Supplementary Information for
 "Time-resolved enantiomer-exchange probed by using the orbital angular momentum of X-ray light"

Xiang Jiang, ${ }^{1}$ Yeonsig Nam, ${ }^{1}$ Jérémy R. Rouxel, ${ }^{2}$ Haiwang Yong, ${ }^{3}$ and Shaul Mukamel ${ }^{1}$
${ }^{1}$ Department of Chemistry and Department of Physics $\&$ Astronomy, University of California, Irvine, California 92697, USA
${ }^{2}$ Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
${ }^{3}$ Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA

(Dated: September 7, 2023)

S-I. TRANSIENT ABSORPTION SIGNALS

We begin the derivation of transient absorption at any pump-probe time delay T from[1]

$$
\begin{equation*}
S(T)=-\frac{2}{\hbar} \operatorname{Im} \int_{t_{0}}^{+\infty} \mathrm{d} t \mathrm{~d} \boldsymbol{r}\left\langle\mathbf{j}(\boldsymbol{r}, t) \cdot \mathbf{A}^{*}(\boldsymbol{r}, t)\right\rangle \tag{S1}
\end{equation*}
$$

under the light-matter interaction Hamiltonian[2]

$$
\begin{equation*}
H_{\mathrm{int}}=-\int \mathrm{d} \boldsymbol{r} \mathbf{j}(\boldsymbol{r}) \cdot \mathbf{A}(\boldsymbol{r}, t) \tag{S2}
\end{equation*}
$$

in which $\mathbf{j}(\boldsymbol{r})$ is the current density operator and $\mathbf{A}(\boldsymbol{r}, t)=\mathbf{A}(\boldsymbol{r}) A(t)$ is the electromagnetic vector potential of the light. In Eq. (S1), $\mathbf{j}(\boldsymbol{r}, t) \cdot \mathbf{A}^{*}(\boldsymbol{r}, t)$ is written in interaction picture as

$$
\begin{equation*}
\mathbf{j}(\boldsymbol{r}, t) \cdot \mathbf{A}^{*}(\boldsymbol{r}, t)=U^{\dagger}\left(t, t_{0}\right) \mathbf{j}(\boldsymbol{r}) \cdot \mathbf{A}^{*}(\boldsymbol{r}, t) U\left(t, t_{0}\right) \tag{S3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\mathbf{j}(\boldsymbol{r}, t) \cdot \mathbf{A}^{*}(\boldsymbol{r}, t)\right\rangle=\left\langle\psi_{I}(t)\right| \mathbf{j}(\boldsymbol{r}, t) \cdot \mathbf{A}^{*}(\boldsymbol{r}, t)\left|\psi_{I}(t)\right\rangle . \tag{S4}
\end{equation*}
$$

Let $\psi\left(t_{0}\right)=\psi_{0}$, under linear response we have

$$
\begin{equation*}
\left|\psi_{I}(t)\right\rangle=\left|\psi_{0}\right\rangle+\left(\frac{-\mathrm{i}}{\hbar}\right) \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \mathrm{d} \boldsymbol{r}^{\prime} U^{\dagger}\left(t^{\prime}, t_{0}\right)\left(-\mathbf{j}\left(\boldsymbol{r}^{\prime}\right) \cdot \mathbf{A}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\right) U\left(t^{\prime}, t_{0}\right)\left|\psi_{0}\right\rangle \tag{S5}
\end{equation*}
$$

