Electronic Supplementary Information

Trialkylphosphonium Oxoborates as C(sp³)-H Oxyanion Hole and Their Application in Catalytic Chemoselective Acetalization

Vincent Ming-Yau Leung, Hong-Chai Fabio Wong, Chun-

Man Pook, Ying-Lung Steve Tse,* Ying-Yeung Yeung*

Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Table of Contents

S2	General information
S3-S4	Experimental procedures
S5-S26	Physical data
S27	Catalyst stability test
S28	Solvent screening and temperature effect on the chemoselectivity
S29	NMR titration experiment with TOB-1 and benzyl alcohol
S30	Comparison of the chemical shift of alcohols and thiols
S31-S37	X-ray crystal data of TOB-2
S38-S41	Kinetic study of the acetalization reaction
S42-S65	Computational studies
S66	References
S67-S211	NMR spectra

1. General information

Commercially available reagents were used as received. The solvents were dried over a solvent purification system from Innovative Technology. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AMX500 (500 MHz) spectrometer or a Bruker AMX400 (400 MHz) spectrometer, in CDCl₃ solutions, unless stated otherwise. All chemical shifts were recorded in ppm downfield from tetramethylsilane (stated otherwise. All chemical shifts were recor3 at $\delta = 7.26$) or carbon signals in NMR solvent (CDCl₃ at $\delta = 77.16$). Spin-spin coupling constants (J value) recorded in Hz were measured directly from the spectra. High resolution mass spectra were obtained on a Thermo Q Exactive Focus Orbitrap with ionization mode Electrospray Ionization (Positive) or Atmospheric-pressure Chemical Ionization at the Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region. Analytical thin layer chromatography (TLC) was performed with Merck precoated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel.

2. Experimental procedures

(i) Preparation of catalyst

General procedure: To a round bottom flask equipped with a magnetic stirrer bar was added trialkylphosphine oxide 1 (2 mmol) and anhydrous CH₂Cl₂ (1 mL) at 23 °C under inert atmosphere. Boron trifluoride diethyl etherate (0.54 mL, 4 mmol, 2 equiv) was added dropwise using syringe and the resultant mixture was stirred for 30 minutes. Next, diethyl ether was added, and white precipitate was formed. The solution was filtered, and the residue was washed with diethyl ether (5 mL). The residue was dried under high vacuum to give the **TOB** catalyst.

(ii) TOB-catalyzed acetalization reaction

General procedure: To a solution of alcohol or thiol (0.2 mmol, 1 equiv) and **TOB-1** (0.2 μ mol, 0.1 mol%) in CHCl₃ (0.4 mL) was added 3,4-dihydro-2H-pyran (**2**) (21.9 μ L, 0.24 mmol, 1.2 equiv) or 2,3-dihydrofuran (**4**) (18.1 μ L, 0.24 mmol, 2 equiv) into a vial (or a resealable tube for reactions at 60 °C). The reaction was stirred at 23 °C (or 60 °C) for 18 hours (or otherwise specified). The solution was concentrated under reduced pressure and the residue was purified by flash column chromatography eluted with hexanes/Et₂O (90:10) to give the desired acetal product.

(iii) Scale-up reaction

To a solution of benzyl alcohol (207 μ L, 2.0 mmol, 1 equiv) and **TOB-1** (2.0 μ mol, 0.1 mol%) in CHCl₃ (4.0 mL) was added 3,4-dihydropyran **2** (219 μ L, 2.4 mmol, 1.2 equiv). The reaction was stirred at 23 °C for 18 hours. The solution was concentrated under reduced pressure and the residue was purified by flash column chromatography eluted with hexanes/Et₂O = 90:10 to give the desired acetal product **3a** (0.31 g, 1.63 mmol, 81% yield).

(iv) O/S Chemoselective acetalization

To a solution of alcohol (0.2 mmol, 1 equiv), thiol (0.2 mmol, 1 equiv) and **TOB-1** (0.4 μ mol, 0.2 mol%) in toluene (0.4 mL) was added 3,4-dihydro-2H-pyran (2) (18.1 μ L, 0.2 mmol, 1 equiv) into a vial. The reaction was stirred at 23 °C for 5 days. The reaction mixture was then filtered through a thin plug of silica gel column and the filtrate was concentrated under reduced pressure. The reaction yield and ratio were determined using NMR with dibromomethane (14.0 μ L, 0.2 mmol, 1 equiv) as the internal standard.

3. Physical data

TOB-1

84% yield. White solid. mp 154.7-156.1 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.89 (d, J = 13.5 Hz, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 14.8 (d, J = 71.3 Hz). ¹¹B NMR (160 MHz, CDCl₃): δ -0.93. ¹⁹F NMR (470 MHz, CDCl₃): δ -146.0 (s, 3F). ³¹P NMR (200 MHz, CDCl₃): δ 67.9 (m). FTICR MS (APCI) calcd for [C₃H₉BF₃OP + Cl]⁻: 195.01308, found: 195.01285.

TOB-2

91% yield. White solid. mp 204.2-206.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.23 (qt, J = 12.5 Hz, 2.7 Hz, 3H), 2.00-1.97 (m, 6H), 1.93-1.88 (m, 6H), 1.78 (m, 3H), 1.60-1.51 (m, 6H), 1.36-1.23 (m, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 34.1, 33.6, 26.7 (d, J = 12.5 Hz), 25.8 (d, J = 11.3 Hz). ¹¹B NMR (160 MHz, CDCl₃): δ -1.03. ¹⁹F NMR (470 MHz, CDCl₃): δ -145.9 (s, 3F). ³¹P NMR (200 MHz, CDCl₃): δ 70.1 (m). FTICR MS (APCI) calcd for [C₁₈H₃₃BF₃OP + Cl]⁻: 399.20115, found: 399.20146.

TOB-3¹

95% yield. White solid. mp 243.5-244.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.77-7.70 (m, 9H), 7.60-7.56 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 134.4 (d, J= 2.7 Hz), 133.2 (d, J= 11.7 Hz), 129.4 (d, J= 13.3 Hz), 124.9 (d, J= 111.6 Hz). ¹¹B NMR (160 MHz, CDCl₃): δ -0.46. ¹⁹F NMR (470 MHz, CDCl₃): δ -144.1 (s, 3F). ³¹P NMR (200 MHz, CDCl₃): δ 44.5 (s).

3a

Colorless liquid. 93% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.26 (m, 5H), 4.81 (d, *J* = 15 Hz, 1H), 4.73 (t, *J* = 4.4 Hz, 1H), 4.52 (d, *J* = 15 Hz, 1H), 3.97-3.91 (m, 1H), 3.59-3.54 (m, 1H), 1.93-1.84 (m, 1H), 1.79-1.52 (m, 5H). ¹³C NMR (125 MHz, CDCl₃): δ 138.4, 128.5, 127.9, 127.6, 97.8, 68.9, 62.2, 30.7, 25.6, 19.5. QEFMS calcd for [C₁₂H₁₆O₂Na]⁺: 215.10425, found: 215.10390.

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 4.73 (d, J = 12.3 Hz, 1H), 4.69 (t, J = 3.5 Hz, 1H), 4.45 (d, J = 12.3Hz, 1H), 3.91-3.87 (m, 1H), 3.56-3.52 (m, 1H) 1.89-1.50 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 137.4, 131.1, 129.5, 121.4, 97.9, 68.1, 62.2, 30.6, 25.5, 19.4. QEFMS calcd for [C1₂H₁₅BrO₂Na]⁺: 293.01476, found: 293.01405.

3c

Colorless liquid. 91% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.68-7.65 (m, 2H), 7.11-7.09 (m, 2H), 4.71 (d, *J* = 12.3 Hz, 1H), 4.68 (t, *J* = 3.6 Hz, 1H), 4.45 (d, *J* = 12.4 Hz, 1H), 3.90-3.86 (m, 1H), 3.56-3.52 (m, 1H) 1.87-1.51 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 138.1, 137.5, 129.7, 128.7, 97.9, 68.2, 62.3, 30.6, 25.5, 19.4. QEFMS calcd for [C₁₂H₁₅IO₂Na]⁺: 341.00089, found: 341.00039.

3d

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, J = 7.5 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.24 (dt, J = 25.7 Hz, 7.8 Hz, 2H), 4.86 (d, J = 13.2 Hz, 1H), 4.77 (s, 1H), 4.60 (d, J = 13.2 Hz, 1H), 3.92 (t, J = 10.6 Hz, 1H), 3.57-3.55 (m, 1H), 1.90-1.55 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 136.3, 133.0, 129.3, 129.0, 128.6, 126.8, 98.4, 66.4, 62.2, 30.6, 25.5, 19.4. QEFMS calcd for [C₁₂H₁₅ClO₂Na]⁺: 249.06528, found: 249.06500.

3e

Colorless liquid. 88% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 8.19 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 4.87 (d, J = 13.5 Hz, 1H), 4.72 (t, J = 3.5 Hz, 1H), 4.59 (d, J = 13.5 Hz, 1H), 3.89-3.85 (m, 1H), 3.57-3.53 (m, 1H), 1.89-1.53 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 146.2, 127.9, 127.1, 123.7, 98.4, 67.7, 62.4, 30.5, 25.4, 19.4. QEFMS calcd for [C1₂H₁₅NO₄Na]⁺: 260.08933, found: 260.08915.

3f

Colorless liquid. 93% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.27(d, J = 8 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 4.76 (d, J = 11.8 Hz, 1H), 4.71 (t, J = 3.6 Hz, 1H), 4.48 (d, J = 11.8 Hz, 1H), 3.96-3.92 (m, 1H), 3.58-3.54 (m, 1H), 2.36 (s, 3H) 1.92-1.50 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 137.3, 135.3, 129.1, 128.1, 97.6, 68.8, 62.2, 30.7, 25.6, 21.3, 19.5. QEFMS calcd for [C₁₃H₁₈O₂Na]⁺: 229.11990, found: 229.11954

3g

Colorless liquid. 92% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.30 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.72 (d, J = 11.6 Hz, 1H), 4.69 (t, J = 3.6 Hz, 1H), 4.44 (d, J = 11.6 Hz, 1H), 3.95-3.90 (m, 1H), 3.8 (s, 3H), 3.55 (m, 1H), 1.88-1.50 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 159.2, 130.4, 129.6, 113.9, 97.6, 68.6, 62.3, 55.4, 30.7, 25.6, 19.5. QEFMS calcd for [C1₃H₁₈O₃Na]⁺: 245.11482, found: 229.11456.

3h

Colorless liquid. 93% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 6.60 (d, J = 3.7 Hz, 2H), 4.72 (d, J = 11.9 Hz, 1H), 4.70 (t, J = 3.7 Hz, 1H), 4.43 (d, J = 10.7 Hz, 1H), 3.96-3.91 (m, 1H), 3.86 (s, 6H), 3.83 (s, 3H), 3.58-3.54 (m, 1H), 1.90-1.52 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 153.4, 137.4, 134.0, 105.0, 97.9, 69.2, 62.5, 61.0, 56.2, 30.8, 25.6, 19.7. QEFMS calcd for [C₁₅H₂₂O₅Na]⁺: 305.13594, found: 305.13538.

3i

Colorless liquid. 98% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.29 (t, J = 7.3 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 7.00 (t, J = 7.3 Hz, 1H), 5.43 (s, 1H), 3.93 (t, J = 11.3 Hz, 1H), 3.63-3.60 (m, 1H), 2.06-1.56 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 157.2, 129.5, 121.7, 116.6, 96.4, 62.1, 30.5, 25.3, 18.9. QEFMS calcd for [C₁₁H₁₄O₂Na]⁺: 201.08819, found: 201.08858.

3j

Colorless liquid. 95% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.01-6.94 (m, 4H), 5.32 (t, *J*=3.29 1H), 3.93-3.88 (m, 1H), 3.62-3.58 (m, 1H), 2.07-1.93 (m, 1H), 1.89-1.80 (m, 2H), 1.72-1.58 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 157.9 (d, *J*_{CF} = 237.5 Hz), 153.3 (d, *J*_{CF} = 3.75 Hz), 117.9 (d, *J*_{CF} = 7.5 Hz), 115.9 (d, *J*_{CF} = 22.5 Hz), 97.2, 62.2, 30.5, 25.3, 18.9. ¹⁹F NMR (470 MHz, CDCl₃): δ -122.9 (sept, *J*_{CF} = 4.7 Hz). QEFMS calcd for [C₁₁H₁₃FO₂Na]⁺: 219.07918, found: 219.07886.

3k

Colorless liquid. 95% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.55 (d, J = 7.8 Hz, 2H), 6.83 (d, J = 7.8 Hz, 2H), 5.38 (s, 1H), 3.86 (t, J = 11.2 Hz, 1H), 3.60-3.58 (m, 1H), 2.00-1.58 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 157.0, 138.4, 118.9, 96.4, 84.0, 62.1, 30.3, 25.2, 18.7. QEFMS calcd for [C₁₁H₁₃IO₂Na]⁺: 326.98524, found: 326.98498.

31

Colorless liquid. 83% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.35 (m, 1H), 7.19-7.18 (m, 2H), 6.95-6.89 (m, 1H), 5.50 (t, J = 2.9 Hz, 1H), 3.96-3.90 (m, 1H), 3.64-3.59 (m, 1H), 2.15-2.04 (m, 1H), 2.00-1.95 (m, 1H), 1.92-1.84 (m, 1H), 1.77-1.61 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.7, 130.3, 127.7, 124.0, 122.5, 117.1, 96.9, 62.0, 30.3, 25.3, 18.9. QEFMS calcd for [C₁₁H₁₃ClO₂Na]⁺: 235.04963, found: 235.04948.

3m

Colorless liquid. 74% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.24 (d, J = 12.4 Hz, 1H), 7.13-7.12 (m, 2H), 6.98 (d, J =7.6 Hz, 1H), 5.40 (t, J = 2.8 Hz, 1H), 3.87 (td, J = 10.6 Hz, 2.8Hz, 1H), 3.63-3.59 (m, 1H), 1.99-1.57 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 158.0, 130.6, 124.8, 122.7, 120.0, 115.3, 96.9, 62.1, 30.3, 25.2, 18.7. QEFMS calcd for [C₁₁H₁₃BrO₂Na]⁺: 278.99911, found: 278.99906.

3n

Colorless liquid. 82% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.08 (d, J = 8.3 Hz, 2H), 6.95 (d, J = 8.6 Hz, 2H), 5.37 (t, J = 3.3 Hz, 1H), 3.94-3.89 (m, 1H), 3.61-3.57 (m, 1H), 2.28 (s, 3H), 2.05-1.96 (m, 1H), 1.87-1.83 (m, 2H), 1.71-1.57 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 155.0, 131.0, 130.0, 116.5, 96.7, 62.2, 30.6, 25.4, 20.7, 19.0. QEFMS calcd for [C1₂H₁₆O₂Na]⁺: 215.10425, found: 215.10387.

30

Colorless liquid. 89% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.31 (d, J = 8.7 Hz, 2H), 7.0 (d, J = 8.7 Hz, 2H), 5.41 (s, 1H), 3.95 (t, J = 9.9 Hz, 1H), 3.62-3.60 (m, 1H), 2.03-1.60 (m, 6H), 1.31 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 154.9, 144.3, 126.3, 116.0, 96.5, 62.1, 34.2, 31.6, 30.6, 25.3, 19.0. QEFMS calcd for [C₁₅H₂₂O₂Na]⁺: 257.15120, found: 257.15080.

3p

Colorless liquid. 92% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.29 (m, 1H), 7.21-7.14 (m, 2H), 6.94-6.90 (m, 1H), 5.49 (t, *J* = 2.9 Hz, 1H), 3.95-3.89 (m, 1H), 3.69-3.64 (m, 1H), 2.10-2.01 (m, 1H), 1.95-1.90 (m, 2H), 1.89-1.69 (m, 2H), 1.67-1.61 (m, 1H), 1.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 138.0, 127.3, 126.7, 121.0, 114.4, 96.2, 61.9, 35.0, 30.7, 30.1, 25.5, 19.1. QEFMS calcd for [C₁₅H₂₂O₂Na]⁺: 257.15120, found: 257.15090.

3q

Colorless liquid. 93% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 6.70 (s, 2H), 6.65 (s, 1H), 5.42 (t, *J* = 3.2 Hz, 1H), 3.94 (td, *J* = 9.8 Hz, 3.1 Hz, 1H), 3.63-3.60 (m, 1H), 2.30 (s, 6H) 2.04-1.56 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 157.2, 139.2, 123.5, 114.3, 96.3, 62.1, 30.6, 25.4, 21.5, 18.9. QEFMS calcd for [C₁₃H₁₈O₂Na]⁺: 229.11990, found: 229.11988.

3r

Colorless liquid. 71% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 6.80 (s, 1H), 6.66 (s, 1H), 5.40 (s, 1H), 3.92 (td, *J* = 9.9 Hz, 2.6 Hz, 1H), 3.64-3.60 (m, 1H), 2.28 (s, 3H), 2.25 (s, 3H), 2.16 (s, 3H), 2.06-2.01 (m, 1H), 1.90-1.88 (m, 2H), 1.74-1.61 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 154.9, 137.6, 135.6, 124.0, 122.7, 112.9, 96.4, 62.1, 30.8, 25.5, 21.4, 20.2, 19.1, 11.6. QEFMS calcd for [C₁₄H₂₀O₂Na]⁺: 243.13555, found: 243.13525.

3s

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.00 (d, J = 7.9 Hz, 2H), 6.82 (d, J = 7.9 Hz, 2H), 5.30 (s, 1H), 3.94 (t, J = 11.1 Hz, 1H), 3.76 (s, 3H), 3.60-3.58 (m, 1H), 2.00-1.55 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 154.6, 151.2, 117.9, 114.6, 97.4, 62.2, 55.7, 30.6, 25.3, 19.0. QEFMS calcd for [C₁₂H₁₆O₃Na]⁺: 231.09917, found: 231.09923.

3t

Colorless liquid. 86% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.3 Hz, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.02 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 5.32 (t, J = 3.1 Hz, 1H), 5.03 (s, 2H) 3.96 (td, J = 12.0 Hz, 2.9 Hz, 1H), 3.63-3.59 (m, 1H), 2.07-1.60 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 153.8, 151.4, 137.4, 128.6, 128.0, 127.6, 117.8, 115.7, 97.4, 70.6, 62.2, 30.6, 25.4, 19.0. QEFMS calcd for [C₁₈H₂₀O₃Na]⁺: 307.13047, found: 307.13000.

3u

Colorless liquid. 70% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.41 (m, 1H), 6.33 (d, J = 2.5 Hz, 2H), 4.71 (m, 1H), 4.67 (d, J = 12.8 Hz, 1H), 4.49 (d, J = 12.8 Hz, 1H) 3.90 (t, J = 10.2 Hz, 1H), 3.55 (m, 1H), 1.87-1.80 (m, 1H), 1.74-1.69 (m, 1H), 1.63-1.59 (m, 2H), 1.54-1.52 (m, 2H) . ¹³C NMR (125 MHz, CDCl₃): δ 151.9, 142.9, 110.4, 109.4, 97.4, 62.1, 60.7, 30.5, 25.5., 19.3. QEFMS calcd for [C₁₀H₁₄O₃Na]⁺: 205.08352, found: 205.08313.

3v

Colorless liquid. 65% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 2.1 Hz, 1H), 7.66 (dd, J = 8.2, 2.4 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 4.76 (d, J = 12.4 Hz, 1H), 4.67 (t, J = 3.4 Hz, 1H), 4.48 (d, J = 12.4 Hz, 1H), 3.88-3.82 (m, 1H), 3.56-3.51 (m, 1H), 1.87-1.70 (m, 2H), 1.66-1.52 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 150.7, 149.1, 138.5, 132.9, 124.1, 98.3, 65.7, 62.4, 30.5, 25.4, 19.3. QEFMS calcd for [C₁₁H₁₄NO₂Cl+H]⁺: 228.07858, found: 228.07822.

3w

Colorless liquid. 69% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (dd, J = 7.6, 0.5 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 4.4 Hz, 1H), 7.45 (td, J = 7.4, 1.3 Hz, 1H), 7.33 (td, J = 7.7, 0.8 Hz, 1H), 7.25 (d, J = 4.1 Hz, 2H), 5.74 (t, J = 3.1 Hz, 1H), 4.03 (td, J = 11.4, 3.0 Hz, 1H), 3.64 (dtd, J = 11.2, 3.8, 1.1 Hz, 1H), 2.22-2.05 (m, 2H), 2.01-1.93 (m, 1H), 1.79-1.63 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 146.2, 142.7, 127.2, 126.2, 124.6, 123.5, 122.8, 120.8, 114.7, 114.0, 112.1, 97.5, 62.2, 30.4, 25.3, 18.7. QEFMS calcd for [C₁₇H₁₆O₃Na]⁺: 291.09917, found: 291.09847.

3x

Colorless liquid. 99% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 4.57 (dd, J = 2.7, 4.5 Hz, 1H), 3.89-3.83 (m, 1H), 3.81-3.77 (m, 1H), 3.51-3.40 (m, 2H), 1.88-1.76 (m, 1H), 1.74-1.66 (m, 1H), 1.60-1.48 (m, 4H), 1.21 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 98.8, 63.0, 62.6, 30.9, 25.6, 19.9, 15.3. QEFMS calcd for [C₇H₁₄O₂Na]⁺: 153.08860, found: 183.08840.

3y

Colorless liquid. 99% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 4.56 (t, J = 2.6 Hz, 1H), 3.88-3.83 (m, 1H), 3.72 (dt, J = 9.6 Hz, 6.8 Hz, 1H), 3.51-3.46 (m, 1H), 3.37 (dt, J = 9.6 Hz, 6.8 Hz, 1H), 1.85-1.77 (m, 1H), 1.73-1.67 (m, 1H), 1.60-1.47 (m, 6H), 1.42-1.33 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 98.9, 67.5, 62.4, 32.0, 30.9, 25.6, 19.8, 19.6, 14.0. QEFMS calcd for [C₉H₁₈O₂Na]⁺: 181.1199, found: 181.1197.

