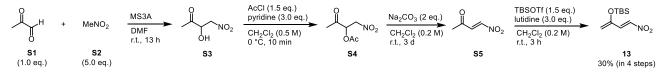
Materials and Methods


General Methods

General Remark: All vinylogous Michael reactions were carried out under atmosphere and monitored by NMR and thin-layer chromatography using Merck 60 F254 precoated silica gel plates (0.25 mm thickness). Specific optical rotations were measured using a JASCO P-1020 polarimeter and a JASCO DIP-370 polarimeter. FT-IR spectra were recorded on a JASCO FT/IR-410 spectrometer and a Perkin Elmer spectrum BX FT-IP spectrometer. ¹H and ¹³C NMR spectra were recorded on an Agilent-400 MR (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) instrument. Data for ¹H NMR are reported as chemical shift (δ ppm), integration multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dt = double of triplets, m = multiplet), coupling constant (Hz), Data for ¹³C NMR are reported as chemical shift. High resolution ESI-TOF mass spectra were measured by Themo Orbi-trap instrument. HPLC analysis was performed on a HITACHI Elite LaChrom Series HPLC, UV detection monitored at appropriate wavelength respectively, using CHIRALPACK[®] OD-H (0.46 cm × 25 cm) and CHIRALPACK[®] AS-H (0.46 cm × 25 cm). Melting point apparatus was Yanaco MP-J3. All the reagents were purchased from commercial sources (ALDRICH, Combi-Blocks, FUJIFILM Wako Chemicals, KANTO CHEMICAL, TCI), used without further purification.

All reactions were carried out in oven-dried (120 °C) or flame-dried glassware under an inert atmosphere of dry argon unless otherwise stated.

Solvents were purged with argon and purified under a positive pressure of dry argon by a modified Innovative Technologies purification system: toluene, THF, DMF, Et₂O, and CH₂Cl₂ were passed through activated alumina columns. Dehydrated EtOAc was used for the reaction without further purification (FUJIFILM Wako Chemicals, catalog No. 057-08175).

Preparation of nitroalkene

To a solution of methylglyoxal (S1) (40 wt% in H₂O, 4.6 mL, 30 mmol) in DMF (60 mL), nitromethane (S2) (8.0 mL, 0.15 mol, 5.0 eq.) and activated MS3Å (16 g) were added. After stirring at room temperature for 4 h, the reaction mixture was filtered through Celite[®], washed with Et₂O, and concentrated in vacuo at 45 °C. Compound S3 was obtained without column purification.

The crude was dissolved in anhydrous CH_2Cl_2 (121 mL) and added pyridine (5.3 mL, 66 mmol, 3.0 eq.) and acetyl chloride (2.4 mL, 33 mmol, 1.5 eq.) at 0 °C. After stirring at 0 °C for 10 min, the reaction mixture was quenched with 1N HCl (50 mL), extracted with CH_2Cl_2 (3×50 mL). The combined organic layer was washed with 1N HCl, water, and brine, dried with Na₂SO₄, filtered and concentrated in vacuo. Compound **S4** was obtained without column purification.

The crude was dissolved to unhydrous CH₂Cl₂ (108 mL) and added mashed Na₂CO₃ (4.6 g, 43 mol, 2 eq.) at 0 °C. After stirring at room temperature for 3 days, the reaction mixture was filtered through silica pad on Celite[®], washed with CH₂Cl₂, and concentrated in vacuo. Compound **S5** was obtained without column purification.

The crude was dissolved to anhydrous CH_2Cl_2 (71 mL) and added 2,6-lutidine (4.9 mL, 42 mmol, 3.0 eq.) and TBSOTF (4.6 mL, 21 mmol, 1.5 eq.) at 0 °C. After stirring at room temperature for 3 h, the reaction mixture was quenched with sat. NaHCO₃ aq. (50 mL) and extracted with CH_2Cl_2 (3×50 mL). The combined organic layer was washed with water and brine, dried with Na₂SO₄, filtered and concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: EtOAc = 15:1) gave compound **13** in 30% yield (4 steps, 2.1 g).

(E)-4-nitrobut-3-en-2-one

Physical State: yellow liquid ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 14.0 Hz, 1H), 7.25 (d, J = 14.0 Hz, 1 H), 2.45 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 147.3, 132.2, 29.5 IR (neat) v 2254, 1711, 1697, 1632, 1542, 1350, 1285, 1240, 912, 741, 651 R_f (*n*-Hexane: EtOAc = 1:1, color reagent: KMnO₄ reagent): 0.60

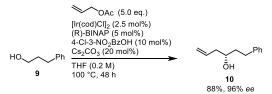
(E)-tert-butyldimethyl((4-nitrobuta-1,3-dien-2-yl)oxy)silane

Physical State: orange liquid
¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 12.8 Hz, 1H), 7.22 (d, J = 12.8 Hz, 1H), 4.88 (d, J = 1.6 Hz, 1H), 4.83 (d, J = 1.6 Hz, 1H), 0.98 (s, 9H), 0.22 (s, 6H)
¹³C NMR (100 MHz, CDCl₃) δ 232.0, 137.1, 133.9, 106.9, 25.6 (3C), 18.2, -4.7 (2C)

IR (neat) v 2957, 2932, 2887, 2860, 1633, 1594, 1520, 1472, 1345, 1263, 1211, 1026, 954, 842, 785, 742 HRMS (ESI): [M+Na]⁺ calcd for C₁₀H₁₉O₃SiNa⁺: 252.1026, found: 252.1027 R_f (*n*-Hexane: EtOAc = 3:1, color reagent: *p*-anisaldehyde): 0.70

S5 (1.05 g, 9.12 mmol) was dissolved to anhydrous CH₂Cl₂ (46 mL) and added 2,6-lutidine (4.23 mL, 36.5 mmol, 3.0 eq.) and TESOTf (4.12 mL, 18.2 mmol, 2 eq.) at 0 °C. After stirring at room temperature for 7 h, the reaction mixture was quenched with sat. aq. NaHCO₃ (40 mL) and extracted with CH₂Cl₂ (3×50 mL). The combined organic layer was washed with water and brine, dried with Na₂SO₄, filtered and added toluene (4 mL) and concentrated in vacuo (200 mm Hg, 25 °C). Purification by silica gel chromatography (*n*-Hexane/ EtOAc = 15/1) then combined organic layers were added toluene (4 mL) and concentration in vacuo (100 mmHg, 25 °C) gave compound **6** as a toluene solution.

(Compound 6 was unstable in concentration.)


(E)-triethyl((4-nitrobuta-1,3-dien-2-yl)oxy)silane

toluene solution

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 (d, *J* = 12.8 Hz, 1H), 7.26-7.24 (m, 1H), 4.84 (dd, *J* = 11.2, 1.6 Hz, 2H), 1.02-0.97 (m, 9H), 0.78-0.74 (m, 6H)

Rf (n-hexane/ EtOAc = 3:1, color reagent: p-anisaldehyde): 0.70

Preparation of aldehyde

A pressure tube was charged with 3-phenylpropanol **9** (2.7 mL, 20 mmol), $[Ir(cod)Cl]_2$ (0.34 g, 0.50 mmol, 2.5 mol%), (*R*)-BINAP (0.62 g, 1.0 mmol, 5.0 mol%), 4-chloro-3-nitrobenzoic acid (0.40 g, 2.0 mmol, 10 mol%), cesium carbonate (1.3 g, 4.0 mmol, 20 mol%), anhydrous THF (40 mL), and allyl acetate (11 mL, 100 mmol, 5.0 eq.). The pressure tube was purged with argon, sealed and heated 100 °C (oil bath temperature) and stirred for 48 h. The reaction mixture was allowed to cool to room temperature and filtered through Celite[®] pad with the aid of CH₂Cl₂. The crude reaction mixture was concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: EtOAc = 6 : 1) gave compound **10** in 88% yield (3.1 g).

(S)-1-phenylhex-5-en-3-ol

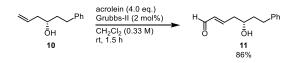
Ōн

Physical State: pale yellow solid

¹**H NMR (400 MHz, CDCl₃)** δ 7.31-7.27 (m, 2H), 7.22-7.19 (m, 3H), 5.87-5.77 (m, 1H), 5.16-5.16 (m, 2H), 5.13-5.13 (m, 1H), 3.71-3.65 (m, 1H), 2.85-2.78 (m, 1H), 2.73-2.65 (m, 1H), 2.36-2.30 (m, 1H), 2.22-2.15 (m, 1H), 1.82-1.77 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 134.5, 128.3 (4C), 125.7, 118.0, 69.9, 41.9, 38.3, 31.9.

IR (neat) v 3564, 3352, 3063, 3027, 3003, 2977, 2930, 2861, 1712, 1641, 1603, 1496, 1454, 1266, 1154, 1126, 1048, 995, 916, 865, 747, 700, 646


HRMS (ESI): [M+Na]⁺ calcd for C₁₂H₁₆ONa⁺: 199.1093, found: 199.1099

 $[\alpha]_D^{22}$ -23.5 (*c* 0.68, CHCl₃)

mp. 33-34 °C

 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 3:1, color reagent: *p*-anisaldehyde): 0.48

The enantiomeric ratio was determined by HPLC using CHIRALPACK[®] OD-H (*n*-Hexane: *i*-PrOH = 50:1; flow rate 1.0 mL/min, major isomer $t_R = 12$ min, minor isomer $t_R = 18$ min) (96% *ee*)

A solution of compound **10** (0.56 g, 3.2 mmol) in anhydrous CH_2Cl_2 (9.6 mL) was freeze-pump-thaw for three times. Acrolein (0.85 mL, 13 mmol, 4.0 eq.) and Grubbs-II (54 mg, 0.064 mmol, 2.0 mol%) were added at 0 °C then warmed to room temperature. After stirring at room temperature for 1.5 h, the reaction mixture was concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: EtOAc = 4:1 to 2:1) gave compound **11** in 86% yield (0.56 g).

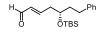
(S,E)-5-hydroxy-7-phenylhept-2-enal

Physical State: colorless liquid

¹**H NMR (400 MHz, CDCl₃)** δ 9.53 (d, *J* = 8.0 Hz, 1H), 7.32-7.28 (m, 2H), 7.23-7.19 (m, 3H), 6.89 (dt, *J* = 15.2, 7.2 Hz, 1H), 6.18 (dd, *J* = 15.6 Hz, 1H), 3.88-3,82 (m, 1H), 2.82 (ddd, *J* = 14.4, 7.6, 7.6 Hz, 1H), 2.75-2.68 (m, 1H), 2.60-2.46 (m, 2H), 1.87-1.82 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 193.9, 154.8, 141.3, 134.8, 128.4 (2C), 128.3 (2C), 126.0, 69.6, 40.6, 38.8, 31.8. IR (neat) v 3447, 3056, 3029, 2986, 2936, 2861, 2744, 1685, 1638, 1603, 1496, 1454, 1421, 1266, 1134, 1049, 1011, 976, 929, 897, 698

HRMS (ESI): [M+Na]⁺ calcd for C₁₃H1₆O₂Na⁺: 227.1043, found: 227.1051


 $[\alpha]_D^{25}$ -8.3 (*c* 1.06, CHCl₃)

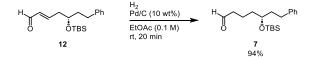
 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 2:1, color reagent: *p*-anisaldehyde): 0.29

To a solution of compound **11** (0.54 g, 2.6 mmol) in anhydrous DMF (13 mL), imidazole (0.54 g, 7.9 mmol, 3.0 eq.) and TBSCl (0.80 g, 5.3 mmol, 2.0 eq.) were added at 0 °C. After stirring room temperature for 22 h, the reaction mixture was quenched with sat. NH₄Cl aq. at 0 °C and extracted with *n*-hexane/ EtOAc (3/1, 3×50 mL). The combined organic layer was washed with water and brine, dried with anhydrous Na₂SO₄, filtered and concentrated in vacuo. Purification by silica gel chromatography (*n*-Hhexane: EtOAc = 20:1 to 15:1) gave compound **12** in 68% yield (0.57 g).

(S,E)-5-((tert-butyldimethylsilyl)oxy)-7-phenylhept-2-enal

Physical State: yellow liquid

¹**H NMR (400 MHz, CDCl₃)** δ 9.52 (d, *J* = 8.0 Hz, 1H), 7.31-7.29 (m, 2H), 7.21-7.16 (m, 3H), 6.89 (dt, *J* = 15.6, 7.6 Hz, 1H), 6.14 (ddt, *J* = 15.6, 7.6, 1.2 Hz, 1H), 3.94-3.89 (m, 1H), 2.74-2.45 (m, 4H), 1.82-1.76 (m, 2H), 0.91 (s, 9 H), 0.08 (s, 3H), 0.06 (s, 3H)


¹³C NMR (100 MHz, CDCl₃) δ 193.8, 154.9, 141.8, 134.9, 128.5 (2C), 128.3 (2C), 125.9, 70.6, 40.4, 39.1, 31.7, 25.8 (3C), 18.1, -4.4, -4.5.

IR (neat) v 3028, 2952, 2929, 2857, 1694, 1638, 1496, 1472, 1462, 1362, 1256, 1137, 1072, 1031, 1007, 978, 938, 837, 776, 747, 700

HRMS (ESI): [M+Na]⁺ calcd for C₁₉H₃₀O₂SiNa⁺:341.1907, found: 341.1925

 $[\alpha]_{D}^{25}$ -4.2 (*c* 0.82, CHCl₃)

 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 5:1, color reagent: *p*-anisaldehyde): 0.58

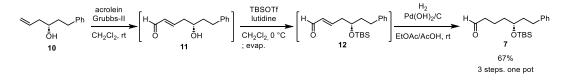
To a solution of compound **12** (0.56 g, 1.8 mmol) in EtOAc (18 mL), Pd/C (10 wt%, 0.056 g) was added at room temperature. The reaction mixture was purged with H₂. After stirring for 20 min under H₂ (balloon pressure), the reaction mixture was purged with N₂ and filtered through Celite[®], washed with EtOAc, and concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: EtOAc = 20:1 to 10:1) gave compound **7** in 94% yield (0.53 g).