Then the transient absorption can be written as

$$
\begin{align*}
S(T)=-\frac{2}{\hbar} & \operatorname{Im} \int_{t_{0}}^{+\infty} \mathrm{d} t \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \int \mathrm{d} \boldsymbol{r} \mathrm{~d} \boldsymbol{r}^{\prime} \mathbf{A}^{*}(\boldsymbol{r}, t) \\
& \times\left(\frac{-\mathrm{i}}{\hbar}\right)\left[\mathbf{A}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\left\langle\psi_{0}\right| U^{\dagger}\left(t, t_{0}\right) \mathbf{j}(\boldsymbol{r}) U\left(t, t_{0}\right) U^{\dagger}\left(t^{\prime}, t_{0}\right)\left(-\mathbf{j}\left(\boldsymbol{r}^{\prime}\right)\right) U\left(t^{\prime}, t_{0}\right)\left|\psi_{0}\right\rangle\right. \\
& \left.\quad-\mathbf{A}^{*}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\left\langle\psi_{0}\right| U^{\dagger}\left(t^{\prime}, t_{0}\right)\left(-\mathbf{j}\left(\boldsymbol{r}^{\prime}\right)\right) U\left(t^{\prime}, t_{0}\right) U^{\dagger}\left(t, t_{0}\right) \mathbf{j}(\boldsymbol{r}) U\left(t, t_{0}\right)\left|\psi_{0}\right\rangle\right] \tag{S6}\\
=-\frac{2}{\hbar^{2}} & R e \int_{t_{0}}^{+\infty} \mathrm{d} t \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \int \mathrm{d} \boldsymbol{r} \mathrm{~d} \boldsymbol{r}^{\prime} \mathbf{A}^{*}(\boldsymbol{r}, t) \\
& \times\left[\mathbf{A}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\left\langle\psi_{0}\right| U^{\dagger}\left(t, t_{0}\right) \mathbf{j}(\boldsymbol{r}) U\left(t, t^{\prime}\right) \mathbf{j}\left(\boldsymbol{r}^{\prime}\right) U\left(t^{\prime}, t_{0}\right)\left|\psi_{0}\right\rangle\right. \\
& \left.\quad \mathbf{A}^{*}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\left\langle\psi_{0}\right| U^{\dagger}\left(t^{\prime}, t_{0}\right) \mathbf{j}\left(\boldsymbol{r}^{\prime}\right) U^{\dagger}\left(t, t^{\prime}\right) \mathbf{j}(\boldsymbol{r}) U\left(t, t_{0}\right)\left|\psi_{0}\right\rangle\right] .
\end{align*}
$$

After the substitution of $\tau=t-t^{\prime}$ and $\mathrm{d} t^{\prime}=-\mathrm{d} \tau$, we have

$$
\begin{align*}
S(T)=-\frac{2}{\hbar^{2}} & \operatorname{Re} \int_{t_{0}}^{+\infty} \mathrm{d} t \int_{0}^{t-t_{0}} \mathrm{~d} \tau \int \mathrm{~d} \boldsymbol{r} \mathrm{~d} \boldsymbol{r}^{\prime} \mathbf{A}^{*}(\boldsymbol{r}, t) \\
& \times\left[\mathbf{A}\left(\boldsymbol{r}^{\prime}, t-\tau\right)\left\langle\psi_{0}\right| U^{\dagger}\left(t, t_{0}\right) \mathbf{j}(\boldsymbol{r}) U(\tau) \mathbf{j}\left(\boldsymbol{r}^{\prime}\right) U\left(t-\tau, t_{0}\right)\left|\psi_{0}\right\rangle\right. \tag{S7}\\
& \left.-\mathbf{A}^{*}\left(\boldsymbol{r}^{\prime}, t-\tau\right)\left\langle\psi_{0}\right| U^{\dagger}\left(t-\tau, t_{0}\right) \mathbf{j}\left(\boldsymbol{r}^{\prime}\right) U^{\dagger}(\tau) \mathbf{j}(\boldsymbol{r}) U\left(t, t_{0}\right)\left|\psi_{0}\right\rangle\right]
\end{align*}
$$

After defining

$$
\begin{equation*}
d_{i j}=\left\langle\varphi_{i}(\boldsymbol{r})\right| \mathbf{A}(\boldsymbol{r}) \cdot \mathbf{j}(\boldsymbol{r})\left|\varphi_{j}(\boldsymbol{r})\right\rangle, \tag{S8}
\end{equation*}
$$

using the Born-Oppenheimer approximation

$$
\begin{equation*}
|\psi(\boldsymbol{r}, \boldsymbol{q}, t)\rangle=\sum_{e} c_{e}(t)\left|\chi_{e}(\boldsymbol{q}, t)\right\rangle\left|\varphi_{e}(\boldsymbol{r}, \boldsymbol{q})\right\rangle \tag{S9}
\end{equation*}
$$

for separating the nuclei and electron wavefunction, expanding $U(\tau)$ in core states, and inserting $t_{0} \rightarrow-\infty$, we can rewrite Eq. (S7) as