3z

Colorless liquid. 90% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 4.64 (t, J = 3.7 1H), 3.90 (sept, J = 3.6 Hz, 1H), 3.78 (sept, J = 4.2 Hz, 1H), 1.98-1.93 (m, 1H), 1.86-1.81 (m, 2H), 1.72-1.61 (m, 5H), 1.59-1.49 (m, 9H), 1.42-1.34 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 96.9, 76.8, 62.9, 35.8, 33.4, 31.5, 28.4, 28.2, 25.7, 23.3, 23.0, 20.2. QEFMS calcd for [C₁₂H₂₂O₂Na]⁺: 221.15120, found: 221.15098.

3aa

Colorless liquid. 70% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 5.88-5.80 (m, 1H), 5.10 (d, J = 17.2 Hz, 1H), 5.03 (d, J = 10.3 Hz, 1H), 4.59 (t, J = 3.5 Hz, 1H), 3.86 (t, J = 9.3 Hz, 1H), 3.78 (q, J = 7.1 Hz, 1H), 3.52-3.43 (m, 2H), 5.10 (q, J = 17 Hz, 2H), 1.85-1.79 (m, 1H), 1.74-1.68 (m, 1H), 1.61-1.50 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 135.4, 116.4, 98.9, 66.9, 62.4, 34.3, 30.8, 25.6, 19.7. QEFMS calcd for [C₉H₁₆O₂Na]⁺: 179.10425, found: 179.10409.

3ab

Colorless liquid. 92% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 5.80 (sext, J = 8.1 Hz, 1H), 4.99 (d, J = 17.2 Hz, 1H), 4.93 (d, J = 10.2 Hz, 1H), 4.56 (s, 1H), 3.85 (t, J = 9.5 Hz, 1H), 3.73 (q, J = 7.7 Hz, 1H), 3.48 (t, J = 5.5 Hz, 1H), 3.37 (q, J = 7.5 Hz, 1H), 2.07 (q, J = 7.1 Hz, 2H), 1.81 (q, J = 8.8 Hz, 1H), 1.69 (t, J = 11.1 Hz, 1H), 1.63-1.45 (m, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 138.9, 114.6, 98.9, 67.5, 62.4, 33.7, 30.9, 29.3, 25.7, 25.6, 19.8. QEFMS calcd for [C₁₁H₂₀O₂Na]⁺: 207.13555, found: 207.13535.

3ac

Colorless liquid. 94% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 4.64 (t, J = 3.4 Hz, 1H), 3.89-3.80 (m, 2H), 3.58-3.48 (m, 2H), 2.48 (td, J = 7 Hz, 2.5 Hz, 2H), 1.97 (t, J = 2.4 Hz, 1H), 1.85-1.50 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 98.9, 81.6, 69.3, 65.6, 62.3, 30.6, 25.5, 20.1, 19.5. QEFMS calcd for [C₉H₁₄O₂Na]⁺: 177.08860, found: 177.08848.

5a

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.38 (m, 4H), 7.26 (m, 1H), 5.23 (d, J = 4.4 Hz, 1H), 4.73 (d, J = 11.9 Hz, 1H), 4.49 (d, J = 11.9 Hz, 1H), 3.99-3.89 (m, 2H), 2.09-1.82 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 138.4, 128.5, 128.0, 127.6, 103.2, 68.9, 67.1, 32.4, 23.6. QEFMS calcd for [C₁₁H₁₄O₂Na]⁺: 201.08860, found: 201.08832.

5b

Colorless liquid. 94% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, J = 7.6 Hz, 2H), 7.21 (d, J = 7.7 Hz, 2H), 5.19 (s, 1H), 4.65 (d, J = 12.2 Hz, 1H), 4.45 (d, J = 12.1 Hz, 1H), 3.91 (sext, J = 7.2 Hz, 2H), 2.05-1.81 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 137.5, 131.5, 129.5, 121.4, 103.3, 68.1, 67.2, 32.5, 23.5. QEFMS calcd for [C₁₁H₁₃BrO₂Na]⁺: 278.99911, found: 278.99890.

5c

Colorless liquid. 97% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, J = 7.5 Hz, 2H), 7.08 (d, J = 7.6 Hz, 2H), 5.19 (s, 1H), 4.64 (d, J = 12.2 Hz, 1H), 4.41 (d, J = 12.2 Hz, 1H), 3.91 (sext, J = 7.3 Hz, 2H), 2.05-1.80 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 138.2, 137.5, 129.8, 103.3, 93.0, 68.1, 67.2, 32.4, 23.5. QEFMS calcd for [C₁₁H₁₃IO₂Na]⁺: 326.98524, found: 326.98447.

5d

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, J = 7.4 Hz, 1H), 7.34 (d, J = 7.5 Hz, 1H), 7.28-7.19 (m, 2H), 5.26 (d, J = 4.1 Hz, 1H) 4.80 (d, J = 13.0 Hz, 1H), 4.57 (d, J = 13.0 Hz, 1H), 3.94 (dq, J = 5.1 Hz, 7 Hz, 2H), 2.08-1.85 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 136.3, 133.2, 129.4, 129.3, 128.7, 126.8, 103.7, 67.3, 66.2, 32.5, 23.5. QEFMS calcd for [C₁₁H₁₃ClO₂Na]⁺: 235.04963, found: 235.04924.

5e

Colorless liquid. 92% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 8.17(d, J = 7.9 Hz, 2H), 7.48 (d, J = 7.9Hz, 2H), 5.21 (s, 1H), 4.79 (d, J = 13.5 Hz, 1H), 4.56 (d, J = 13.4 Hz, 1H), 3.91 (sext, J = 7.5 Hz, 2H), 2.07-1.87 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 147.3, 146.4, 127.9, 123.6, 103.8, 67.6, 67.4, 32.5, 23.5. QEFMS calcd for [C₁₁H₁₃NO₄Na]⁺: 246.07368, found: 246.07359.

5f

Colorless liquid. 87% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.25 (d, J = 7.6 Hz, 2H), 7.16 (d, J = 7.7 Hz, 2H), 5.22 (s, 1H), 4.69 (d, J = 11.7 Hz, 1H), 4.45 (d, J = 11.6 Hz, 1H), 3.91 (dq, J = 26.1 Hz, 7.2 Hz, 2H), 2.35 (s, 3H), 2.08-1.81 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 137.3, 135.3, 129.1, 128.1, 103.0, 68.7, 67.1, 32.4, 23.6, 21.2. QEFMS calcd for [C1₂H₁₆O₂Na]⁺: 215.10425, found: 216.10402.

5g

Colorless liquid. 98% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.27 (d, J = 8.2 Hz, 2H), 6.88 (d, J = 7.6 Hz, 2H), 5.20 (s, 1H) 4.65 (d, J = 11.4 Hz, 1H), 4.41 (d, J = 11.4 Hz, 1H), 3.92 (sept, J = 7.3 Hz, 2H), 3.8 (s, 3H), 2.07-1.80 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 159.2, 130.5, 129.6, 113.8, 102.9, 68.5, 67.1, 55.4, 32.4, 23.6. QEFMS calcd for [C₁₂H₁₆O₃Na]⁺: 231.09859, found: 231.09917.

5h

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 6.5 (s, 2H), 5.22 (t, *J* = 3.2 Hz, 1H), 4.63 (d, *J* = 11.7 Hz, 1H), 4.40 (d, *J* = 11.7 Hz, 1H), 3.98-3.89 (m, 2H), 3.86 (s, 6H), 3.82 (s, 3H), 2.07-1.82 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 153.4, 137.4, 134.0, 105.0, 103.2, 69.2, 67.2, 60.9, 56.2, 32.5, 23.6. QEFMS calcd for [C1₄H₂₀O₅Na]⁺: 291.12029, found: 291.11961.

5i

Colorless liquid. 96% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.28 (t, *J* = 7.6 Hz, 2H), 7.03 (d, *J* = 7.9 Hz, 2H), 6.98 (t, *J* = 7.4 Hz, 1H), 5.81 (d, *J* = 4.7 Hz, 1H), 4.07-4.03 (m, 1H), 3.97-3.93 (m, 1H), 2.21-2.10 (m, 3H), 1.99-1.90 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 157.3, 129.5, 121.6, 116.6, 102.4, 68.2, 32.8, 23.6. QEFMS calcd for [C₁₀H₁₂O₂Na]⁺: 187.07295, found: 187.07261.

5j

Colorless liquid. 71% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 6.99-6.94 (m, 4H), 4.76 (d, J = 4.8 Hz, 1H), 4.07-4.02 (m, 1H), 3.97-3.92 (m, 1H), 2.21-2.06 (m, 3H), 1.99-1.89 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 158.0 (d, $J_{CF} = 237.5$ Hz), 153.4 (d, $J_{CF} = 1.25$ Hz), 118.0 (d, $J_{CF} = 8.75$ Hz), 115.84 (d, $J_{CF} = 22.5$ Hz), 103.1, 68.1, 32.8, 23.5. ¹⁹F NMR (470 MHz, CDCl₃): δ -123.0 (sext, $J_{CF} = 4.7$ Hz). QEFMS calcd for [C₁₀H₁₁FO₂Na]⁺: 205.06353, found: 205.06357.

5k

Colorless liquid. 88% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.54 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 5.74 (d, J = 4.6 Hz, 1H), 4.02 (q, J = 7.6 Hz, 1H), 3.94 (q, J = 7.9 Hz, 1H), 2.19-1.92 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 157.2, 138.2, 119.0, 102.4, 84.0, 68.3, 32.8, 23.5. QEFMS calcd for [C₁₀H₁₁IO₂Na]⁺: 312.96959, found: 312.96946.

51

Colorless liquid. 72% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.52 (dd, J = 7.9 Hz, 1.5 Hz, 1H), 7.23-7.18 (m, 2H), 6.87 (td, J = 7.9 Hz, 1.7 Hz, 1H), 5.82 (d, J = 4.5 Hz, 1H), 4.10 (dt, J = 8.1 Hz, 5.6 Hz, 1H), 3.96 (q, J =6.7 Hz, 1H), 2.35-1.93 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 153.8, 133.3, 128.5, 123.0, 117.4, 113.7, 103.5, 68.5, 32.9, 23.4. QEFMS calcd for [C₁₀H₁₁ClO₂Na]⁺: 221.0339, found: 221.0336.

5m

Colorless liquid. 94% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.35 (dd, J = 7.9 Hz, 6.5 Hz, 1H), 7.23 (m, 2H), 6.95-6.91 (m, 1H), 5.81 (d, J = 4.5 Hz, 1H), 4.10 (dd, J = 13.8 Hz, 5.8 Hz, 1H), 3.97 (dd, J =14.3 Hz, 7.7 Hz, 1H), 2.34-2.29 (m, 1H), 2.27-2.10 (m, 2H), 2.00-1.93(m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 152.9, 130.3, 127.7, 124.2, 122.6, 117.6, 103.5, 68.5, 32.9, 23.4. QEFMS calcd for [C₁₀H₁₁BrO₂Na]⁺: 264.98346, found: 264.98317.

5n

Colorless liquid. 85% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.22 (d, J = 9.0 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 5.37 (t, J = 3.2 Hz, 1H), 3.90-3.85 (m, 1H), 3.62-3.57 (m, 1H), 2.03-1.95 (m, 1H), 1.87-1.84 (m, 2H), 1.73-1.56 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 155.8, 129.4, 126.6, 117.9, 96.7, 62.1, 30.4, 25.3, 18.8. QEFMS calcd for [C₁₁H₁₄O₂Na]⁺: 201.08860, found: 201.08839.

50

Colorless liquid. 99% Isolated yield, 33% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.29 (dt, J = 8.8 Hz, 2.1 Hz, 2H), 6.96 (dt, J = 8.8 Hz, 2.2 Hz, 2H), 5.80 (d, J = 4.8Hz, 1H), 4.06-4.02 (m, 1H), 3.96-3.92 (m, 1H), 2.20-1.89 (m, 4H), 1.29 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 154.9, 144.3, 126.3, 116.0, 102.4, 68.1, 34.2, 32.8, 31.6, 23.6. QEFMS calcd for [C14H20O2Na]⁺: 243.13555, found: 243.13538.

5p

Colorless liquid. 75% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 1H), 7.23-7.15 (m, 2H), 6.94-6.90 (m, 1H), 5.87 (d, *J* = 4.6 Hz, 1H), 4.09-4.04 (m, 1H), 4.01-3.96 (m, 1H), 2.30 (m, 3H), 2.05-1.97 (m, 1H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 138.2, 127.1, 126.7, 121.0, 114.6, 101.8, 68.0, 34.9, 32.9, 30.0, 23.7. QEFMS calcd for [C₁₄H₂₀O₂Na]⁺: 243.13555, found: 243.13533.

5q

Colorless liquid. 81% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 6.69 (s, 2H), 6.65 (s, 1H), 5.81 (d, J = 4.8 Hz, 1H), 4.09-4.04 (m, 1H), 3.98-3.93 (m, 1H), 2.30 (s, 6H), 2.20-1.92 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 157.2, 139.2, 123.4, 114.3, 102.2, 68.1, 32.8, 23.6, 21.5. QEFMS calcd for [C₁₂H₁₆O₂Na]⁺: 215.10425, found: 215.10431.

Colorless liquid. 97% Isolated yield, 31% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 6.85 (s, 1H), 6.67 (s, 1H), 5.79 (d, J = 4.7 Hz, 1H), 4.09 (q, J = 6.0 Hz, 1H), 3.97 (q, J = 6.2 Hz, 1H) 2.30 (s, 3H), 2.25-2.11 (m, 9H), 1.99-1.96 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 155.1, 137.7, 135.6, 124.1, 123.0, 113.5, 102.8, 68.0, 32.9, 23.7, 21.4, 20.2, 11.7. QEFMS calcd for [C₁₃H₁₈O₂Na]⁺: 229.11990, found: 229.11983.

5s

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 6.97 (dd, J = 6.7 Hz, 2.3 Hz, 2H), 6.82 (dd, J = 6.7 Hz, 2.3 Hz, 2H), 5.70 (t, J = 4.8 Hz, 1H), 4.07-4.03 (m, 1H), 3.96-3.90 (m, 1H), 3.76 (s, 3H), 2.18-1.90 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 154.7, 151.2, 118.0, 114.7, 103.3, 68.0, 55.8, 32.8, 23.6. QEFMS calcd for [C₁₁H₁₄O₃Na]⁺: 217.08352, found: 217.08356.

5t

Colorless liquid. 89% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, J = 7.1 Hz, 2H), 7.40 (t, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 7.00 (dd, J = 6.7 Hz, 2.35 Hz, 2H), 6.92 (dd, J = 6.7 Hz, 2.35 Hz, 2H), 5.73 (d, J = 4.8 Hz, 1H), 5.03 (s, 2H), 4.10-4.05 (m, 1H), 3.98-3.94 (m, 1H), 2.20-1.91 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 153.8, 151.5, 137.4, 128.6, 128.6, 127.9, 127.6, 118.0, 115.8, 70.6, 67.9, 32.7, 23.5. QEFMS calcd for [C₁₇H₁₈O₃Na]⁺: 293.11482, found: 293.11440.

5u

Colorless liquid. 70% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.40 (s, 1H), 6.32 (m, 2H), 5.21 (t, *J* = 3.0 Hz, 1H), 4.60 (d, *J* = 12.8 Hz, 1H), 4.46 (d, *J* = 12.8 Hz, 1H), 3.92 (m,2H), 2.05-1.97 (m, 1H), 1.95-1.91 (m, 2H), 1.87-1.79 (m, 1H) . ¹³C NMR (125 MHz, CDCl₃): δ 151.9, 142.9, 110.4, 109.3, 102.8, 67.2, 60.7, 32.4, 25.5. QEFMS calcd for [C₉H₁₂O₃Na]⁺: 191.06787, found: 191.06778.

5v

Colorless liquid. 65% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, J = 1.9 Hz, 1H), 7.61 (dd, J = 8.2, 2.2 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 5.18 (t, J = 2.8 Hz, 1H), 4.67 (d, J = 12.2 Hz, 1H), 4.45 (d, J = 12.2 Hz, 1H), 3.89 (t, J = 6.3 Hz, 2H), 2.05-1.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 149.1, 138.4, 133.1, 124.1, 103.6, 67.4, 65.5, 32.5, 23.5. QEFMS calcd for [C₁₀H₁₂NO₂Cl+H]⁺: 214.06293, found: 214.06257.

5w

Colorless liquid. 69% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 7.7 Hz, 1H), 7.63-7.59 (m, 2H), 7.45 (t, J = 8.2 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.28-7.26 (m, 2H), 6.10 (d, J = 4.8 Hz, 1H), 4.17 (q, J = 8.0 Hz, 1H), 4.03 (q, J = 7.7 Hz, 1H), 2.49-2.40 (m, 1H), 2.35-2.10 (m, 2H), 2.08-1.96 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 156.2, 146.2, 142.8, 127.2, 126.1, 124.6, 123.5, 122.8, 120.8, 114.6, 114.0, 112.0, 103.6, 68.5, 32.9, 23.5. QEFMS calcd for [C₁₆H₁₄O₃Na]⁺: 277.08352, found: 277.08289.

5x

Colorless liquid. 95% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 5.07 (q, J = 3.3 Hz, 1H), 3.87-3.78 (m, 2H), 3.69-3.62 (m, 1H), 3.41-3.35 (m, 1H), 1.99-1.73 (m, 4H), 1.14 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 103.8, 67.0, 62.8, 32.5, 23.7, 15.4. QEFMS calcd for [C₆H₁₂O₂Na]⁺: 139.07295, found: 139.07284.

5y

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 5.1 (dd, J = 4.8 Hz, 1.6 Hz, 1H), 3.90-3.82 (m, 2H), 3.65 (dt, J = 9.6 Hz, 6.8 Hz, 1H), 3.36 (dt, J = 9.6 Hz, 6.7 Hz, 1H), 2.03-1.77 (m, 4H) , 1.56-1.51, (m, 2H), 1.39-1.31(m, 2H), 0.91 (t, J = 7.4 Hz 3H). ¹³C NMR (125 MHz, CDCl₃): δ 103.9, 67.1, 66.9, 32.5, 32.0, 23.7, 19.5, 14.0. QEFMS calcd for [C₈H₁₆O₂Na]⁺: 167.10425, found: 167.10419.

5z

Colorless liquid. 92% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 5.20 (d, J = 4.8 1H), 3.89-3.79 (m, 2H), 3.69 (sept, J = 4.3, 1H), 2.02-1.93 (m, 1H), 1.92-1.74 (m, 5H), 1.64-1.46 (m, 8H), 1.40-1.33 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 102.0, 76.9, 66.6, 35.9, 33.8, 32.7, 28.4, 28.2, 23.7, 23.2, 23.0. QEFMS calcd for [C₁₁H₂₀O₂Na]⁺: 207.13555, found: 207.13549.

5aa

Colorless liquid. 94% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 5.85-5.77 (m, 1H), 5.12-5.07 (m, 2H), 5.03-5.01 (m, 1H), 3.87 (dq, J = 18.5 Hz, 7.9 Hz, 2H), 3.87 (dt, J = 13.9 Hz, 6.9 Hz, 1H), 3.43 (dt, J = 9.6 Hz, 6.9 Hz, 1H), 2.32 (q, J = 6.8 Hz, 2H), 2.02-1.78 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 135.5, 116.3, 103.9, 67.0, 66.6, 34.3, 32.5, 23.6. QEFMS calcd for [C₈H₁₄O₂Na]⁺: 165.08860, found: 165.08851.

5ab

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 5.84-5.75 (m, 1H), 5.09 (dd, J = 1.5 Hz, 4.7 Hz, 1H), 5.01-4.97 (m, 1H), 4.94-4.91 (m, 1H), 3.90-3.82 (m, 2H), 3.64 (dt, J = 6.8 Hz, 9.6 Hz, 1H), 3.36 (dt, J = 6.8 Hz, 9.6 Hz, 1H), 2.06 (q, J = 7.3 Hz, 2H), 2.01-1.81 (m, 4H), 1.57 (quin, J = 6.6 Hz, 2H), 1.42 (quin, J = 7.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 138.9, 114.6, 103.9, 67.1, 66.9, 33.6, 32.4, 29.3, 25.6, 23.6. QEFMS calcd for [C₁₀H₁₈O₂Na]⁺: 193.11990, found: 193.11995.

5ac

Colorless liquid. 97% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 5.14 (t, J = 2.8 Hz, 1H), 3.92-3.83 (m, 2H), 3.77-3.72 (m, 1H), 3.56-3.51 (m, 1H), 2.44 (sext, J = 2.5 Hz, 2H), 2.03-1.95 (m, 2H), 1.93-1.89 (m, 2H), 1.85-1.77 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 104.0, 81.6, 69.2, 67.1, 65.3, 32.4, 23.5, 20.1. QEFMS calcd for [C₈H₁₂O₂Na]⁺: 163.07295, found: 163.07270.

6a

Colorless liquid. 88% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 5.14 (dd, J = 6.1, 2.1 Hz, 1H), 4.20-4.15(m, 1H), 3.59-3.54 (m, 1H), 2.32 (s, 3H), 2.05-1.98 (m, 1H), 1.90-1.77 (m, 2H), 1.68-1.58 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 137.1, 131.8, 131.5, 129.7, 85.8, 64.7, 31.7, 25.7, 21.8, 21.2. QEFMS calcd for [C₁₂H₁₆OSNa]⁺: 231.08141, found: 231.08107.

6b

Colorless liquid. 89% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.54 (m, 1H), 7.18-7.10 (m, 3H), 5.21 (dd, *J* = 5.6 Hz, 1.8 Hz, 1H), 4.20-4.14 (m, 1H), 3.63-3.58 (m, 1H), 2.40 (s, 3H), 2.09-2.02 (m, 1H), 1.95-1.84 (m, 2H), 1.71-1.59 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.3, 135.1, 130.4, 130.1, 126.6, 126.5, 84.6, 64.7, 31.9, 25.7, 21.8, 20.9. QEFMS calcd for [C₁₂H₁₆OSNa]⁺: 231.08141, found: 231.08113.

