Non-covalent Dyes in Microscale Thermophoresis for Studying RNA Ligand Interactions and Modifications

Elisabeth Kallert,^[a] Malte Behrendt,^[a] Ariane Frey,^[a] Christian Kersten,^[a] Fabian Barthels*^[a]

 [a] E. Kallert, M. Behrendt, A. Frey, Dr. C. Kersten, Dr. F. Barthels Institute of Pharmaceutical and Biomedical Sciences Johannes Gutenberg-University of Mainz Staudingerweg 5, 55128 Mainz, Germany E-mail: barthels@uni-mainz.de

RNA and DNA oligo sequences

Table S1. Oligos used for RNA-MST experiments. **Category 1**: no structure, <10mer; **category 2**: no structure, 10–15mer; **category 3**: no structure, 16–20mer; **category 4**: hairpin, 16–20mer; **category 5**: bulge/internal loop + hairpin, 21–25mer; **category 6**: internal loop + hairpin, 26–30mer; **category 7**: bulge + internal loop + hairpin(s), 31–50mer; **category 8**: 2 internal loops + 1 hairpin, 50mer; **category 9**: 3 internal loops + 1 hairpin, 60mer; **category 10**: various functional RNA.

OligoID	Cat.	RNA sequence	Manufacturer
MH993	1	GUUAUUC	Iba
MH996	1	UUUUUUU	Biomers
MH474	1	GGUACCCAA	lba
MH122	2	ACAGCUAUCCAUUG	lba
MH847	2	UCUGAGGGUCCAGGG	Biomers
MH268	2	CCCGGUAAUCGCAUA	Salifu
MH266	3	AAACUUAAAACUUUACUGU	Salifu
MH907	3	ACAAGAAGGGUUUGAUCAUC	lba
MH272	3	AGAAAUAUGUCUGAUAAA	Salifu
MH355	4	CGCGGGAGACCGGGGUUCGA	Dharmacon
MH261	4	GCUUGAAACCAGCUUUGGG	Salifu
MH1428	4	GGAUCCUCUAGAGUCGACCU	ldt
MH515	5	GGUGGGGUUCCCGAGCGGCCAAAG	lba
MH499	5	GUUCGAUCCACAGAAUUCGCACCA	Biomers
MH649	5	GGUUCGAUUCCCCGACGGGGAGCCA	lba
MH857	6	UCUAGAGGAUCCCGGGUACCGAGCUC	Biomers
MH876	6	UGCCGCCCGUCUUGAAACACGGACCAAGGA	lba
MH1145	6	AACUUAAUGUUUUUGCAUUGGACUUUGAGUUA	lba
MH761	7	GGCGUGUAGGAUAUUAAAUCAUACCAGAUCGCGG	lba
MH646	7	UCCUCGUUAGUAUAGUGGUGAGUAUCCCCGCCUAUAUC	lba
MH566	7	GUCACGCGGGAGACCGGGGUUCGAUUCCCCGACGGGGAGCCA	lba
MH723	8	CCGCGAUCUGGAGAGGUGAAGAAUACGACCACCUACAAGAAGGACACGCC	lba
MH721	8	CCGCGAUCUGGAGAGGUGAAGAAUACGACCACCUAAGAAGGACACGCC	lba
MH762	8	CCGCGAUCUGGAGAGGUGAAGAAUUCGACCACCUACCAGAAGGACACGCC	Iba
MH950	9	CGGAGCCAGCGAGUCUAACCUUGGCCGAGAGGUCUUGGUAAUCUUGUGAAACUC CGUCGU	Iba

MH952	9		Iba
MH953	9	AUUAAU	Iba
tRNA ^{Asp}	10	UCCUCGUUAGUAUAGUGGUGAGUAUCCCCGCCUGUCACGCGGGAGACCCGGGGUU CGAUUCCCCGACGGGGAG	In house IVT
PreQ1 RS (Thermoanaerobac ter tengcongensis)	10	GGAGAGGUUCUAGCUACACCUCUAUAAAAAACUAA	biomers
SAM-IRS (Thermoanaerobac ter tengcongensis)	10	GGCUUAUCAAGAGAGGGGGGGGGGGGGGGGGGGGGGGGG	In house IVT
SAM-VIRS (Bifidobacterium angulatum)	_	GGCAUUGUGCCUCGCAUUGCACUCCGCGGGGCGAUAAGUCCUGAAAAGGGAUGU C	In house IVT
Cy5-PreQ ₁			
RS	-	Cy5-AGAGGUUCUAGCUACACCCUCUAUAAAAAACUAA	Eurofins Genomics
(Bacillus subtilis) Cy5-SAM-VI			
RS (Bifidobacterium angulatum)	-	Cy5- GGCAUUGUGCCUCGCAUUGCACUCCGCGGGGCGAUAAGUCCUGAAAAGGGAUGU C	Eurofins Genomics
AdoCbl			
riboswitch (Marine metagenome <i>env8</i> 4WJvar)	-	GGCCUGAAAGCGUGGUGGGGAAGUGACGUGAAAUUCGUCCAGAUUACUUGAUAC GGUUAUACUCCGAGUGCCACCCAGGCCAUACAACGAGCAAGGAGACUC	GenScript
Fluoride			
riboswitch (Thermotoga petrophila)	-	GGGCGAUGAGGCCCGCCCAAACUGCCCUGAAAAGGGCUGAUGGCCUCUACUG	GenScript
Neomycin			
aptamer	_	GGCUGCUUGUCCUUUAAUGGUCCAGUC	GenScript
(synthetic)			
METTL3/14	_	AACUUAAUGUUGCAUUGGACUUGAGUUA	Iba
substrate			