$$
\begin{align*}
& S(T)=-\frac{2}{\hbar^{2}} \operatorname{Re} \int_{-\infty}^{+\infty} \mathrm{d} t \int_{0}^{+\infty} \mathrm{d} \tau \mathrm{e}^{-\mathrm{i} \omega_{e e^{\prime}} t} A^{*}(t) \\
& \times \sum_{e e^{\prime} c}\left[A(t-\tau) c_{e^{\prime}}^{*}(t) c_{e}(t-\tau)\left\langle\chi_{e^{\prime}}(t)\right| d_{c e^{\prime}}^{*} U_{c c}(\tau) d_{c e}\left|\chi_{e}(t-\tau)\right\rangle \mathrm{e}^{\mathrm{i} \omega_{e} \tau}\right. \tag{S10}\\
& \left.\quad \quad-A^{*}(t-\tau) c_{e^{\prime}}^{*}(t-\tau) c_{e}(t)\left\langle\chi_{e^{\prime}}(t-\tau)\right| d_{c e^{\prime}}^{*} U_{c c}^{\dagger}(\tau) d_{e c}^{*}\left|\chi_{e}(t)\right\rangle \mathrm{e}^{-\mathrm{i} \omega_{e^{\prime}} \tau}\right],
\end{align*}
$$

where $\omega_{e\left(e^{\prime}\right)}=E_{e\left(e^{\prime}\right)} / \hbar, \omega_{e e^{\prime}}=\omega_{e}-\omega_{e^{\prime}}$, and we also used $U\left(t, t_{0}\right)\left|\psi_{0}\right\rangle=\sum_{e} c_{e} \mathrm{e}^{-\mathrm{i} \omega_{e} t}\left|\chi_{e}\right\rangle\left|\varphi_{e}\right\rangle$.
Then we consider a Gaussian type light wave packet whose center at pump-probe time delay T

$$
\begin{equation*}
A(t)=A_{0} \mathscr{A}(t) \mathrm{e}^{-\mathrm{i} \omega t}, \mathscr{A}(t)=\frac{1}{\sqrt{2 \pi} \xi} \exp \left[-\frac{(t-T)^{2}}{2 \xi^{2}}\right] \tag{S11}
\end{equation*}
$$

and introduce the step function

$$
\theta(\tau)= \begin{cases}1 & \tau>0 \\ 0 & \tau<0\end{cases}
$$

to change the integral lower limit of τ to $-\infty$ with

$$
\begin{align*}
\theta(\tau) U_{c c}(\tau) \mathrm{e}^{\mathrm{i} \omega_{e} \tau} & =\theta(\tau) \exp \left[-\mathrm{i}\left(\omega_{c}-\omega_{e}\right) \tau\right], \omega_{c}=E_{c} / \hbar \\
& =-\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{+\infty} \frac{\mathrm{d} \Omega}{\Omega-\omega_{c e}+\mathrm{i} \Gamma_{c}} \exp (-\mathrm{i} \Omega \tau), \omega_{c e}=\omega_{c}-\omega_{e} \tag{S12}
\end{align*}
$$

We can rewrite Eq. (S10) as

$$
\begin{align*}
& S(\omega, T)=\frac{1}{\pi \hbar^{2}} \sum_{e e^{\prime} c} \operatorname{Im} \int_{-\infty}^{+\infty} \mathrm{d} \Omega \int_{-\infty}^{+\infty} \mathrm{d} t \int_{-\infty}^{+\infty} \mathrm{d} \tau \mathrm{e}^{-\mathrm{i} \omega_{e e^{\prime}} t} \mathrm{e}^{-\mathrm{i} \Omega \tau} \\
& {\left[\mathscr{A}^{*}(t) c_{e^{\prime}}^{*}(t)\left\langle\chi_{e^{\prime}}(t)\right| \frac{d_{c e^{\prime}}^{*} d_{c e}}{\Omega+\omega-\omega_{c e}+\mathrm{i} \Gamma_{c}}\left|\chi_{e}(t-\tau)\right\rangle c_{e}(t-\tau) \mathscr{A}(t-\tau)\right.} \tag{S13}\\
& \left.-\mathscr{A}^{*}(t-\tau) c_{e^{\prime}}^{*}(t-\tau)\left\langle\chi_{e^{\prime}}(t-\tau)\right| \frac{d_{c e^{\prime}}^{*} d_{e c}^{*}}{\Omega-\omega-\left(\omega_{c}+\omega_{e^{\prime}}\right)+\mathrm{i} \Gamma_{c}}\left|\chi_{e}(t)\right\rangle c_{e}(t) \mathscr{A}^{*}(t) \mathrm{e}^{\mathrm{i}(2 \omega) t}\right]
\end{align*}
$$