(R)-5-((tert-butyldimethylsilyl)oxy)-7-phenylheptanal

Physical State: colorless liquid

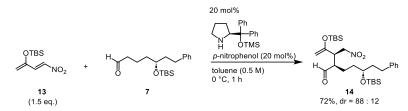
¹**H NMR (400 MHz, CDCl₃)** δ 9.76 (t, *J* = 1.6 Hz, 1H), 7.30-7.27 (m, 2H), 7.19-7.16 (m, 3H), 3.74 (tt, *J* = 4.2, 4.2 Hz, 1H), 2.71-2.58 (m, 2H), 2.44 (td, *J* = 7.2, 1.6 Hz, 2H), 1.79-1.65 (m, 4H), 1.53-1.49 (m, 2H), 0.91 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 202.5, 142.5, 128.3 (2C), 128.3 (2C), 125.7, 71.4, 43.9, 38.8, 36.2, 31.6, 25.9 (3C), 18.1, 17.8, -4.4 (2C)


IR (neat) v 2952, 2929, 2857, 1727, 1472, 1461, 1255, 1097, 1065, 1006, 836, 774, 748, 699

HRMS (ESI): [M+Na]⁺ calcd for C₁₉H₃₂O₂SiNa⁺: 343.2064, found: 343.2017

 $[\alpha]_{D}^{25}$ +2.1 (*c* 0.96, CHCl₃)


 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 7:1, color reagent: *p*-anisaldehyde): 0.38

One-pot operation

A solution of compound **10** (1.34 g, 7.60 mmol) in anhydrous CH_2Cl_2 (22.8 mL) was freeze-pump-thaw for three times. Acrolein (2.03 mL, 30.4 mmol, 4.0 eq.) and Grubbs-II (129 mg, 0.152 mmol, 2.0 mol%) were added at 0 °C then warmed to room temperature. After stirring at room temperature for 4.5 h, reaction mixture was cooled to 0 °C. 2,6-lutidine (2.64 mL, 22.8 mmol, 3.0 eq.) and TBSOTf (3.49 mL, 15.2 mmol, 2.0 eq.) were added at 0 °C. After stirring at this temperature for 15 min, the reaction mixture was concentrated in vacuo. The resulting mixture was added EtOAc (38.0 mL), AcOH (38.0 mL) and Pd(OH)₂/C (10 wt%, wet, 485 mg) and reaction vessel was purged with H₂. After stirring for 30 min at room temperature under H₂ (balloon pressure), the reaction mixture was purged with N₂ and filtered through Celite[®] and washed with EtOAc. The organic layer was washed with water and brine, dried with anhydrous Na₂SO₄, filtered and concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: EtOAc = 30:1) gave compound 7 in 67% yield (1.63 g).

Asymmetric Michael reaction

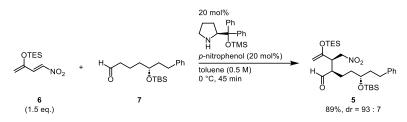
To a mixture of aldehyde 7 (0.16 g, 0.49 mmol, 1.0 eq.) and nitroalkene **13** (0.17 g, 0.74 mmol, 1.5 eq.) in anhydrous toluene (0.98 mL), *p*-nitrophenol (14 mg, 0.098 mmol, 20 mol%) and catalyst (32 mg, 0.098 mmol, 20 mol%) were added at 0 $^{\circ}$ C. After stirring for 1 h at 0 $^{\circ}$ C, the reaction mixture was purified by silica gel chromatography (*n*-Hexane/EtOAc = 15/1). Compound **14** was obtained in 72% yield (0.19 g) as a diastereomixture.

(2R,5R)-5-((*tert*-butyldimethylsilyl)oxy)-2-((R)-3-((*tert*-butyldimethylsilyl)oxy)-1-nitrobut-3-en-2-yl)-7-phenylheptanal

dr = 88 : 12

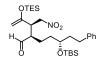
Physical State: yellow liquid

¹**H NMR (400 MHz, CDCl₃)** δ 9.65 (d, *J* = 2.8 Hz, 1 H), 7.30-7.28 (m, 2H), 7.20-7.14 (m, 3H), 4.52-4.41 (m, 2H), 3.72-3.66 (m, 1H), 3.22-3.16 (m, 1H), 2.61-2.56 (m, 2H), 2.53-2.47 (m, 1H), 1.80-1.67 (m, 4H), 1.59-1.50 (m, 2H), 1.43-1.35 (m, 1H), 0.93 (s, 9H), 0.90 (s, 9H), 0.19 (s, 6H), 0.05 (s, 3H), 0.02 (s, 3H)


¹³C NMR (100 MHz, CDCl₃) δ 202.9, 152.9, 142.1, 128.4 (2C), 128.2 (2C), 125.8, 93.5, 75.7, 71.4, 50.7, 44.7, 38.5, 33.3, 31.6, 25.9 (3C), 25.6 (3C), 22.6, 18.1, 18.0, -4.5 (2C), -4.8, -5.4

IR (neat) v 2954, 2930, 2886, 2858, 1726, 1635, 1556, 1471, 1378, 1313, 1256, 1033, 839, 775, 699

HRMS (ESI): [M+Na]⁺ calcd for C₂₉H₅₁NO₅Si₂Na⁺: 572.3198, found: 572.3198


 $[\alpha]_D^{25}$ +44.4 (*c* 1.010, CHCl₃)

 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 3:1, color reagent: *p*-anisaldehyde): 0.60

To a mixture of aldehyde 7 (1.05 g, 3.28 mmol, 1.0 eq.) in anhydrous toluene (5.25 mL) was added the toluene solution of nitroalkene 6 (43% in toluene, 2.62 g, 1.5 mmol, 1.5 eq.). The mixture was cooled to 0 °C, then *p*-nitrophenol (91.1 mg, 0.655 mmol, 20 mol%) and catalyst (213 mg, 0.655 mmol, 20 mol%) were added. After stirring for 45 min at 0 °C, the reaction mixture was passed thorough the pad of silica and washed with ice cooled *n*-hexane/EtOAc = 20/1 and concentrated in vacuo. Purified by silica gel chromatography (*n*-Hexane/CH₂Cl₂ = 2 : 1 to *n*-Hexane/EtOAc = 30:1). Compound **5** was obtained in 89% yield (1.60 g).

(2R,5R)-5-((tert-butyldimethylsilyl)oxy)-2-((R)-1-nitro-3-((triethylsilyl)oxy)but-3-en-2-yl)-7-phenylheptanal

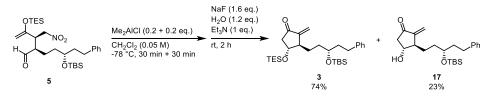
dr = 93:7

Physical State: yellow liquid

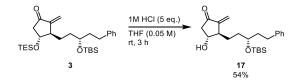
¹**H NMR (400 MHz, CDCl₃)** δ 9.65 (d, *J* = 2.8 Hz, 1H), 7.30-7.28 (m, 2H), 7.18-7.15 (m, 3H), 4.53 (dd, *J* = 12.0, 10.0 Hz, 1H), 4.42 (dd, *J* = 12.4, 4.4 Hz, 1H), 4.18 (d, *J* = 2.0 Hz, 1H), 4.14 (d, *J* = 2.0 Hz, 1H), 3.72-3.67 (m, 1H), 3.22 (td, *J* = 9.2, 4.4 Hz, 1H), 2.67-2.50 (m, 4H), 1.77-1.70 (m, 4H), 0.96 (t, *J* = 7.6 Hz, 9H), 0.90 (s, 9H), 0.71 (q, *J*

= 7.6 Hz, 6H), 0.05 (s, 3H), 0.02 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 202.8, 153.2, 142.2, 128.3 (2C), 128.2 (2C), 125.7, 92.6, 75.5, 71.4, 50.8, 44.7, 38.5, 33.4, 31.6, 25.8 (3C), 22.4, 18.0, 6.6 (3C), 4.5 (3C), -4.5 (2C)


IR (neat) v 2955, 2931, 2878, 2857, 1725, 1633, 1556, 1457, 1379, 1274, 1254, 1092, 1065, 1031, 1006, 836, 775, 736, 700

HRMS (ESI): [M+Na]⁺ calcd for C₂₉H₅₁NO₅Si₂Na⁺: 572.3198, found: 572.3198


 $[\alpha]_D^{26} + 32.7 (c \ 0.980, CHCl_3)$

 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 3:1, color reagent: *p*-anisaldehyde): 0.60

Intramolecular Mukaiyama aldol reaction catalyzed by Me₂AlCl

To a solution of compound **5** (1.15 g, 2.09 mmol, 1.0 eq.) (**5** were azeotropic with benzene three times.) in anhydrous CH₂Cl₂ (41.8 mL) was added Me₂AlCl (1.0 M in *n*-Hexane, 418 μ L, 0.418 mmol, 0.20 eq.) in 10 min at -78 °C. After stirring for 30 min at this temperature, additional Me₂AlCl (418 μ L, 0.418 mmol, 0.20 eq.) was added in 10 min. After stirring for 30 min at this temperature, the reaction mixture was added NaF (141 mg, 3.35 mmol, 1.6 eq.) and water (45.2 μ L, 2.51 mmol, 1.2 eq.), allowed to warm to room temperature. The resulting suspension was added Et₃N (291 μ L, 2.09 mmol, 1.0 eq.). After stirring for 2 h at room temperature, the resulting suspension was filtered, washed with CH₂Cl₂ and the filtrate was concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: Et₂O = 30:1 to 1:1) gave compound **3** and **17** in 74% (776 mg) and 23% (189 mg) yield respectively.

To a solution of compound **3** (8.4 mg, 17 μ mol, 1.0 eq.) in THF (0.33 mL) was added HCl (1 M in H₂O, 84 μ L, 84 μ mol, 5.0 eq.) at rt. After stirring for 30 min at this temperature, the reaction mixture was quenched by the addition of phosphorus buffer and extracted with Et₂O three times. The combined organic layer was washed with brine, dried with anhydrous MgSO₄, filtered and concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: EtOAc = 9:1 to 3:1) gave compound **17** in 54% yield (3.5 mg).

(*3R*,*4R*)-4-((*tert*-butyldimethylsilyl)oxy)-3-((R)-3-((*tert*-butyldimethylsilyl)oxy)-5-phenylpentyl)-2-methylenecyclopentan-1-one

TRSC Ōтвs

Physical State: yellow liquid

¹**H NMR (400 MHz, CDCl₃)** δ 7.30-7.28 (m, 2H), 7.20-7.16 (m, 3H), 6.08 (d, *J* = 2.0 Hz, 1H), 5.28 (d, *J* = 2.0 Hz, 1H), 4.09 (ddd, *J* = 4.8, 4.8, 4.8 Hz, 1H), 3.76-3.70 (m, 1H), 2.71-2.62 (m, 3H), 2.51 (dd, *J* = 18.0, 6.0, 1H), 2.30 (dd, *J* = 18.0, 4.8 Hz, 1H), 1.80-1.74 (m, 2H), 1.67-1.59 (m, 3H), 0.91 (s, 9H), 0.87 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H), 0.06 (s, 3H), 0.04 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 204.5, 147.4, 142.4, 128.4 (2C), 128.3 (2C), 125.7, 118.1, 72.3, 71.8, 51.1, 46.9, 39.1, 34.1, 31.7, 27.7, 25.9 (3C), 25.7 (3C), 18.1, 17.9, -4.3, -4.4, -4.5, -4.8

IR (neat) v 2953, 2929, 2857, 1732, 1645, 1468, 1255, 1098, 1065, 909, 836, 774, 738, 700

HRMS (ESI): [M+Na]⁺ calcd for C₂₉H₅₀O₃Si₂Na⁺: 525.3191, found: 525.3191

 $[\alpha]_D^{29}$ -16.4 (*c* 1.540, CHCl₃)

 $\mathbf{R}_{\mathbf{f}}$ (*n*-hexane/ EtOAc = 3:1, color reagent: *p*-anisaldehyde): 0.62

(3R,4R)-3-((R)-3-((tert-butyldimethylsilyl)oxy)-5-phenylpentyl)-2-methylene-4-

((triethylsilyl)oxy)cyclopentan-1-one

Ōтвs

Physical State: yellow liquid

¹H NMR (400 MHz, CDCl₃) δ 7.30-7.27 (m, 2H), 7.20-7.17 (m, 3H), 6.09 (d, J = 2.0 Hz, 1H), 5.29 (dd, J = 2.4, 0.8 Hz, 1H), 4.10 (q, J = 6.0 Hz, 1H), 3.76-3.71 (m, 1H), 2.70-2.57 (5H), 2.31 (dd, J = 17.6, 4.8 Hz, 1H), 1.80-1.74 (m, 2H), 1.68-1.58 (m, 4H), 0.95 (t, J = 7.6 Hz, 9H), 0.91 (s, 9H), 0.60 (q, J = 7.6 Hz, 6H), 0.07 (s, 3H), 0.04 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 204.5, 147.4, 142.4, 128.4 (2C), 128.3 (2C), 125.7, 118.2, 72.1, 71.7, 51.1, 46.9, 39.1, 34.1, 31.7, 27.7, 25.9 (3C), 18.1, 6.8 (3C), 4.8 (3C), -4.3, -4.4 IR (neat) v 2954, 2932, 2877, 2857, 1733, 1254, 1095, 1067, 836, 774, 745 HRMS (ESI): [M+Na]⁺ calcd for C₂₉H₅₀O₃Si₂Na⁺: 525.3191, found: 525.3190 [α]_D²⁹-8.7 (*c* 1.540, CHCl₃) **R**_f (*n*-Hexane: EtOAc = 3:1, color reagent: *p*-anisaldehyde): 0.71 The enantiomeric ratio was determined by HPLC using CHIRALPACK[®] OD-H (*n*-Hexane: *i*-PrOH = 2000:1; flow rate 1.0 mL/min, major isomer t_R = 15 min, minor isomer t_R = 14 min) (>99% ee)

The diastereomeric ratio was determined after the deprotection of TES group.

(3R,4R)-3-((R)-3-((tert-butyldimethylsilyl)oxy)-5-phenylpentyl)-4-hydroxy-2-methylenecyclopentan-1-one

Physical State: yellow oil

¹**H NMR (400 MHz, CDCl₃)** δ 7.30-7.27 (m, 2H), 7.20-7.17 (m, 3H), 6.13 (d, *J* = 2.0 Hz, 1H), 5.33 (d, *J* = 2.0 Hz, 1H), 4.22-4.28 (m, 1H), 3.77 (m, 1H), 2.73-2.56 (m, 5H), 2.37 (dd, *J* = 17.6, 4.0 Hz, 1H), 1.80-1.75 (m, 3H), 1.68-

1.59 (m, 4H), 0.90 (s, 9H), 0.07 (s, 3H), 0.04 (s, 3H)
¹³C NMR (100 MHz, CDCl₃) δ 204.0, 147.2, 142.4, 128.4 (2C), 128.3 (2C), 125.8, 118.9, 72.0, 71.6, 50.5, 46.2, 38.9, 38.8, 33.9, 27.8, 25.9 (3C), 18.1, -4.3, -4.4
IR (neat) v 2951, 2928, 2856, 1730, 1254, 1092, 1065, 835, 774, 699
HRMS (ESI): [M+Na]⁺ calcd for C₂₃H₃₆O₃SiNa⁺: 411.2326, found: 411.2327

 $[\alpha]_{D}^{29}$ +6.9 (*c* 1.110, CHCl₃)

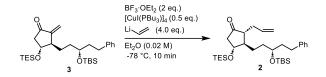
 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 3:1, color reagent: *p*-anisaldehyde): 0.13

The diastereomeric ratio was determined by HPLC using CHIRALPACK[®] AS-H (*n*-Hexane: *i*-PrOH = 99:1; flow rate 1.0 mL/min, major isomer $t_R = 37$ min, minor isomer $t_R = 26$ min) (dr = 97.3 : 2.6, dr = 81.6 : 18.4)

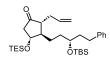
Addition of vinyl cuprate

Optimization

$\begin{array}{c} & & Cu \ reagent \\ TESO \\ & & 3 \\ \hline \\ & & OTBS \end{array} \xrightarrow{Ph} \\ \hline \\ & Et_{2}O, -78 \ ^{\circ}C \\ \hline \\ & TESO \\ & & 2 \\ \hline \\ & & TESO \\ & & 2 \\ \hline \\ & & & 3-5 \ mg \ scale \end{array} \xrightarrow{Ph} \\ \hline \\ & & & 3-5 \ mg \ scale \\ \hline \end{array}$				Ph 18 OTBS 19 OTBS		
Entry	Cu reagent	М	Additive	Time	Yield	Comments
	[eq.]	[eq.]	[eq.]	[min]	[%]	
1	CuI [7.5]	MgBr [15]	-	240	n.d.	no reaction
2	CuI [7.5]	MgBr [15]	PBu ₃ [8]	20	40	-
3	[CuI(PBu ₃)] ₄ [1.25]	Li [10]	-	10	68	18 : ~17% ^{<i>c</i>}
4	[CuI(PBu ₃)] ₄ [1.25]	Li [10]	TMSCI [5]	60	25	18 : ~20% ^{<i>c</i>} , 19 : ~28% ^{<i>c</i>}
5	[CuI(PBu ₃)] ₄ [1.25]	Li [10]	BF ₃ ·OEt ₂ [5]	10	74	-
6 ^{<i>a</i>}	[CuI(PBu ₃)] ₄ [0.5]	Li [4]	BF ₃ ·OEt ₂ [2]	10	90	-
7^b	[CuI(PBu ₃)] ₄ [0.5]	Li [4]	BF ₃ ·OEt ₂ [2]	10	83	-


^a 50 mg scale. ^b 1.00 g scale. ^c estimated by crude NMR.

