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Fig. S1. Critical synthesis process for (a) Fe1CN and (b) Fe2CN. Reprinted (adapted) 

with permission from (1). Copyright 2022 ACS.

Fig. S2. The adsorption configuration and the charge density difference of PMS 

adsorbed on (a) g-C3N4, (b) Fe1CN, (c) Fe2CN, and (d) FenCN. The light yellow and 

light blue isosurfaces represent electron accumulation and depletion, respectively. 

Reprinted (adapted) with permission from (1). Copyright 2022 ACS.



Fig. S3. (a) Fe 3d DOS of Fe1/Fe1-2 and Cu1/Fe1-2. (b) DOS of the five Fe 3d orbitals 

in Cu1/Fe1-2. Reprinted (adapted) with permission from (2). Copyright 2022 ACS.

Fig. S4 (Corresponding to Fig. 3a). (a) Gibbs free energy diagram of ORR after the 

consideration of solvent effect. Reprinted (adapted) with permission from (3). 

Copyright 2022 Cell Press.



Fig. S5 (Corresponding to Fig. 3b). Comparison of magnetic moment and ΔGOH*. 

Reprinted (adapted) with permission from (2). Copyright 2022 Wiley.

Fig. S6 (corresponding to Fig. 3c and d). Magnetic susceptibility of (c) Fe-Mn/NC, 

(d) Fe/NC (M.S. represents medium-spin, L.S. represents low-spin), with permission 

from (4) copyright 2021 Springer Nature.



Fig. S7 (corresponding to Fig. 3e). The dsite-dependent ΔGOH* obtained by DFT 

calculations. Inset: volcano plot of calculated overpotentials for the ORR against 

ΔGOH*. Reprinted (adapted) with permission from (5). Copyright 2021 Springer Nature.

Fig. S8 (corresponding to Fig. 3f). Illustration of the construction Ru/np-MoS2. 

Reprinted (adapted) with permission from (6). Copyright 2021 Springer Nature.



Fig. S9 (corresponding to Fig. 3g). (g) Crystal structures of CoBDC and CoBDC 

FcCA models obtained from DFT simulations. The microreactor composed of directly 

coordinated with carboxyl oxygen atom of FcCA (Co1), unsaturated coordinative Co2, 

together with FcCA linker labeled by circle. Reprinted (adapted) with permission from 

(7). Copyright 2021 ACS.

Fig. S10 (corresponding to Fig. 3h). The regulatory role of Fe ACs on the Fe SAs-

mediated PMS oxidation reaction. Reprinted (adapted) with permission from (8). 

Copyright 2023 PNAS.



Fig. S11 (corresponding to Fig. 3i). (i) Hirshfeld and Mulliken charges of Ni atom in 

NiPc, NiTHPc, and NiTAPc. Reprinted (adapted) with permission from (9). Copyright 

2021 Wiley.

Fig. S12 (corresponding to Fig. 3j). (j) The relationship between symmetry and 

electrocatalytic performance, with permission from (10) copyright 2023 Springer 

Nature.



Equation

OER in alkaline solution (ORR is the reverse reaction of OER)

OH- + * → OHads + e- (1)

OHads + OH- → Oads + H2O + e- (2)

Oads + OH- → OOHads + e- (3)

OOHads + OH- → O2ads + H2O + e- (4)

O2ads → O2 + * (5)

OER in acidic solution (ORR is the reverse reaction of OER)

H2O + * → OHads + H+ + e- (6)

OHads → Oads + H+ + e- (7)

Oads + H2O → OOHads + H+ + e- (8)

OOHads → O2ads + H+ + e- (9)

O2ads → O2 + * (10)

HER in alkaline solution

H2O + e- → OH- + Hads (Volmer) (11)

Hads + H2O + e- → OH- +H2 (Heyrovsky) (12)

or 2Hads → H2 (Tafel) (13)

HER in acidic solution

H+ + e- + * → Hads (Volmer) (14)

Hads + H+ + e- → H2 (Heyrovsky) (15) 

or 2Hads → H2 (Tafel) (16)
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