6c

Colorless liquid. 96% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 5.17 (d, J = 9.6 Hz, 1H), 4.21-4.16 (m, 1H), 3.61-

3.55 (m, 1H), 2.06-1.99 (m, 1H), 1.91-1.79 (m, 2H), 1.68-1.58 (m, 3H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 150.1, 131.8, 131.2, 126.0, 85.7, 64.6, 34.6, 31.7, 31.4, 25.7, 21.8. QEFMS calcd for [C₁₅H₂₂OSNa]⁺: 273.12836, found: 273.12806.

6d

Colorless liquid. 79% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.40 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.6 Hz, 2H), 5.17 (t, J = 5.8 Hz, 1H), 4.17-4.13 (m, 1H), 3.60-3.56 (m, 1H), 2.05-1.99 (m, 1H), 1.88-1.78 (m, 2H), 1.68-1.60 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 134.0, 132.9, 132.3, 129.0, 85.4, 64.6, 31.6, 25.6, 21.7. QEFMS calcd for [C₁₁H₁₃ClOSNa]⁺: 251.02678, found: 251.02649.

6e

Colorless liquid. 99% Isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 4.87 (dd, J = 6.7 Hz, 3.1 Hz, 1H), 4.11-4.07 (m, 1H), 3.53-3.48 (m, 1H), 2.72-2.54 (m, 2H), 1.95-1.90 (m, 1H), 1.85-1.80 (m, 1H), 1.71-1.65 (m, 1H), 1.61-1.53 (m, 3H), 1.28 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 82.1, 64.9, 31.6, 25.8, 24.5, 22.0, 15.2. QEFMS calcd for [C₇H₁₄SONa]⁺: 169.06576, found: 169.06565.

6f

Colorless liquid. 97% Isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.21 (m, 4H), 7.18-7.14 (m, 1H), 4.63 (dd, J = 6.4 Hz, 2.7 Hz, 1H), 4.07-4.02 (m, 1H), 3.78 (d, J = 13.2 Hz, 1H), 3.64 (d, J = 13.2 Hz, 1H), 3.46-3.40 (m, 1H), 1.82-1.68 (m, 2H), 1.60-1.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 129.1, 128.6, 126.9, 80.6, 64.4, 34.0, 30.9, 25.8, 21.7. QEFMS calcd for [C₁₂H₁₆OSNa]⁺: 231.08141, found: 231.08119.

3. Catalyst stability test

4. Solvent screening and temperature effect on the chemoselectivity

BnOH +	0 2 TOB-1 (0.1 mol%) Solvent, 18 h, 23 °C 3a	Bn
Entry	Solvent	Yield [%]
1	CHCl ₃ (no catalyst)	0
2	CHCl₃	93
3	CH ₂ Cl ₂	40
4	(CH ₂ Cl) ₂	50
5	THF	0
6	Acetone	14
7	MeCN	49
8	<i>n</i> -Hexane	17
9	PhMe	30

Table S1. Solvent screening^a

 $^{\circ}$ Reaction were carried out with benzyl alcohols (0.20 mmol), 3,4-dihydro-2H-pyran (2) (0.24 mmol) and TOB-1 (0.1 mol%) in solvent (0.4 mL) at 23 $^{\circ}$ C for 18 h. The yields were measured in NMR with dibromomethane as the internal standard.

Scheme S1. Study on the temperature effect on the chemoselective acetalization

5. NMR titration experiment with TOB-1 and benzyl alcohol

Figure S2. NMR titration experiment with TOB-1 and benzyl alcohol

Note: **TOB-1** catalyst (8.0 mg, 0.05 mmol, 1 equiv) was dissolved in $CDCl_3$ (0.4 mL) and the ¹H, ¹¹B and ³¹P NMR spectra were obtained. Different amount of benzyl alcohol was then added and the ¹H, ¹¹B and ³¹P NMR were obtained after each addition.

6. Comparison of the chemical shift of alcohols and thiols

Figure S3. Comparison of the chemical shift of alcohols and thiols in the presence of **TOB-1**

Note: **TOB-1** catalyst (8.0 mg, 0.05 mmol, 1 equiv) was dissolved in CDCl₃ (0.4 mL) and alcohol or thiol (0.5 mmol, 10 equiv) was added. ¹H NMR experiments were then carried out on these samples.

7. X-ray crystal data of TOB-2

Figure S4. X-ray crystal packing of TOB-2 (CCDC 2209696)

Crystal data and structure refinement for TOB-2 .		
Identification code	vinn1173pcy3obf3	
Empirical formula	C18 H33 B F3 O P	
Formula weight	364.22	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 7.9919(7) Å	α= 90°.
	b = 13.6548(12) Å	β= 94.856(3)°.
	c = 18.5379(18) Å	$\gamma = 90^{\circ}.$
Volume	2015.7(3) Å ³	
Z	4	
Density (calculated)	1.200 Mg/m ³	
Absorption coefficient	0.165 mm ⁻¹	
F(000)	784	
Crystal size	0.400 x 0.300 x 0.200 mm ³	
Theta range for data collection	2.662 to 25.248°.	
Index ranges	-9<=h<=8, -16<=k<=16, -22<=	=l<=22
Reflections collected	20181	
Independent reflections	3631 [R(int) = 0.0290]	
Completeness to theta = 25.242°	99.3 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.7456 and 0.6570	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3631 / 0 / 245	
Goodness-of-fit on F ²	1.056	
Final R indices [I>2sigma(I)]	R1 = 0.0469, wR2 = 0.1258	
R indices (all data)	R1 = 0.0610, wR2 = 0.1410	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.374 and -0.189 e.Å ⁻³	

	X	У	Z	U(eq)
B(1)	6916(4)	3907(3)	3335(2)	92(1)
O(1)	5534(2)	4635(1)	3382(1)	64(1)
P(1)	3688(1)	4789(1)	3121(1)	41(1)
C(1)	3164(3)	6029(2)	3379(1)	53(1)
C(2)	4279(4)	6443(2)	3993(2)	83(1)
C(3)	3945(4)	7523(2)	4102(2)	90(1)
C(4)	2090(5)	7714(2)	4178(2)	101(1)
C(5)	983(4)	7291(2)	3588(2)	77(1)
C(6)	1318(3)	6209(2)	3472(1)	59(1)
C(7)	2363(2)	3908(1)	3522(1)	45(1)
C(8)	2498(3)	2874(2)	3215(1)	59(1)
C(9)	1327(3)	2175(2)	3571(2)	74(1)
C(10)	1648(4)	2176(2)	4389(2)	86(1)
C(11)	1546(3)	3193(2)	4695(1)	77(1)
C(12)	2726(3)	3893(2)	4348(1)	63(1)
C(13)	3405(3)	4703(1)	2146(1)	46(1)
C(14)	4599(3)	5383(2)	1778(1)	73(1)
C(15)	4412(4)	5244(2)	961(2)	85(1)
C(16)	2623(5)	5378(2)	656(1)	86(1)
C(17)	1449(4)	4715(2)	1018(1)	80(1)
C(18)	1598(3)	4857(2)	1834(1)	57(1)
F(1)	6354(5)	3245(4)	2780(2)	105(2)
F(2)	8272(6)	4347(5)	3165(6)	154(4)
F(3)	7084(11)	3387(6)	3951(3)	146(4)
F(1')	6682(18)	3102(8)	3440(30)	298(18)
F(2')	7850(20)	4271(15)	2848(12)	205(9)
F(3')	8027(18)	4318(18)	3929(9)	202(8)

Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **TOB-2**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

B(1)-F(1')	1.134(10)
B(1)-F(2)	1.302(6)
B(1)-F(2')	1.317(16)
B(1)-F(3)	1.341(6)
B(1)-F(1)	1.414(6)
B(1)-F(3')	1.466(13)
B(1)-O(1)	1.494(4)
O(1)-P(1)	1.5275(14)
P(1)-C(7)	1.8045(19)
P(1)-C(13)	1.805(2)
P(1)-C(1)	1.819(2)
C(1)-C(2)	1.496(3)
C(1)-C(6)	1.520(3)
C(2)-C(3)	1.515(4)
C(3)-C(4)	1.524(5)
C(4)-C(5)	1.466(4)
C(5)-C(6)	1.520(3)
C(7)-C(8)	1.529(3)
C(7)-C(12)	1.534(3)
C(8)-C(9)	1.526(3)
C(9)-C(10)	1.516(4)
C(10)-C(11)	1.506(4)
C(11)-C(12)	1.522(3)
C(13)-C(18)	1.524(3)
C(13)-C(14)	1.533(3)
C(14)-C(15)	1.520(4)
C(15)-C(16)	1.503(4)
C(16)-C(17)	1.502(4)
C(17)-C(18)	1.521(3)
F(1')-B(1)-F(2')	126.4(18)
F(2)-B(1)-F(3)	115.2(5)
F(2)-B(1)-F(1)	109.8(6)
F(3)-B(1)-F(1)	106.5(5)
F(1')-B(1)-F(3')	110.0(16)
F(2')-B(1)-F(3')	91.6(10)
F(1')-B(1)-O(1)	120.1(7)

		0						
Dand	1	глл			гот	£	TOD	^
RONG	ienorne		ana	anotes	1 - 1	In	пплк.	1.
Dona	10112 this	1 4 1 1	ana	angios		101	100-4	

F(2)-B(1)-O(1)	110.0(4)
F(2')-B(1)-O(1)	104.6(8)
F(3)-B(1)-O(1)	108.9(4)
F(1)-B(1)-O(1)	106.1(3)
F(3')-B(1)-O(1)	96.0(6)
B(1)-O(1)-P(1)	140.5(2)
O(1)-P(1)-C(7)	111.21(9)
O(1)-P(1)-C(13)	110.18(10)
C(7)-P(1)-C(13)	109.96(9)
O(1)-P(1)-C(1)	106.40(9)
C(7)-P(1)-C(1)	110.83(10)
C(13)-P(1)-C(1)	108.17(10)
C(2)-C(1)-C(6)	112.0(2)
C(2)-C(1)-P(1)	114.62(17)
C(6)-C(1)-P(1)	115.34(15)
C(1)-C(2)-C(3)	111.6(2)
C(2)-C(3)-C(4)	111.3(3)
C(5)-C(4)-C(3)	113.1(3)
C(4)-C(5)-C(6)	112.8(2)
C(5)-C(6)-C(1)	110.9(2)
C(8)-C(7)-C(12)	110.24(17)
C(8)-C(7)-P(1)	113.54(14)
C(12)-C(7)-P(1)	110.66(14)
C(9)-C(8)-C(7)	110.6(2)
C(10)-C(9)-C(8)	112.0(2)
C(11)-C(10)-C(9)	111.5(2)
C(10)-C(11)-C(12)	111.4(2)
C(11)-C(12)-C(7)	111.00(19)
C(18)-C(13)-C(14)	110.66(19)
C(18)-C(13)-P(1)	113.92(14)
C(14)-C(13)-P(1)	112.13(16)
C(15)-C(14)-C(13)	110.8(2)
C(16)-C(15)-C(14)	111.7(2)
C(17)-C(16)-C(15)	111.6(2)
C(16)-C(17)-C(18)	111.6(2)
C(17)-C(18)-C(13)	110.6(2)

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters (Å ² x 10 ³) fo	r TOB-2 . The anisotropic
--	----------------------------------

displacement factor exponent takes the form:	$-2\pi^2$ [h ² a ^{*2} U ¹¹ +	+ 2 h k a* b* U ¹²]
--	--	---------------------------------

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
B(1)	43(2)	115(3)	117(3)	22(3)	8(2)	24(2)
O(1)	33(1)	78(1)	81(1)	3(1)	-3(1)	5(1)
P(1)	31(1)	45(1)	46(1)	1(1)	2(1)	0(1)
C(1)	50(1)	48(1)	61(1)	-6(1)	5(1)	-5(1)
C(2)	76(2)	75(2)	92(2)	-24(2)	-21(2)	-8(1)
C(3)	116(3)	64(2)	86(2)	-25(2)	-11(2)	-20(2)
C(4)	136(3)	72(2)	93(2)	-32(2)	5(2)	12(2)
C(5)	85(2)	62(2)	86(2)	-12(1)	18(2)	16(1)
C(6)	56(1)	60(1)	63(1)	-13(1)	7(1)	9(1)
C(7)	36(1)	49(1)	48(1)	8(1)	1(1)	1(1)
C(8)	58(1)	49(1)	70(1)	4(1)	3(1)	-3(1)
C(9)	65(2)	56(1)	102(2)	17(1)	2(1)	-12(1)
C(10)	69(2)	85(2)	102(2)	46(2)	2(2)	-9(1)
C(11)	68(2)	100(2)	62(2)	31(1)	8(1)	-6(1)
C(12)	64(1)	76(2)	49(1)	14(1)	1(1)	-6(1)
C(13)	50(1)	45(1)	46(1)	1(1)	10(1)	2(1)
C(14)	70(2)	86(2)	67(2)	14(1)	22(1)	-15(1)
C(15)	115(3)	80(2)	66(2)	15(1)	43(2)	-1(2)
C(16)	132(3)	77(2)	48(1)	13(1)	10(2)	12(2)
C(17)	99(2)	88(2)	50(1)	2(1)	-9(1)	-6(2)
C(18)	58(1)	65(1)	47(1)	2(1)	-1(1)	-2(1)
F(1)	89(2)	108(3)	119(3)	-24(2)	16(2)	41(2)
F(2)	31(2)	138(4)	295(11)	28(5)	26(3)	-8(2)
F(3)	147(5)	176(8)	111(3)	55(3)	-11(3)	76(5)
F(1')	116(10)	57(5)	730(50)	71(18)	90(20)	8(5)
F(2')	121(11)	309(19)	200(13)	-16(11)	104(11)	67(12)
F(3')	115(8)	270(20)	203(12)	-2(12)	-84(8)	58(11)
	X	у	Z	U(eq)		
--------	------	------	------	-------		
H(1A)	3396	6431	2961	63		
H(2A)	5443	6352	3897	99		
H(2B)	4095	6090	4434	99		
H(3A)	4295	7889	3692	108		
H(3B)	4602	7750	4533	108		
H(4A)	1796	7444	4634	121		
H(4B)	1904	8416	4192	121		
H(5A)	1136	7643	3144	92		
H(5B)	-175	7375	3695	92		
H(6A)	644	5982	3045	71		
H(6B)	992	5839	3884	71		
H(7A)	1198	4123	3417	54		
H(8A)	2206	2886	2697	71		
H(8B)	3646	2644	3300	71		
H(9A)	172	2365	3439	89		
H(9B)	1482	1517	3391	89		
H(10A)	827	1760	4595	103		
H(10B)	2753	1906	4524	103		
H(11A)	1836	3173	5213	92		
H(11B)	403	3432	4612	92		
H(12A)	3879	3691	4471	75		
H(12B)	2591	4547	4538	75		
H(13A)	3708	4033	2021	56		
H(14A)	4355	6058	1893	88		
H(14B)	5748	5245	1960	88		
H(15A)	5120	5713	738	102		
H(15B)	4787	4592	845	102		
H(16A)	2291	6054	721	103		
H(16B)	2540	5242	141	103		
H(17A)	1702	4039	908	96		
H(17B)	304	4848	827	96		
H(18A)	870	4395	2053	68		
H(18B)	1238	5514	1948	68		

Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **TOB-2**.

8. Kinetic Study of the Acetalization Reaction

Four NMR tubes charged with CDCl₃ (0.4 mL) and internal standard mesitylene (27.8 μ L, 0.2 mmol, 1 equiv). Different amounts of benzyl alcohol, 3,4-dihydropyran **2** and **TOB-1** were added to the four NMR tubes according to the following table.

Entry	Benzyl alcohol	3,4-Dihydropyran	TOB-1
Ι	20.7 µL(1 equiv.)	18.2 µL (1 equiv.)	1 mol %
Π	10.4 µL (0.5 equiv.)	18.2 µL (1 equiv.)	1 mol %
III	20.7 µL (1 equiv.)	9.1 μL (0.5 equiv.)	1 mol %
IV	20.7 µL (1 equiv.)	18.2 µL (1 equiv.)	0.5 mol %

The reactions were monitored by ¹H NMR experiments in 1.5 hour. The NMR yield of the product were recorded and the curves of the amount of acetal product against time were plotted. A polynomial trendline of the graph was obtained and the initial rates were determined (Figure S5-S7). The rate orders of different reactants are summarized in Table S2.

Table S2. Rate order of different Reactants

Reactants	Rate Order
Benzyl alcohol	1.048
3,4-Dihydropyran 2	1.034
тов-1	1.040

(i) Kinetic study of benzyl alcohol

Figure S5. Kinetic study of benzyl alcohol

Rate I = $k[BnOH]^{x}[3,4-Dihydropyran]^{y}[TOB-1]^{z}$ = $\frac{dy}{dt}$ (at t=0) = 6.4998Rate II = $k\frac{1}{2^{x}}[BnOH]^{x}[3,4-Dihydropyran]^{y}[TOB-1]^{z}$ = $\frac{dy}{dt}$ (at t=0) = 3.144

Rate I Rate II	=	2 ^{<i>x</i>}
х	=	1.048

Rate Order of benzyl alcohol = 1.048

Figure S6. Kinetic study of 3,4-dihydropyran 2

 $k[BnOH]^{x}[3,4-Dihydropyran]^{y}[TOB-1]^{z}$ Rate I = $\frac{dy}{dt}$ (at t=0) = 6.4998 = k[BnOH]^{*x*} $\frac{1}{2^{y}}$ [3,4-Dihydropyran]^{*y*}[**TOB-1**.]^{*z*} Rate III = $\frac{dy}{dt}$ (at t=0) = 3.1743 =

Rate	e I	2y
Rate	III —	Δ,
v	=	1.034

Kinetic Order of 3,4-dihydropyran $\mathbf{2} = 1.034$

Figure S7. Kinetic study of catalyst TOB-1

Rate I = $k[BnOH]^{x}[3,4-Dihydropyran]^{y}[TOB-1]^{z}$ = $\frac{dy}{dt}$ (at t=0) = 6.4998Rate IV = $k[BnOH]^{x}[3,4-Dihydropyran]^{y}\frac{1}{2^{z}}[TOB-1]^{z}$ = $\frac{dy}{dt}$ (at t=0) = 3.1604

 $\frac{Rate I}{Rate IV} = 2^{Z}$

z = 1.040

Kinetic Order of TOB-1 = 1.040

9. Computational studies

All Density Functional Theory (DFT) calculations were carried out using M06-2X hybrid functional² with Grimme D3 dispersion correction.³ These systems were studied in SMD solvents (chloroform and toluene)⁴ with Gaussian 16 (ver. C.02).⁵ Their geometries were optimized with 6-311G(d) basis set, while the single-point energies, electrostatic potential calculations, and NBO analyses were performed with aug-ccpVTZ basis set. For binding energy calculations, basis set superposition errors (BSSE) were handled by a counterpoise procedure.⁶ Based on the electrostatic potential (ESP) map of **TOB-1**, positive charges are shown to be localized at the methyl groups and phosphonium centre, suggesting that these positions are potential active sites of the catalyst. To investigate the interactions of the trilateral complexes formed between 2, TOB-1, and the alcohol/thiol, configurational searches were performed by initially placing 2 and the alcohol/thiol near the potential active sites at methyl groups and phosphonium centre of TOB-1. Several optimized configurations were obtained, and the one with strongest binding between 2 and the complex of the other two species was selected for further study. Additional optimizations of the complexes were done with different implicit SMD solvents to study the solvent effect on the O/S chemoselectivity in the acetalization. The E(2) stabilization energies were computed with second order perturbation theory analysis in NBO basis.⁷ Atoms In Molecules (AIM)⁸ analysis and electrostatic potential (ESP) map generation was done by Multiwfn 3.8.9

Figure S8. AIM bond paths in complex A

Note: Binding energy between **TOB-1** and BnOH (M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(chloroform)) = -5.12 kcal/mol

Figure S10. AIM bond paths in complex B

Figure S11. Snapshot of the optimized structure of complex **B** Note: Binding energy between **2** and the complex of **TOB-1** and 4-Me-C₆H₄-OH (MO6-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -7.97 kcal/mol

Figure S12. AIM bond paths in complex C

Figure S13. Snapshot of the optimized structure of complex C

Note: Binding energy between 2 and the complex of **TOB-1** and 4-Me-C₆H₄-SH (M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -5.64 kcal/mol

Figure S14. Snapshot of complex **C'** with sulfur positioned close to the $C(sp^3)$ -H Note: Binding energy between **2** and the complex of **TOB-1** and 4-Me-C₆H₄-SH (M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -4.30 kcal/mol

(D)

(D')

Note: In the calculation, bilateral complexes D (BF₃ complexed with 4-Me-C₆H₄-OH) and D' (BF₃ complexed with 2) were found but no trilateral complex was identified.

(E)

Note: In the calculation, bilateral complexes E (BF₃ complexed with 4-Me-C₆H₄-SH) and E' (BF₃ complexed with 2) were found but no trilateral complex was identified.

Figure S17. Snapshots of complexes B and C in SMD chloroform

Note: Implicit SMD solvent model investigation was conducted to get a better understanding on the solvent effect. It was observed that the interactions in trilateral complex **B** was considerably interrupted when changing the solvent from toluene to chloroform. In particular, the OH-C(pyran) bond length significantly elongated from 2.40 to 2.56 Å. In contrast, the bond lengths in the trilateral complex **C** are consistent in toluene and chloroform.