[CuI(PBu)₃]₄ and vinyl lithium were prepared according to reported procedure.^{1,2)}

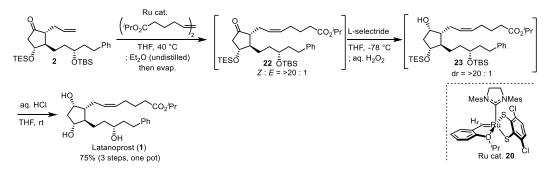

To a solution Cu reagent in anhydrous Et₂O (0.15 mL) was added vinyl metal reagent slowly at -45 °C. After stirring for 30 min at this temperature, the reaction mixture was cooled to -78 °C and added additive. the resulting mixture was added compound **3** (3.0 mg, 6.0 µmol) in anhydrous Et₂O (50 µL) in 5 min. After stirring for indicated time, the reaction mixture was quenched by the addition of phosphorus buffer and extracted with Et₂O three times. The combined organic layer was washed with sat. NH₄Cl aq., water and brine, dried with anhydrous MgSO₄, filtered and concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: CH₂Cl₂ = 2 : 1 to *n*-Hexane: EtOAc = 30 : 1) gave compound **2**.

The yield of **18** and **19** was estimated by crude NMR (entries 3, 4) and the crude NMR of entries 3, 4, 7 were shown later page.

Optimized reaction procedure (entry 7)

To a solution $[CuI(PBu)_3]_4$ (1.56 g, 994 µmol, 0.50 eq.) in anhydrous Et₂O (66.3 mL) was added vinyl lithium (0.84 M in Et₂O, 9.51 mL, 7.95 mmol, 4.0 eq.) slowly (over 25 min, the color of solution was changed colorless to brown, then yellow) at -45 °C. After stirring for 30 min at this temperature, the reaction mixture was cooled to -78 °C and added BF₃·OEt₂ (565 µL, 3.98 mmol, 2 eq.) in anhydrous Et₂O (11.1 mL). the resulting mixture was added compound **3** (1.00 g, 1.99 mmol, 1.0 eq.) (**3** were azeotropic with benzene three times.) in anhydrous Et₂O (22.1 mL) in 15 min. After stirring for 10 min, the reaction mixture was quenched by the addition of phosphorus buffer and extracted with Et₂O three times. The combined organic layer was washed with sat. NH₄Cl aq., water and brine, dried with anhydrous MgSO₄, filtered and concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: CH₂Cl₂ = 2 : 1 to *n*-Hexane: EtOAc = 30 : 1) gave compound **2** in 83% yield (878 mg).

Physical State: yellow liquid


¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 7.70-7.16 (m, 3H), 5.78-5.67 (m, 1H), 5.11-5.03 (m, 2H), 4.06 (q, J = 6.4 Hz, 1H), 3.74-3.68 (m, 1H), 2.72-2.56 (m, 3H), 2.43-2.39 (m, 2H), 2.17 (dd, J = 6.0, 18.0 Hz, 1H), 1.97-1.89 (m, 2H), 1.79-1.74 (m, 2H), 1.62-1.42 (m, 4H), 0.97-0.89 (m, 18H), 0.63-0.57 (m, 6H), 0.07-0.05 (6H, m)
¹³C NMR (100 MHz, CDCl₃) δ 217.2, 142.5, 135.6, 128.4 (2C), 128.3 (2C), 125.7, 117.1, 73.1, 72.0, 53.0, 48.9, 47.7, 39.0, 34.3, 33.8, 31.7, 27.8, 25.9 (3C), 18.1, 6.8 (3C), 4.8 (3C), -4.4 (2C)

IR (neat) v 3060, 3028, 2956, 1742, 1641, 1603, 1496, 1458, 1415, 1377, 1264, 1097, 1006, 940, 918, 836, 775, 737 **HRMS (ESI)**: [M+Na]⁺ calcd for C₃₁H₅₄O₃Si₂Na⁺: 553.3504, found: 553.53521

 $[\alpha]_D^{24}$ -31.0 (*c* 0.44, CHCl₃)

 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 9 : 1, color reagent: *p*-anisaldehyde): 0.46

Total synthesis of latanoprost

0.06 M THF solution of Ru cat. 20 was prepared according to the reported procedure.³⁾

A solution of compound **2** (9.8 mg, 18.5 µmol) and diester **21** (21.0 mg, 73.8 µmol, 4 eq.) (**2** and **21** were azeotropic with benzene three times) and anhydrous THF (0.37 mL) was added to the Schrenk flask and freeze-pump-thaw for three times. Ru catalyst **20** (0.06 M in THF, 61.5 µL, 3.69 µmol, 20 mol%) was added at rt and reaction mixture was warmed to 40 °C. After stirring at 40 °C for 9.5 h, additional Ru catalyst **20** (0.06 M in THF, 61.5 µL, 3.69 µmol, 20 mol%) was added to the reaction mixture. After stirring reaction mixture at 40 °C for 13 h, undistilled Et₂O (1 mL) was added to the reaction mixture. After stirring reaction mixture was dissolved to anhydrous THF (0.37 mL) and cooled to -78 °C and L-selectride[®] (1 M in THF, 92.3 µL, 92.3 µmol, 5 eq.) was added slowly (over 5 min). After stirring this temperature for 30 min, H₂O₂ (30% in H₂O, 92.3 µL) was added to the mixture and warmed to room temperature. THF (0.37 mL) and 1M HCl aq. (0.37 mL, 20 eq.) were added and stirred at this temperature. After stirring for 22 h, the reaction mixture was quenched by the addition of phosphate buffer and extracted with EtOAc three times. The combined organic layer was washed with brine, dried with anhydrous Na₂SO₄, filtered and concentrated in vacuo. Purification by silica gel chromatography (*n*-Hexane: EtOAc = 1 : 1 to 1 : 3) gave latanoprost 1 in 75% yield (6.0 mg).

Latanoprost

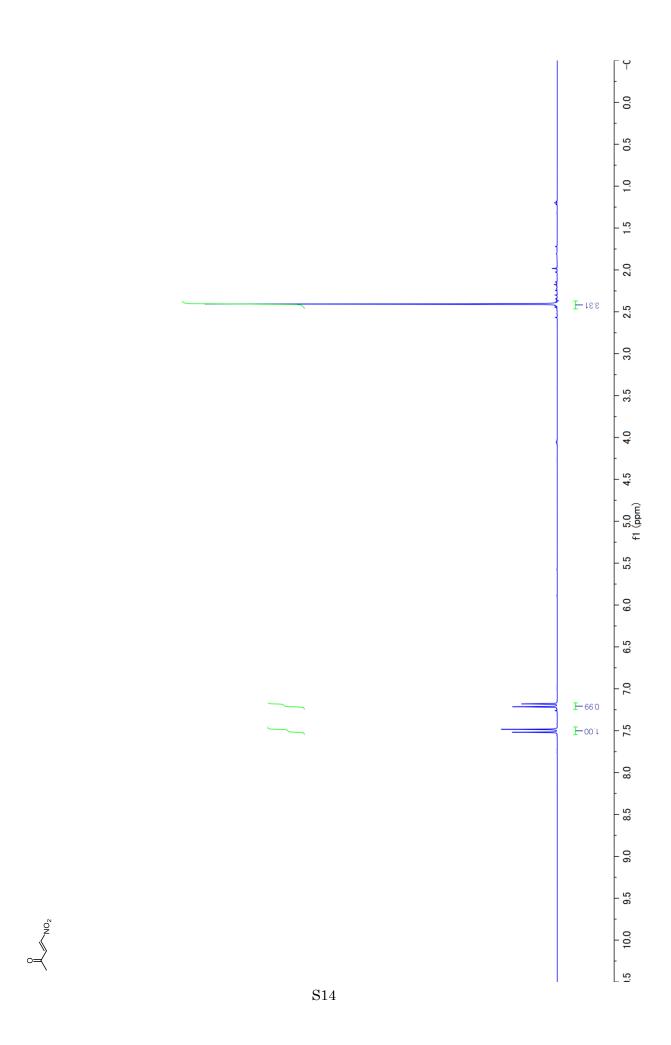
CO₂PI Ōн

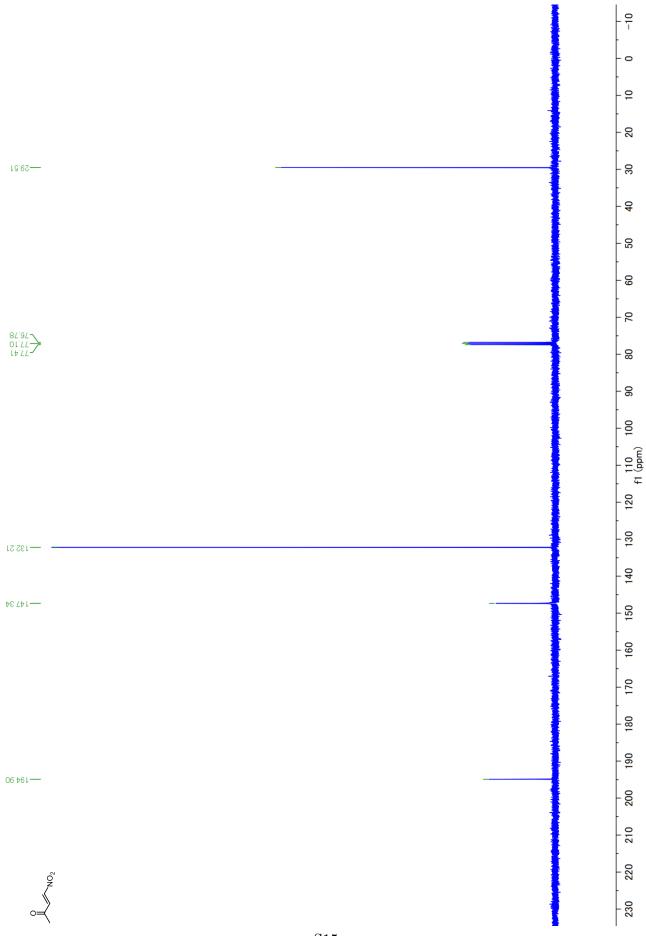
known compound

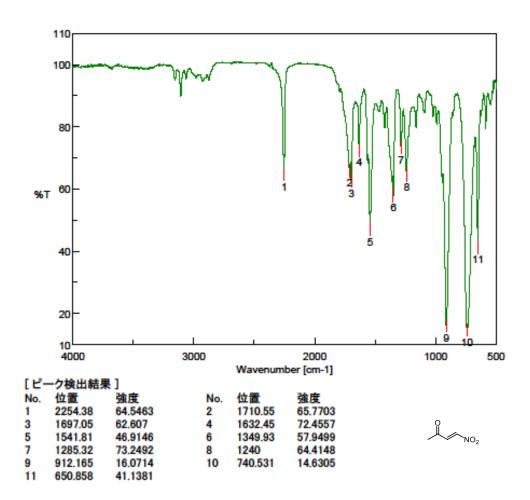
Physical State: pale yellow oil

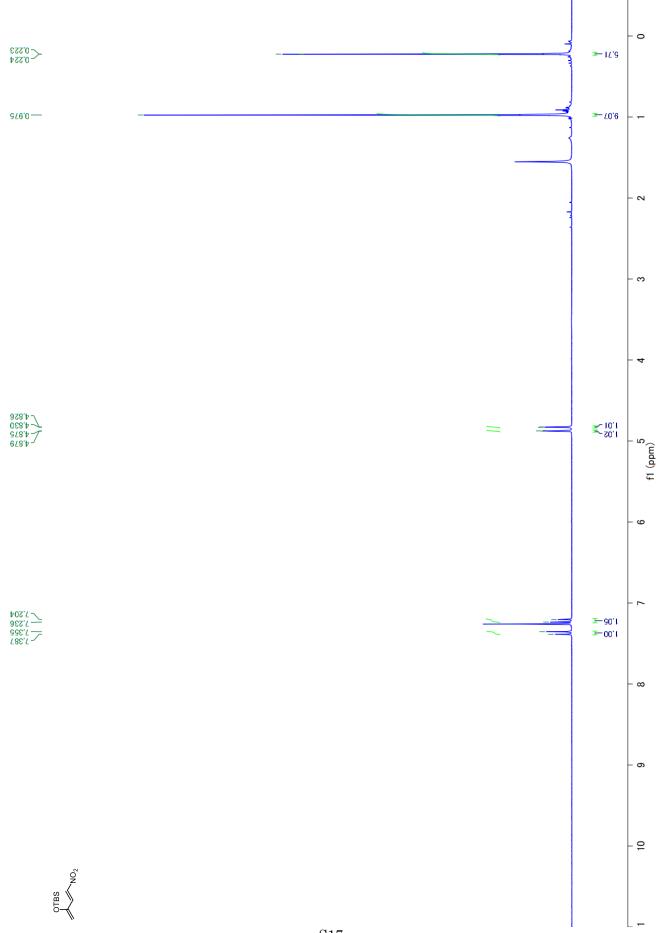
¹**H NMR (400 MHz, CDCl₃)** δ 7.31–7.26 (m, 2H), 7.22–7.15 (m, 3H), 5.50–5.35 (m, 2H), 5.00 (sept, *J* = 6.4 Hz, 1H), 4.17 (br s, 1H), 3.94 (br s, 1H), 3.70–3.64 (m, 1H), 2.85–2.63 (m, 2H), 2.36–2.08 (m, 6H), 1.90–1.30, (m, 14H), 1.23 (d, *J* = 6.4 Hz, 6H)

