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Experimental

1. Synthesis 

Typically, the carbon cloth (W0S1011 CeTech) was cleaned with ethanol and 

deionized water under ultrasonic treatment and then dried in a vacuum oven at 80 °C 

for 48 h. The clean carbon cloth was then transferred to a muffle furnace for heat 

treatment at 450 °C in the air for 2 h with a heating rate of 5 °C min-1. After the 

annealing treatment, the obtained carbon cloth was specified as O-CC. For 

comparison, carbon cloth with a similar method except for the heat treatment in the 

air was also obtained, which is defined as P-CC. For the full cell, the cathode material 

was obtained by annealing the pristine PTCDA (Sigma-Aldrich) at 450 °C for 4 h under 

Ar with a heating rate of 5 °C min-1. 

For the electrochemical testing, O-CC was contacted with molten metal K at 90 °C 

and then the metal K will be adsorbed on the O-CC electrode, which is named as O-

CC@K. Compared to the electrochemical deposition methods, the combination of O-

CC with K metal through the adsorption of molten K is a simple and reproducible 

process, making it more competitive for future large-scale applications. Therefore, we 

utilized the O-CC obtained the potassiophilicity strategy and combined it with molten 

K for testing the electrochemical performance. For the P-CC@K electrode, it was 

obtained by the flattening of metal K on the surface of P-CC. The Cu@K could be 

obtained by the flattening of metal K on the surface of Cu foil. For the PTCDA 

electrode, the PTCDA cathode, super P, and polyvinylidene fluoride with a ratio of 

8:1:1 were mixed under grinding. After that, moderate 1-methyl-2-pyrrolidone was 

added to the mixed powder to form a homogeneous sizing. Subsequently, the 

homogeneous sizing was coated on the Al-C foil by a knife coating method. After 

drying, the obtained electrode was then cut into a disc with a diameter of 16 mm for 

full cells. The mass loading of PTCDA cathode is about 2 mg cm-2. In K metal batteries, 

our metal anode can exhibit dendrite-free characteristics, allowing an excess of K to 

ensure stable battery operation. Therefore, we can use an excess of metal K in anode 

for the battery operation in O-CC@K//PTCDA full cell.



2. Characterization 

The morphologies of the electrode were obtained by scanning electron 

microscope (SEM, FEI), transmission electron microscopy (TEM, TEOL), and optical 

microscope (Leica). The structures and surface properties were measured by X-ray 

diffraction (XRD, D8 Rigaku-9000), Raman spectrometer (Horiba T6400), and X-ray 

photoelectron spectroscopies (XPS, Thermo Scientific). For the in situ visualization 

observation, we used a portable optical microscope and cooperated with an 

electrochemical reaction cell to realize the in situ observation of the electrode.

3. Electrochemical measurement

The electrochemical performances of all the samples were tested with coin-type 

cells (CR2032), which were assembled in an argon-filled (O2<0.1 ppm, H2O<0.1 ppm) 

glove box (Etelus Lab2000). 5 M potassium bis(fluorosulfonyl)imide dissolve into 

dimethoxyethane (DME) was used as electrolyte. The symmetric cell was assembled 

by the same electrode at both ends of the cell. The half cell of Cu//P-CC@K and Cu//O-

CC@K was assembled with one piece of Cu foil as the counter electrode and a work 

electrode of P-CC@K or O-CC@K. The full cell was assembled with one piece of PTCDA 

as the cathode and a P-CC@K or O-CC@K as the anode. The GCD curves were tested 

by the Neware battery test system (Neware BTS-4000). EIS and nucleation 

overpotential of the symmetric cells were recorded by Chenhua electrochemical 

workstation. A TENG system was introduced to charge for the fabricated O-

CC@K//PTCDA full cell.

4. DFT computational methods

The density functional theory (DFT) computations were performed using the 

Vienna ab initio simulation package (VASP). The Perdew-Becke-Ernzerhof (PBE) 

functional and projector augmented wave (PAW) schemes were adopted for 

geometric optimizations. An energy cutoff of 500 eV for the plane wave basis set was 

used for the structure optimization and static self-consistent. All structures were 

optimized with a convergence criterion of 1×10-4 eV for the energy and 0.05 eV Å-1 for 

the forces. A 3×3×1 k-point mesh was used for the Brillouin zone sampling. 

5. FEA computational methods



The tertiary current distribution, and the deformed geometry interface models 

were conducted on finite element method analysis. The mesh was triangular-based 

ultra-fine mesh which was controlled by the physical field. The electric field migration 

satisfied the Nernst-Einstein relation and the kinetics satisfied the Butler-Volmer 

equation. The average current intensity was set to 4 mA cm-2 and the initial electrolyte 

concentration was 5 M. For P-CC and O-CC, the initial exchange current densities were 

set uneven and even, respectively. In the simulation process, the total current density 

and K metal deposition time used by two anodes were consistent.



Fig S1 Photographs of (a) P-CC and (b) O-CC.