The third line in Eq.(S13) should be ignored. First of all, we define a time domain function $f_{e}(t)=\mathscr{A}(t) c_{e}(t)\left|\chi_{e}(t)\right\rangle$ and then the time domain integral of the third line in Eq.(S13) can be written as

$$
\begin{equation*}
\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f_{e^{\prime}}^{*}(t-\tau) f_{e}(t) \mathrm{e}^{-\mathrm{i}\left(\omega_{e e^{\prime}}-2 \omega\right) t} \mathrm{~d} t\right] \mathrm{e}^{-\mathrm{i} \Omega \tau} \mathrm{~d} \tau \tag{S14}
\end{equation*}
$$

after defining

$$
\mathcal{F}[f(t)](\omega)=\int_{-\infty}^{+\infty} f(t) \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t
$$

By using the cross-correlation and frequency-shift property, Eq.(S14) can be written as

$$
\begin{equation*}
\mathcal{F}\left[f_{e}(t)\right]^{*}(\Omega) \cdot \mathcal{F}\left[f_{e^{\prime}}(t)\right]\left(\Omega+\omega_{e e^{\prime}}-2 \omega\right) \tag{S15}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mathcal{F}[\mathscr{A}(t)](\omega)=\exp \left(-\frac{\xi^{2} \omega^{2}}{2}\right) \mathrm{e}^{-\mathrm{i} \omega T} \tag{S16}
\end{equation*}
$$

the Fourier transform of $f_{e\left(e^{\prime}\right)}(t)$ also gives Gaussian similar result with a full width at half maximum (FWHM) of $2 \sqrt{2 \ln 2} / \xi \sim 2 \mathrm{eV}$. So, to guarantee the nonvanishing of Eq.(S15), there are limitations of $\Omega \sim 0$ and $\omega \sim \omega_{e e^{\prime}} / 2$. But the limitations will result a large denominator of third line of Eq.(S13) since the core state energy ω_{c} is always much larger than valence state enery $\omega_{e\left(e^{\prime}\right)}$, which will give a vanishing contribution to total signal. By throwing away the the third line of Eq.(S13) and redefining the Fourier transform (FT) as

$$
\mathcal{F}[f(t)](\omega)=\int_{-\infty}^{+\infty} f(t) \mathrm{e}^{\mathrm{i} \omega t} \mathrm{~d} t
$$

The transient absorption can be finally written as

$$
\begin{equation*}
S_{\mathrm{abs}}(\omega, T)=\frac{1}{\pi \hbar^{2}} \sum_{e e^{\prime} c} \operatorname{Im} \int \mathrm{~d} \boldsymbol{q} d_{c e^{\prime}}^{*} d_{c e} \int_{-\infty}^{+\infty} \mathrm{d} \Omega \frac{\mathcal{F}\left[f_{e^{\prime}}(t)\right]^{*}\left(\Omega+\omega_{e e^{\prime}}\right) \mathcal{F}\left[f_{e}(t)\right](\Omega)}{\Omega+\omega-\omega_{c e}+\mathrm{i} \Gamma_{c}} \tag{S17}
\end{equation*}
$$

which is mentioned in the main text.

S-II. EXPNADING THE LAGUERRE-GAUSSIAN BEAM AND THE TRANSITION CURRENT DENSITY IN HERMITE-GAUSSIAN BASIS

In general, the size of the molecule is much smaller than the range of the beam. Since we choose $w_{0}=60 \mathrm{~nm}$ in our simulation, we can do the approximation in the Laguerre-Gaussian (LG) beam as $w(z) \rightarrow w_{0}, R(z) \rightarrow \infty, \frac{z}{z_{R}} \rightarrow 0$, and the LG beam is simplified to

$$
\begin{equation*}
\mathrm{LG}_{l p}(r, \phi, z)=\frac{1}{w_{0}} \sqrt{\frac{2 p!}{\pi(p+|l|)!}} \exp \left(-\frac{r^{2}}{w_{0}^{2}}\right)\left(\frac{\sqrt{2} r}{w_{0}}\right)^{|l|} L_{p}^{|l|}\left(\frac{2 r^{2}}{w_{0}^{2}}\right) \mathrm{e}^{\mathrm{i} l \phi} \mathrm{e}^{\mathrm{i} k z} \tag{S18}
\end{equation*}
$$

There are examples of the spatial profiles of the LG beams with $l= \pm 1$ shown in Fig. 1 of main text, as well as compared with circularly polarized light.