Figure S18. Correlation between Abraham's hydrogen bond acidity¹⁰ of some selected SMD solvents and the intermolecular distances between the 4-Me-C₆H₄-OH/4-Me-C₆H₄-SH and dihydropyran in their trilateral complexes with **TOB-1**

Cartesian coordinates

Complex A

E(M0	6-2X/aug-cc-pVTZ,	Grimme D3	dispersion, $SMD(chloroform)) = -$
1207.79728075			
С	3.39670700	-2.23936500	-0.04561900
Н	3.44743900	-3.31432400	-0.17469000
С	2.84969000	-1.70157400	1.11866300
Н	2.47797000	-2.35806700	1.89723000
С	3.88229800	-1.39445200	-1.03738000
Н	4.31231600	-1.80890900	-1.94182100
С	3.81331500	-0.01267900	-0.87048700
Н	4.18313100	0.64779400	-1.64822800
С	3.26272900	0.53259700	0.28697200
С	2.78532500	-0.32331500	1.28266100
Н	2.36147500	0.09782900	2.18909700
С	3.10253300	2.01919600	0.44314200
Н	3.44933500	2.33257100	1.43340600
Н	3.69160400	2.54250300	-0.31606300
0	1.71258400	2.32223600	0.29464900
Н	1.58479600	3.25131800	0.51846500
Р	-1.10850100	0.15685400	-0.45226700
С	-0.75975200	0.37963500	1.28975700
Н	-0.61097000	-0.59422400	1.75894900
Н	0.14042000	0.99169400	1.37511100
Н	-1.60584900	0.88505900	1.75772500
С	0.20006300	-0.78445300	-1.22183500
Н	0.26823000	-1.76132300	-0.74114900
Н	-0.03348800	-0.91179400	-2.28061700
Н	1.14347600	-0.24662000	-1.11147700
С	-1.20577300	1.76417000	-1.23837400
Н	-1.48686000	1.62835600	-2.28435400
Н	-1.96233400	2.36573600	-0.73391800
Н	-0.22794300	2.24501800	-1.17121400
0	-2.42908900	-0.65462100	-0.67227200
В	-3.66866000	-0.41708700	0.14627200
F	-3.78850900	0.96985900	0.35103900
F	-4.74202000	-0.91853400	-0.55966100
F	-3.51310500	-1.05571300	1.37553000

Complex B

E(M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -1478.34109403

(-	- 0 1	- 1	
С	-4.04898080	-2.44064538	0.27616579
С	-2.68236883	-2.71134249	0.38759531
Н	-2.35871816	-3.61297490	0.89770295
С	-4.42938244	-1.27396617	-0.38319905
Н	-5.48349079	-1.04002328	-0.48918146
С	-3.48506440	-0.40227138	-0.91858805
Н	-3.79628141	0.49602654	-1.44312566
С	-2.13114352	-0.68814577	-0.78603593
С	-1.72690419	-1.84925389	-0.13078435
Н	-0.66920182	-2.06273834	-0.02653048
С	-5.06758307	-3.39375640	0.84505396
Н	-6.07820051	-2.99489355	0.74772147
Н	-5.03457663	-4.35627397	0.32775431
Н	-4.87911778	-3.58450766	1.90435328
0	-1.16345340	0.14363826	-1.28273085
Н	-1.54063311	1.02760783	-1.40918514
Р	2.22828799	-0.02266272	-0.74470573
С	1.33536590	0.03699121	0.80922316
Н	1.75745313	0.84389304	1.40969570
Н	0.28109599	0.22265464	0.60615405
Н	1.47862600	-0.90695298	1.33678546
С	1.89690882	1.44814552	-1.71068539
Н	2.05708373	2.33191971	-1.09288115
Н	2.58072820	1.45868132	-2.56160190
Н	0.86673951	1.42049073	-2.06569402
С	1.71426849	-1.45012444	-1.70351962
Н	2.33859121	-1.50219154	-2.59806650
Н	1.86791917	-2.35401259	-1.11371127
Н	0.66746641	-1.34497532	-1.99156422
0	3.76822759	-0.05104644	-0.49870237
В	4.37225649	-0.90405369	0.60232699
F	3.63619585	-2.10490032	0.63640927
F	5.69119115	-1.11798187	0.29139337
F	4.20991660	-0.22586006	1.80565181
С	-0.99247708	3.16010268	-0.69024905
Н	-0.48964188	3.44349432	-1.60937898

С	-2.32309788	3.14413920	-0.56368703
Η	-2.91638367	3.46730834	-1.41128347
С	-2.99824964	2.72950609	0.71765496
Η	-3.84114718	2.06680136	0.50618675
Η	-3.41358107	3.61068610	1.21858737
С	-1.98761870	2.02859648	1.62763625
Η	-2.35264460	1.97387855	2.65481895
Η	-1.82174382	1.00213067	1.28563911
С	-0.67036266	2.78655259	1.60349696
Η	0.08674231	2.31677772	2.22958338
Η	-0.81778362	3.81850756	1.94172919
0	-0.10858599	2.83370918	0.28429394

Complex C

E(M	06-2X/aug-cc-pVTZ	, Grimme D3 dispe	rsion, SMD(toluene)) = -1801.30294136
С	-1.64849295	2.99880782	-0.65918862
С	-1.68829436	2.63671442	0.68971572
Н	-2.64908257	2.54774245	1.18630468
С	-0.39960635	3.09910150	-1.27276629
Н	-0.34105828	3.38837655	-2.31692596
С	0.77447433	2.83234577	-0.57489474
Н	1.73390863	2.92343888	-1.07200738
С	0.71299864	2.43457329	0.75805761
С	-0.52560019	2.35230103	1.39357407
Н	-0.58134860	2.04876683	2.43318544
С	-2.92627302	3.23285063	-1.41780877
Н	-2.72737252	3.53332212	-2.44723202
Н	-3.52509276	2.31866448	-1.43333876
Н	-3.52643684	4.01298728	-0.94327154
S	2.18175754	2.01236596	1.68299873
Н	2.83343839	1.44682472	0.64917196
Р	-0.93167475	-1.69229246	0.30436035
С	-1.18650434	-1.04310763	1.95815273
Н	-1.56911612	-1.83812787	2.60016477
Н	-0.23826314	-0.66855654	2.35105292
Н	-1.91847652	-0.23631545	1.91297850
С	0.20687868	-3.07140245	0.40911047
Н	-0.25870002	-3.87537597	0.98132347

Η	0.44550118	-3.42226275	-0.59585833
Η	1.11929669	-2.74163913	0.90903179
С	-0.21066843	-0.42067213	-0.72299208
Η	-0.03341825	-0.83600260	-1.71651859
Η	-0.91119095	0.41267436	-0.78561307
Н	0.73363472	-0.09545418	-0.28459341
0	-2.25885725	-2.23018998	-0.30807589
В	-3.56437558	-1.46470107	-0.16177374
F	-3.25522775	-0.09462837	-0.29664096
F	-4.41582914	-1.89688433	-1.14507247
F	-4.05212360	-1.70339435	1.11745097
С	3.01036762	-0.39039002	-1.64420464
Н	2.35795678	0.03474950	-2.39894137
С	4.05930674	0.26011958	-1.13649802
Н	4.28618602	1.24400012	-1.53044930
С	4.90571301	-0.32052506	-0.03387048
Н	5.08389319	0.43200750	0.74058388
Н	5.89189944	-0.60133279	-0.41847420
С	4.19868434	-1.54164616	0.55835529
Н	4.88124605	-2.14769917	1.15679400
Н	3.37876922	-1.21950844	1.20993370
С	3.62223830	-2.37818620	-0.57274453
Н	3.12819843	-3.28136008	-0.21578642
Н	4.41517682	-2.66574719	-1.27314779
0	2.62843499	-1.64921982	-1.29898751

Complex C'

E(M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -1801.29901922

С	3.95670455	-1.43757971	-1.41485646
С	2.56330351	-1.51431793	-1.46440481
Н	2.06980547	-1.68057778	-2.41653748
С	4.56253577	-1.22527045	-0.17525924
Н	5.64395034	-1.16540808	-0.11312139
С	3.80413648	-1.09161355	0.98244465
Н	4.28890848	-0.93443107	1.93871335
С	2.41436848	-1.15820953	0.91620503
С	1.79651814	-1.38263612	-0.31277883
Н	0.71643318	-1.45420552	-0.37266953

С	4.77745104	-1.60447210	-2.66529488
Н	5.79423989	-1.23658779	-2.52319677
Η	4.83812001	-2.65965401	-2.94630079
Η	4.32962642	-1.06655918	-3.50316796
Р	-2.61923107	-0.70563886	0.86922269
С	-1.45585550	0.54179785	0.31953071
Η	-1.83945337	1.53215237	0.56626608
Η	-0.49569236	0.38962955	0.81663381
Η	-1.34235558	0.46350355	-0.76287995
С	-2.85239460	-0.54587443	2.63732090
Η	-3.22119734	0.45670283	2.85929855
Η	-3.58485148	-1.28263192	2.97097923
Η	-1.90423837	-0.71366698	3.15177902
С	-1.95492297	-2.33748574	0.52813334
Η	-2.68898454	-3.08480622	0.83654900
Η	-1.78292211	-2.43310728	-0.54435133
Η	-1.02637003	-2.48643201	1.08291893
0	-4.01524166	-0.52185770	0.20502077
В	-4.13476017	-0.17215469	-1.27192655
F	-3.12669560	-0.89673108	-1.93945700
F	-5.38993215	-0.53269163	-1.68614598
F	-3.89141496	1.18919046	-1.40646469
С	1.20756033	2.78874023	1.35537092
Η	0.96117684	2.90851258	2.40556133
С	2.39490706	2.35189279	0.93063848
Η	3.15187178	2.12922154	1.67421127
С	2.69372732	2.14934620	-0.53019808
Η	3.22393452	1.20428647	-0.67431747
Η	3.35719007	2.94121203	-0.89557597
С	1.38294321	2.14616160	-1.31701501
Η	1.55808771	2.26585002	-2.38822922
Η	0.87323545	1.19006645	-1.17089314
С	0.48243498	3.27066525	-0.82897128
Н	-0.47665501	3.28206161	-1.34664699
Η	0.97545749	4.23919378	-0.97510873
0	0.16624195	3.14275319	0.56151254
S	1.43706346	-1.01275860	2.41496044
Η	1.37380930	0.33322912	2.40316142

Complex D

E(M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -941.949174058

· ·	U	· 1	-
С	3.62474421	-0.36020727	0.12917177
С	3.07150927	-0.55711869	-1.13886150
Н	3.66211643	-1.03639894	-1.91223590
С	2.84681202	0.26842050	1.10018001
Н	3.25857624	0.43399265	2.08938170
С	1.54510136	0.68341219	0.83527963
Н	0.94063416	1.15901939	1.59660064
С	1.03593858	0.46906968	-0.43246359
С	1.78225870	-0.13522036	-1.43192107
Н	1.35654046	-0.26500142	-2.42017307
С	5.03614811	-0.79593871	0.42045108
Н	5.25094985	-0.74946374	1.48856285
Н	5.20951125	-1.81904184	0.08006181
Н	5.75278272	-0.15105290	-0.09528066
0	-0.27717259	0.86044353	-0.74664388
Н	-0.84138307	0.08758136	-1.02178053
С	-2.66013274	-0.99755268	-1.05260787
Н	-3.15514842	-0.48124151	-1.86855478
С	-1.57244229	-1.76663595	-1.23178047
Н	-1.23064981	-1.92957146	-2.24771347
С	-0.87780229	-2.43831294	-0.07290924
Н	0.20764389	-2.36382810	-0.18502083
Н	-1.11810711	-3.50671326	-0.06269495
С	-1.32459185	-1.77706150	1.23285873
Н	-1.05380990	-2.38662106	2.09683119
Н	-0.84336338	-0.80356608	1.35254567
С	-2.82983448	-1.57141619	1.21947114
Н	-3.17789528	-1.05861093	2.11404660
Н	-3.34782819	-2.53333075	1.13185647
0	-3.25380302	-0.74803586	0.12353388
В	-1.12252672	2.00879596	0.03717962
F	-2.23347956	2.10588801	-0.74743078
F	-1.37023057	1.51063533	1.29227991
F	-0.29366574	3.08702986	0.03307725

Complex D'

E(M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -941.955591108

		-	
С	-3.69058176	-0.43482359	-0.32111001
С	-3.58265415	0.84702026	0.22157844
Н	-4.38255396	1.56252797	0.05859876
С	-2.64492871	-1.32841552	-0.08567702
Н	-2.69928763	-2.33265616	-0.49393559
С	-1.52939453	-0.96401397	0.65888307
Н	-0.71770407	-1.66804126	0.81354316
С	-1.43835972	0.32443748	1.18246870
С	-2.47452884	1.22960377	0.96716030
Н	-2.39532573	2.22651223	1.38531653
С	-4.91243926	-0.84942577	-1.09994140
Н	-4.67812366	-1.64703890	-1.80733104
Н	-5.69611044	-1.22001508	-0.43239839
Н	-5.32814849	-0.00966966	-1.66046909
0	-0.35817295	0.74955473	1.88820530
Н	0.32255022	0.06370455	1.87531931
С	0.90762774	0.12649352	-1.40929849
Н	0.49294775	-0.75488542	-1.87322698
С	0.34818038	1.31930975	-1.32249186
Н	-0.62786530	1.42841483	-1.78206471
С	0.95740307	2.48848140	-0.60729405
Н	0.21116091	2.91136121	0.06988756
Н	1.20150284	3.26757308	-1.33714111
С	2.19875013	2.06673774	0.17892705
Н	2.83974580	2.92377893	0.39342337
Н	1.90592616	1.62329711	1.13093546
С	3.00345120	1.05601451	-0.60981216
Н	3.87672105	0.68552135	-0.07934677
Н	3.29584150	1.43195062	-1.59153923
0	2.19190819	-0.13319349	-0.88086158
В	2.32308331	-1.36871150	0.13751660
F	1.53950207	-2.34099308	-0.40661821
F	3.65476269	-1.63743625	0.17798787
F	1.83220983	-0.89581348	1.34682375

Complex E

E(M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -1264.89587822

C -3.56633095 -0.47433782 0.17425 C -3.21128550 0.86172740 0.35379 H -3.88860303 1.53028770 0.87379 C -2.66721984 -1.31507811 -0.486499 H -2.92021504 -2.36045329 -0.63054 C -1.45424115 -0.84032722 -0.966866 H -0.76217098 -1.51039022 -1.46500 C -1.12407131 0.49736114 -0.76774 C -1.99564332 1.35417659 -0.10735 H -1.72754754 2.39103477 0.05967 C -4.89073101 -0.99933166 0.659455 H -4.78714474 -2.00280168 1.07652 H -5.60632002 -1.05696079 -0.16576 S 0.41796124 1.16215251 -1.39124 H 1.19629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05118 H 3.99227264 -0.65326337 -0.47835		0 1	· 1	, (
C -3.21128550 0.86172740 0.35379 H -3.88860303 1.53028770 0.87379 C -2.66721984 -1.31507811 -0.486499 H -2.92021504 -2.36045329 -0.63054 C -1.45424115 -0.84032722 -0.966866 H -0.76217098 -1.51039022 -1.46500 C -1.12407131 0.49736114 -0.76774 C -1.99564332 1.35417659 -0.10735 H -1.72754754 2.39103477 0.05967 C -4.89073101 -0.99933166 0.659455 H -5.61632002 -1.05696079 -0.16576 S 0.41796124 1.16215251 -1.39124 H 1.9629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05112 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.65326337 -0.47835<	С	-3.56633095	-0.47433782	0.17425216
H -3.88860303 1.53028770 0.87373 C -2.66721984 -1.31507811 -0.48649 H -2.92021504 -2.36045329 -0.63054 C -1.45424115 -0.84032722 -0.96686 H -0.76217098 -1.51039022 -1.46500 C -1.12407131 0.49736114 -0.76774 C -1.99564332 1.35417659 -0.10735 H -1.72754754 2.39103477 0.05967 C -4.89073101 -0.99933166 0.659455 H -4.78714474 -2.00280168 1.07652 H -5.60632002 -1.05696079 -0.16576 S 0.41796124 1.16215251 -1.39124 H 1.9629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05118 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.65326337 -0.47839 C 1.25548480 -1.61016216 1.41049	С	-3.21128550	0.86172740	0.35379508
C -2.66721984 -1.31507811 -0.486499 H -2.92021504 -2.36045329 -0.63054 C -1.45424115 -0.84032722 -0.966866 H -0.76217098 -1.51039022 -1.46500 C -1.12407131 0.49736114 -0.76774 C -1.99564332 1.35417659 -0.10735 H -1.72754754 2.39103477 0.05967 C -4.89073101 -0.99933166 0.659455 H -4.78714474 -2.00280168 1.07652 H -5.31601059 -0.35022425 1.42584 H -5.60632002 -1.05696079 -0.165766 S 0.41796124 1.16215251 -1.39124 H 1.19629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05118 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.02454428 1.59236 H 3.33298655 -1.62005445 1.93613 </td <td>Н</td> <td>-3.88860303</td> <td>1.53028770</td> <td>0.87375792</td>	Н	-3.88860303	1.53028770	0.87375792
H -2.92021504 -2.36045329 -0.63054 C -1.45424115 -0.84032722 -0.966866 H -0.76217098 -1.51039022 -1.46500 C -1.12407131 0.49736114 -0.76774 C -1.99564332 1.35417659 -0.10735 H -1.72754754 2.39103477 0.05967 C -4.89073101 -0.99933166 0.659455 H -4.78714474 -2.00280168 1.07652 H -5.31601059 -0.35022425 1.42584 H -5.60632002 -1.05696079 -0.16576 S 0.41796124 1.16215251 -1.39124 H 1.19629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05112 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.02454428 1.59236 H 3.33298655 -1.62005445 1.93613 C 1.22548480 -1.61016216 1.41049	С	-2.66721984	-1.31507811	-0.48649392
C -1.45424115 -0.84032722 -0.966866 H -0.76217098 -1.51039022 -1.46500 C -1.12407131 0.49736114 -0.76774 C -1.99564332 1.35417659 -0.10735 H -1.72754754 2.39103477 0.05966 C -4.89073101 -0.99933166 0.65945 H -4.78714474 -2.00280168 1.07652 H -5.31601059 -0.35022425 1.42584 H -5.60632002 -1.05696079 -0.165766 S 0.41796124 1.16215251 -1.39124 H 1.19629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05112 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.65326337 -0.47839 C 1.26511766 -1.07007884 1.27836 H 2.68920454 -0.02454428 1.59230 H 3.33298655 -1.62005445 1.93613	Н	-2.92021504	-2.36045329	-0.63054237
H-0.76217098-1.51039022-1.46500C-1.124071310.49736114-0.76774C-1.995643321.35417659-0.10735H-1.727547542.391034770.05967C-4.89073101-0.999331660.65945H-4.78714474-2.002801681.07652H-5.31601059-0.350224251.42584H-5.60632002-1.05696079-0.16576S0.417961241.16215251-1.39124H1.196299010.08340753-1.14894C2.45167018-1.92123203-1.05112H2.74225523-1.98264760-2.09426C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.4526H0.6215615-3.280793000.63797H1.77564008-3.647847970.94394O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F0.516332962.219042640.10543F0.611346863.510358330.17457	С	-1.45424115	-0.84032722	-0.96686036
C -1.12407131 0.49736114 -0.76774 C -1.99564332 1.35417659 -0.10735 H -1.72754754 2.39103477 0.05967 C -4.89073101 -0.99933166 0.65945 H -4.78714474 -2.00280168 1.07652 H -5.31601059 -0.35022425 1.42584 H -5.60632002 -1.05696079 -0.16576 S 0.41796124 1.16215251 -1.39124 H 1.19629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05112 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.65326337 -0.47839 C 2.65111766 -1.07007884 1.27836 H 2.68920454 -0.02454428 1.59236 H 3.33298655 -1.62005445 1.93613 C 1.22548480 -1.61016216 1.41049 H 0.97833381 -1.82248187 2.45266 <tr< td=""><td>Н</td><td>-0.76217098</td><td>-1.51039022</td><td>-1.46500055</td></tr<>	Н	-0.76217098	-1.51039022	-1.46500055
C -1.99564332 1.35417659 -0.10735 H -1.72754754 2.39103477 0.05967 C -4.89073101 -0.99933166 0.65945 H -4.78714474 -2.00280168 1.07652 H -5.31601059 -0.35022425 1.42584 H -5.60632002 -1.05696079 -0.16576 S 0.41796124 1.16215251 -1.39124 H 1.19629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05112 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.65326337 -0.47839 C 2.65111766 -1.07007884 1.27836 H 2.68920454 -0.02454428 1.59236 H 3.33298655 -1.62005445 1.93613 C 1.22548480 -1.61016216 1.41049 H 0.97833381 -1.82248187 2.4526 H 0.06215615 -3.28079300 0.63799	С	-1.12407131	0.49736114	-0.76774871
H-1.727547542.391034770.0596C-4.89073101-0.999331660.65945H-4.78714474-2.002801681.07652H-5.31601059-0.350224251.42584H-5.60632002-1.05696079-0.16576S0.417961241.16215251-1.39124H1.196299010.08340753-1.14894C2.45167018-1.92123203-1.05112H2.74225523-1.98264760-2.09426C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.4526H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.7564008-3.647847970.94390O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	С	-1.99564332	1.35417659	-0.10735029
C -4.89073101 -0.99933166 0.65945 H -4.78714474 -2.00280168 1.07652 H -5.31601059 -0.35022425 1.42584 H -5.60632002 -1.05696079 -0.16576 S 0.41796124 1.16215251 -1.39124 H 1.19629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05112 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.65326337 -0.47839 C 2.65111766 -1.07007884 1.27836 H 2.68920454 -0.02454428 1.59236 H 3.3298655 -1.62005445 1.93613 C 1.22548480 -1.61016216 1.41049 H 0.97833381 -1.82248187 2.4526 H 0.50589818 -0.86603444 1.05833 C 1.07518302 -2.88162831 0.59083 H 0.06215615 -3.28079300 0.63792	Н	-1.72754754	2.39103477	0.05967659
H-4.78714474-2.002801681.07652H-5.31601059-0.350224251.42584H-5.60632002-1.05696079-0.16576S0.417961241.16215251-1.39124H1.196299010.08340753-1.14894C2.45167018-1.92123203-1.05112H2.74225523-1.98264760-2.09426C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.4526H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94399O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	С	-4.89073101	-0.99933166	0.65945052
H-5.31601059-0.350224251.42584H-5.60632002-1.05696079-0.16576S0.417961241.16215251-1.39124H1.196299010.08340753-1.14894C2.45167018-1.92123203-1.05112H2.74225523-1.98264760-2.09426C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.4526H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	Н	-4.78714474	-2.00280168	1.07652643
H-5.60632002-1.05696079-0.16576S0.417961241.16215251-1.39124H1.196299010.08340753-1.14894C2.45167018-1.92123203-1.05112H2.74225523-1.98264760-2.09426C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.45266H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	Н	-5.31601059	-0.35022425	1.42584290
S 0.41796124 1.16215251 -1.39124 H 1.19629901 0.08340753 -1.14894 C 2.45167018 -1.92123203 -1.05112 H 2.74225523 -1.98264760 -2.09426 C 3.10978227 -1.18919310 -0.15018 H 3.99227264 -0.65326337 -0.47839 C 2.65111766 -1.07007884 1.27836 H 2.68920454 -0.02454428 1.59236 H 3.3298655 -1.62005445 1.93613 C 1.22548480 -1.61016216 1.41049 H 0.97833381 -1.82248187 2.45266 H 0.50589818 -0.86603444 1.0583 C 1.07518302 -2.88162831 0.59083 H 0.06215615 -3.28079300 0.63799 H 1.77564008 -3.64784797 0.94399 O 1.33572183 -2.65718043 -0.80044 B 1.19119974 2.30505676 0.3568 F 2.51633296 2.21904264 0.10543 <td< td=""><td>Н</td><td>-5.60632002</td><td>-1.05696079</td><td>-0.16576935</td></td<>	Н	-5.60632002	-1.05696079	-0.16576935
H1.196299010.08340753-1.14894C2.45167018-1.92123203-1.05112H2.74225523-1.98264760-2.09426C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.45266H0.50589818-0.866034441.05833C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.800444B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	S	0.41796124	1.16215251	-1.39124798
C2.45167018-1.92123203-1.05112H2.74225523-1.98264760-2.09426C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.45263H0.50589818-0.866034441.05833C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	Н	1.19629901	0.08340753	-1.14894771
H2.74225523-1.98264760-2.09426C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.45266H0.50589818-0.866034441.05833C1.07518302-2.881628310.59083H0.66215615-3.280793000.63799H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	С	2.45167018	-1.92123203	-1.05112078
C3.10978227-1.18919310-0.15018H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.45266H0.50589818-0.866034441.05833C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.736933891.586166961.4067F0.611346863.510358330.17457	Н	2.74225523	-1.98264760	-2.09426410
H3.99227264-0.65326337-0.47839C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.45263H0.50589818-0.866034441.05833C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	С	3.10978227	-1.18919310	-0.15018725
C2.65111766-1.070078841.27836H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.45263H0.50589818-0.866034441.05833C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	Н	3.99227264	-0.65326337	-0.47839097
H2.68920454-0.024544281.59236H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.45266H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	С	2.65111766	-1.07007884	1.27836660
H3.33298655-1.620054451.93613C1.22548480-1.610162161.41049H0.97833381-1.822481872.4526H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94390O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	Н	2.68920454	-0.02454428	1.59236059
C1.22548480-1.610162161.41049H0.97833381-1.822481872.4526H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94390O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.611346863.510358330.17457	Н	3.33298655	-1.62005445	1.93615037
H0.97833381-1.822481872.4526H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94390O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.736933891.586166961.4067F0.611346863.510358330.17457	С	1.22548480	-1.61016216	1.41049346
H0.50589818-0.866034441.0583C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94396O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.736933891.586166961.4067F0.611346863.510358330.17457	Η	0.97833381	-1.82248187	2.45261779
C1.07518302-2.881628310.59083H0.06215615-3.280793000.63797H1.77564008-3.647847970.94390O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.736933891.586166961.4067F0.611346863.510358330.17457	Η	0.50589818	-0.86603444	1.05831863
H0.06215615-3.280793000.63797H1.77564008-3.647847970.94390O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.736933891.586166961.4067F0.611346863.510358330.17457	С	1.07518302	-2.88162831	0.59083855
H1.77564008-3.647847970.94390O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.736933891.586166961.4067F0.611346863.510358330.17457	Η	0.06215615	-3.28079300	0.63797445
O1.33572183-2.65718043-0.80044B1.191199742.305056760.3568F2.516332962.219042640.10543F0.736933891.586166961.40674F0.611346863.510358330.17457	Η	1.77564008	-3.64784797	0.94390603
B1.191199742.305056760.3568F2.516332962.219042640.10543F0.736933891.586166961.40673F0.611346863.510358330.17453	0	1.33572183	-2.65718043	-0.80044233
F2.516332962.219042640.10543F0.736933891.586166961.4067F0.611346863.510358330.17457	В	1.19119974	2.30505676	0.35681174
F0.736933891.586166961.4067F0.611346863.510358330.17457	F	2.51633296	2.21904264	0.10545176
F 0.61134686 3.51035833 0.17457	F	0.73693389	1.58616696	1.40671299
	F	0.61134686	3.51035833	0.17457087