Fig S2 Elemental mapping images of (a) P-CC and (b) O-CC.



Fig S3 XPS survey of P-CC and O-CC.

Fig S4 (a) FTIR and (b) enlarged FTIR of P-CC and O-CC.



Fig S5 The process of adsorbing molten potassium metal of (a) P-CC and (b) O-CC.



 
Fig S6 The digital microscope image of (a) P-CC@K and (b) O-CC@K; the SEM image of 

(c) P-CC@K and (d) O-CC@K. 



Fig S7 The process of adsorbing molten potassium metal of carbon felt.

Fig S8 The process of adsorbing molten potassium metal of carbon paper.

Fig S9 The initial galvanostatic cycling performance of Cu@K, P-CC@K, and O-CC@K 

composite anodes in symmetric cells at 0.5 mA cm-2~0.5 mAh cm-2 in 500 h.
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Fig S10 The EIS spectra of (a) O-CC@K composite anodes in symmetric cells at 0.5 mA 

cm-2~0.5 mAh cm-2 after different times ;(b) P-CC@K composite anodes and bare K 

symmertric cells. 

It is observed that the O-CC exhibits higher impedance compared to P-CC before 

cycle (Fig. S10). We suggest that the introduction of epoxy groups leads to reduced 

electronic conductivity. However, after cycling, the interface behavior of electron 

migration is effectively improved, resulting in a significant reduction in impedance.

Fig S11 The partial galvanostatic cycling performance of P-CC@K and O-CC@K 

composite anodes in symmetric at different current densities with areal capacities of 

0.5 mAh cm-2.
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Fig S12 (a) Corresponding curve of potential specific capacity profiles of O-CC//K from 

Fig 2e; (b) CEs curves for O-CC//K and P-CC//K asymmetric cells at 0.5 mA cm-2/1 mAh 

cm-2 and (c) corresponding curve of potential specific capacity profiles; (d) CEs curves 

for Cu//O-CC@K and Cu//P-CC@K asymmetric cells at 0.5 mA cm-2/0.5 mAh cm-2 and 

corresponding curve of potential specific capacity profiles of (e) Cu//O-CC@K and (f) 

Cu//P-CC@K.

Fig S13 The Raman spectra of the primary electrolyte, the electrolyte filtered by P-CC 



and O-CC.

Fig S14 The adsorption energy (Ea) of P-CC and O-CC with DME electrolyte.
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Fig S15 Electrolyte immersion test of (a) P-CC and (b) O-CC.



Fig S16 XPS survey of SEI layers for P-CC and O-CC after 1 cycle.

Fig S17 XPS spectra of SEI layers for (a-b) P-CC and (c-d) O-CC after 1 cycle.



Fig S18 The photograph of in-situ optical microscope observation device.

Fig S19 Schematic of O-CC@K//PTCDA full batteries.
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Fig S20 CEs of O-CNF@K//PTCDA full cell at the current density of (a) 20 mA g-1 and (b) 

100 mA g-1.

Fig S21 GCD curves of O-CNF@K//PTCDA full cell at 20 mA g-1.



Fig S22 GCD curves of O-CNF@K//PTCDA full cell at 100 mA g-1.

Fig S23 Photograph of LED bulbs (6 V 1 W) and O-CC@K//PTCDA batteries.

Table S1 Galvanostatic cycling performance of all the host materials for K metal anode 

in symmetric cells.



Host Combination

method

Cell

construction

Current 

capacity

density

(mA 

cm2@mAh 

cm-2)

Cycle

life

(h)

Over 

poten

-tial

(mV)

Ref

Oxygen-modified 

carbon cloth (O-CC)

Adsorption(90℃/0.

7s)

symmetric 0.5@0.5

1@0.5

5500

3500

~30

~50

This 

work

Carbonized 

Bacterial Cellulose 

(CBC)

Adsorption(100℃/2

s)

symmetric 0.5@0.5

1@1

1400

1200

45

55

[S1]

Co−CNFs Adsorption(100℃/1

.5s)

symmetric 0.5@0.5

2@1

1300

500

~100

~100   

[S2]

MSCNF Adsorption(150℃/1

s)

symmetric 1@1 800 ~100 [S3]

Ag-CC Electrodeposition symmetric 0.5@0.5 700 ~200 [S4]

Carbon-cloth-based 

potassium 

composite anode 

(K@CC )

Adsorption(80℃/4s

)

symmetric 1@1 350 ~200 [S5]

Graphite 

intercalation 

compound of K (K-

GIC)

facile mixing and 

stirring process

symmetric 0.4@0.4 700 ~200 [S6]

DN-MXene/CNT Adsorption(80℃/10

0s)

symmetric 0.5@0.5 >300 ~150 [S7]

rGO@3D-Cu Adsorption(300℃/6

s)

symmetric 0.5@0.5 ~200 ~45 [S8]

Sn@3D-K Electrodeposition symmetric 0.2@1 ~50 9 [S9]
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