For the definition of the Laguerre polynomials

$$
\begin{equation*}
L_{p}^{l}(x)=\frac{e^{x} x^{-l}}{p!} \frac{\mathrm{d}^{p}}{\mathrm{~d} x^{p}}\left(\mathrm{e}^{-x} x^{p+l}\right) \tag{S19}
\end{equation*}
$$

and the Hermite polynomials

$$
\begin{equation*}
H_{t}(x)=(-1)^{t} \exp \left(x^{2}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{t} \exp \left(-x^{2}\right) \tag{S20}
\end{equation*}
$$

we can write the follow expansion[3]:

$$
\begin{align*}
\mathcal{L}_{l p}(x, y) & \equiv \mathrm{e}^{\mathrm{i} l \phi} r^{|l|} L_{p}^{|l|}\left(r^{2}\right) \\
& =\frac{(-1)^{p}}{2^{2 p+|l|} p!} \sum_{u=0}^{p} \sum_{v=0}^{|l|} \mathrm{i}^{\operatorname{sgn}(1) v}\binom{p}{u}\binom{|l|}{v} H_{2 u+|l|-v}(x) H_{2 p-2 u+v}(y), \tag{S21}
\end{align*}
$$

in which $\operatorname{sgn}()$ is the sign function. The LG beam is finally written as

$$
\begin{equation*}
\mathrm{LG}_{l p}(x, y, z)=\frac{1}{w_{0}} \sqrt{\frac{2 p!}{\pi(p+|l|)!}} \exp \left(-\frac{x^{2}+y^{2}}{w_{0}^{2}}\right) \mathcal{L}_{l p}\left(\frac{\sqrt{2} x}{w_{0}}, \frac{\sqrt{2} y}{w_{0}}\right) \mathrm{e}^{\mathrm{i} k z} \tag{S22}
\end{equation*}
$$

and the vector potential of $L G$ beam reads

$$
\begin{equation*}
\mathbf{A}(\boldsymbol{r}, l)=\mathrm{LG}_{l p}(x, y, z) \frac{\hat{\mathbf{e}}_{x}+\mathrm{i} \sigma \hat{\mathbf{e}}_{y}}{\sqrt{1+|\sigma|}} \tag{S23}
\end{equation*}
$$

where $\sigma=0,+1,-1$ corresponds to linearly polarized, left circularly polarized, and right circularly polarized light.
Next we consider the transition current density. First the electronic wavefunctions are expanded in Gaussian basis as

$$
\begin{equation*}
\varphi_{\mu}(\boldsymbol{r})=\sum_{A} c_{\mu A} \sum_{a} \beta_{a} G_{i j k}\left(\boldsymbol{r}_{A}, a\right), A \equiv\left\{\boldsymbol{r}_{A},\left\{a, \beta_{a}, i, j, k\right\}\right\} \tag{S24}
\end{equation*}
$$

in which

$$
G_{i j k}(\boldsymbol{r}, a, \boldsymbol{A})=G_{i j k}\left(a, \boldsymbol{r}_{A}\right)=x_{A}^{i} y_{A}^{j} z_{A}^{k} \exp \left(-a r_{A}^{2}\right),\left\{\begin{array}{l}
a>0 \tag{S25}\\
\boldsymbol{r}_{A}=\boldsymbol{r}-\boldsymbol{A} \\
i \geq 0, j \geq 0, k \geq 0
\end{array}\right.
$$

is the Cartesian Gaussian-type orbitals (CGTO), and $c_{\mu A}$ are the expansion coefficients on different Gaussian center A with various CGTO parameters. Second the CGTO can be separated into three Cartesian directions

$$
\begin{equation*}
G_{i j k}\left(a, \boldsymbol{r}_{A}\right)=G_{i}\left(a, x_{A}\right) G_{j}\left(a, y_{A}\right) G_{k}\left(a, z_{A}\right) \tag{S26}
\end{equation*}
$$

with one-dimension CGTO (1d-CGTO)

$$
\begin{align*}
G_{i}\left(a, x_{A}\right) & =x_{A}^{i} \exp \left(-a x_{A}^{2}\right) \\
\frac{\partial G_{i}\left(a, x_{A}\right)}{\partial x} & =-2 a G_{i+1}\left(a, x_{A}\right)+i G_{i-1}\left(a, x_{A}\right) \tag{S27}
\end{align*}
$$

and the product of two 1d-CGTO can be expanded in Gaussian-Hermite functions as

$$
\begin{equation*}
\Omega_{i j}\left(x ; a, b, A_{x}, B_{x}\right) \equiv G_{i}\left(a, x_{A}\right) G_{j}\left(b, x_{B}\right)=\sum_{t=0}^{i+j} E_{t}^{i j} \Lambda_{t}\left(p, x_{P}\right) \tag{S28}
\end{equation*}
$$

