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1. Computational Methods 

1.1 DFT calculations 

Density functional theory (DFT) calculations were performed with the plane-wave-based 

Vienna Ab Initio Simulation package, VASP1. The electron exchange and correlation were 

described by the generalized gradient approximation (GGA) in the form of the Perdew-Burke-

Ernzerhof (PBE) functional2. Electron-ion interactions were described within the projector-

augmented wave framework3. In all calculations, the energy cutoff of the plane-wave basis set 

was 400 eV. Optimized structures were obtained by minimizing the forces on each ion until 

they fell below 0.02 eV/Å. 

We employed the HEA approach implemented to perform global optimization of structures 

of metal surface oxides. During the optimization, slab models consisting of four metal layers 

using a (4×4) supercell were employed to model the metal surface (the bottom two layers were 

fixed), with the Brillouin zone being sampled by the Gamma point only. A 20 Å vacuum gap 

was added to eliminate interactions between periodic images perpendicular to the slab surface. 

The obtained low-lying structures were further checked and calculated with the Brillouin zone 

integration in k-space being performed on a 4×4×1 k-point mesh sampled using the Monkhorst-

Pack scheme4. A Bader charge analysis of surface metal atoms was then carried out for the 

oxidation-state analysis by calculating the Bader charges of bulk metal oxides as references 5. 

The STM is generated using the partial charge densities and p4vasp software. 

1.2 The formalism of formation energy 

The formalism of formation energy (𝐸𝐸𝜃𝜃) was adopted using the following reaction6, 7:  

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑛𝑛𝐻𝐻2𝑂𝑂 → 𝑀𝑀𝑂𝑂(𝜃𝜃) + 2𝑛𝑛𝐻𝐻+ + 2𝑛𝑛𝑒𝑒− 

𝑛𝑛 is the number of oxygens that are adsorbed to the pure metal slab and fractional coverage, 

𝜃𝜃, is given by 𝜃𝜃 = 𝑛𝑛
𝑛𝑛𝑃𝑃𝑃𝑃

. 𝑛𝑛𝑃𝑃𝑃𝑃 is the number of metal surface atoms in the metal slab. Following 

this formalism, the formation energy (unit: eV/O-site) of oxidized metal surface with different 

coverage was calculated by: 

𝐸𝐸𝜃𝜃 =
�𝐸𝐸𝑀𝑀𝑀𝑀(𝜃𝜃) + 𝑛𝑛𝐸𝐸𝐻𝐻2� − �𝐸𝐸𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑛𝑛𝐸𝐸𝐻𝐻2𝑀𝑀�

𝑛𝑛
 

For comparing structures with different number of metal and O atom, the following 

equation was used to calculate the formation energy (unit: eV/atoms): 

𝐸𝐸𝜃𝜃 =
𝐸𝐸(𝑀𝑀𝑚𝑚𝑂𝑂𝑛𝑛) −𝑚𝑚 ∗ 𝐸𝐸(𝑀𝑀) − 𝑛𝑛 ∗ 𝐸𝐸(𝑂𝑂)

𝑚𝑚 + 𝑛𝑛
 

where 𝐸𝐸(𝑀𝑀)  and 𝐸𝐸(𝑂𝑂)  represents the energy of isolated metal and oxygen atom, 

respectively.  

1.3 The quantified evolution of offspring operator 
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To study the efficiency of the offspring operator used in the GA search, how the different 

offspring operators affect the energy of the offspring structure for the 0.75 ML O-Pt(111) 

surface is studied. Noted that mutations may be applied after a new candidate is generated 

through the GA operator. Following Behler et al., the energy of a offspring structure is 

expressed relative to the parents’ average energy, as given by8 

𝑃𝑃 = 100 ∗ (
𝐸𝐸𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑃𝑃𝑐𝑐
𝐸𝐸�𝑝𝑝𝑠𝑠𝑝𝑝𝑐𝑐𝑛𝑛𝑃𝑃

− 1) 

where 𝐸𝐸𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑃𝑃𝑐𝑐 is the formation energy of the offspring candidate and 𝐸𝐸�𝑝𝑝𝑠𝑠𝑝𝑝𝑐𝑐𝑛𝑛𝑃𝑃 is the 

average formation energy of its parents. If the offspring candidate has lower energy than the 

average of its parents, 𝑃𝑃  is negative, and we can say that the offspring operator was 

“successful” in progressing the structural search. 

1.4 Kendall’s τ coefficient 

For a Gaussian process-based sampling, apart from the model accuracy, a relatively correct 

ranking of the excessive offspring candidates is also desired. The reliable sampling can be 

quantified using Kendall’s τ coefficient. 

The definition of Kendall’s τ coefficient of two arrays x and y that is used is: 

τ =  
𝑃𝑃 − 𝑄𝑄

�(𝑃𝑃 + 𝑄𝑄 + 𝑇𝑇) ∗ (𝑃𝑃 + 𝑄𝑄 + 𝑈𝑈)
 

where 𝑃𝑃 is the number of concordant pairs, 𝑄𝑄 the number of discordant pairs, 𝑇𝑇 the 

number of ties only in x, and 𝑈𝑈 the number of ties only in y. If a tie occurs for the same pair 

in both x and y, it is not added to either 𝑇𝑇 or 𝑈𝑈. 
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2. Supplemental Figures and Tables 

 

 
Fig. S1 Example of a surrogate guided structure searches in a non-convex search space. To simulate the 

non-convexity of PES, the Rosenbrock function is used as an illustrative example. The true PES is shown 

in the top row. The GPR on-the-fly trained PES is shown in the middle row, with the training samples 

shown in the black dot. The result of TS acquisition functions is shown in the bottom row. Red colors 

signify regions with low values while blue colors signify regions with correspondingly high values. 
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Fig. S2 (a) Top and side views of the most stable surface O atom configurations at 0.75 ML O-Pt(111) 

proposed by Hawkins et al. 9 (Reproduced with permission from Refs 9. Copyright 2009 American 

Physical Society). (b) The corresponding model of Hawkins et al.’s structure. Noted that this structure is 

also found during our global structural optimization, not manually built. 
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Fig. S3 (a) The energy learning curves of (2×2) 0.75 ML O Pt(111) surface. All searches drawn here are 

both repeated the search three times of which the plotted line represents the mean value. (b) The globally 

optimized (2×2) 0.75 ML O Pt(111) surface after repeated to 4×4 supercell. The stability of this structure 

is 0.28 eV/O-site higher in formation energy (3.43 eV higher in potential energy) than that directly 

obtained by optimizing the (4×4) surface. 
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Fig. S4 Structural optimizing performance of USPEX and HEA program on (4×4) 1.0 ML O-Pd(111). 
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Fig. S5 The on-the-fly predict accuracy in optimizing O-Pt(111) using GP Regressor with full covariance 

matrix and sparse GP Regressor. Here both regressors are trained using relaxed structures with their 

relaxed energy separately inside each tribe.  
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Fig. S6 Structures of bulk metal oxides: (a) PtO; (b) Pt3O4; (c) PtO2; (d) Cu2O; (e) Pd2O. 
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