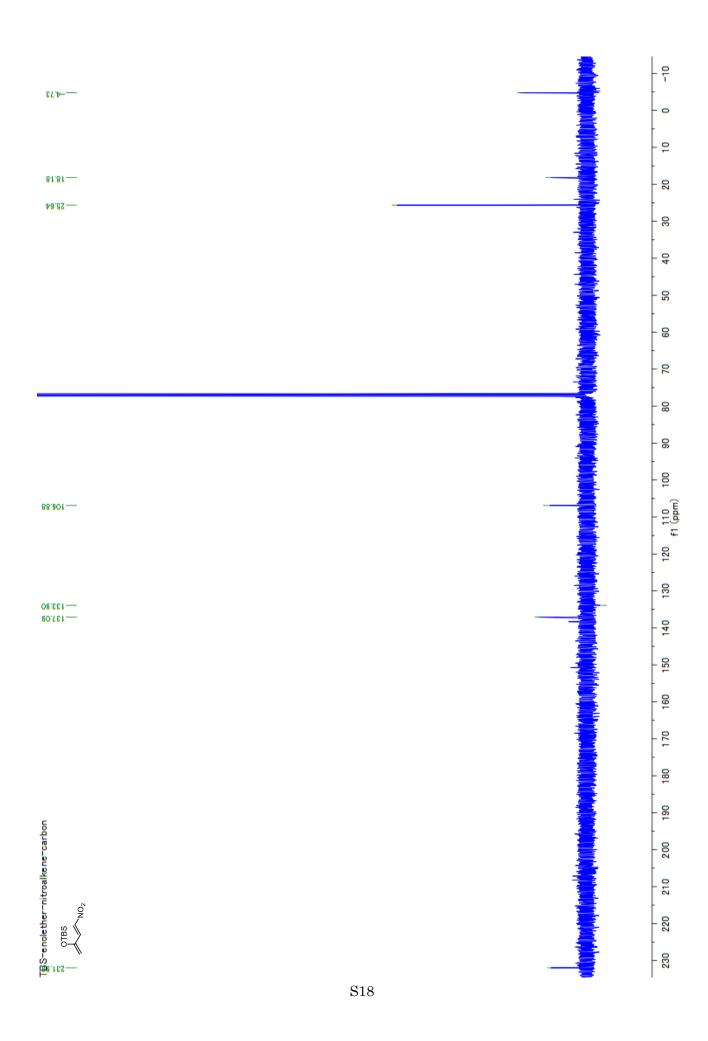
¹³C NMR (100 MHz, CDCl₃) δ 173.5, 142.0, 129.6, 129.3, 128.4 (4C), 125.8, 78.7, 74.9, 71.7, 67.7, 52.8, 52.0, 42.3, 39.3, 35.8, 34.0, 32.0, 30.3, 26.9, 26.6, 24.9, 21.8 (2C)

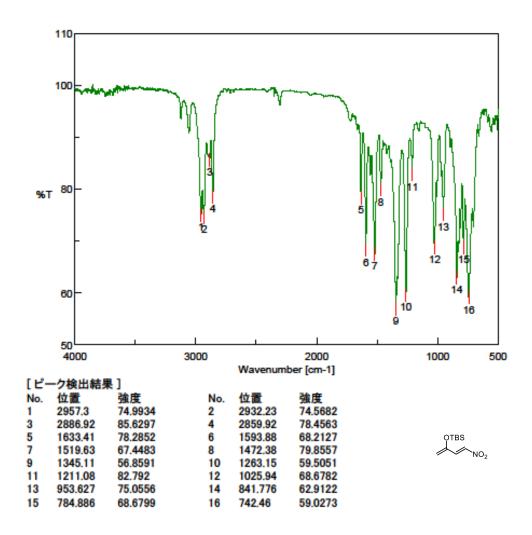

HRMS (ESI): [M+Na]⁺ calcd for C₂₆H₄₀O₅Na⁺: 455.2768, found: 455.2756

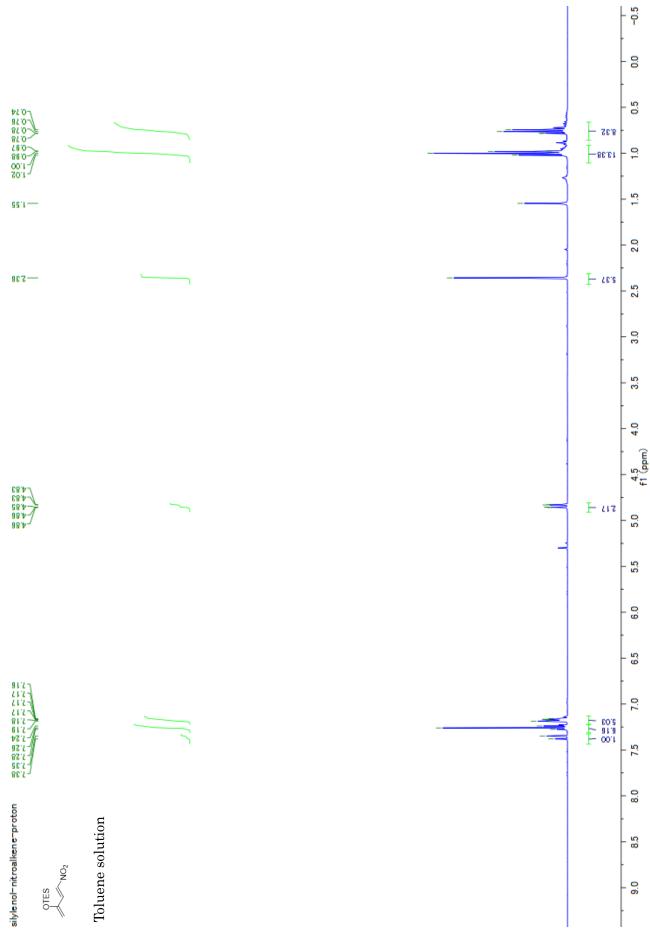

 $[\alpha]_D^{26}$ +30.8 (*c* 0.03, CH₃CN), lit. $[\alpha]_D^{20}$ +32.7 (*c* 1.03, MeCN)⁴)

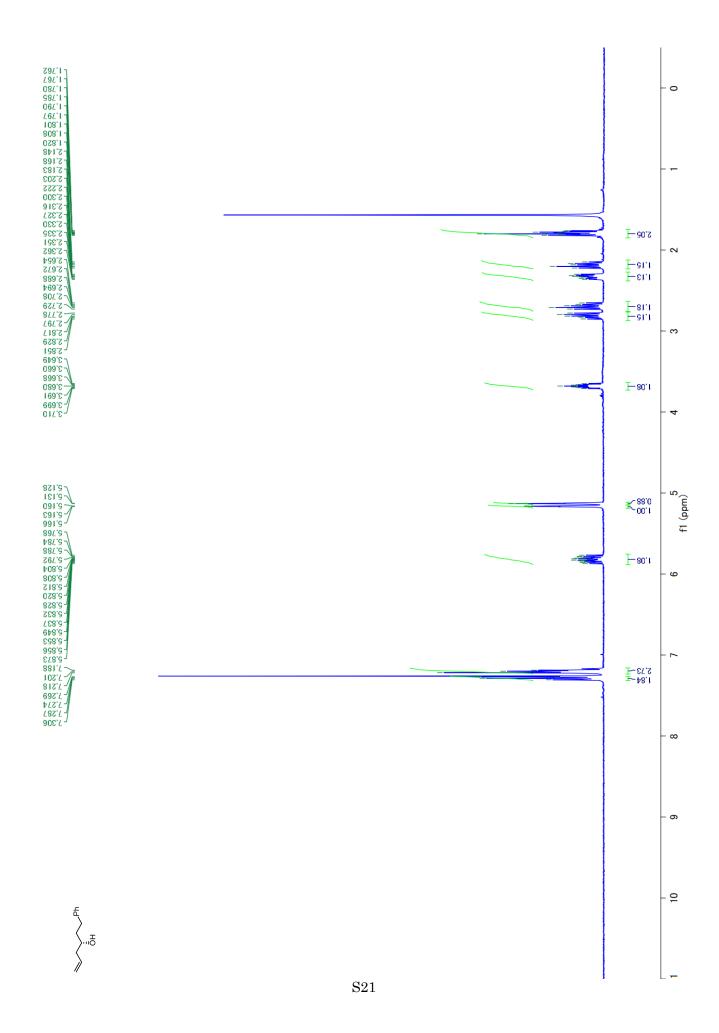

 $\mathbf{R}_{\mathbf{f}}$ (*n*-Hexane: EtOAc = 1 : 3, color reagent: *p*-anisaldehyde): 0.26

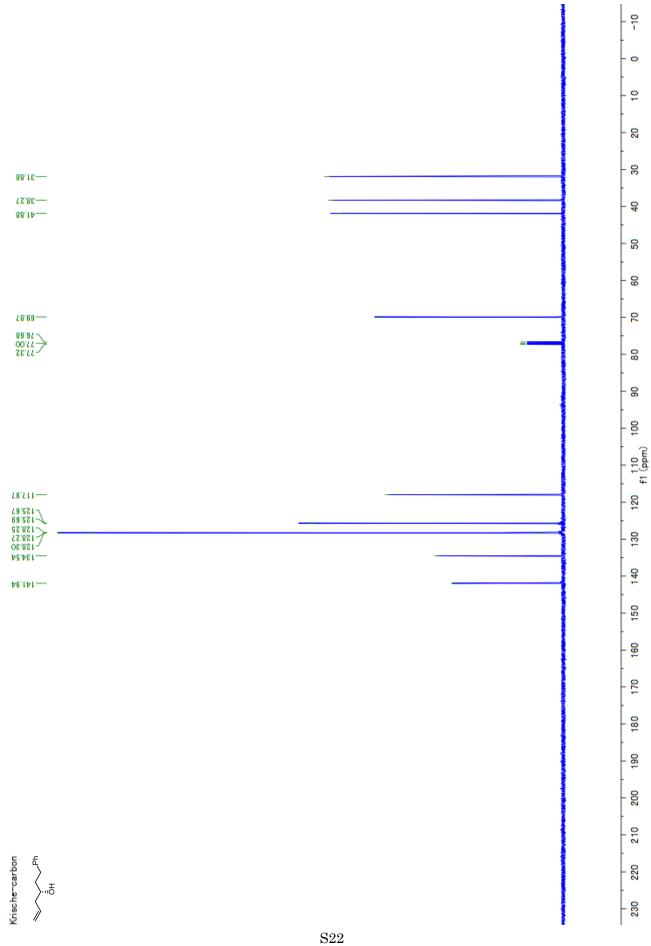

Reference

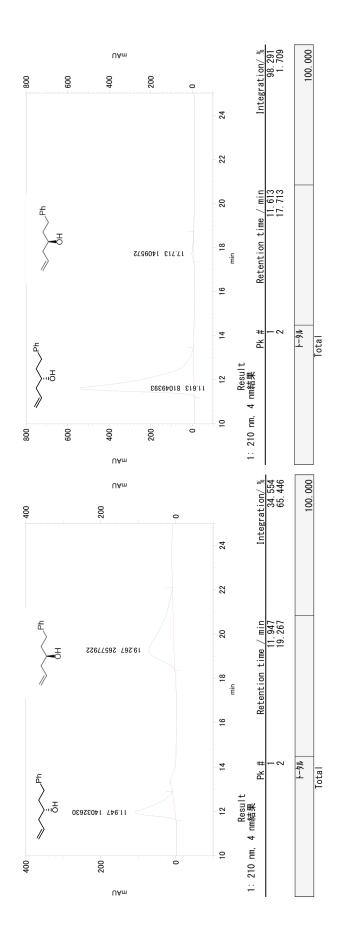

- 1) G. B. Kauffman, L. A. Teter, Inorg. Synth. 1963, 7, 9.
- 2) A. P. Pulis, D. J. Blair, E. Torres and V. K. Aggarwal, J. Am. Chem. Soc. 2013, 135, 16054.
- 3) D. S. Müller, I. Curbet, Y. Raoul, J. L. Nôtre, O. Baslé and M. Mauduit, Org. Lett., 2018, 20, 6822.
- 4) G. Zanoni, A. D'Alfonso, A. Porta, L. Feliciani, S. P. Nolan, G. Vidari, *Tetrahedron*, 2010, 66, 7472.