Complex E'

E(M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(toluene)) = -1264.91626130

· ·	e 1	· 1	
С	1.30753368	2.31388544	0.14828778
С	2.47310331	1.76522846	0.68562424
Н	3.03162798	2.32186559	1.43125698
С	0.61407359	1.56917323	-0.80745108
Н	-0.29805363	1.96610171	-1.23968628
С	1.06401791	0.32053444	-1.21604771
Н	0.50169085	-0.22786185	-1.96349655
С	2.21721502	-0.22418634	-0.65316924
С	2.92547834	0.50803528	0.29891112
Н	3.82169661	0.09369969	0.74754323
С	0.81218737	3.67333194	0.56532558
Н	-0.27936268	3.70095005	0.58043738
Н	1.18040477	3.94334836	1.55652561
Н	1.15068638	4.44130099	-0.13622888
S	2.83600955	-1.82658699	-1.12655154
Н	1.68046058	-2.27617003	-1.64086834
С	-1.17835123	-1.78506593	-0.15655149
Н	-1.59183857	-2.04755164	-1.11921498
С	-0.39657796	-2.53695548	0.60020982
Н	-0.16111333	-3.52768659	0.22987842
С	0.17041803	-2.08882303	1.91645347
Н	1.24811674	-2.27369371	1.92371258
Н	-0.25791771	-2.70223376	2.71610927
С	-0.10961019	-0.60418438	2.15789638
Н	-0.03597313	-0.35717489	3.21856296
Н	0.61426183	0.01123413	1.62055050
С	-1.49451135	-0.23501386	1.67426380
Н	-1.70845622	0.82506129	1.77648384
Н	-2.28179923	-0.83117940	2.14289891
0	-1.56585193	-0.49932949	0.24088253
В	-2.62968340	0.30182718	-0.68127437
F	-2.13000834	0.13654598	-1.94437919
F	-2.57170584	1.58302778	-0.21083249
F	-3.82553144	-0.32011563	-0.46954881

Complex B (in SMD chloroform)

E(M06-2X/aug-cc-pVTZ, Grimme D3 dispersion, SMD(chloroform)) = -1478.35127719 C -3.88022703 -2.44556144 0.30159579

C	5.00022705	2.44330144	0.30137377
С	-2.50982491	-2.72332360	0.30080941
Н	-2.14801320	-3.61634612	0.80077244
С	-4.31081791	-1.29465713	-0.35557744
Н	-5.36956814	-1.05793262	-0.37976022
С	-3.41140414	-0.44057440	-0.98886132
Н	-3.76116262	0.44875274	-1.50399202
С	-2.05120080	-0.72706083	-0.95798634
С	-1.59801304	-1.87890488	-0.31682557
Н	-0.53652038	-2.09876846	-0.30173683
С	-4.84932828	-3.37058595	0.99114960
Н	-5.87495413	-3.01380854	0.88686607
Н	-4.79640084	-4.37839414	0.57131409
Н	-4.62461259	-3.44861855	2.05812268
0	-1.12455999	0.09450072	-1.54044510
Н	-1.53198669	0.95994470	-1.69505960
Р	2.23217246	0.07488150	-0.74390444
С	1.25216223	0.01517795	0.75479124
Н	1.61313430	0.79839280	1.42305089
Н	0.20683000	0.19198647	0.50171093
Н	1.38156606	-0.95611325	1.23420588
С	1.90615196	1.58485686	-1.64419642
Н	2.00172525	2.43672227	-0.97053269
Н	2.63230588	1.66281987	-2.45567781
Н	0.89771197	1.54407796	-2.05550789
С	1.85347939	-1.31970669	-1.80506182
Н	2.54317703	-1.29807102	-2.65163320
Н	1.99683060	-2.24728143	-1.25056205
Н	0.82656733	-1.23795302	-2.16337168
0	3.76010852	0.09395558	-0.39814398
В	4.35996604	-0.79607275	0.65492090
F	3.71771613	-2.04616535	0.57693464
F	5.71030593	-0.90512370	0.39530939
F	4.11934305	-0.22874529	1.90527876
С	-1.17029816	3.06137969	-0.62299170

Η	-0.66892702	3.37474248	-1.53340784
С	-2.49956923	3.01401431	-0.50042645
Η	-3.09810043	3.33674193	-1.34472850
С	-3.16831536	2.54749556	0.76605049
Н	-3.99634517	1.87439801	0.53010222
Н	-3.60232648	3.40272637	1.29572098
С	-2.14314528	1.84017603	1.65387176
Н	-2.50918811	1.73562118	2.67699136
Н	-1.94294904	0.83453239	1.26889507
С	-0.84883331	2.63650251	1.66338002
Н	-0.08308728	2.17055600	2.28179352
Н	-1.02999876	3.65335001	2.03026173
0	-0.28046195	2.73779424	0.35035059

Complex C (in SMD chloroform)

E	(M06-2X/aug-cc-pVTZ,	Grimme D3	dispersion, SMD(chloroform)) = -				
1801.31262297							
С	-1.46626012	3.12721199	-0.63537426				
С	-1.55121837	2.73975233	0.70453702				
Н	-2.52118495	2.71869159	1.19138067				
С	-0.20591828	3.14062609	-1.23406967				
Н	-0.11193225	3.44531919	-2.27133480				
С	0.93571124	2.77246793	-0.52832588				
Η	1.90519193	2.79946456	-1.01368166				
С	0.82749321	2.35794869	0.79708296				
С	-0.42243989	2.35302331	1.41598323				
Η	-0.51577651	2.03342043	2.44818082				
С	-2.70927472	3.48973463	-1.40237660				
Η	-2.46990734	3.79103100	-2.42291667				
Η	-3.39061410	2.63612356	-1.44618897				
Η	-3.24258651	4.31120115	-0.91759036				
S	2.25069020	1.82546516	1.73542625				
Η	2.90661814	1.28300543	0.69150334				
Р	-1.03044199	-1.67406473	0.28262904				
С	-1.26165973	-1.02503492	1.93816111				
Η	-1.66628383	-1.81189230	2.57695881				
Η	-0.29697965	-0.69074996	2.32701792				
Н	-1.95956372	-0.18798782	1.90401865				

С	0.06753265	-3.08260745	0.36813060
Н	-0.40864680	-3.86990444	0.95467728
Н	0.27638154	-3.44180357	-0.64055356
Н	0.99806579	-2.77217081	0.84647919
С	-0.29537227	-0.41561422	-0.75009872
Н	-0.14108189	-0.82897285	-1.74852204
Н	-0.96841406	0.44120913	-0.79701780
Н	0.66311000	-0.12507169	-0.31894790
0	-2.38336043	-2.17639728	-0.32059513
В	-3.66561038	-1.39764038	-0.17950252
F	-3.35696783	-0.02941133	-0.31600991
F	-4.52652794	-1.82196773	-1.16797750
F	-4.17987407	-1.62889755	1.09412784
С	2.96469532	-0.43955079	-1.60992521
Н	2.28288938	0.00269838	-2.32824191
С	4.07252799	0.17042839	-1.18274696
Н	4.31297636	1.13958131	-1.60461190
С	4.96491897	-0.43185908	-0.12894061
Н	5.22046259	0.32298270	0.62140635
Н	5.91266203	-0.75480871	-0.57270237
С	4.25285364	-1.61832123	0.52498419
Н	4.95223459	-2.24774203	1.07820395
Н	3.49563026	-1.25992343	1.23049840
С	3.56248074	-2.44094793	-0.55054108
Н	3.05453184	-3.31517706	-0.14478004
Н	4.29022666	-2.77130173	-1.30087435
0	2.55205235	-1.67567131	-1.21706095

10. References

(1) M. Nie, L. Madec, J. Xia, D. S. Hall, J. R. Dahn, J. Power Sources 2016, 328, 433.

(2) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.

(3) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

(4) A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378-6396.

(5) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. W. Sonnenberg, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16*, C.02.; Gaussian, Inc.: Wallingford, CT, 2016.

(6) S. F. Boys, F. J. M. P. Bernardi, Mol. Phy. 1970, 19, 553-566.

(7) a) E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann,
C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, NBO 7.0 (University of Wisconsin, 2018), https://nbo7.chem.wisc.edu/biblio_css.htm; b) F. Weinhold, C. R. Landis, E. D. Glendening, *Int. Rev. Phy. Chem.* 2016, **35**, 399–440.

(8) R. F. W. Bader, In Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, 1990.

(9) a) T. Lu, F. Chen, J. Comput. Chem. 2012, **33**, 580-592; b) Z. Zhang, T. Lu, *Phys. Chem. Chem. Phys.* 2021, **23**, 20323-20328.

(10) M. H. Abraham, Chem. Soc. Rev. 1993, 22, 73-83.

					FL	
					rt	
					PC	
					SI SF WDW SSB LB GB BC	32768 125.7577726 MHz EM 0 1.00 Hz 0 1.40
					SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13	500.1320005 MHz 1H waltzl6 80.00 usec 25.0000000 W 0.46495000 W 0.23387000 W
					D11 TD0 SF01 NUC1 P1 PLW1 SF02	0.03000000 sec 1 125.7703643 MHz 13c 9.75 usec 94.0000000 W
CDCl ₃					FIDRES AQ RG DW DE TE D1	0.908261 Hz 1.1010048 sec 206.72 16.800 usec 6.50 usec 295.1 K 2.0000000 sec
					PULPROG TD SOLVENT NS DS SWH	zgpg30 65536 CDCl3 1024 4 29761.904 Hz
O ^{_DF3} ⊕ Me ^{P.} ,,,Me					F2 - Acqui Date_ Time INSTRUM PROBHD	- sition Parameters 20201015 23.28 h spect 119470 0283 (
					Current Da NAME T EXPNO PROCNO	nta Parameters vinn-4-046-2nd-PMe30BF3- 2 1

Me P, Me Me												Current NAME EXPNO PROCNO	Data Parameters vinn-4-046-2nd-PMe30B 3 1	F3-202
TOB-1												F2 - Acq Date_	Auisition Parameters 20201015	
MHz ¹¹ B NMR												Time INSTRUM	23.29 h spect	
												PROBHD PULPROG TD	2119470_0283 (zgig 32768	
CDCI3												SOLVENT NS	CDC13 16	
												DS	4 24038.461 Hz	
												FIDRES	1.467191 Hz	
												RG	206.72	
												DW DE	20.800 usec 6.50 usec	
												TE D1	295.2 K 1.00000000 sec	
												D11 TD0	0.03000000 sec 1	
												SF01	160.4615790 MHz	
												P1	16.00 usec	
												PLW1 SF02	500.1320005 MHz	
												NUC2 CPDPRG[2	1H 2 waltz16	
												PCPD2	80.00 usec	
												PLW12	0.46495000 W	
												F2 - Pro	ocessing parameters	
												SI SF	16384 160.4615792 MHz	
												WDW SSB	EM 0	
												LB	1.00 Hz	
												PC	1.40	
and the second state of the se					an a	Contract of the local division of the local		and the second	ter i arab satatika sukiasan k					
l Enformation of the second								NAME OF OCTOBER OF OCTOBE		and the second	an an haife an haife an dirana di sa dirana di sa dirana di sa	***		
												_		
70 60 50 40	30	20	10	0	-10	-20	-30	-40	-50	-60	nnr			

-0.9252

Θ

ó ^{BF} ₃				
Me P., Me				
TOB-1				
470 MHz ¹⁹ F NMR				
CDCl ₃				

Current NAME EXPNO PROCNO	Data Parameters vinn-4-046-2nd- 4 1	-PMe30BF3-20201015
F2 - Ac	quisition Paramet	ers
Date_	20201015	
Time	23.31	h
INSTRUM	spect	
PROBHD	Z119470_0283 (
PULPROG	zgflqn	
TD	131072	
SOLVENT	CDC13	
NS	32	
DS	4	
SWH	113636.367	Hz
FIDRES	1.733953	Hz
AQ	0.5767168	sec
RG	206.72	
DW	4.400	usec
DE	6.50	usec
TE	295.2	K
D1	1.00000000	sec
TDO	1	
SF01	470.5453180	MHz
NUC1	19F	
P1	15.00	usec
PIWI	47.23500061	w
E2 - Bm	ogogging nowomot.	
CT 11.	SCEBBING PATAMEC	51.6
ST ST	470 5923772	MU 7
NUM	1/010/20//2 FM	11112
SSR	0	
LB	0.30	Hz
GB	0.00	
PC	1.00	

T		· · · ·			 	 	 	 					1		•
	0	-20	-40	-60	-80	-100	-120	-140	160	-	180	-2	200	ppm	I

-146.0408

Curre NAME EXPNO ProcN F2 - Date_ Time Time ToB-1 200 MHz ³¹ P NIMR	nt Data Parameters vinn-4-046-2nd-PMe3OBF3-202 5 0 1 Acquisition Parameters 20201015 23.35 h UM spect D 2119470_0283 (0G zg30 65536 NT CDC13 64 4 81521.742 Hz 5 2 48786 Hz
CDCI ₃	0.4019541 sec 206.72 6.133 usec 6.50 usec 295.1 K 2.00000000 sec 1 202.4462121 MHz 31P 14.00 usec 54.0000000 W
FINI F2 - SI WDW SSB LB GB PC	Processing parameters 32768 202.4563350 MHz EM 0 1.00 Hz 0 1.40
	S71

10 ppm

- 67.94

Cy Cy Cy Cy Cy P Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy C	IR								Current NAME EXPNO PROCNO F2 - AC Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG[PCPD2 PLW2 PLW13	Data Parameters vinn-4-026-PCy30BF3-2020082 2 1 quisition Parameters 20200823 18.53 h spect 2119470_0283 (2gpg30 65536 CDC13 400 4 29761.904 Hz 0.908261 Hz 1.1010048 sec 206.72 16.800 usec 6.50 usec 295.2 K 2.00000000 sec 0.03000000 sec 1 125.7703643 MHz 13C 9.75 usec 94.0000000 W 500.1320005 MHz 1H 2 waltz16 80.00 usec 25.0000000 W 0.39063001 W 0.19648001 W
and data for the second on the second sec The second s	रूपी स्थान ना अन्य स्थान स् स्थान स्थान ना अन्य स्थान स	tenderson og kinetet på stel 10 sen og til de som omgeføret at 11 stellande av er op som de som føret.	ela segunda y de ser de ser de se de se de La segunda y de ser de se d	av sk filma gan se de kjel skou vede Nagerskou gan e golegene angegege	il te entre l'hand a son an an sabbil à tablen à l Il te entre i na son an	Standard and States and a States and the States Standard and States and a States and States and States States and States and States and States and States and States	walan dahar perupakan kanya dahar perupakan kanya dahar perupakan kanya dahar perupakan kanya dahar perupakan Perupakan kanya dahar perupakan kanya dahar perupakan kanya dahar perupakan kanya dahar perupakan kanya dahar p	jud sa parta ang kata ang ang ang ang ang ang ang ang ang an	F2 - Pr SI WDW SSB LB GB PC	ocessing parameters 32768 125.7577735 MHz M 0 1.00 Hz 0 1.40

--1.0258

⊙ o´^{BF}³

Cy → P^{···} Cy Cy

TOB-2

160 MHz ¹¹B NMR

 $CDCl_3$

Current Data F	arameters	
NAME vinn-	4-026-PCy	30BF3-20200822
EXPNO	3	
PROCNO	1	
F2 - Acquisiti	on Parame	ters
Date_	20200823	
Time	18.55	h
INSTRUM	spect	
PROBHD Z1194	170_0283 (
PULPROG	zgig	
TD	32768	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	24038.461	Hz
FIDRES	1,467191	Hz
AQ	0.6815744	sec
RG	206.72	
DW	20.800	usec
DE	6.50	usec
TE	295.2	к
D1 1	.00000000	sec
D11 0	.03000000	sec
TDO	1	
SFOI 10	0.4615790	MHZ
NUCL	11B	
P1	16.00	usec
PLW1 50		24 1977
SEO2 50	0.1320005	MHZ
NUCZ	IH	
CPDPRG[2	waltz16	
PUPDZ OF	80.00	usec
PLW2 25		94 57
PLW12 U	.39063001	м
Do - Dutessei		
ar - Frocessii	ig paramec	61.8
31 077 16	10384	MUr
0000 IC	51.4010172	
CCD CCD	EPI	
LR	1 00	¥
CB	1.00	112
90 D/	1 40	
* ~	1.40	

O ^{BF3} Cy→P [,] Cy Cy TOB-2 70 MHz ¹⁹ F NMR				-1		Current NAME EXPNO PROCNO F2 - A Date Time INSTRUN PROBHD PULPRO TD SOLVENI NS DS SUVENI NS DS SWH FIDRES AO	: Data Parameters vinn-4-026-PCy30BF3-20200 4 1 squisition Parameters 20200823 18.56 h 4 spect 2119470_0283 (3 zgflqn 131072 f CDCl3 16 4 113636.367 Hz 1.733953 Hz 0.5767168 sec
CDCI ₃						RĞ DW DE TE D1 TD0 SF01 NUC1 P1 P1W1 F2 - P: SI SF WDW SSB LB GB PC	206.72 4.400 usec 6.50 usec 295.2 K 1.0000000 sec 1 470.5453180 MHz 19F 15.00 usec 47.23500061 W rocessing parameters 65536 470.5923772 MHz EM 0 0.30 Hz 0 1.00
		Statistic Providence Harrison					