in which $p=a+b, P_{x}=\left(a A_{x}+b B_{x}\right) / p, E_{t}^{i j}$ are the expansion coefficients, and $\Lambda_{t}\left(p, x_{P}\right)$ is the Gaussian-Hermite function reads

$$
\begin{align*}
\Lambda_{t}\left(p, x_{P}\right) & \equiv\left(\frac{\partial}{\partial P_{x}}\right)^{t} \exp \left(-p x_{P}^{2}\right) \tag{S29}\\
& =p^{t / 2} H_{t}\left(p^{1 / 2} x_{P}\right) \exp \left(-p x_{P}^{2}\right)
\end{align*}
$$

So, the transition current density

$$
\begin{equation*}
\boldsymbol{j}_{\mu \nu}(\boldsymbol{r}) \equiv \frac{e \hbar}{2 m_{\mathrm{e}} \mathrm{i}}\left[\varphi_{\mu}^{*}\left(\boldsymbol{\nabla} \varphi_{\nu}\right)-\left(\boldsymbol{\nabla} \varphi_{\mu}^{*}\right) \varphi_{\nu}\right] \tag{S30}
\end{equation*}
$$

can be written as

$$
\begin{align*}
& \boldsymbol{j}_{\mu \nu}=\frac{1}{2 \mathrm{i}}\left[\varphi_{\mu}\left(\nabla \varphi_{\nu}\right)-\left(\nabla \varphi_{\mu}\right) \varphi_{\nu}\right]=\frac{1}{2 \mathrm{i}} \sum_{A B} c_{\mu A} c_{\nu B} \sum_{a b} \beta_{a} \gamma_{b}\{ \\
& {\left[l G_{i}\left(a, x_{A}\right) G_{l-1}\left(b, x_{B}\right)-2 b G_{i}\left(a, x_{A}\right) G_{l+1}\left(b, x_{B}\right)-i G_{i-1}\left(a, x_{A}\right) G_{l}\left(b, x_{B}\right)+2 a G_{i+1}\left(a, x_{A}\right) G_{l}\left(b, x_{B}\right)\right]} \\
& \quad \times G_{j}\left(a, y_{A}\right) G_{m}\left(b, y_{B}\right) G_{k}\left(a, z_{A}\right) G_{n}\left(b, z_{B}\right) \hat{\mathbf{e}}_{x}+ \\
& {\left[m G_{j}\left(a, y_{A}\right) G_{m-1}\left(b, y_{B}\right)-2 b G_{j}\left(a, y_{A}\right) G_{m+1}\left(b, y_{B}\right)-j G_{j-1}\left(a, y_{A}\right) G_{m}\left(b, y_{B}\right)+2 a G_{j+1}\left(a, y_{A}\right) G_{m}\left(b, y_{B}\right)\right]} \tag{S31}\\
& \quad \times G_{i}\left(a, x_{A}\right) G_{l}\left(b, x_{B}\right) G_{k}\left(a, z_{A}\right) G_{n}\left(b, z_{B}\right) \hat{\mathbf{e}}_{y}+ \\
& {\left[n G_{k}\left(a, z_{A}\right) G_{n-1}\left(b, z_{B}\right)-2 b G_{k}\left(a, z_{A}\right) G_{n+1}\left(b, z_{B}\right)-k G_{k-1}\left(a, z_{A}\right) G_{n}\left(b, z_{B}\right)+2 a G_{k+1}\left(a, z_{A}\right) G_{n}\left(b, z_{B}\right)\right]} \\
& \left.\quad \times G_{i}\left(a, x_{A}\right) G_{l}\left(b, x_{B}\right) G_{j}\left(a, y_{A}\right) G_{m}\left(b, y_{B}\right) \hat{\mathbf{e}}_{z}\right\} .
\end{align*}
$$