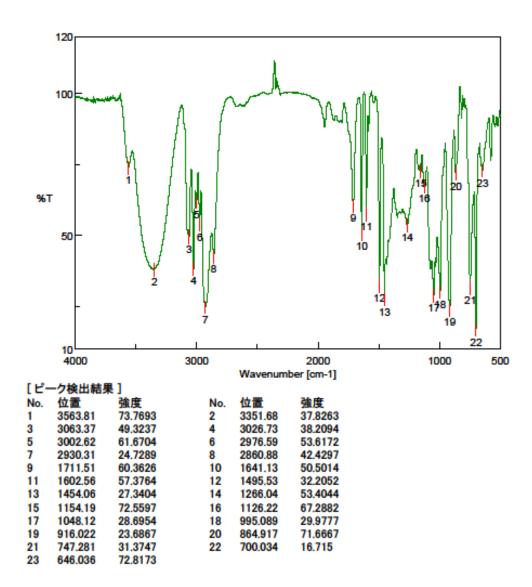


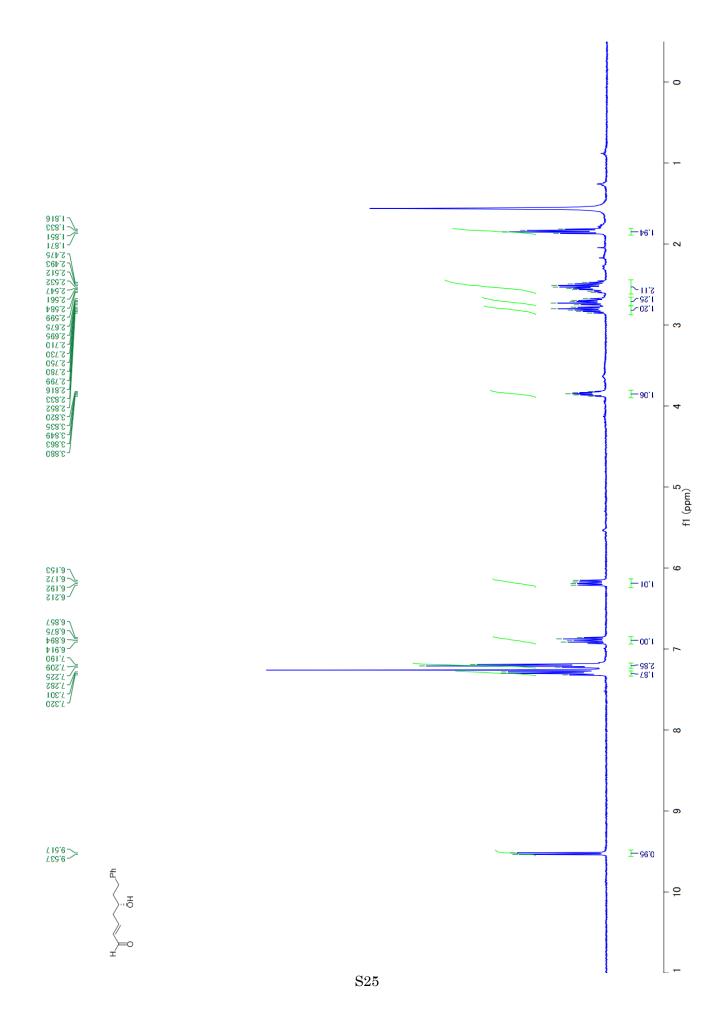


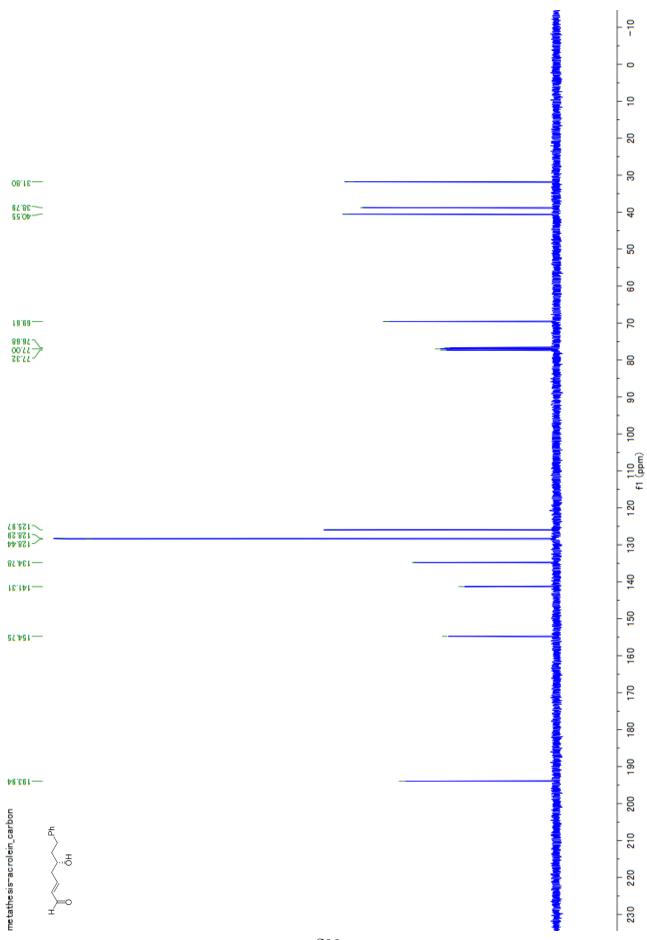


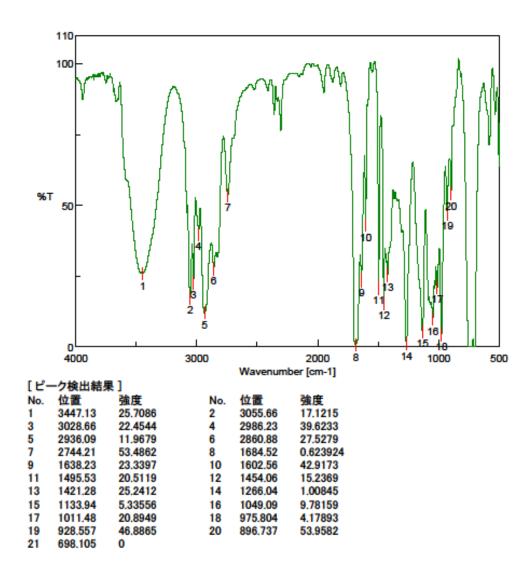


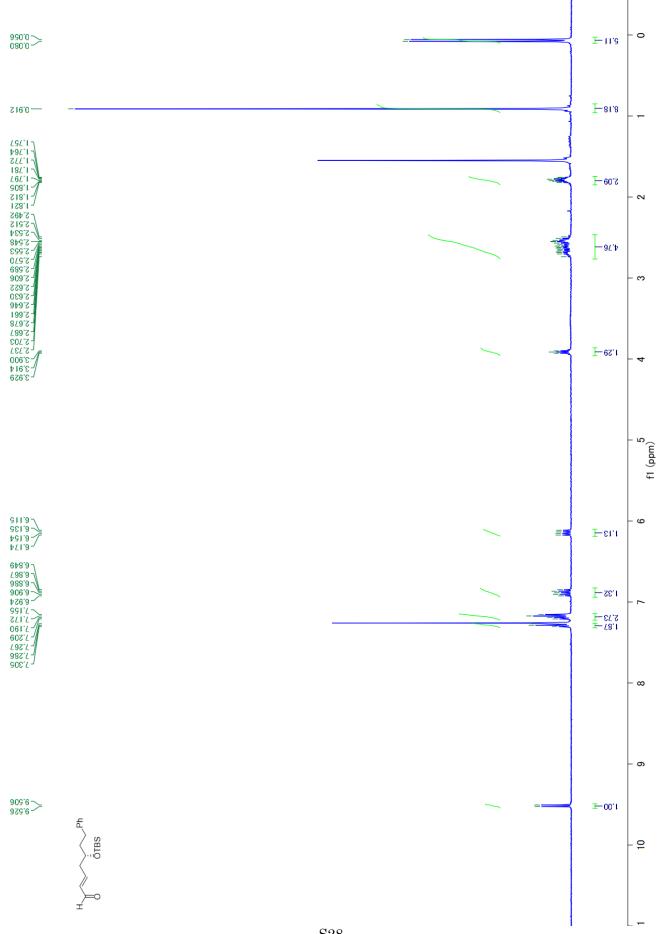


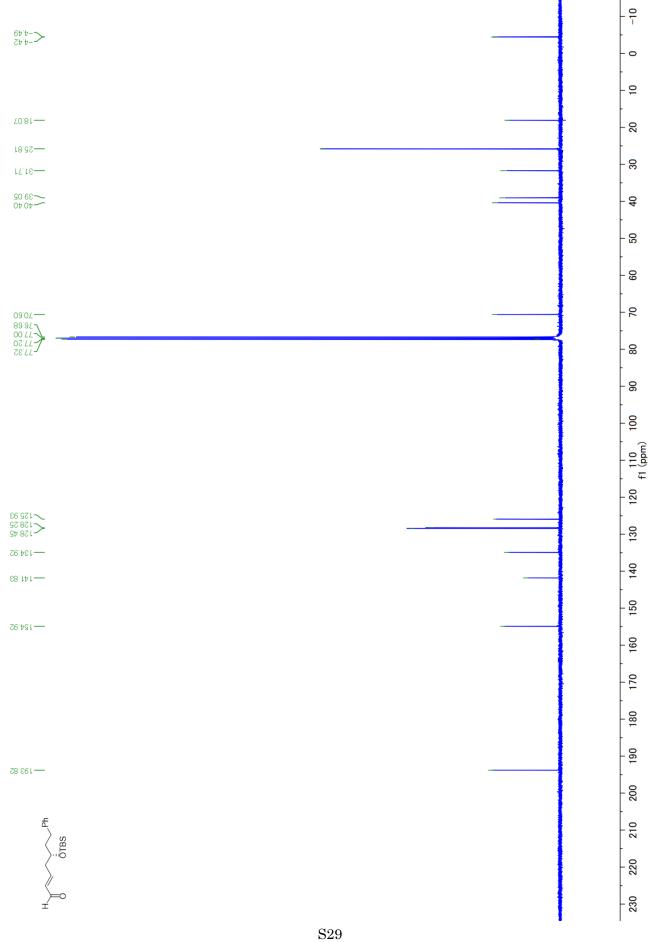


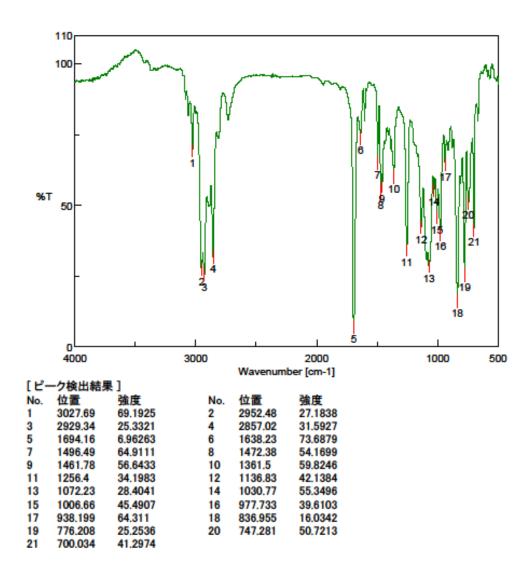


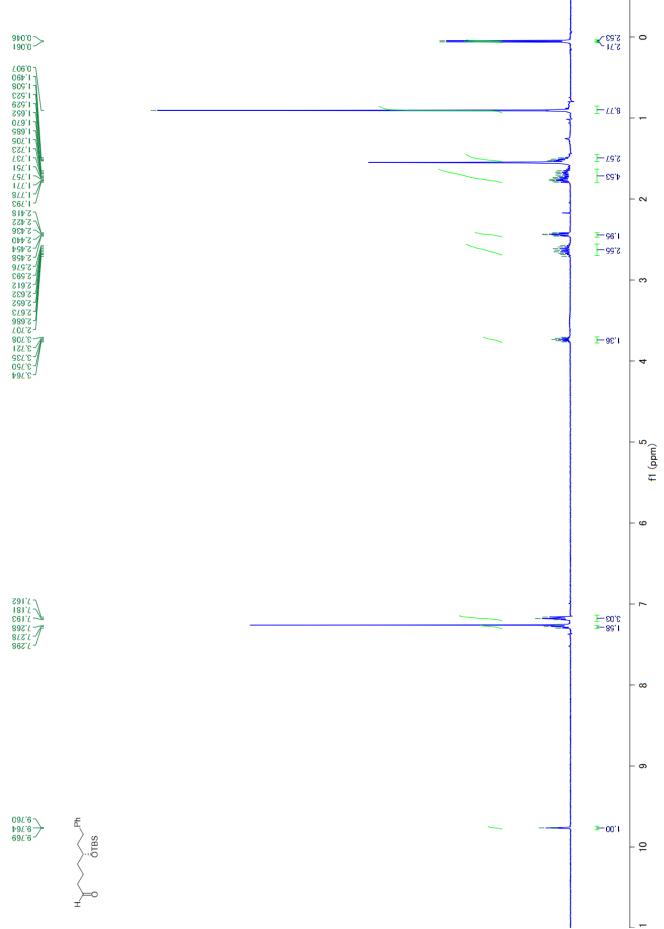


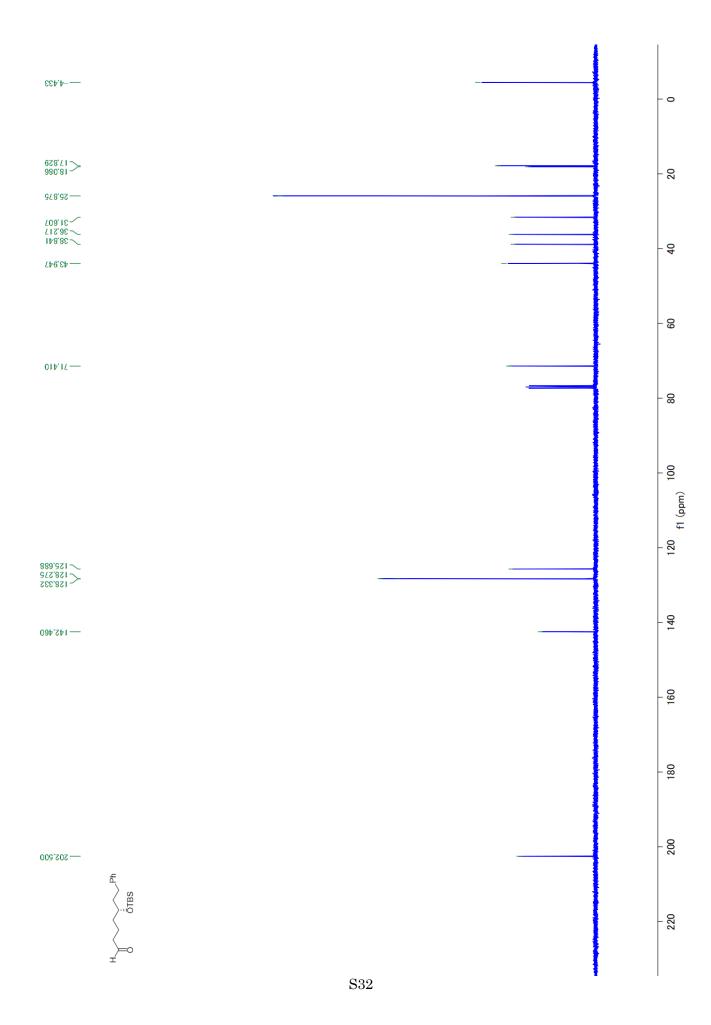


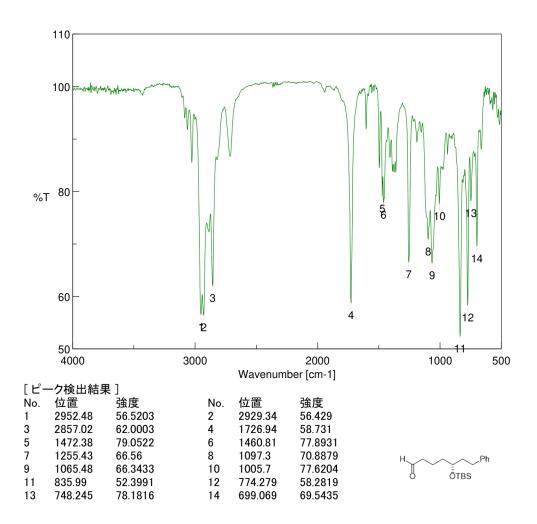