	134.406 134.384 134.384 133.242 133.149 133.149 129.440 129.334 125.370 124.484	$\overbrace{76.903}^{77.411}$	
Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph P			Current Data Parameters NAME vinn-3-102-PPR30EF3-CDC13-20201114 EXPNO 6 PFOCNO 1 F2 - Acquisition Parameters Date_ 20201114 Time 12.31 h INSTRUM spect PFOEND 2119470_0283 (FULFFOG zgpg30 TD 65536 SOLVENT CDC13 NS 256 DS 4 SWH 29761.904 Hz FIDRES 0.998261 Hz AQ 1.1010048 sec RG 206.72 DW 16.800 usec TE 295.1 k D1 2.0000000 sec D11 0.03000000 sec D11 0.03000000 sec D11 0.03000000 sec D11 0.03000000 w F1 94.0000000 W SFO2 500.132005 MHz NUC2 1H CFDPFx[2 waltz16 PCFD2 80.00 usec FLW1 94.0000000 W F2 - Processing parameters SI 32768 SF 125.7577729 MHz WDW EM
ng panama dan kang kayakan U karyadan di karyadan dan di karyadan dan di kang dan milikan madi da Janata, Kaya Wata mang kampa papana hiji ang ban yang singa karya nanang tinga mang magama naja di pana hag pana panjama di k		ենուն ուները մշումի ուներ նրարկություն (ոնտրու) ուների ուները մշումի ուներ նրարկություն (ոնտրու) ուների ուները ուները հայտություն ուները ուների ուները ուները հայտություն ուները է ուները հայտությունները ուները ուները ուների հայտություն ուների հայտու ուների ուները ուները հայտություն ուները ուների ուները ուները հայտություն ուները հայտությունները ուները ուները ուները ուների հայտություն ուների հայտությո	

70

60

50

40

30

20

10

-10

0

-20

-30

-40

-50

-60

Current I	ata Parameters	
NAME	vinn-3-102-PPh	30BF3-CDC13-2020111.
EXPNO	2	
PROCNO	1	
F2 - Acqu	isition Paramet	ters
Date	20201114	
Time	12.11	h
INSTRUM	spect	
PROBHD	z119470 0283 (
PULPROG	zaia	
TD	32768	
SOLVENT	CDC13	
NS	8	
DS	4	
SWH	24038.461	Hz
FIDRES	1.467191	Hz
AO	0.6815744	sec
RG	206.72	
DW	20.800	usec
DE	6.50	usec
TE	295.2	ĸ
D1	1.00000000	sec
D11	0.03000000	sec
TDO	1	
SF01	160.4615790	MHz
NUC1	11B	
P1	16.00	usec
PLW1	50.00000000	W
SFO2	500.1320005	MHz
NUC2	1H	
CPDPRG[2	waltz16	
PCPD2	80.00	usec
PLW2	25.00000000	W
PLW12	0.46495000	W
F2 - Proc	essing paramet	ers
SI	16384	
SF	160.4615792	MHz
WDW	EM	
	^	

111

ppm

- \sim

		006.76	$ \begin{array}{c} & 77.411 \\ \hline & 77.156 \\ \hline & 76.903 \\ \hline & 68.149 \\ \hline & 62.271 \end{array} $		
3b 125 MHz ¹³ C NMR CDCl ₃					Current Data Parameters NAME vinn-4-137-1-islt-20201207 EXFNO 2 FROCNO 1 F2 - Acquisition Parameters Date_ 20201207 Time 18.45 h INSTRUM spect FFOBHD 2119470_2283 (FULFPG zgpg30 TD 65536 SOLVENT CDC13 NS 100 DS 4 SWH 29761.904 Hz FIDFES 0.908261 Hz AQ 1.1010048 sec RG 206.72 DW 16.800 usec DE 6.50 usec TE 295.1 K D1 2.0000000 sec D1 0.03000000 sec D1 0.03000000 sec D1 0.03000000 sec PLM1 94.0000000 W SFO2 500.1320005 MHz NUC1 13 SFO2 500.1320005 MHz NUC2 1 CPDPPG[2 waltz16 PCDPPG[2 waltz16 PCDPFG[2 waltz16 PCDPFG[2 waltz16 PCDPFG[2 kultz16 PCDPFG[2 kultz16 PCDPF
					SSB 0 LB 1.00 Hz GB 0 PC 1.40
200 180 160	140 120	100	80 60	40 20	686

1.00

02)

•

-

01

٠

<u>, – </u>

15 15 15 15

-

 \neg

2.27

31

.

 \sim

-1 O -1			
U U U	4	2 1 4 1 8	$H \otimes \sigma$
0 1 0	8	0 0 0 U H	040
• • •	8	タータク ろ	9 U Q
$\sim 0.\infty$	•	• • • • •	• •
500		7 8 6 7 7	ு ப ப
\leftarrow	n	0 0 1 1 1	- 12 M
/ \/			

.089

138.

Current Da	ta Parameters	
NAME v	inn-4-137-2-is	slt-20201
EXPNO	2	
PROCNO	1	
F2 - Bereni	aition Peremat	are
Doto Nogor	20201207	
Jace_ Time	18 55	h
TNETDIM	ro.oo	
PROPUD 7	119470 0283 (
PIL PROG	113410_02003 (
TD	299900	
COLVENT	00030 00013	
NG	100	
N5 5 0	100	
05	9 00 41 004	
SMH	29761.904	Hz
FIDRES	0.908261	Hz
AQ	1.1010048	sec
RG	206.72	
DW	16.800	usec
DE	6.50	usec
TE	295.2	K
D1	2.00000000	sec
D11	0.03000000	sec
TDO	1	
SF01	125.7703643	MHz
NUC1	13C	
P1	9.75	usec
PLW1	94.00000000	W
SFO2	500.1320005	MHz
NUC2	1H	
CPDPRG[2	waltz16	
PCPD2	80.00	usec
PLW2	25.00000000	W
PLW12	0.46495000	W
PLW13	0.23387000	W
F2 - Progo	aging normati	
2T 1100E	32768	
er.	125 7577798	MU -
	120101011120	1112

	'		'	1	·	'	'			'	1
200	180	160	140	120	100	80	60	40	20	0	ppm

Enrot 1 FROCNO 1 F2 - Acquisition Parameters Date_ 20201211 Time 6.34 h INSTRUM spect PFOSEND 2119470-0283 (PULPROG zg30 TD 65536 SOLVENT CD013 NS 16 DS 2 SWH 10000.000 Hz FIDERES 0.305176 Hz AQ 3.276799 acc RG 30.85 DW 50.000 usac DE 6.50 usac TE 295.1 K D1 1.00000000 acc TD0 181 SF01 500.1330883 MHz NUC1 1H F1 10.91 usac FLW1 25.0000000 W F2 Processing parameters SI 65536
$\begin{array}{cccc} FRO(0) & 1 \\ F2 - Requisition Parameters \\ Date 20201211 \\ Time & 6.334 h \\ INSTRUM & spect \\ FROBED & 2119470_0283 (\\ FULFRO & 2g30 \\ TD & 65536 \\ SOLVENT & CDC13 \\ NS & 16 \\ DS & 16 \\ DS & 16 \\ DS & 16 \\ SOLVENT & CDC13 \\ NS & 16 \\ DS & 16 \\ SOLVENT & CDC13 \\ SWH & 10000.000 Hz \\ FTDRES & 0.305176 Hz \\ AQ & 3.2767999 sec \\ RG & 30.85 \\ DW & 50.000 Usec \\ DE & 6.50 Usec \\ TE & 295.1 K \\ D1 & 1.0000000 sec \\ TDO & 10.91 \\ SF01 & 500.133083 \\ MHz \\ NUC1 & 1H \\ F1 & 10.91 Usec \\ FLW1 & 25.0000000 \\ F2 & - Processing parameters \\ SI & 65536 \\ \end{array}$
F2 - Acquisition Parameters Date_ 20201211 Time 6.34 h INSTRUM apect PFOBED 2119470_0283 (PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 10000.000 Hz FIDERES 0.305176 Hz AQ 3.2767999 acc RG 30.85 DW 50.000 usac DE 6.50 usac TE 295.1 K D1 1.00000000 acc TD0 500.1330883 MHz NUC1 1H F1 10.91 usac FLW1 25.0000000 W E2 - Frocessing parameters SI 65536
Date_ 20201211 Time 6.34 h INSTRUM spect PFOBED 2119470_0283 (PULPROG zg30 TD 65536 SOLVENT CD013 NS 16 DS 2 SWH 10000.000 Hz FIDFES 0.305176 Hz AQ 3.2767999 sec RG 30.85 DW 50.000 usac DE 6.50 usac TE 295.1 K D1 1.0000000 sec TD0 1 SF01 500.133083 MHz NUC1 1H F1 10.91 usac FLW1 25.0000000 W F2 Processing parameters SI 65536
Time 6.34 h INSTRUM spect PROBED 2119470_0283 (PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 10000.000 Hz FIDERES 0.305176 Hz AQ 3.2767999 aec RG 30.85 DW 50.000 uaec DE 6.50 uaec TE 295.1 K D1 1.00000000 aec TD0 1 SF01 500.1330833 MHz NUC1 1H P1 10.91 uaec FL2 Processing parameters SI 65536
INSTRUM spect PROBED 2119470_0283 (PULPROG 2g30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 10000.000 Hz FIDRES 0.305176 Hz AQ 3.2767999 sec RG 30.85 DW 50.000 usec DE 6.50 usec TE 295.1 K D1 1.00000000 sec TD0 1 SF01 500.133083 MHz NUC1 1H F1 10.91 usec FLW1 25.0000000 W F2 - Processing parameters SI
PROBRD 2119470_0283 (PULPROG xg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 10000.000 Hz FIDRES 0.305176 Hz AQ 3.2767999 acc RG 30.85 DW 50.000 usac DE 6.50 usac TE 295.1 K D1 1.00000000 acc TD0 1 SF01 500.1330833 MHz NUC1 1H P1 10.91 usac FLW1 25.0000000 W F2 - Processing parameters SI 65536
FULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 10000.000 Hz FIDRES 0.305176 Hz AQ 3.2767999 sec RQ 30.85 DW 50.000 usec DE 6.50 usec DI 1.0000000 sec TDO1 1 SF01 500.1330838 MHz NUC1 1H F1 10.91 usec FLW1 25.0000000 W F2 - Processing parameters SI 65536
TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 10000.000 Hz FIDRES 0.305176 Hz AQ 3.2767999 acc RG 30.85 DW 50.000 usac DE 6.50 usac TE 295.1 K D1 1.00000000 acc TD0 1 STO1 500.1330883 MHz NUC1 1H P1 10.91 usac FL2 - Processing parameters SI 65536
SOLVENT CDC13 NS 16 DS 2 SWH 1000.000 Hz FIDERES 0.305176 Hz AQ 3.2767999 sec RG 30.85 DW 50.000 usac DE 6.50 usac DI 1.0000000 sec TDO 1 SF01 500.1330883 MHz NUC1 1H F1 10.91 usac FLW1 25.0000000 W E2 - Processing parameters SI 65536
NS 16 DS 2 SWH 10000.000 Hz FIDRES 0.305176 Hz AQ 3.2767999 acc RG 30.85 DW 50.000 usec DE 6.50 usec TE 295.1 K D1 1.00000000 acc TD0 1 SP01 500.1330833 MHz NUC1 H Pl 10.91 usec FLW1 25.0000000 W F2 - Processing parameters SI
DS 2 SWH 1000.000 Hz FIDRES 0.305176 Hz AQ 3.2767999 acc AQ 30.85 DW 50.000 usac DE 6.55 usac TE 295.1 K D1 1.0000000 acc TD0 1 SF01 500.1330883 MHz NUC1 1H F1 10.91 usac FLW1 25.0000000 W E2 - Processing parameters SI 65536
SWH 10000.000 Hz FIDRES 0.305176 Hz AQ 3.2767999 sec RG 30.85 DW 50.000 usec DE 6.50 usec TE 295.1 K D1 1.00000000 sec TD0 1 SF01 500.1330833 MHz NUC1 1H P1 10.91 usec FLW1 25.0000000 W F2 - Processing parameters SI 65536
FIDERS 0.305176 Hz AQ 3.2767999 acc RG 30.85 DW 50.000 usac DE 6.50 usac TE 295.1 K DI 1.00000000 acc TD0 500.1330883 MHz NNC1 1H F1 10.91 usac FLW1 25.0000000 W E2 - Processing parameters SI 65536
AQ 3.2767999 sec RG 30.85 DW 50.000 usec DE 6.50 usec TE 295.1 K D1 1.0000000 sec TD0 1 SF01 500.1330883 MHz NUC1 1H P1 10.91 usec PLW1 25.0000000 W F2 - Frocessing parameters SI 65536
RG 30.85 DW 50.000 usac DE 6.50 usac DE 295.1 K D1 1.0000000 sec TD0 1 1 SF01 500.1330883 MHz NUC1 1H F1 F1 10.91 usac FLW1 25.0000000 W F2 F2 - Frocessing parameters SI
DW 50.000 usec DE 6.50 usec TE 295.1 K D1 1.0000000 sec TD0 1 SF01 500.133083 MHz NUC1 1H P1 10.91 usec PLW1 25.0000000 W F2 - Frocessing parameters SI 65536
DE 6.50 usec TE 295.1 K D1 1.0000000 sec TD0 1 SP01 500.1330833 MHz NUC1 1H F1 10.91 usec FLW1 25.0000000 W F2 - Processing parameters SI 65536
TE 295.1 K D1 1.0000000 sec TD0 1 SF01 500.1330883 MHz NUC1 1H F1 10.91 usec PLW1 25.000000 W F2 - Frocessing parameters SI 65536
D1 1.00000000 sec TD0 1 SF01 500.1330833 MHz NUC1 1H P1 10.91 usec FLW1 25.0000000 W F2 - Processing parameters SI 65536
TD0 1 SF01 500.133083 MHz NUC1 1H F1 10.91 usec FLW1 25.0000000 W F2 - Processing parameters SI 65536
SP01 500.1330883 MHz NUC1 1H P1 10.91 usec PLW1 25.0000000 W F2 - Frocessing parameters SI 65536
NUC1 1H P1 10.91 used FLW1 25.00000000 W F2 - Processing parameters SI 65536
F1 10.91 usec FLW1 25.0000000 W F2 - Processing parameters SI 65536
PLW1 25.00000000 W F2 - Processing parameters SI 65536
F2 - Processing parameters SI 65536
F2 - Processing parameters SI 65536
SI 65536
SF 500.1300150 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

	136.28 135.28 133.000 129.30 126.81	98.44	$ = \begin{bmatrix} 77.41 \\ 77.15 \\ 76.90 \\ 66.36 \\ 62.21 \end{bmatrix} $		
(c) + (c)					Current Data Parameters NAME vinn-4-137-16-islt-20201210 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ Date_ 20201211 Time 6.39 h INSTRUM spect PROBHD 2119470_0283 (PULPROG zqpg30 TD 65536 SOLVENT CDC13 NS 100 DS 4 SWH 29761.904 Hz FIDRES 0.908261 Hz AQ 1.1010048 sec RG 206.72 DW 16.800 usec DE 6.50 usec TE 295.1 K D1 2.0000000 sec D1 0.03000000 sec D1 13C P1 9.75 usec PLW1 94.0000000 W SF02 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 25.0000000 W
ĸĸĸĸ₩ĸ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩					PLW12 0.46495000 W PLW13 0.23387000 W F2 - Processing parameters SI 32768 SF 125.7577804 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
200 180 160) 140 120	100	80 60	40 20	0 ppm

	146.219	127.858 127.057 123.685		77.411 77.156 76.901 67.724 62.393		
3e 125 MHz ¹³ C NMR CDCl ₃						Current Data Paramaters NAME vinn-4-137-4-islt-20201207 EXPNO 2 FFOCNO 1 F2 - Acquisition Paramaters Data_ 20201207 Time 19.14 h INSTRUM spact PFOEHD 2119470_0283 (FULFROG zgpg30 TD 65536 SOLVENT CDC13 NS 100 DS 4 SWH 29761.904 Hz FIDRES 0.908261 Hz AQ 1.1010048 sec RG 206.72 DW 16.800 usec DE 6.50 usec TE 295.1 K D1 2.0000000 sec D1 0.03000000 sec D1 0.03000000 sec TD0 1 SFO1 125.7703643 MHz NUC1 13c P1 9.75 usec PLW1 94.0000000 W SFO2 500.132005 MHz NUC2 1H CFDPRG[2 waltz16 FCPDZ 80.00 usec PLW2 25.0000000 W FLW1 0.23387000 W F2 - Processing paramaters SI 32768 SF 125.7577777 MHz WDW EM SSB 0 LE 1.00 Hz GB 0 FC 1.40
	<u>,.,</u>					
200 180 160) 140	120	100	80 60	40 20	591

CDCI3				DW 16.800 usec DE 6.50 usec TE 295.2 K D1 2.0000000 sec D1 0.0300000 sec TD0 1 SF01 125.7703643 MHz NUC1 13c P1 9.75 usec P1W1 94.0000000 W SF02 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec P1W2 0.46495000 W PLW13 0.23387000 W F2 - Processing parameters SI 32768 SF 125.7577796 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
George States St				Current Data Parameters NAME vinn-4-137-3-islt-20201207 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20201207 Time 19.04 h INSTRUM spect PROBHD 2119470_0283 (PULPROG 2gpg30 TD 65536 SOLVENT CDC13 NS 100 DS 4 SWH 29761.904 Hz FIDRES 0.908261 Hz AO 1.1010048 sec
	137.3 135.2 128.0	97.64	$ = \int_{-10}^{77} \int_{-10}^{77} \int_{-10}^{77} \int_{-10}^{7} \int_{-10}^{10} \int$	

200 18	30 16 0	140	120	100	80 60	40 20	0 0 ppm	- · · ·
							SFO NUC P1 FLW SFO NUC CPD PCP PLW PLW PLW F2 SI SF WDW SSB LB GB FC	L 125.//03643 MHz L 13C 9.75 usec 1 94.0000000 W 2 500.1320005 MHz 2 1H PRG[2 Waltz16 D2 80.00 usec 2 25.00000000 W 13 0.23387000 W - Processing parameters 32768 125.7577765 MHz EM 0 1.00 Hz 0 1.40
3g 5 MHz ¹³ C NMR CDCl ₃							Cur NAM EXP PRO F2 Dat Tim INS PRO FUL SOL SSWH FID SOL NS DS SWH FID AQ RG DW DE TE D1 D1 TD	cent Data Parameters 2 vinn-4-137-7-islt2-2020 NO 2 CNO 1 - Acquisition Parameters e_ 20210121 e 8.52 h IRUM spect BHD 2119470_0283 (PROG 2gpg30 65536 VENT CDC13 256 4 29761.904 Hz RES 0.908261 Hz 1.1010048 sec 206.72 16.800 usec 6.50 usec 295.2 K 2.0000000 sec 0.03000000 sec 1
	159.2	130.4	113.8	97.58	$ = \begin{bmatrix} 77.41 \\ 77.15 \\ 76.90 \\ 68.60 \\ 62.27 \\ 62.27 \\ 55.39 \end{bmatrix} $		η Ω Δ Π	

3i 500 MHz ¹H NMR CDCl₃

Current	Data Parameters	
NAME	vinn-4-139-1-is	slt-20201222
EXPNO	1	
PROCNO	1	
F2 - Acc	puisition Paramet	ters
Date_	20201223	
Time	8.33	h
INSTRUM	spect	
PROBHD		
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10000.000	Hz
FIDRES	0.305176	Hz
AQ	3.2767999	sec
RG	30.85	
DW	50.000	usec
DE	6.50	usec
TE	295.2	ĸ
D1	1.00000000	sec
TDO	1	
SF01	500.1330883	MHz
NUC1	1H	
P1	10.91	usec
PLW1	25.00000000	W
F2 - Pro	cessing paramet	ers
SI	65536	
SF	500.1300123	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

ப	0 7 7				
ப	0 1 0	4	$\neg \neg \neg$	0	M 00 01
<u>,</u> −	4 0 0		- U O	Ы	0 7 M
•	• • •	4	ターク	, 	ഗനത
[\circ \neg \circ	•	• • •	•	• • •
ப	$\neg \land \neg \neg$	9	6 7 7	\sim	0 4 0
, - 	\leftarrow \leftarrow	0		6	$\sim \sim \sim$
		1	くモノ	1	
			¥		

3i 125 MHz ¹³C NMR CDCl₃

NAME V	/1nn-4-139-1-18	BIE-202012
EXPNO	2	
PROCNO	1	
F2 - Acqui	sition Paramet	iers
Date_	20201223	
Time	8.41	h
INSTRUM	spect	
PROBHD 2	119470_0283 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	128	
DS	4	
SWH	29761.904	Hz
FIDRES	0.908261	Hz
AQ	1.1010048	sec
RG	206.72	
DW	16.800	usec
DE	6.50	usec
TE	295.2	ĸ
D1	2.00000000	sec
D11	0.03000000	sec
TDO	1	
SFOI	125.7703643	MHZ
NUCI	130	
PI	9.75	usec
PLWI	94.00000000	W
SEOZ	500.1320005	MHZ
NUCZ	11	
CPDPRG[Z	WAITZIO	
PCPDZ PIW2	25 00000000	usec w
F1.W2 DIW12	23.000000000	w w
FLWIZ DIWIZ	0.40433000	w w
FLWIS	0.23387000	47 1
F2 - Proce	ssing paramet	ers
SI	32768	
SF	125.7577796	MHz
WDW	EM	
SSB		
LB	1.00	Hz
GB	0	
PC	1.40	