By using the multiplication theorem of Hermite polynomials

$$
\begin{equation*}
H_{s}(\lambda x)=s!\sum_{t=0}^{\lfloor s / 2\rfloor} \frac{\left(\lambda^{2}-1\right)^{t} \lambda^{s-2 t}}{t!(s-2 t)!} H_{s-2 t}(x) \tag{S32}
\end{equation*}
$$

and the overlap integals between Hermite Gaussians[4]

$$
\begin{equation*}
\int \Lambda_{m}\left(a, x_{A}\right) \Lambda_{n}\left(b, x_{B}\right) \mathrm{d} x=(-1)^{n}\left(\frac{\pi}{a+b}\right)^{1 / 2} \Lambda_{m+n}\left(\frac{a b}{a+b}, B_{x}-A_{x}\right) \tag{S33}
\end{equation*}
$$

the light-matter interaction quantity defined in Eq. (S8) is finally written as

$$
\begin{align*}
& d_{\mu \nu}=\int \boldsymbol{A}\left(\boldsymbol{r} ; \sigma, q, L, w_{0}, \kappa\right) \cdot \boldsymbol{j}_{\mu \nu}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}=\frac{1}{2 \mathrm{i}} \frac{1}{w_{0}} \sqrt{\frac{2 q!}{\pi(q+|L|)!}} \frac{(-1)^{q}}{2^{2 q+|L|} q!} \sum_{A B} c_{\mu A} c_{\nu B} \sum_{a b} \beta_{a} \gamma_{b} \\
& {\left[\sum_{t=0}^{k+n} E_{Z t}^{k n} I_{t}\left(p, P_{z}, \kappa\right)\right] \sum_{u=0}^{q} \sum_{v=0}^{|L|} \mathrm{i}^{\mathrm{sgn}(\mathrm{~L}) v}\binom{q}{u}\binom{|L|}{v}\{ } \\
& \tag{S34}\\
& \quad\left[\sum_{t=0}^{i+l+1}\left(l E_{X t}^{i, l-1}-2 b E_{X t}^{i, l+1}-i E_{X t}^{i-1, l}+2 a E_{X t}^{i+1, l}\right) I_{2 u+|L|-v, t}\left(p, P_{x}, w_{0}\right)\right] \\
& \times\left[\sum_{t=0}^{j+m} E_{Y t}^{j m} I_{2 q-2 u+v, t}\left(p, P_{y}, w_{0}\right)\right] \\
& +\mathrm{i} \sigma\left[\sum_{t=0}^{j+m+1}\left(m E_{Y t}^{j, m-1}-2 b E_{Y t}^{j, m+1}-j E_{Y t}^{j-1, m}+2 a E_{Y t}^{j+1, m}\right) I_{2 q-2 u+v, t}\left(p, P_{y}, w_{0}\right)\right] \\
& \left.\quad \times\left[\sum_{t=0}^{i+l} E_{X t}^{i l} I_{2 u+|L|-v, t}\left(p, P_{x}, w_{0}\right)\right]\right\}
\end{align*}
$$

in which the LG beam is $\mathrm{LG}_{L q}, \kappa$ is the wavevector of LG light, w_{0} is the beam waist, σ is the LG light polarization, the integral $I_{s t}$ in $x-y$ plane is

$$
\begin{align*}
I_{s t}\left(p, P_{x}, w_{0}\right) & \equiv \int \exp \left(-\frac{x^{2}}{w_{0}^{2}}\right) H_{s}\left(\frac{\sqrt{2} x}{w_{0}}\right) \Lambda_{t}\left(p, x_{P}\right) \mathrm{d} x \\
& =\left(\frac{\pi}{w_{0}^{-2}+p}\right)^{1 / 2}\left(\sqrt{2} w_{0}\right)^{s} s!(-1)^{t} \sum_{u=0}^{\lfloor s / 2\rfloor}\left(\frac{1}{2 w_{0}^{2}}\right)^{u} \frac{1}{u!(s-2 u)!} \Lambda_{s+t-2 u}\left(\frac{p}{1+p w_{0}^{2}}, P_{x}\right) \tag{S35}
\end{align*}
$$

and the integral I_{t} in z direction is

$$
\begin{align*}
I_{t}\left(p, P_{z}, \kappa\right) & \equiv \int \Lambda_{t}\left(p, z_{P}\right) \mathrm{e}^{i \kappa z} \mathrm{~d} z \\
& =\sqrt{\pi} p^{\frac{t-1}{2}} \mathrm{e}^{\mathrm{i} \kappa P_{z}} \mathrm{e}^{-\frac{\kappa^{2}}{4 p}}\left(\frac{\mathrm{i} \kappa}{\sqrt{p}}\right)^{t} \tag{S36}
\end{align*}
$$