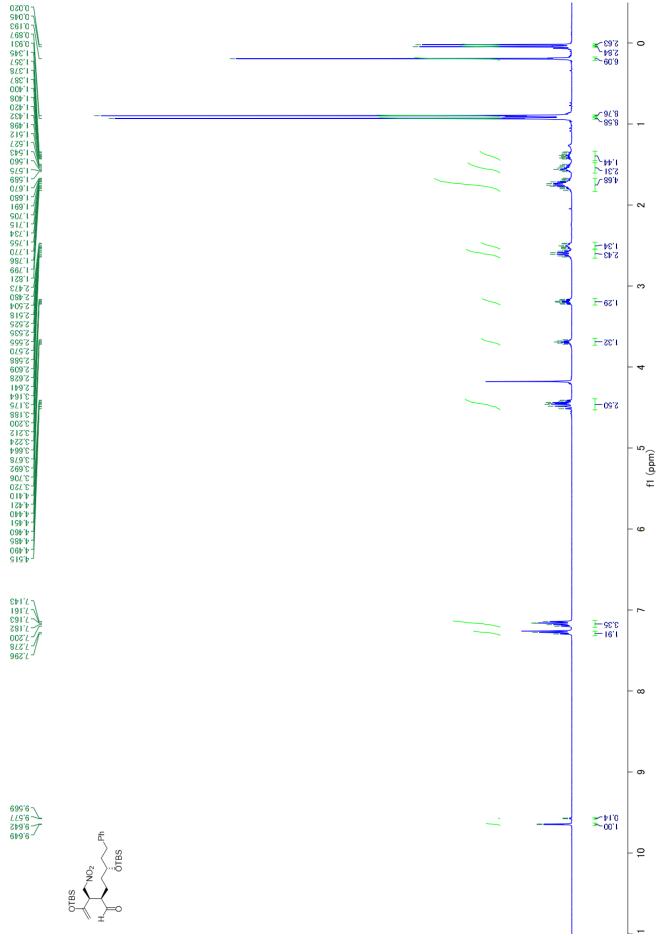


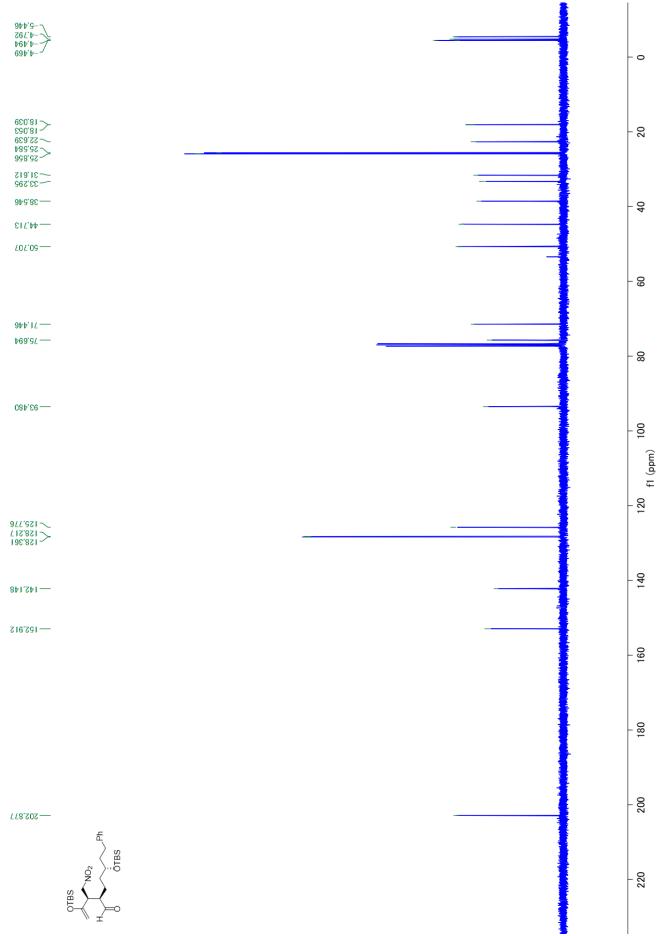


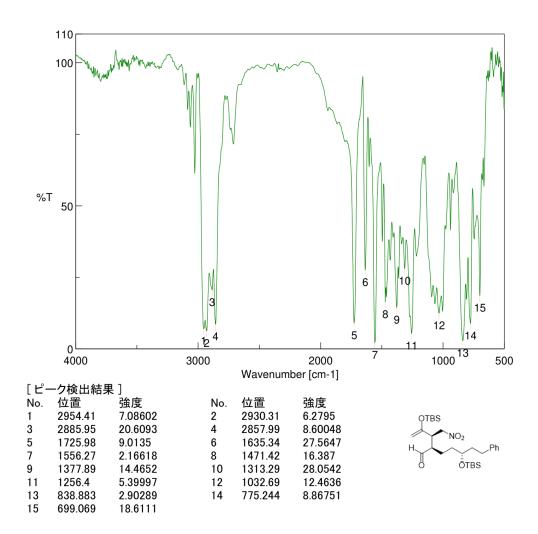


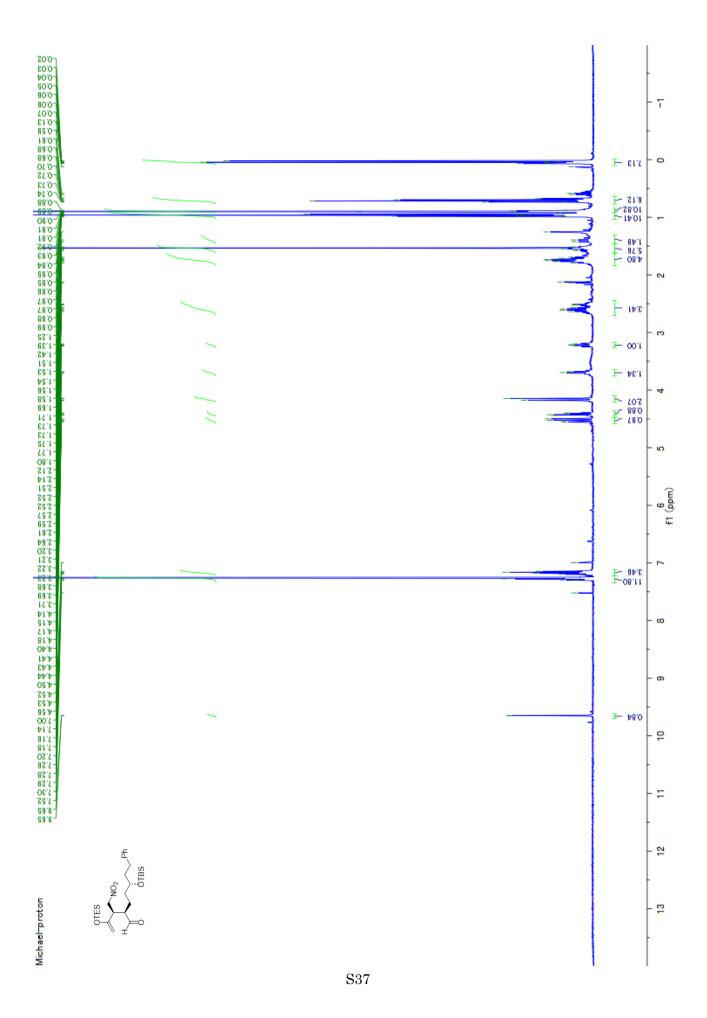


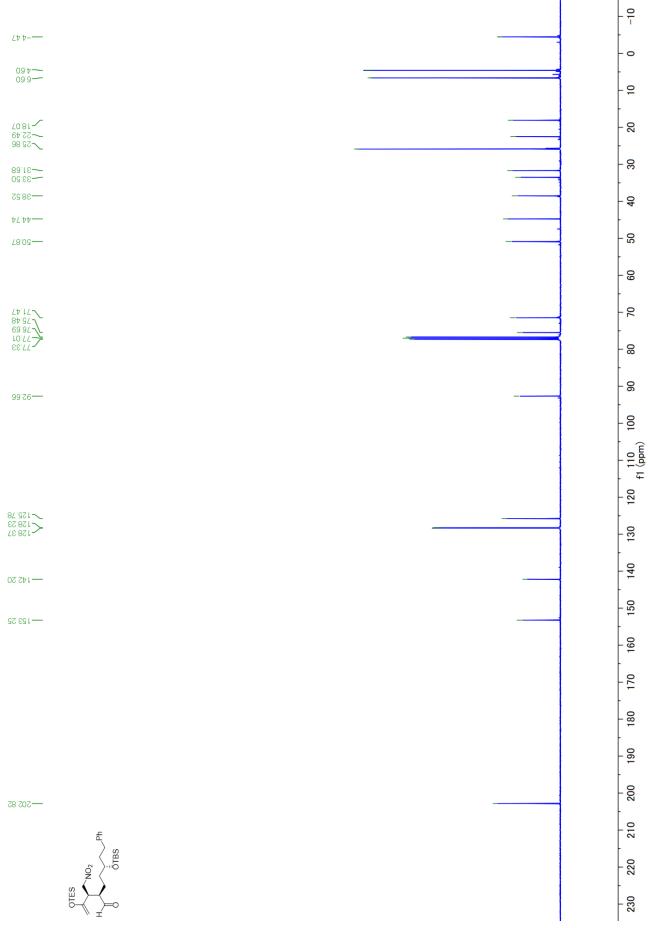


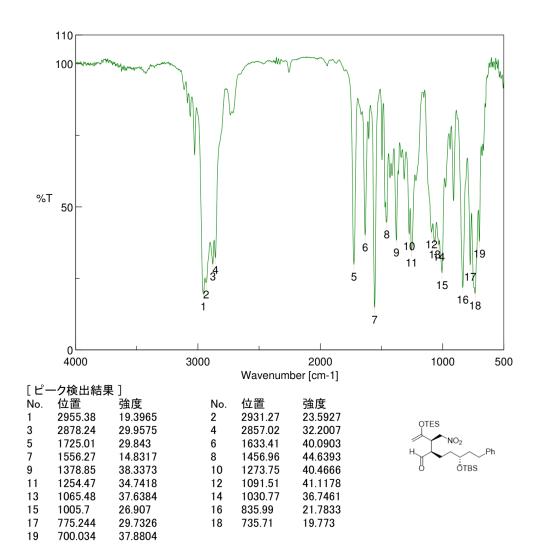


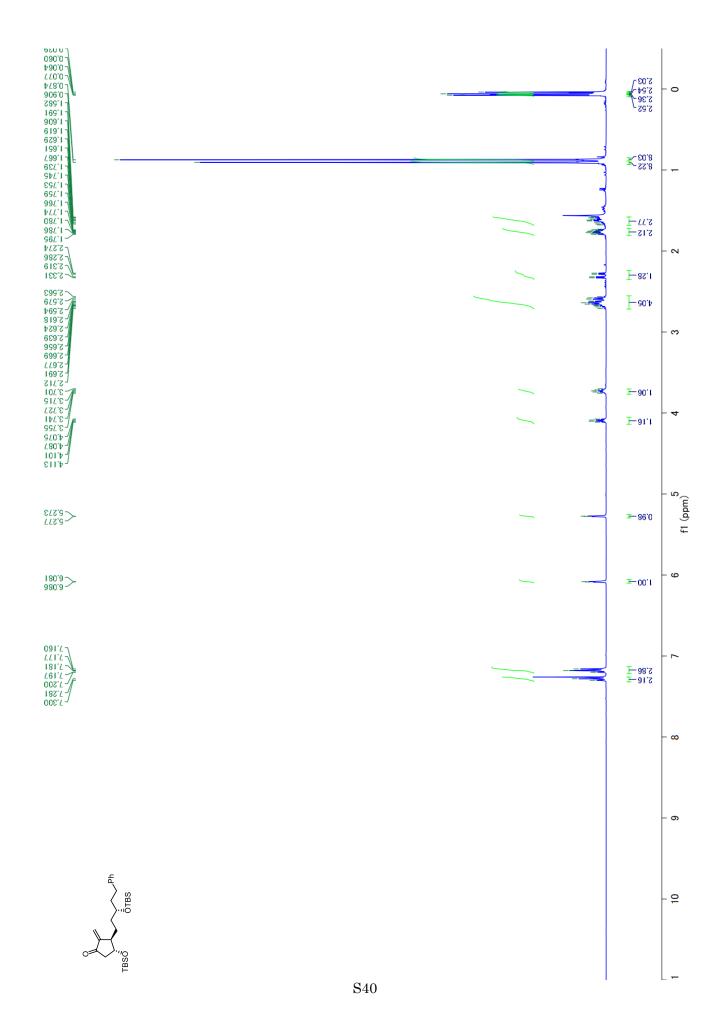


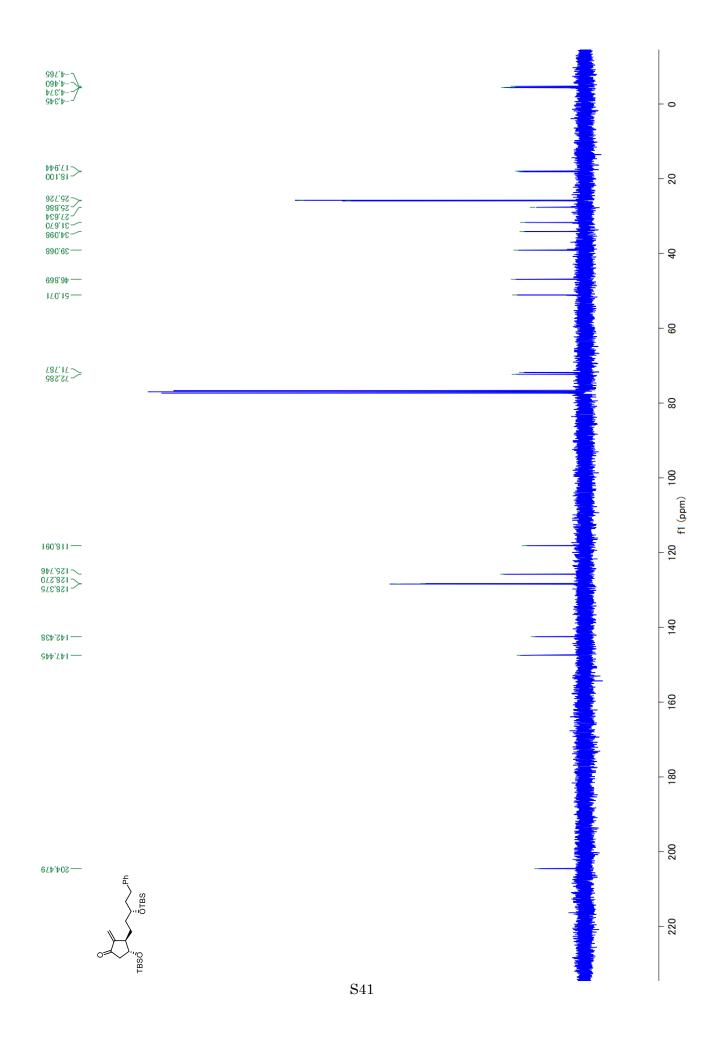


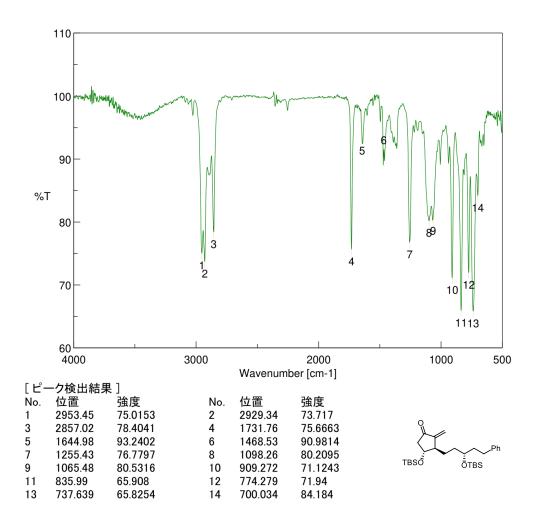


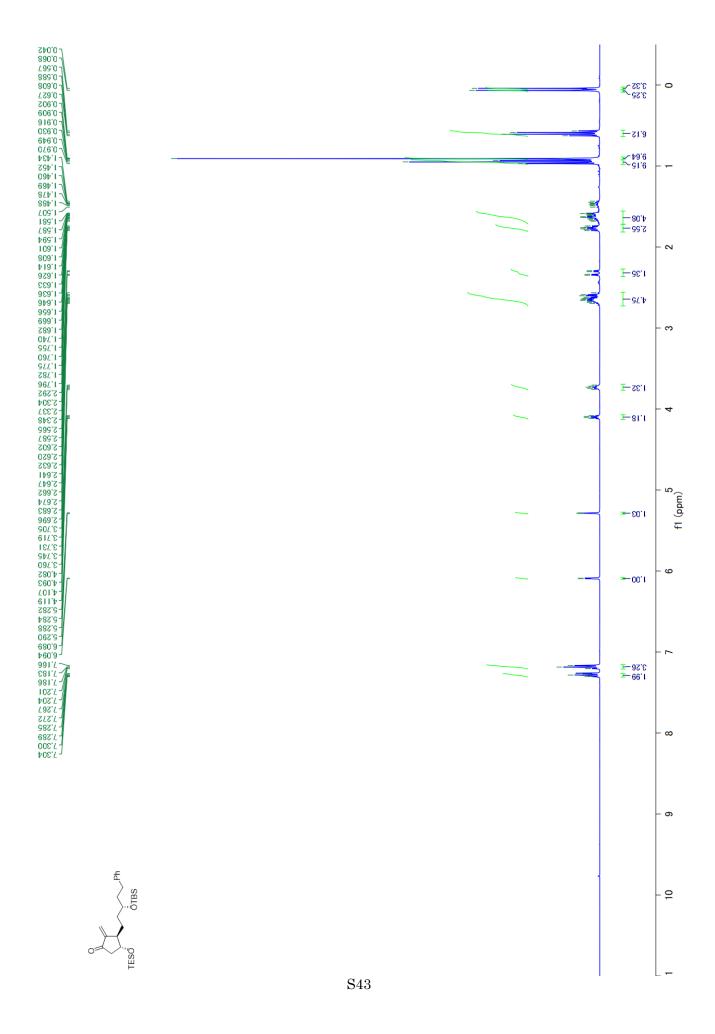


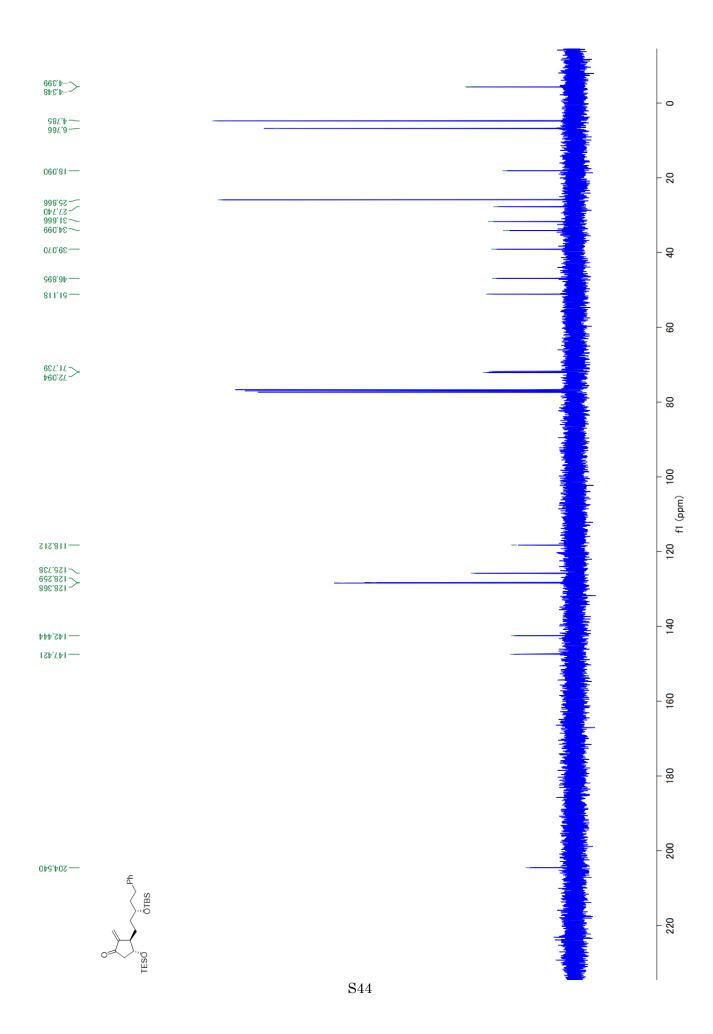