OligoID	description	DNA sequence	Manufacturer
MH53	Universal forward primer	CGCGCGAAGCTTAATACGACTCACTATA	IDT
EK0004	Reverse primer SAM-I RS	CGGCTCATCTTTCAACGTTTCCG	IDT
EK0010	Reverse primer SAM-VI RS	GACATCCCTTTTCAGGACTTATCGCCCCG	IDT
MH1102	Reverse primer tRNA ^{Asp}	TGGCGGGCCGTCG	lba
EK0003	Template SAM-I RS	CGGCTCATCTTTCAACGTTTCCGCTGCAGGAATTGGCACCATTTCTGGTTGCCGGGGTTCTTC GCGCCAGTCGCTCCCCCTCTTTGATAAGCCTATAGTGAGTCGTATTA	IDT
EK0009	Template SAM-VI RS	GACATCCCTTTTCAGGACTTATCGCCCCGCGGAGTGCAATGCGAGGCACAATGCCTATAGT GAGTCGTATTA	IDT
MH1101	Template tRNA ^{Asp}	TGGCGGGCCGTCGGGGAATCGAACCCCGGTCTCCCGCGTGACAGGCGGGGATACTCACCA CTATACTAACGACCCTATAGTGAGTCGTATT	lba

Table S2. DNA templates and primers used for PCR and IVT.

Supplementary Figures

Figure S1. Regression plots for dye fluorescence normalization. Each dye $(1 \times)$ was mixed with 100 nM of MH646 as RNA model oligonucleotide (UCCUCGUUAGUAGUAGUGGUGAGUAUCCCCGCCUAUAUC). The initial fluorescence intensity as a function of the excitation power was determined pre-MST with either the NanoBlue laser for SybrGold and RiboGreen or the PicoRed laser for the Syto dyes. Linear regression yielded a slope-derived sensitivity factor (F) for the normalization of fluorescence intensity during structure-activity-relationship experiments.

Figure S2. Structural RNA-dependent effects on F_{norm} . (**A**) Correlation between oligo length and F_{norm} . (**B**) Correlation between oligo length and σF_{norm} . (**C**) Correlation between hybridized base content and F_{norm} . (**D**) Correlation between hybridized base content and σF_{norm} . (**E**) Correlation between loop/bulge content and σF_{norm} . (**E**) Correlation between loop/bulge content and σF_{norm} . (**E**) Correlation between loop/bulge content and σF_{norm} .

Figure S3. RNA sequence-dependent effects on $F_{norm.}$ (**A**) Correlation between adenine content and $F_{norm.}$ (**B**) Correlation between cytosine content and $F_{norm.}$ (**C**) Correlation between guanine content and $F_{norm.}$ (**D**) Correlation between uridine content and $F_{norm.}$

Figure S4. Analysis of RNA-ligand interaction by in situ labelling with SybrGold (1×). (**A**) Interaction between SAM-I RS and SAM (F_{norm} at 1 s). (**B**) SAM-I RS and SAH (F_{norm} at 1 s). (**C**) SAM-VI RS and SAH (F_{norm} at 1 s).

Figure S5. Analysis of RNA-ligand interaction by Cy5-labelled RNA-MST (A) Interaction between SAM-VI RS and SAM (Fnorm at 5 s). (B) SAM-VI RS and SAH (Fnorm at 5 s). (C) PreQ₁ RS and PreQ₁ (Fnorm at 1 s).

Figure S6. Analysis of various modifications of the model oligo CCACAACCAUGGUGAGCAA (100 nM) by MST. (**A**) Thermophoresis curves for the usage of Syto 59 as a reporter dye. (**B**) Thermophoresis curves for the usage of SybrGold as a reporter dye. (**C**) MST response (F_{norm} at 10 s) of the modified oligos in comparison to their unmodified analogues.

Figure S7. Supplementary data for the establishment of the METTL3/14 assay. (**A**) Thermophoresis curves for the METTL3/14 reaction inhibited by the initial addition of SAH (10 μ M). Enzymatic substrate methylation with varying concentrations of SAM as the cofactor. After 2 h of incubation time, the crude reaction mixture was supplemented with the anti-m⁶A antibody and analyzed by SybrGold MST. (**B**) Tritium-based METTL3/14 methyltransferase assay. The Michaelis-Menten plot was derived from radiometric analysis of ³H incorporation into RNA substrate AACUUAAUGUUUGCAUUGGACUUGAGUUA. A *K*_M value (226 nM) was calculated by non-linear regression (Michaelis Menten).

Figure S8. Capillary scans of RNA-ligand interaction samples for the assessment of dye displacement by ligand binding. Capillary scans are presented with increasing concentration corresponding to the MST curves in Figure 4 and Figure S4. (A) PreQ₁ RS vs. PreQ₁. (B) SAM-I RS vs. SAM. (C) SAM-VI RS vs. SAM. (D) Fluoride RS vs. potassium fluoride. (E) AdoCbI RS vs. adenosyl cobalamin. (F) DNMT2 vs. tRNA. (G) Neomycin aptamer vs. neomycin.