S-III. NUCLEAR WAVEPACKET DYNAMICS

The out-of-plane bending motion of the CHO group at the $1170 \mathrm{~cm}^{-1}$ normal mode (orange arrows in Fig. 2(a) of main text) is used to construct an one-dimensional nuclear degrees of freedom for our effective Hamiltonian. All quantities, including the potential surfaces of the electronic states and transition dipole moments between valence and core-excited states were evaluated at a total of 351 nuclear grid points. The interaction with the pump-pulse is numerically included in the propagation scheme, by using a 10 -fs FWHM Gaussian laser pump in resonance with the $S_{0} \rightarrow S_{1}$ transition,

$$
\begin{equation*}
\mathcal{E}_{\mathrm{pu}}(t)=a_{\mathrm{pu}} e^{-\frac{\left(t-t_{0}\right)^{2}}{2 \sigma^{2}}} \cos \left(\omega_{\mathrm{pu}}\left(t-t_{0}\right)\right) \tag{S37}
\end{equation*}
$$

where $a_{\mathrm{pu}}=4.875 \times 10^{-2}$ au is the electric field amplitude. $\omega_{\mathrm{pu}}=5.85 \mathrm{eV}$ is the central frequency corresponding to the energy gap between the ground state and the S_{1} state at the Franck-Condon point, and $\sigma=10$ fs is the temporal

FIG. S1. The wavepacket snapshots of the ground state S_{0} (bottom panel) and the valence excited state S_{1} (top panel).
duration of the pump pulse. The nuclear wavepacket is then propagated by numerically solving the time-dependent Schrodinger equation on the one-dimensional nuclear grid[5]:

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi=\boldsymbol{H} \psi=[\boldsymbol{T}+\boldsymbol{V}-\boldsymbol{\mu} \boldsymbol{\varepsilon}(t)] \psi \tag{S38}
\end{equation*}
$$

\boldsymbol{T} is the kinetic energy operator of the nuclei, \boldsymbol{V} is the potential energy operator, and $\boldsymbol{\mu} \boldsymbol{\varepsilon}(t)$ describes the light-matter interaction. In our simulation, the propagation of nuclear wavepackets on core-exited states are neglected. The Chebychev propagation[5] with a 0.048 fs time step is employed to propagate this wavepacket until the final time of 458.79 fs. Some wavepacket snapshots are shown in Fig. S1.

S-IV. TIME-RESOLVED HELICAL DICHROISM (TR-HD) AND TIME-RESOLVED CIRCULAR-HELICAL DICHROISM (TR-CHD) FOR ALL HELICAL INDEX l

In our simulation, we choose $p=0$ in the LG beam $\mathrm{LG}_{l p}$, and we give all simulation results of tr-HD and tr-CHD with $l=1$ to 4 in the following figures.

FIG. S2. The tr-HD (top panels) and tr-CHD (bottom panels) signals for $l=1$ by probing C, N, and O . Left three panels: contributed by ground state S_{0}. Right three panels: contributed by valence excited state S_{1}
[1] Y. Nam, J. R. Rouxel, J. Y. Lee, and S. Mukamel, Monitoring aromatic ring-currents in mg-porphyrin by time-resolved circular dichroism, Phys. Chem. Chem. Phys. 22, 26605 (2020).
[2] S. Tanaka, V. Chernyak, and S. Mukamel, Time-resolved x-ray spectroscopies: Nonlinear response functions and liouvillespace pathways, Phys. Rev. A 63, 063405 (2001).
[3] I. Kimel and L. Elias, Relations between hermite and laguerre gaussian modes, IEEE Journal of Quantum Electronics 29, 2562 (1993).
[4] T. Živković and Z. B. Maksić, Explicit Formulas for Molecular Integrals over Hermite-Gaussian Functions, The Journal of Chemical Physics 49, 3083 (1968).
[5] H. Tal-Ezer and R. Kosloff, An accurate and efficient scheme for propagating the time dependent Schrödinger equation, The Journal of Chemical Physics 81, 3967 (1984).

FIG. S3. The tr-HD (top panels) and tr-CHD (bottom panels) signals for $l=2$ by probing C, N, and O . Left three panels: contributed by ground state S_{0}. Right three panels: contributed by valence excited state S_{1}

FIG. S4. The tr-HD (top panels) and tr-CHD (bottom panels) signals for $l=3$ by probing C , N , and O . Left three panels: contributed by ground state S_{0}. Right three panels: contributed by valence excited state S_{1}

FIG. S5. The tr-HD (top panels) and tr-CHD (bottom panels) signals for $l=4$ by probing C, N, and O . Left three panels: contributed by ground state S_{0}. Right three panels: contributed by valence excited state S_{1}