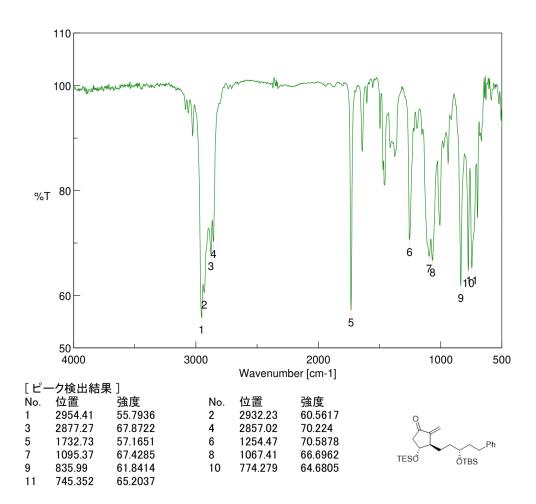


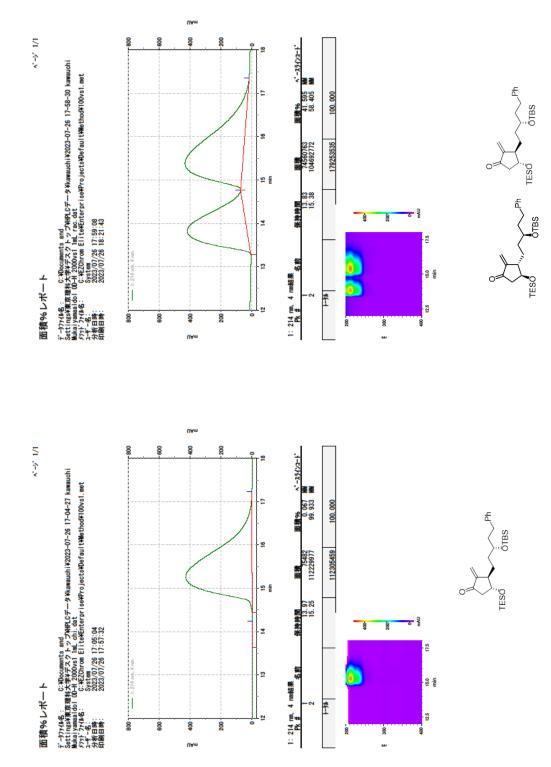


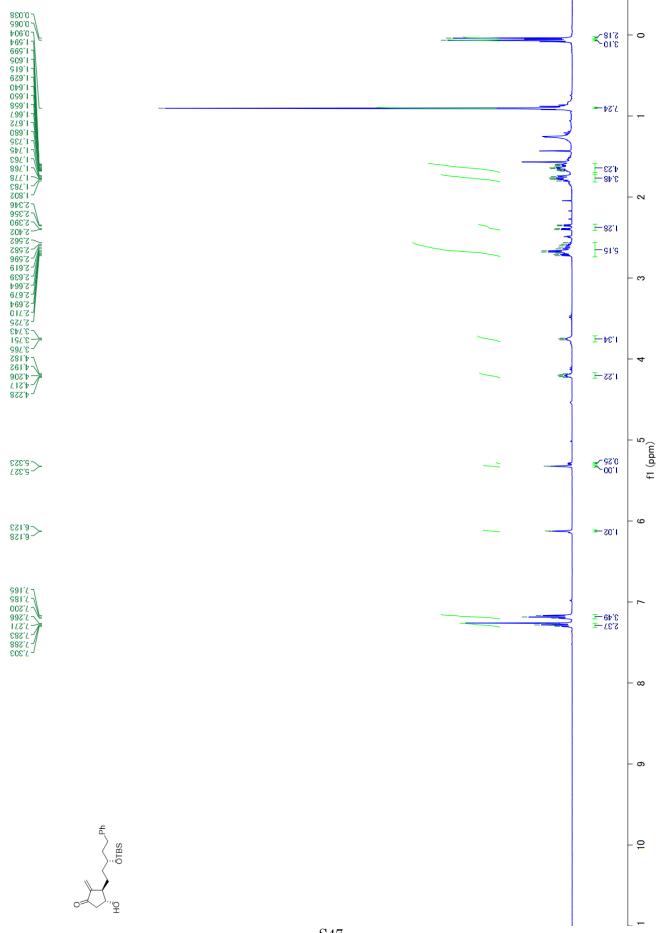


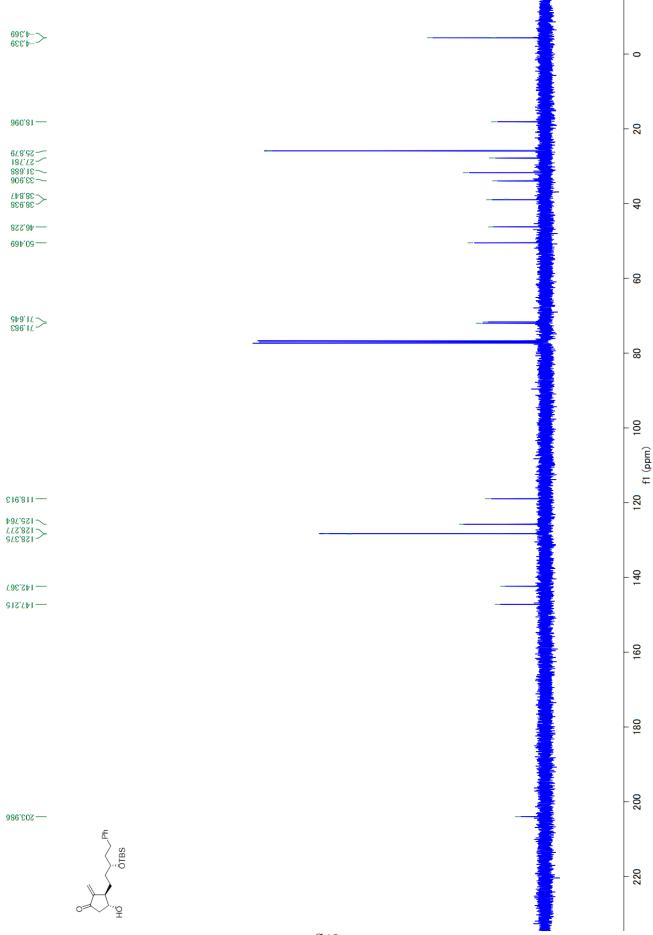


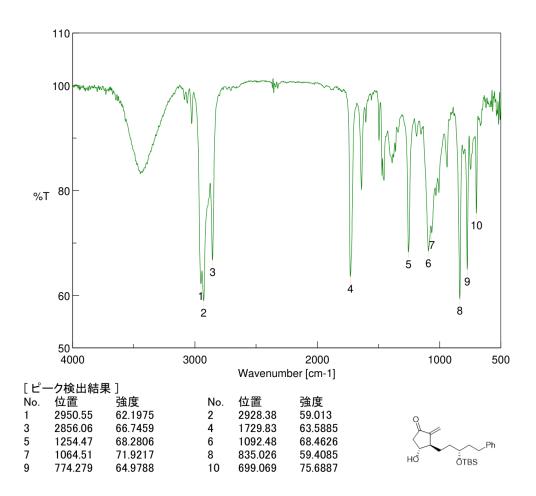


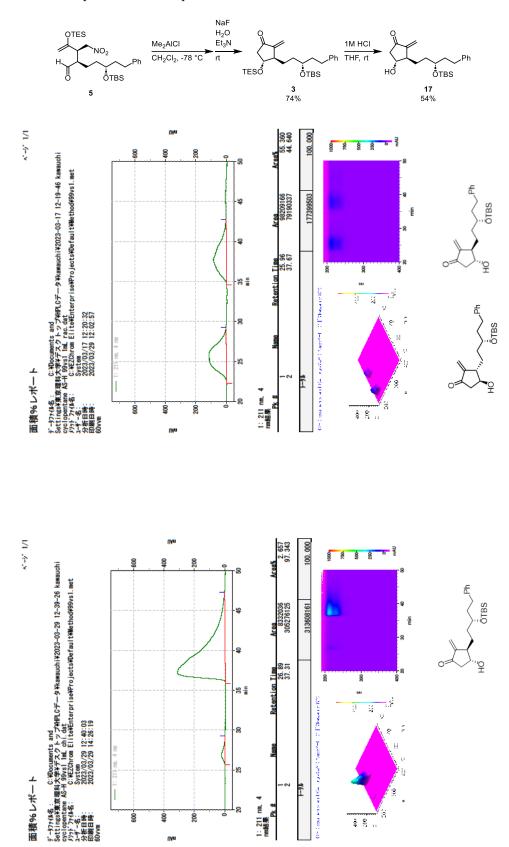


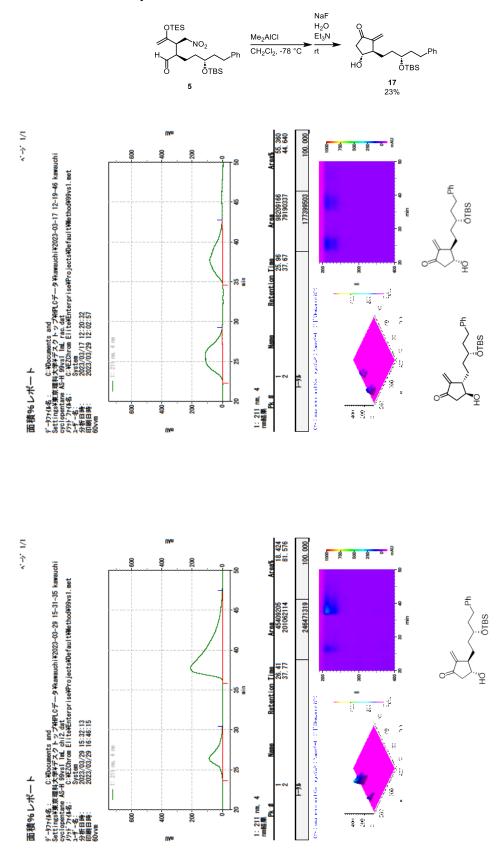


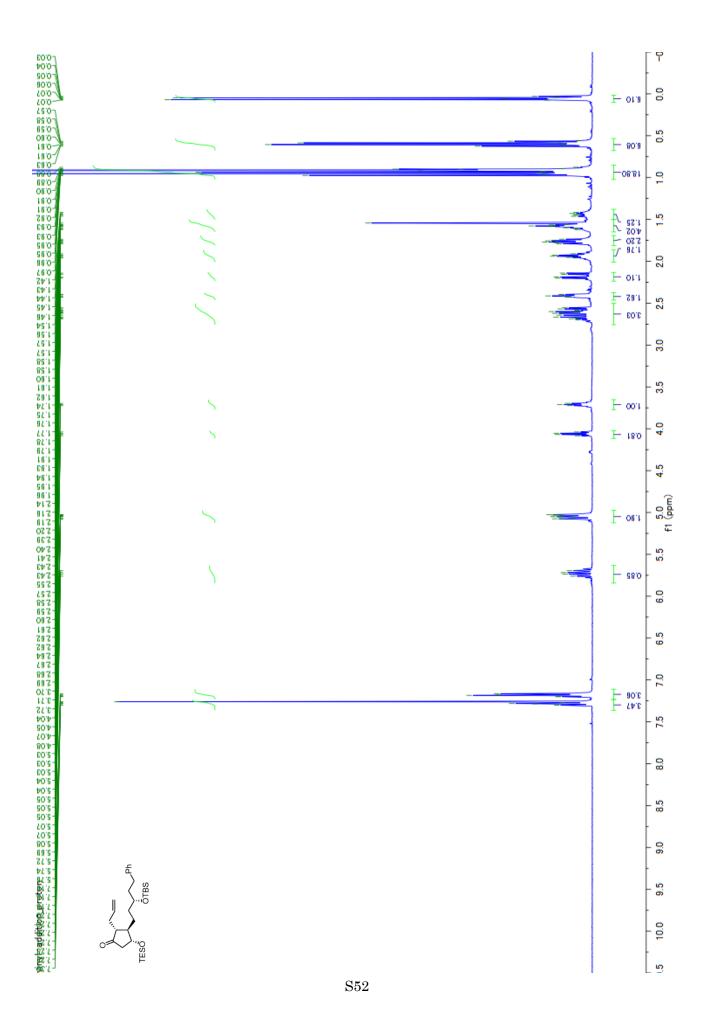


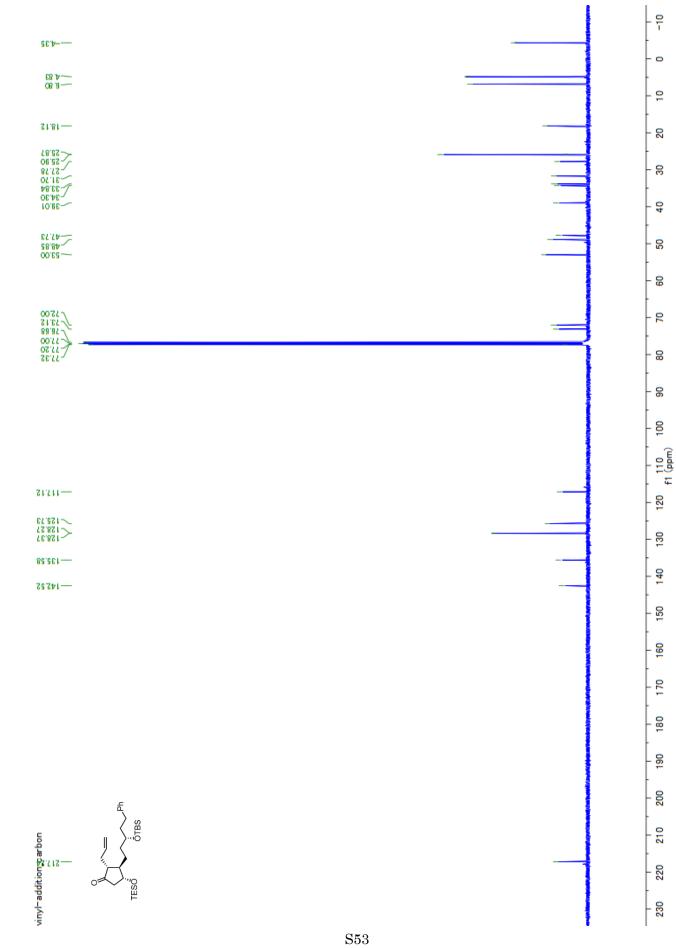


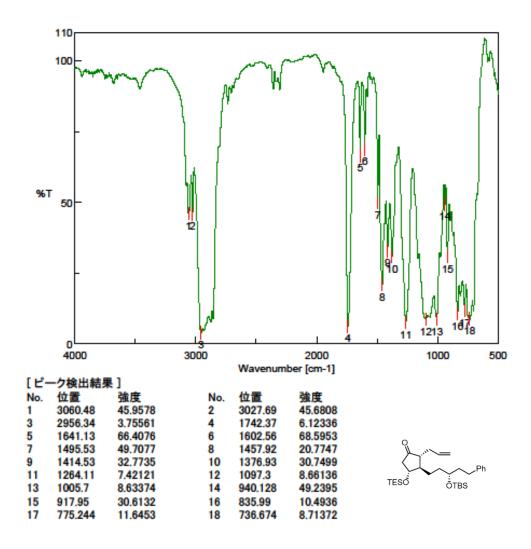




