzyDB. If a substrate name fails to match with a 3D structure in 
PubChem, we used the online SMILES Translator (https://cactus.nci.nih.gov/translate/) to 
generate the 3D sdf file. For each substrate structure sdf file, we generated 250 conformations 
using BCL::Conf7 with the default setting. We then used the molfile_to_params.py script to 
generate the parameter files for the Rosetta docking. Eventually, we run the main script of Rosetta, 
which performs docking and generates the hydrolase-substrate complex.  
 
Table S1. The benchmark assessed EnzyKR's feature contributions using five performance metrics: 
Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 
Pearson R, and Spearman R. The first row presents results after removing the substrate-enzyme 
atomic distance map from both the classifier and regressor. The second row showcases EnzyKR's 
performance with the incorporation of ESM embedding for encoding enzyme sequences. The third 
row excludes substrate dihedral information from both the classifier and regressor of EnzyKR. 
Finally, the last row represents the final EnzyKR model. The analysis reveals that structural 
information enhances EnzyKR's performance. Notably, distance-related information contributes 
to lower MSE, while excluding substrate dihedral information results in a higher correlation 
coefficient. 
 

 
 
Table S2. In Table S3, the impact of varying the training dataset size (e.g., 90%:10%, 85%:15%, 
80%:20%, 75%:25%, 70%:30% splits) on EnzyKR's performance is examined. The findings reveal 
a correlation between reduced training dataset size and decreased performance of EnzyKR. As a 
result of this analysis, we have opted to adopt a training set: test set ratio of 90%:10%, consistently 
delivering superior performance among the benchmark ratios, with metrics including MSE 3.75, 
MAE 1.54, RMSE 1.94, Pearson R 0.72, and Spearman R 0.72. Given the current constraints 

Spearman RPearson RRMSEMAEMSE

0.680.642.042.014.17EnzyKR
w/o distance map

0.620.611.981.953.93EnzyKR
w/ ESM-2 embedding 

0.730.731.911.493.65EnzyKR
w/o substrate dihedral

0.720.721.941.543.75EnzyKR

https://cactus.nci.nih.gov/translate/
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related to the availability of training data, our choice to maximize the model's exposure to data is 
aligned with our overarching goal of enhancing its predictive capabilities.  
 

 
 
Table S3. The comparison of EnzyKR against two other deep learning models: DLKcat8 and CPI9. 
Five metrics are used, including Mean Square Error (MSE), Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), Pearson correlation coefficient R, and Spearman correlation 
coefficient R. Both DLKcat and CPI models were retrained using the training set in this study 
based on the code reported in the publication.  
 

 
 
Table S4: The predicted outcomes for kinetic resolution. The first column corresponds to 28 
racemic substrates in the ee% value test set. The labels, 1a to 14, are consistent with Figure 4 in 
the main text. Positive ee% values indicate the situation in which the enzyme prefers reacting 
with the S enantiomer while retaining the R enantiomer, whereas negative ee% values indicate 
the opposite. The second column shows the experimental ee% values. The third and fourth 
columns show the predicted ee% values using EnzyKR and DLKcat, respectively. 
 

Spearman RPearson RRMSEMAEMSE

0.720.721.941.543.75EnzyKR
(90%:10%)

0.490.482.232.334.9685%:15% 
training splits

0.400.432.292.385.2380%:20% 
training splits

0.320.342.312.525.3475%:25%
training splits

0.230.222.382.615.6770%:30%
training splits

Spearman RPearson RRMSEMAEMSE

0.720.721.941.543.75EnzyKR

0.630.641.941.743.76DLKcat
on our datasets

0.650.631.971.833.89CPI
on our datasets
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Table S5: The performance of both EnzyKR and DLKcat on the prediction of ee% values. The 
results are evaluated using four metrics: accuracy score, precision score, F1-Score, and recall 
score. The ee% values, with a range of (-100%, 100%), are split into three categories: (-100%, -
50%), [-50%, 50%], and (50%, 100%).  
 

 
  

DLKcat ee%EnzyKR ee%exp ee%substrates
57.4678.47>991a
45.6660.01>991b
19.8791.95981c
-10.86-87.98>991d
-20.5378.73>991e
9.8175.67981f
-0.4189.84>991g
12.7592.53>991h
39.7981.26>991i
33.7185.11<-994j
0.05-93.08<-994k
0.00-35.49<-994l
-3.71-41.94-954m
0.77-57.60<-994n

-61.25-78.40-974o
-1.1331.91<-994p

-38.04-2.58-974q
57.7262.31<-994r
0.0033.9036.47s
0.82-90.62<-997t
0.00-85.88>997u
1.63-0.03<-997v
0.0047.9488.47w
0.0010.17477y
0.00-34.0591.17z
0.00-92.4995.77aa
0.0092.468.910
8.1531.8748.714
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