S99

 								·			
 200	180	160	140	120	100	80	60	40	20	0	 mqq

S100

1.00

	158.88 156.98 153.31 153.28	$\bigwedge_{115.76}^{117.89}$	97.22	$- \bigwedge_{76.91}^{77.42}$	62.22			
ψj3j125 MHz 13C NMRCDCl3							Current D NAME EXPNO PROCNO F2 - Acqu Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 SF01 SF01 SF02 NUCC1 P1 PLW1 SF02 NUCC1 P1 PLW1 SF02 NUCC2 NUCC2 PLW2 PLW12 PLW12 PLW13 F2 - Proc SI SF WDW SSB LB GB PC	ata Parameters vinn-4-139-4-2-islt2-2020012 2 1 isition Parameters 20210121 9.28 h spect 2119470_0283 (23p930 65536 CDC13 256 4 29761.904 Hz 0.908261 Hz 1.1010048 sec 295.72 16.800 usec 6.50 usec 295.2 K 2.00000000 sec 0.03000000 sec 1 125.7703643 MHz 133 9.75 usec 94.0000000 w 500.1320005 MHz 1H waltz16 80.00 usec 25.0000000 W 0.46495000 W 0.23387000 W Sessing parameters 32768 125.7665629 MHz EM 0 1.00 Hz 0 1.40
, so atomic products and be all the products as produced by the second of the product of the product of the pro The product of the prod	lahar og pillinget han som kallant som salarnet bag ande beleg Førende genore og porte og forget der og seller og berefelte geter en pille	analla il cidhu na ci na in cinadhach	ethological and a second algoli The second second second	haddelle Geddelle anticepteriol fart	han halina an halina an hai	is n folket folket folket folket. An folket folket folket folket folket folget folg	ne ha fila feriendi di di fila fila fila fila di	
							'	S101

ppm

3j 470 MHz ¹⁹F NMR CDCl₃

-

أقار بنبائد أنماليسطور ومنارده

Current Data Parameters
NAME vinn-4-139-4-2-islt2-2020012
EXPNO 3
PROCNO 1
F2 - Acquisition Parameters
Date_ 20210121
Time 9.30 h
INSTRUM spect
PROBHD Z119470_0283 (
PULPROG zgflqn
TD 131072
SOLVENT CDC13
NS 16
DS 4
SWH 113636.367 Hz
FIDRES 1.733953 Hz
AQ 0.5767168 sec
RG 206.72
DW 4.400 usec
DE 6.50 usec
TE 295.2 K
D1 1.00000000 sec
TD0 1
SF01 470.5453180 MHz
NUC1 19F
P1 15,00 usec
PLW1 47.23500061 W
F2 - Processing parameters
SI 65536
SF 470.5923772 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

Τ	·	· · · ·	· · · · ·	· [·	·	·	·	· · · ·	·	· · · ·	
	0	-20	-40	-60	- <mark>80</mark>	-100	-120	-140	-160	-180	-200	ppm

Current I)ata Parameters	
NAME	Andy-1-180-3-is	slt-20220817
EXPNO	4	
PROCNO	1	
F2 - Acqu	isition Parame	ters
Date_	20220819	
Time	17.55	h
INSTRUM	spect	
PROBHD	Z108618_0257 (
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	8012.820	Hz
FIDRES	0.244532	Hz
AQ	4.0894465	sec
RG	203	
DW	62.400	usec
DE	6.50	usec
TE	296.2	ĸ
D1	1.00000000	sec
TDO	1	
SF01	400.1324708	MHz
NUC1	1H	
P1	15.00	usec
PLW1	12.50000000	W
F2 - Pro	cessing paramet	ers
SI	65536	
SF	400.1300098	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

4	4 2 2 3					
9	22000	5	0 12	4	2 1	\sim
9	$\omega \sim \omega 40$		С U 4	8	4 7	∞
•	• • • • •	0	$4 + \infty$	0 0	m m	\triangleleft
\sim	75870	•	• • •	•	• •	•
ப	\neg \neg \neg \neg \neg \neg	6	\sim		О U	∞
\leftarrow	$\leftarrow \mid \leftarrow \mid \leftarrow \mid \leftarrow \mid$	0	[[6	M 2	-
	\langle / \rangle					

EXPNO	5 5	510 202200
PROCNO	1	
F2 - Acqu	isition Paramet	iers
Date	20220819	
Time	18.00	h
INSTRUM	spect	
PROBHD	z108618_0257 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	62	
DS	4	
SWH	24038.461	Hz
FIDRES	0.733596	Hz
AQ	1.3631488	sec
RG	203	
DW	20.800	usec
DE	6.50	usec
TE	296.6	K
D1	2.00000000	sec
D11	0.03000000	sec
TDO	1	
SF01	100.6228298	MHz
NUC1	13C	
P1	10.00	usec
PLW1	51.00000000	W
SFO2	400.1316005	MHz
NUC2	1H	
CPDPRG[2	waltz16	
pcpd2	90.00	usec
PLW2	12.50000000	W
PLW12	0.34722000	W
PLW13	0.17465000	W
F2 - Proc	essing paramet	ars
SI	32768	
SF	100.6127565	MHz

S106

0

ppm

$\square \square $	004	0 M M Ø	0 0 4 0 0 0
$\neg \infty \vdash \infty \frown$	000	のようの	MA M M M A
0 H H O O	47 M	വഗരമ	0000000
• • • • •	• • •	• • • •	• • • • • •
00111	വവവ	mmmm	\bigcirc \dashv \dashv \dashv \dashv \dashv

3m 500 MHz ¹H NMR CDCl₃

Current	Data Parameters	
NAME	vinn-4-139-2-2-	-islt2-20210111
EXPNO	1	
PROCNO	1	
F2 - Ac.	uisition Parame	Lers
Date_	20210111	
Time	18.36	h
INSTRUM	spect	
PROBHD	Z119470_0283 (
PULPROG	zq30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10000.000	Hz
FIDRES	0.305176	Hz
AQ	3.2767999	sec
RG	30.85	
DW	50.000	usec
DE	6.50	usec
TE	295.1	ĸ
D1	1.00000000	sec
TDO	1	
SF01	500.1330883	MHz
NUC1	1H	
P1	10.91	usec
PLW1	25.00000000	W
F2 - Pr:	cessing paramet	ara
SI	65536	
SF	500.1300128	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

\sim	യ ന ന ന ന					
6	00400	,	$\sim \infty \infty$	[`	<u> </u>	\circ
ດ	500000	9	4 N N	\sim	44	$^{\circ}$
•	• • • • •	S	ターク	, - 	∑	[~~~
[~	04000	•	• • •	•	• •	٠
ப	-7220	9	C	\sim	О Ω	∞
\leftarrow		0	[[[9	S M	\leftarrow

3m 125 MHz ¹³C NMR CDCl₃

Current Da	ata Parameters	
NAME 1	/inn-4-139-2-2-is1t2-2	02101:
EXPNO	2	
PROCNO	1	
F2 - Acqui	isition Parameters	
Date_	20210111	
Time	18.43 h	
INSTRUM	spect	
PROBHD 2	4119470_0283 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	100	
DS	4	
SWH	29761.904 Hz	
FIDRES	0.908261 Hz	
AQ	1.1010048 sec	
RG	117.01	
DW	16.800 usec	
DE	6.50 usec	
TE	295.2 K	
D1	2.00000000 sec	
D11	0.03000000 sec	
TDO	1	
SF01	125.7703643 MHz	
NUC1	13C	
P1	9.75 usec	
PLW1	94.00000000 W	
SFO2	500.1320005 MHz	
NUC2	1H	
CPDPRG[2	waltz16	
PCPD2	80.00 usec	
PLW2	25.00000000 W	
PLW12	0.46495000 W	
PLW13	0.23387000 W	
F2 - Proce	essing parameters	
SI	32768	
SF	125.7577740 MHz	

200	180	160	140	120	100	80	60	40 20	ppm	S112
CDCl ₃									Current NAME EXPNO PROCNO F2 - Acq Date_ Time INSTRUM PROBHD PULPROG DD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D1 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 FLW13 F2 - Pro SI SF WDW SSB LB GE PC	Data Parameters vinn-4-139-8-islt2-20200120 2 1 aisition Parameters 20210121 7.56 h spect 2119470_0283 (2gpg30 65536 CDC13 256 4 29761.904 Hz 0.908261 Hz 1.1010048 sec 206.72 16.800 usec 6.50 usec 295.1 K 2.0000000 sec 1 125.7703643 MHz 13C 9.75 usec 94.0000000 W 500.1320005 MHz 1H walt216 80.00 usec 25.0000000 W 0.23387000 W 0.23387000 W cessing parameters 32768 125.7577780 MHz EM 0 1.00 Hz 0 1.40
		154.	144.		96			34.0 31.0 30.1 18.0		

200 180	160	140	120	100	80	60	40 20	0 ppm
Oμ J Jaq Jaq Jag Jag Jag Jag								Current Data Parameters NAME vinn-4-139-9-islt-20210111 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20210111 Time 19.03 h INSTRUM spect PROBHD 2119470_0283 (PULPENG 200930 TD 65536 SOLVENT CDC13 NS 100 DS 4 SWH 29761.904 Hz FTDRES 0.908261 Hz AQ 1.1010048 sec RG 206.72 DW 16.800 usec DE 6.50 usec TE 295.1 K D1 2.00000000 sec D11 0.03000000 sec D11 0.03000000 sec TD 1 25.770364 MHz NUC1 13C P1 9.75 usec PLW1 94.00000000 W SF02 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW1 94.0000000 W SF02 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW1 0.25.7577784 MHz NDW EM SSB 0 LB 1.000 Hz GB 0 PC 1.40
	157	139	12.	0 0 	77 76 76	62		

		137.65 135.59	124.02		96.41	$\bigwedge_{76.90}^{77.41}$					
										Current NAME EXPNO PROCNO F2 - Ac Date_ Imme INSTRUM PROBUD PULPROC TD SOLVENI NS DS SWH FIDRES AQ Q RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLM1 SF02 NUC2 NUC2 PLW12 PLW13 F2 - Pr SI SF WDW SSB LB GB PC	Data Parameters vinn-4-139-10-islt2-20200120 2 1 quisition Parameters 20210121 8.16 h spect 2119470_0283 (2gg30 65536 CDC13 256 4 29761.904 Hz 0.908261 Hz 1.010048 sec 206.72 16.800 usec 6.50 usec 295.2 R 2.00000000 sec 0.03000000 sec 0.03000000 sec 1 125.7703643 MHz 13C 94.0000000 W 500.1320005 MHz 1H 2 waltz16 80.00 usec 25.0000000 W 0.46495000 W 0.23387000 W ccessing parameters 32768 125.7577766 MHz EM 0 1.00 Hz 0 1.40
200 180	160	140	120	an a	100	80 יישאַעידי רייא שייאר	60	40	20	0 ppm	S118

Current Data Parameters NAME vinn-4-139-5-2-islt-20201216 EXPNO **3**s 1 PROCNO 1 F2 - Acquisition Parameters 500 MHz ¹H NMR Date_ 20201216 Time INSTRUM PROBHD 19.13 h z119470_0283 (zg30 65536 $CDCl_3$ PULPROG TD CDC13 16 SOLVENT NS DS 2 2 10000.000 Hz 0.305176 Hz 3.2767999 sec 30.85 50.000 usec 6.50 usec SWH FIDRES AQ RG DW DE 295.1 K TE D1 1.00000000 sec TDO 1 500.1330883 MHz SF01 1H 10.91 usec 25.00000000 W NUC1 P1 PLW1 F2 - Processing parameters SI 65536 SF 500.1300121 MHz WDW EM SSB LB 0.30 Hz GB PC 0 1.00 9 8 6 5 3 2 4 ppm1.13 2.27 3.68 2.02 1.00 m ~ 00-• •

 ∞ -

44	0 [~				
8 [~	[- [-	6	2 L W	-1	の 4 の
ц Ц	0.00	0	0017		1 4 1
• •	• •	4	4 1 の	\neg	0 M Q
77	4 7	•	• • •	• •	• • •
വവ	<u>, , , , , , , , , , , , , , , , , , , </u>	[6 7 7	0 N	0 0 0
\leftarrow \leftarrow	, , , , , , , , , , , , , , , , , , , 	5		വ	-100

3s 125 MHz ¹³C NMR CDCl₃

EXPNO	2	
PROCNO	1	
F2 - Acqui	sition Paramet	ters
Date_	20201216	
Time	19.18	h
INSTRUM	spect	
PROBHD Z	119470_0283 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	100	
DS	4	
SWH	29761.904	Hz
FIDRES	0.908261	Hz
AQ	1.1010048	sec
RG	206.72	
DW	16.800	usec
DE	6.50	usec
TE	295.2	ĸ
D1	2.00000000	sec
D11	0.03000000	sec
TDO	1	
SECI	125.7703643	MHZ
NUCI D1	130	
F1 DI MI	3.73	usec
CDO2	54.00000000	w MU -
SEUZ	300.1320003	PIHZ
ADDDDDG [2	1n 16	
CFDFRG[Z	Walt210	
PUN2	25 00000000	usec W
PLW12	0.46495000	w
PLW13	0.23387000	w
F2 - Proce	aging noremat	
SI LIGGE	32768	
SF	125.7577799	MHz
WDW	EM	
SSB	0	
LB	1.00	Hz
GB	0	
PC	1.40	

		I. J.								
2.00	180	160	1 4 0	12.0	100	80	60	4 0	2.0	 maa

3u 500 MHz ¹H NMR CDCl₃

Current	: Data Parameters	
NAME	vinn-7-105-1-i:	slt-20230807
EXPNO	1	
PROCNO	1	
F2 - A	quisition Parame	ters
Date_	20230807	
Time	17.34	h
INSTRU	f spect	
PROBHD	z149001_0010 (
PULPRO	÷ zg30	
TD	65536	
SOLVEN	CDC13	
NS	16	
DS	2	
SWH	10000.000	Hz
FIDRES	0.305176	Hz
AQ	3.2767999	sec
RG	30.85	
DW	50.000	usec
DE	10.00	usec
TE	296.2	K
D1	1.00000000	sec
TDO	1	
SF01	500.1330883	MHz
NUC1	1H	
P1	11.25	usec
PLW1	17.35199928	W
F2 - P1	cocessing paramet	ers
SI	65536	
SF	500.1300130	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

		— 142.938	110.371	 $\overbrace{76.903}^{77.411}$	√ 62.142 √ 60.728		
coordinates of the second sec							Current Data Faramaters NMME vinn-7-105-1-islt-20230807 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20230807 Time 17.46 h INSTRUM spect PROEND 2149001_0010 (PULPROG zpg30 TD c5536 SOLVENT CDC13 NS 200 DS 4 SWH 29761.904 Hz FIDRES 0.908261 Hz AQ 1.1010048 sec RG 2.0000000 ec D1 2.0000000 sec D1 2.0000000 sec D1 2.0000000 sec D1 1.00000000 w SPO1 125.7703643 MHz NUC1 13C PLW1 61.00000000 w SPO2 500.1320005 MHz NUC2 1H CPDFRG[2 waltz16 PCPD2 80.00 PLW1 0.17260000 W </th
200 180 160)	140 120	,	 80	60 40	20 0	 ກັບມີ

CI

Current	Data Parameters	
NAME	vinn-7-110-1-ia	slt-20230810
EXPNO	1	
PROCNO	1	
F2 - Ac	quisition Paramet	iers
Date	20230810	
Time	17.08	h
INSTRUM	spect	
PROBHD	z108618_0257 (
PULPROG	zq30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	8012.820	Hz
FIDRES	0.244532	Hz
AQ	4.0894465	sec
RG	101	
DW	62.400	usec
DE	6.50	usec
TE	295.8	ĸ
D1	1.00000000	sec
TDO	1	
SF01	400.1324708	MHz
NUC1	1H	
P1	15.00	usec
PLW1	12.50000000	W
F2 - Pr	ocessing paramet	ers
SI	65536	
SF	400.1300097	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

ppm

3w 400 MHz ¹H NMR CDCl₃

Current	Data Parameters	
NAME	vinn-7-110-3-is	slt-2023081
EXPNO	1	
PROCNO	1	
F2 - Aca	uisition Parame	ters
Date	20230810	
Time	17.17	h
INSTRUM	spect	
PROBHD	2108618 0257 (
PULPROG	zr30	
TD	65536	
SOLVENT	CDC13	
NG	16	
ne		
CMU	8012 820	¥
DIDDDC	0 244522	112
BO	A 0894455	n2 200
PC DC	4.0004405	860
DW .	62 400	11994
DE	6 50	2000
TP	295.8	v
D1	1 00000000	
700	1.0000000	8e0
CDO1	400 1224709	MTT
MIC1	400.1324708	rin 2
D1	15 00	
DI SII	12 5000000	usec u
1 10401	12.30000000	••
F2 - Pro	cessing paramet	ers
SI	65536	
SF	400.1300168	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	Ų	

					8 8 9 1	77.3 77.3 77.1	A 63.00		
CDCl ₃									Current Data Parameters NAME vinn-4-183-5-islt-20230320 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20230320 Time 12.56 h INSTRUM spect PROBHD Z108618_0257 (PULPROG 2pp30 TD 65536 SOLVENT CDC13 NS 37 DS 4 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 1.3631488 sec RG 203 DW 20.800 usec DE 6.50 usec TE 296.0 K D1 2.0000000 sec D11 0.0300000 sec D11 0.0300000 sec D11 0.0300000 sec D11 0.00 usec PL 10.00 usec PLM1 51.0000000 W SF02 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 12.5000000 W F2 - Processing parameters SI 32768 SF 100.6127571 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 FC 1.40
	na diparti di singuna da si ya man		n - Anna an						
200	180	160	140	120	100	80	60	40 20 0	

200	180	160	140	120	100	80	60	40	20	0	ppm

98.94

3y 100 MHz ¹³C NMR CDCl₃

_0ر

ιO،

vinn-4-183-13-islt2-20230325 NAME EXPNO 2 PROCNO 1 F2 - Acquisition Parameters 20230329 Date_ Time 16.27 h INSTRUM spect PROBHD Z108618_0257 (PULPROG zgpg30 65536 TD SOLVENT CDC13 NS 15 DS4 24038.461 Hz SWH FIDRES 0.733596 Hz AQ 1.3631488 sec 203 RG DW 20.800 usec DE 6.50 usec ΤE 298.3 K 2.00000000 sec D1 D11 0.03000000 sec TD0 1 SF01 100.6228298 MHz NUC1 13C 10.00 usec Р1 51.00000000 W PLW1 SF02 400.1316005 MHz 1H NUC2 CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 12.50000000 W PLW12 0.34722000 W 0.17465000 W PLW13 F2 - Processing parameters SI 32768 100.6127562 MHz SF WDW EM SSB 0 LB 1.00 Hz GB 0 PC1.40

Current Data Parameters

					77.41 77.10 76.90	62,94	35.78 33.45 23.45 28.45 28.245	23.29		
c c J J									Current Da NAME v EXPNO PROCNO F2 - Acquin Date_ Time INSTRUM PROBHD Z PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE TE D1 D11 TD0 SF01 NUC1 P1 P1M1 SF02 NUC2 CCDPRG[2 PCP2 PLW2 PLW12 PLW13 F2 - Proce SI SF WDW SSB LB GE PC	ta Parameters inn-4-141-6-islt2-20200120 2 1 sition Parameters 20210121 10.28 h spect 119470_0283 (2gg30 65536 CDC13 256 4 29761.904 Hz 0.908261 Hz 1.1010048 sec 206.72 16.800 usec 6.50 usec 295.2 K 2.00000000 sec 0.0300000 sec 1 125.7703643 MHz 13C 9.75 usec 94.0000000 W 50.1320005 MHz 1H waltz16 80.00 usec 25.0000000 W 0.23387000 W ssing parameters 32768 125.7577733 MHz EM 0 1.40
200 18	30 160	140	120	100	80	60	40	20	0 ppm	S134

CDCl ₃	R							Current Data Parameters NAME vinn-4-149-10-islt-20200130 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20210130 Time 18.27 h INSTRUM spect PROBHD 2119470_0283 (PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 128 DS 4 SWH 29761.904 Hz FIDRES 0.908261 Hz AQ 1.1010048 sec RG 206.72 DW 16.800 usec DE 6.50 usec TE 295.2 K D1 2.0000000 sec D1 0.0300000 sec D1 0.0300000 sec D1 0.0300000 sec D1 2.0000000 W SF01 125.7703643 MHz NUC1 13C PLW1 94.0000000 W SF02 500.132005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW1 2.5.000000 W F2 - Processing parameters SI 32768 SF 125.7577746 MHz NDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
	180	 140	120	<u>аларын кар</u> алуу () () () () () () () () () () () () ()		n, desidenceanses after bede stradents dass ant Propy, dispatiente sons anter sons anter	20	S140

200	180	160	140	120	100	80	60	40	20	0	ppm		5142
na si sa sa ga ga sa													S142
G 5a L25 MHz ¹³ C NMR CDCl ₃	2										Current NAME EXPNO PROCNO F2 - A' Date_ INSTRUU PROBHD PULPRO' DD SOLVEN' NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG CPDPRG PCPD2 PLW2 PLW13 F2 - F: SF WDW SSB LB GB PC	: Data Parameters vinn-4-131-2-islt-2: 2 1 squisition Parameters 20201130 16.35 h 4 spect 2119470_0283 (5 cpc13 115 4 29761.904 Hz 0.908261 Hz 1.1010048 sec 206.72 16.800 usec 6.50 usec 295.2 K 2.00000000 sec 0.03000000 sec 125.7703643 MHz 13c 9.75 usec 94.0000000 W 500.1320005 MHz 1H [2 waltz16 80.00 usec 25.00000000 W 0.46495000 W 0.46495000 W 0.23387000 W rocessing parameters 32768 125.7577804 MHz EM 0 1.00 Hz 0 1.40	2
			138.43	127.55		$\overbrace{}^{77.41}_{76.90}$	67,11	32.44	23.56				