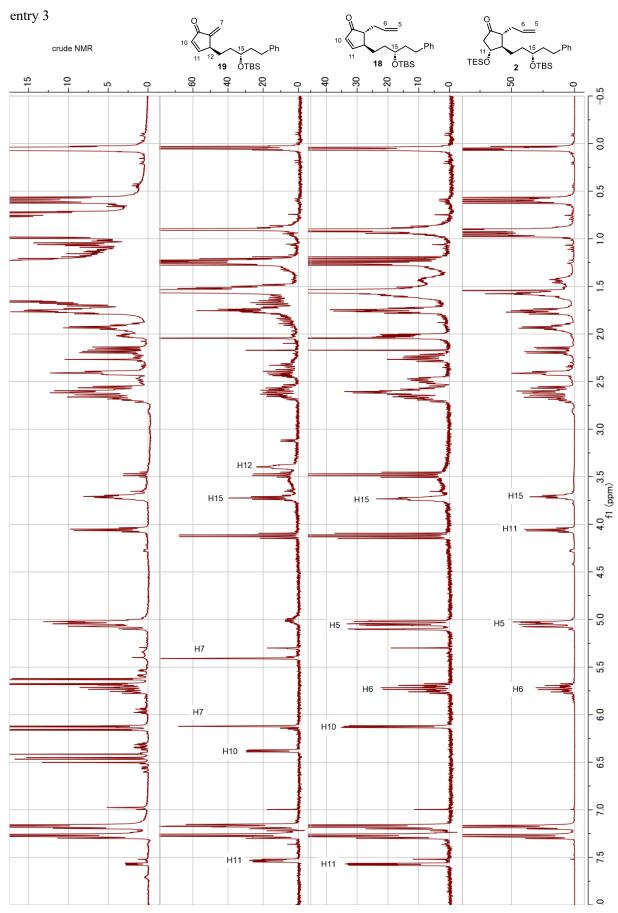


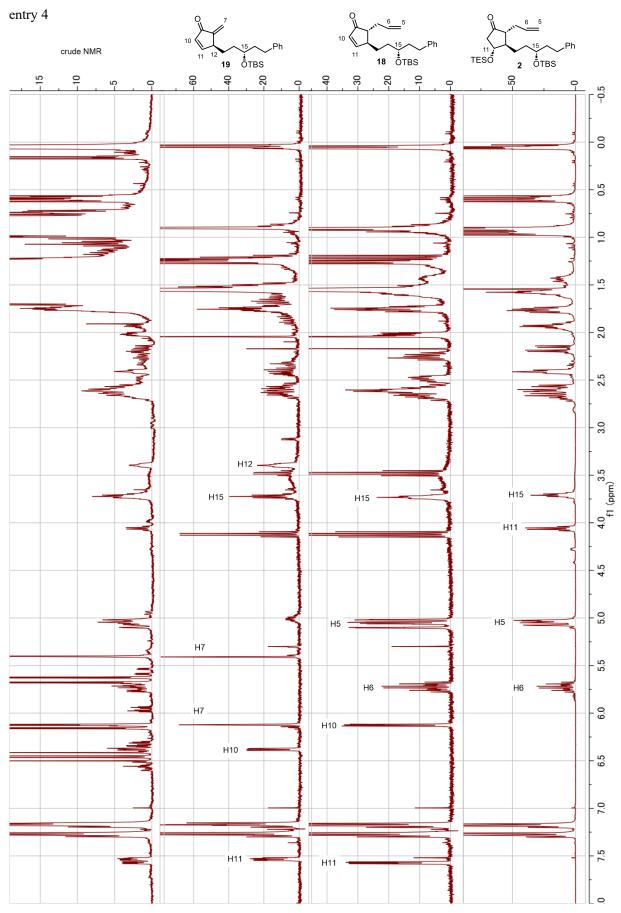


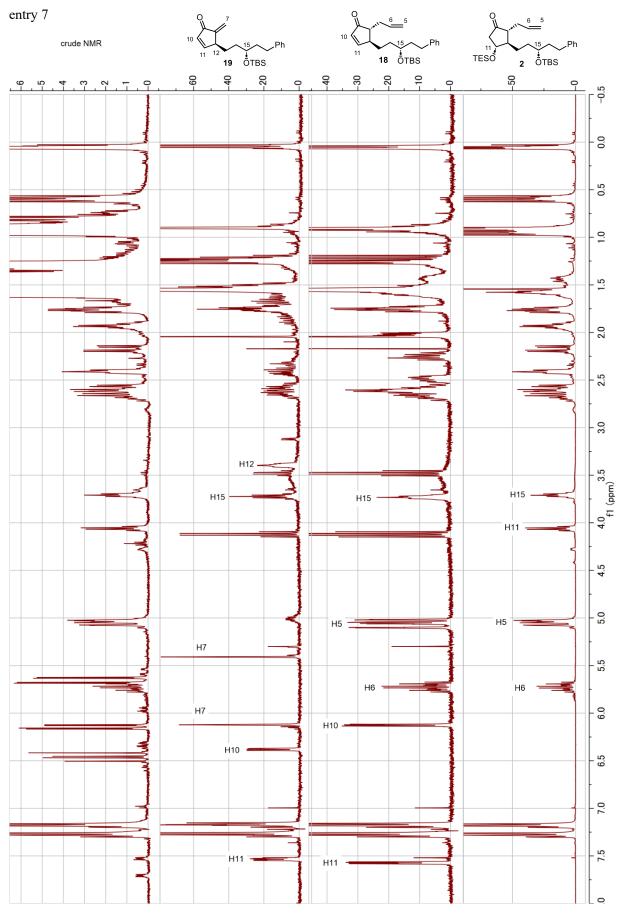

HPLC chart of compound 17 after deprotection of 3

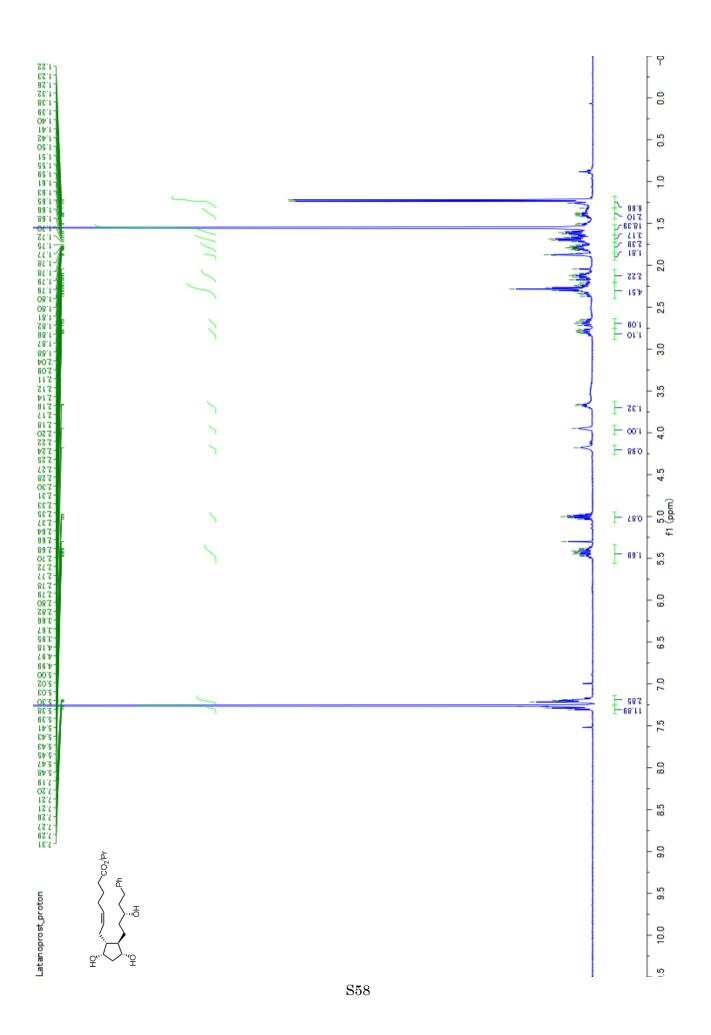


HPLC chart of 17 after Mukaiyama aldol reaction

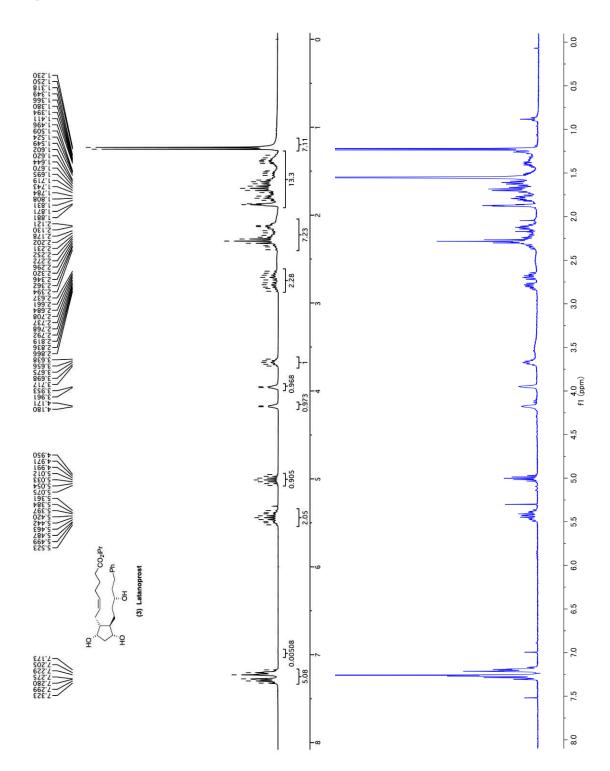


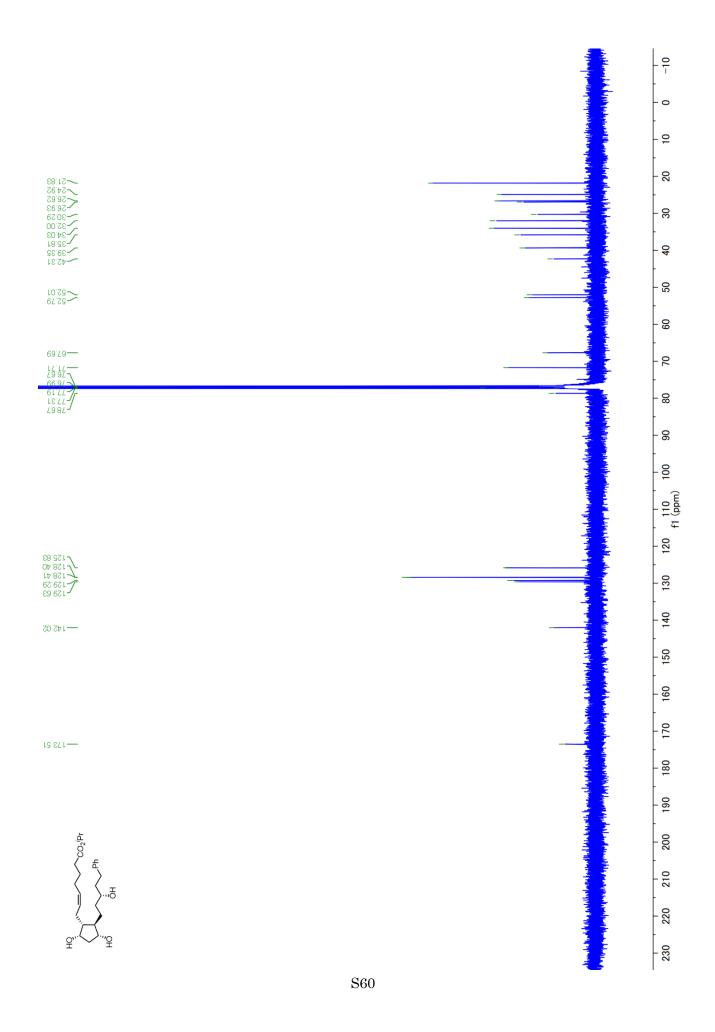






Comparison of ¹H NMR of vinyl addition





Coparison of ¹H NMR of latanoprost

Reported⁴⁾

Synthesized