	'	 '	'	· · ·			'	· .			S15
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~											
MeO OMe 5h 5 MHz ¹³ C NMR CDCl ₃									EXPNO PROCNO F2 - A Date Time UNSTRUU PROBHD PULPRO TD SOLVEN NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 PLW12 SF02 NUC2 PLW2 CPDPRG PCPD2 PLW2 SF1 SF SF WDW SSB LB GB PC	2 1 cquisition Parameters 20210121 9,10 h spect 2119470_0283 ( 3 zgpg30 65536 r CCC13 256 4 29761.904 Hz 0.908261 Hz 1.010048 sec 206.72 16.800 use 295.1 K 2.00000000 sec 0.03000000 sec 125.7703643 MHz 13C 9.75 use 94.00000000 W 500.132005 MHz 1H [2 waltz16 80.00 use 25.0000000 W 0.46495000 W 0.46495000 W 0.46495000 W 0.46495000 W 0.23387000 W roccessing parameters 32768 125.757741 MHz EM 0 1.00 Hz 0 1.40	а с с
0 0.					/	Ϋ́α Υ			Curren	Data Parameters	



				102,39	$\underbrace{\overbrace{76.90}^{77.41}}_{76.90}$		23.58		
cj°Si125 MHz ¹³ C NMRCDCl3								Current Data Parameter, NAME vinn-4-193-isl EXPNO PROCNO F2 - Acquisition Parame Date_ 2023010 Time 16.33 INSTRUM spect PROBHD 2119470_0283 PULPROG 20933 TD 6553 SOLVENT CDC13 NS 5 DS SWH 29761.900 FIDRES 0.908263 AQ 1.1010043 RG 206.7 DW 16.800 DE 6.5 TE 2955. D1 2.0000000 D11 0.03000000 D11 0.03000000 D11 0.03000000 SF01 125.7703643 NUC1 133 P1 9.77 PLW1 94.0000000 SF02 500.1320000 NUC2 11 CPDPRG[2 waltz1 PCPDZ 80.0 PLW2 25.0000000 PLW12 0.46495000 PLW12 0.464950000 PLW12 0.46495000 PLW12 0.46495000 PLW12 0.46495000 PLW12	S Lt-20230105 2 1 sters 5 9 h t ( 0 6 3 0 4 4 Hz 1 Hz 8 sec 2 0 usec 1 K 0 sec 1 K 0 sec 1 K 0 sec 1 K 0 usec 1 K 0 sec 2 S MHz Hz 4 4 4 Hz 1 Hz 8 sec 2 2 0 usec 1 K 0 sec 1 K 0 sec 0 w 5 MHz 1 K 0 sec 0 w 0 0 w 0 0 w 0 0 0 0 0 0 0 0 0 0 0 0 0
و معلوم المعالم المعالي المعالي 	it in a site to all a second to the second state of the second sta	can tangantak karan santakan nasila dibak ng hasan kanan pada tangan kapan y	nan jard ana da sanda dadan canta na jarda da sanga manga manga sanga sanga	h fan skilder af de is skilder fan de is skilder fan de is gegener de is de is de fan te skied fan de is de f	annak secura digi berah dalam terak di digi gi gi digi dan dalam baha di kasi dara di Kabupaten digi panak dalam terak di digi dan di dara di	nna definisjonet fan finisjonet og seren stønen fiften til den fin Bellevingsber i telle finisjonet gegen stører forse fil finisjonet	nthan a la fan da se andar an da fan da fan da se an da s Na y da merekan y se an da se a	niki) (an han an han an a	S158
200 180	160	140	120	100	80 60	40	20	0 ppm	

9 12	ы С	0H0400H0	0400
S M	-H O	0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 4 O O O
のの		00000000	N O N W
• •	• •	• • • • • • • •	• • • •
6 6	<u>и</u> и	ムムムムろろろろ	$\square$ $\square$ $\square$ $\square$
$\backslash$	$\bigvee$		$\langle \langle \rangle \rangle$



500 MHz ¹H NMR CDCl₃



ннло	0004 M			
0082	N U M V N	0 1 1 0	0	$\infty$
00 M M	0000	M O Q H	$\sim$	$\sim$
• • • •	• • • • •	ターター	8	ഗ
∞ <u>~</u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 L U U 0	• • • •	•	•
വവവവ		8 2 1 1	$\sim$	$\sim$
$\dashv \dashv \dashv \vdash \vdash$			c)	$\sim$



**5j** 125 MHz ¹³C NMR CDCl₃





وب ح 5j	F										NAME EXPNO PROCNO F2 - A Date INSTRU PROBHD PULPRO TD SOLVEN	t Data Parameters vinn-4-147-3-islt-20200120 3 1 cquisition Parameters 20210121 18.34 h M spect 2119470_0283 ( G zgflqn 131072 T CDCl3
470 MHz ¹ H M CDCl ₃	NMR										NS DS SWH FIDRES AQ RG DW DE TE D1 TD0 SF01 NUC1 P1 P1 P1W1 F2 - P SI SF WDW	$\begin{array}{c} & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ &$
											SSB LB GB PC	0.30 Hz 0 1.00
		-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm	S161

ppm





500 MHz ¹H NMR CDCl₃



$\sim$	$\sim$	$\sim$	$\sim$			
4	Q	0	$\sim$	$     \nabla \nabla \nabla \nabla \Phi$	m	$\infty$
	$\sim$	<b>n</b>	4	00400		4
•	•	•	•	$\circ \circ $	[ <b>`</b>	4
[~~	00	$\infty$	$\sim$	• • • • •	•	•
Ы	$\sim$		0	$\infty 0 - 1 - 3$	7	$\sim$
$\leftarrow$	<del>,                                     </del>	<del>,      </del>	<del>,  </del>	8 1 1 1 8	m	$\sim$



**5k** 125 MHz ¹³C NMR CDCl₃













	155.77		96.68	$\underbrace{\bigwedge_{76.90}^{77.41}}_{76.90}$		
c $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c $ $ c$						$\begin{array}{c} \text{Current Data Parameters} \\ \text{NAME} & \text{vinn-4-190-2-clm%to9-2023010} \\ \text{EXPNO} & 2 \\ \text{PROCNO} & 1 \\ \hline \\ \text{F2 - Acquisition Parameters} \\ \text{Date_} & 20230103 \\ \text{Time} & 18.07 h \\ \text{INSTRUM} & \text{spect} \\ \text{PROBHD & 2119470_0283 (} \\ \text{PULPROG} & zgp30 \\ \text{TD} & 65536 \\ \text{SOLVENT} & \text{CDC13} \\ \text{NS} & 300 \\ \text{DS} & 4 \\ \text{SWH} & 29761.904 \text{Hz} \\ \text{FIDRES} & 0.908261 \text{Hz} \\ \text{AQ} & 1.1010048 \text{ sec} \\ \text{RG} & 206.72 \\ \text{DW} & 16.800 \text{ usec} \\ \text{DE} & 6.50 \text{ usec} \\ \text{TE} & 295.2 \text{ K} \\ \text{D1} & 2.00000000 \text{ sec} \\ \text{D1} & 0.03000000 \text{ sec} \\ \text{D1} & 0.03000000 \text{ sec} \\ \text{D1} & 0.75 \text{ usec} \\ \text{PLW1} & 94.0000000 \text{ W} \\ \text{SF02} & 500.1320005 \text{ MHz} \\ \text{NUC1} & 13C \\ \text{P1} & 9.75 \text{ usec} \\ \text{PLW1} & 94.0000000 \text{ W} \\ \text{SF02} & 500.0320005 \text{ MHz} \\ \text{NUC2} & 1 \\ \text{H} \\ \text{CPDPRG[2 & waltz16 } \\ \text{PCPD2} & 80.00 \text{ usec} \\ \text{FLW2} & 25.00000000 \text{ W} \\ \text{PLW13} & 0.23387000 \text{ W} \\ \text{F2} - \text{Processing parameters} \\ \text{SF} & 125.7577740 \text{ MHz} \\ \text{WDW} & \text{EM} \\ \text{SSB} & 0 \\ \text{LB} & 1.00 \text{ Hz} \\ \text{GB} & 0 \\ \text{PC} & 1.40 \\ \end{array}$
<del>,</del>						S169
200 180	160	140 120	100	80 60	40 20	0 ppm


























**50** 500 MHz ¹H NMR CDCl₃





S182

			77.410 77.156 76.903 67.224 60.684		
<b>5u</b> MHz ¹³ C NMR CDCl ₃					Current Data Farameters           NAME         vinn-7-105-2-islt-20230807           EXFNO         2           FFOCNO         1           F2 - Acquisition Farameters         Data_           Data_         20230807           Tima         18.02 h           INSTRUM         apact           FFOCHD         2149001_0010 (           FULFPOG         xgyg30           TD         65536           SOLVENT         CDC13           NS         200           DS         4           SWH         29761.904 Hz           FIDRES         0.908261 Hz           AQ         1.1010048 sec           RG         206.72           DW         16.800 usac           TE         296.2 K           D1         2.0000000 sec           D1         0.03000000 sec           D1         0.03000000 sec           D1         10.000 usac           F1         10.00 usac           F1         10.00 usac           F1         10.00 usac           F2         500.1320005 MHz           NUC2         117.3519928 W           PLW13         0.1726000 W
					S183
200 180	160 140	120 100	80 60	40 20	0 ppm

.....



 $\sim$ 

--

 $\overline{}$ 

-

S184







**5w** 400 MHz ¹H NMR CDCl₃

Current Data Parameters NAME vinn-7-110-4-islt-20230809 EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date 20230809 Date_ Time 18.09 h INSTRUM spect 2108618_0257 ( PROBHD zg30 65536 PULPROG TD SOLVENT CDC13 16 NS DS SWH 2 2 8012.820 Hz 0.244532 Hz 4.0894465 sec FIDRES AQ RG 90.5 DW DE 62.400 usec 6.50 usec TE D1 296.1 К 1.00000000 зес TDO 1 SF01 400.1324708 MHz NUC1 1H 15.00 usec 12.5000000 W P1 PLW1 F2 - Processing parameters SI SF WDW SSB LB 65536 400.1300099 MHz EM 0 0.30 Hz GB PC 0 1.00



S186



ppm







وب 5x 100 MHz 13C NIM	IR									Current Data NAME vir EXPNO PROCNO F2 - Acquisi Date_ Time INSTRUM PROBHD 210 POLPROG TD SOLVENT NS DS SWH FIDRES AQ RG RG	a Parameters nn-4-183-6-islt-20230320 2 1 ation Parameters 20230320 12.48 h spect 08618_0257 ( zgpg30 65536 cDC13 150 4 24038.461 Hz 0.733596 Hz 1.3631488 sec
CDCl ₃										DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW2 PLW2 PLW13 F2 - Process SI SF	203 20.800 usec 6.50 usec 295.9 K 2.0000000 sec 0.03000000 sec 1 100.6228298 MHz 13C 100.00 usec 51.0000000 W 400.1316005 MHz 1H waltz16 90.00 usec 12.5000000 W 0.34722000 W 0.17465000 W sing parameters 32768 100.6127556 MHz
na na star star star star star star star sta	aafaaluut ituu yaa kuu yaa kuu kilaa sakaa adhaana, atuu a Taran ituu yaa ayaa aa	entre anno a chuinn ann an Aonachtain Martain an Aonachtain an Aonachtain Martain an Aonachtain	And a first of the start of t	i, king, the second second lands or a		a bali ka baka baka baka baka baka baka baka	ning , Laundari ang sa	Analysis along the state of the	s, stale je stara je obstali je Bas s da sa kljusti na reference konstana je obstala je obstala je obstala je o na reference konstana je obstala j I	WDW SSE LB GB PC	ЕМ 0 1.00 Hz 0 1.40 S189



					103.90	$= \underbrace{\bigwedge_{77.16}^{77.41}}_{76.90}$	66.89	32.46	71.96 23.66 19.51 14.02			
<b>5y</b> 125 MHz ¹³ C NM CDCl ₃	R										Current NAME EXPNO PROCNO F2 - Acc Date_ Time FOBHD PULPOET SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 F1 PLW1 SF02 NUC2 PLW12 PLW13 F2 - Pr. SF WDW SSB LB GB PC	Data Parameters vinn-4-149-4-islt-20200119 2 1 uisition Parameters 20210119 21.23 h spect 2119470_0283 ( rgpg30 65536 CDC13 256 4 29761,904 Hz 0.908261 Hz 1.1010048 sec 206.72 16.800 usec 295.2 K 2.00000000 sec 0.0300000 sec 1 125.7703643 MHz 13C 9.75 usec 94.0000000 W 500.1320005 MHz 1H 2 waltz16 80.00 usec 25.0000000 W 0.23387000 W 0cessing parameters 32768 125.777728 MHz M 0 1.00 Hz 0 1.40
	180	, 160	140	120	100				20	<u>кала на на продокти</u> 	ppm	S191







				102.04	77.41 77.116 77.116 76.90		35.90 33.77 33.77 32.69	23.20			
cj <j< td="">Sz125 MHz 13C NMRCDCl3</j<>										Current NAME EXPNO PROCNO F2 - Acc Date Time INSTRUM PROBND FULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLW1 SF02 CPDPRG[2 PCPD2 PLW12 PLW13 F2 - Pro SI SF WDW SSB LB GB PC	Data Parameters vinn-4-149-8-islt-20200119 2 1 puisition Parameters 20210119 22.16 h spect 2119470_0283 ( 2gpg30 65536 CDC13 256 4 29761.904 Hz 0.908261 Hz 1.1010048 sec 206.72 16.800 usec 295.1 K 2.00000000 sec 0.0300000 sec 0.0300000 sec 1 125.7703643 MHz 13c 94.0000000 W 500.1320005 MHz 1H waltz16 80.00 usec 25.0000000 W 0.23387000 W 0.23387000 W 0.23387000 W 0.23387000 W 0.23387000 W 0.1.00 Hz 0 1.40
200 180	160	140	120	100	80	60		20	· · · · · <b>·</b>	ppm	S193



					103.94	77.41 77.16	66.58	 			
γ         5aa         125 MHz ¹³ C NMR CDCl ₃										Current D. NAME EXPNO PROCNO F2 - Acqu: Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG[2 PCD2 PLW2 PLW12 PLW13	ata Parameters vinn-4-149-13-islt-20200130 2 1 isition Parameters 20210130 19.00 h spect 2119470_0283 ( 209630 65536 CDC13 128 4 29761.904 Hz 0.908261 Hz 1.1010048 sec 206.72 16.800 usec 6.50 usec 295.2 K 2.00000000 sec 0.03000000 sec 1 125.7703643 MHz 13C 9.75 usec 94.0000000 W 500.1320005 MHz 1H waltz16 80.00 usec 25.0000000 W 0.46495000 W 0.23387000 W
<del>naj na Rapan (di Stan passa pina) ang pa</del> litik kan pasta dapin fant	nten fanne onskelende fan soeke sjoke				i a ser universida a se à l'arterne avec d'adhard Santar e langa a secondar e chair a secondar de la se	Man de se de la constantión de se de secondo de la constantión de se de secondo de la constantión de secondo de		n defensioner og skillen og skille	elle som af anna deline bland in a statistica som	F2 - Proc SI SF NDW SSB GB GB PC	32768 32768 125.7577727 MHz EM 0 1.00 Hz 0 1.40
200	180	160	140	120	100		60	 20	0	ppm	S195















cy <b>5ac</b> 125 MHz ¹³ C NMR CDCl ₃		Current Data Parameters         NAME       vinn-4-149-11-islt-20200130         EXPNO       2         PROCNO       1         F2 - Acquisition Parameters       20210130         Time       18.38 h         INSTRUM       spect         PROBHD       2119470_0283 (         PULPROG       zgpg30         TD       65536         SOLVENT       CDC13         NS       128         DS       4         SWH       29761.904 Hz         FIDRES       0.908261 Hz         AQ       1.0100048 sec         RG       206.72         DW       16.800 usec         DE       6.50 usec         TE       2.95.2 R         D1       2.00000000 sec         D1       0.3000000 sec         D1       10.3000000 sec         D1       1         SF01       125.7703643 MHz         NUC1       13C         P1       9.75 usec
		PLW1 94.0000000 W SFC2 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 25.0000000 W PLW12 0.46495000 W PLW13 0.23387000 W F2 - Processing parameters SI 32768 SF 125.7577747 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40

0 ppm







		$ \begin{array}{c} 138.29\\ 135.08\\ 135.08\\ 130.10\\ 130.10\\ 126.60\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57\\ 126.57$		84.62	64.74	31,93	25.65				
$ \begin{array}{c}                                     $									Current D NAME EXPNO PROCNO F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG DD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D1 D1 D1 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW12 FLW13 F2 - Proc	ata Parameters Andy-181-4-islt-202 5 1 isition Parameters 20220817 19.17 h spect 2108618_0257 ( zgpq30 65536 CDC13 106 4 24038.461 Hz 0.733596 Hz 1.3631488 sec 203 20.800 use 6.50 use 296.3 K 2.0000000 sec 0.03000000 sec 100.6228298 MHz 13C 100.00 use 51.0000000 W 400.1316005 MHz H waltz16 90.00 use 12.5000000 W 0.34722000 W 0.17465000 W	220817 c c
<del>ĸĸĸŢĸĸŢĸĹijĸŢĸĸĸŎŢĬŲĸŎĊĸĿĸĊŎ</del> ĊĿſſŦŢ <del>ĿĸŎŢĸĸŎĿĸŎĿŎŎĿŎŎĿŎŎĿŎŎĿŎŎ</del> ĿŢŎĿŢŎŢŎŎ	n an		n ter a ser fan de state de die jaar te kerken die beskerk die die ser			u the fight of the second state		norders, na house ma house the se	SF WDW SSB LB GB PC	100.6127582 MHz 0 1.00 Hz 0 1.40	
200 180	160	140 120	100	80	60	40	20	0	ppm		S203



	150.14	131.79	131.21		$- \bigwedge_{76.84}^{85.68}$	64.64	34.63					
c + c + c + c + c + c + c + c + c + c +										Current Data NAME And EXPNO PROCNO F2 - Acquisi Date_ Time INSTRUM PROBHD 210 PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW FIDRES AQ RG DW TE D1 D11 TDO SFO1 NUC1 P1 FLW1 SFO2 NUC2 CPDPRG[2 PCPD2 PLW12 PLW13 F2 - Process SF WDW SSB LB GB PC	<pre>a Parameters iy-181-3-islt-20220 3 1 tion Parameters 20220817 19.03 h spect )8618_0257 ( 2gpg30 65536 cDCl3 104 24038.461 Hz 0.733596 Hz 1.3631488 sec 203 20.800 usec 6.50 usec 6.50 usec 0.0300000 sec 100.6228298 MHz 13C 100.6228298 MHz 13C 100.00000 w 400.1316005 MHz 1H waltz16 90.00 usec 12.5000000 W 0.17465000 W sing parameters 32768 100.6127564 MHz EM 0 1.000 Hz 0 1.40</pre>	1817
material and a state of particular and an a state of the formal and a state which a state of the state of the s	માં આવેલું કરતે છે. આ ગામ છે. આ ગામ છે છે. આ ગામ છે કે	tudona katalara tidak sera kina pipera selifang gari majarana	, da haf di ga ser da an kan kan kan kan kan kan kan kan kan	ાં સુધ અન્મત્રી ને દીવાની એક અનુ આવ્યું છે. સુધ માન્ય અનુ અને ગુરુ અન્મત્ર અને અનુ અન્યુ દાવ્ય સુધ માન્ય અનુ અન્ય અન્ય અન્ય અન્ય અન્ય અન્ય અન્ય અન્ય		kalan kanan ka	a lini lini ya a daba da jar, a sa ku i v anyan ay pangaanayay yan waapija	al and the second se	ran dal ambi ya uniya ya 10 da ya shu uni ganagana nga ta ga tangi nga ya ya ya tangi ya			S205
200 180	160	140	120	100	80	· 60	<b>40</b>	20	0 p	pm		



	133.99 132.92 132.31 122.01		$ = \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	ע ד ר ר	21.00		
c)6d135 MHz 13C NMRCDCl3						Current Data Para NAME vinn-4-1 EXPNO PROCNO F2 - Acquisition 1 Date_ 20 Time INSTRUM PROBHD 2119470_ PUDFROG TD SOLVENT NS SWH 297 FIDRES 0. AQ 1.1 RG DW DE TE D1 2.000 D11 0.03 TD0 SFO1 125.7 NUC1 P1 PLW1 94.000 SFO2 500.1 NUC2 CPDPRG[2 W PCPD2 PLW2 25.00 PLW12 0.46 PLW13 0.23 F2 - Processing P SI SF 125.7 WDW SSB LB GB PC	neters 20-4-islt-20230104 2 1 'arameters 230104 15.34 h spect 233 ( 27pg30 65536 CDC13 50 4 31.904 Hz 908261 Hz 10048 sec 136.15 16.800 usec 6.50 usec 295.1 K 000000 sec 13C 9.75 usec 000000 W 112 14 14 14 20005 MHz 14 14 14 15 2768 577768 MHz EM 0 1.00 Hz 0 1.40
	60 140	120 100	80 (	4		0 ppm	S207



_0S					\\				Curr NAME EXPN PROC F2 -	Pent Data Parameters Vinn-4-190-5-islt-20230104 NO 2 NO 1 • Acquisition Parameters
<b>6e</b> .25 MHz ¹³ C NMR CDCl ₃									Date Time Time PROE PULE TD SOLV NS DS SWH FIDF AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 CPPP PCPP PCPP	<ul> <li>20230104         <ul> <li>15.52 h</li> <li>RUM spect</li> <li>RUG 2119470_0283 (</li> <li>ROG 25536</li> <li>ENT CDC13</li></ul></li></ul>
									FI SI SF WDW SSB LB GB PC	• Processing parameters 32768 125.7577726 MHz EM 0 1.00 Hz 0 1.40
maanja per kina tud ng ministrati, ang tud per	nagan ya ku	La come a desa la come denora y come de destructura por en successive proveda constante provencio e sport	usani ya muu Marana aha ka ka ka uu ya kilo ka ka ka da da Mana ya muu ya ka ya ya ya ka ka ka ka ya ya ya ka ka ka ka ka ya ka	ali na muna di su na situ na mata na di su di su si da su si di su su di su In fasta na situ		an da la stal di kana da kana Mara da kana da	na na statute sa	na je stal stal stal stal kon teknik stal stal stal stal stal stal stal stal	na ser kanal kanya ana saya sala fika sa sa saya sa sa	



