Supporting Information

Macroscopic handedness inversion of terbium coordination polymers achieved by doping homochiral ligand analogues

Chang-Yu Wang, Jia-Ge Jia, Guo-Guo Weng, Ming-Feng Qin, Kui Xu and Li-Min Zheng

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China. *Corresponding author. E-mail: Imzheng@nju.edu.cn

Experimental procedures

General materials and measurements

All starting materials were used as purchased from commercial sources without further purification. (R)- or (S)-(1-cyclohexyl-ethylamino)methylphosphonic acid (R - or S cyampH ${ }_{2}$), ${ }^{1}(R)$ - or (S)-(1-phenylethylamino)methylphosphonic acid (R - or S-pempH ${ }_{2}$), ${ }^{2}$ and (R)-(4-X-phenylethylamino)methylphosphonic acid $\left(R-\right.$ XpempH $\left._{2}, \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}\right)$ were synthesized according to a literature method ${ }^{3}$ with (R) - or (S)-cyclohexylethyl-1-amine, (R) - or (S)-phenylethyl-1-amine and (R)-4-X-phenylethyl-1-amine as the reactant respectively as well as paraformaldehyde and diethyl phosphite. The pH value was measured by using a Sartorius PB-10 pH metre. Powder X-ray diffraction (PXRD) data were collected on Bruker D8 advance diffractometer with Cu-Ka radiation in a range of $4-50^{\circ}$. The infrared spectra were recorded by using Bruker Tensor 27 spectrometer in a 4000-400 cm^{-1} region with pressed KBr pellets of the analytes. Scanning electron microscope (SEM) imaging and energy dispersive X-ray (EDX) analysis were carried out on Hitachi S-4800. Fluorescence spectra were obtained by using an Edinburgh FLS980 spectrofluorometer and the circularly polarized luminescence (CPL) spectra by using a JASCO CPL-300 CPL spectrophotometer. The ECD spectra were measured on a JASCO J-810 spectropolarimeter and the VCD spectra on a Bruker VERTEX 80V FTIR spectrometer using KBr pellets at room temperature. The elemental analysis was done be using an Elemetar Vario MICRO cube elemental analyzer. The thermogravimetric analysis (TGA) was performed on a Mettler-Toledo TGA/DSC STARe thermal analyzer under a nitrogen gas flow at a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ in the range of $25-600^{\circ} \mathrm{C}$.

Synthetic procedures

R - and $\mathrm{S}-\mathrm{Tb}(\text { cyamp })_{3 a}(\text { pemp })_{3(1-a)} \cdot \mathbf{3 H}_{2} \mathrm{O}$ (the molar ratio $a \approx x$ and the doping ratio x $=5 \%, 10 \%$ or 20%) (\boldsymbol{R} - and $\boldsymbol{S} \mathbf{- 1 H - \boldsymbol { x }}$). The compound \boldsymbol{R} - and $\boldsymbol{S} \mathbf{- 1 H - \boldsymbol { x }}$ was prepared through the similar procedures except the molar ratio of the ligands according to the value of x. A typical procedure for the synthesis of $\boldsymbol{R}-1 \mathbf{H}-5 \%$ is described below. R cyampH $2(0.285 \mathrm{mmol}, 63.1 \mathrm{mg}), R$-pempH $2(0.015 \mathrm{mmol}, 3.2 \mathrm{mg})$ and $\mathrm{Tb}(\mathrm{OAc})_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $(0.1 \mathrm{mmol}, 39.0 \mathrm{mg})$ were added in 8.5 mL deionized water and stirred for 5 h until the solution turned white and opaque. Afterwards, 0.5 M NaOH solution was used to adjust pH of the suspension to 5.0. Then the suspension was kept in a Teflon-lined autoclave at $100^{\circ} \mathrm{C}$ for 1 d . After being cooled to room temperature, the precipitates of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 5 \%}$ were collected by centrifugation and washed three times with water and then dried in air. Yield: 73.0\% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{61.8} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P}_{3} \mathrm{~Tb}$: C 37.17, H 7.14, and N 4.82; found: C 36.84, H 6.90, and N 4.64. IR (KBr, cm ${ }^{-1}$): 3680(w), 3420(w),

2986(w), 2928(s), 2853(m), 2793(w), 2670(w), 2523(w), 2405(w), 1618(m), 1450(m), 1392(w), 1344(w), 1308(w), 1275(w), 1234(w), 1153(s), 1072(s), 1024(s), 989(s), 893(w), 860(w), 783(w), 763(m), 702(w), 613(w), 567(m), 517(w), 483(m), 457(w).

For $\boldsymbol{s} \mathbf{- 1 H} \mathbf{- 5 \%}$. Yield: 68.3% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{62.0} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P}_{3} \mathrm{~Tb}$: C 37.16, H 7.16, and N 4.82; found: C 36.84, H 7.04, and N 4.71. IR (KBr, cm ${ }^{-1}$): 3733(w), 3680(w), 3420(w), 2986(w), 2928(s), 2853(m), 2793(w), 2670(w), 2523(w), 2405(w), 2351(w), 2323(w), 1618(m), 1450(m), 1392(w), 1344(w), 1308(w), 1275(w), 1234(w), 1153(s), 1072(s), 1024(s), 989(s), 893(w), 860(w), 783(w), 763(m), 702(w), 613(w), 567(m), 517(w), 483(m), 457(w).
For $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 1 0 \%}$. Yield: 69.7% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{60.7} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P}_{3} \mathrm{~Tb}$: C 37.22, H 7.02, and N 4.82 ; found: C 36.71, H 6.78, and N 4.40 . IR (KBr, cm ${ }^{-1}$): 3733(w), 3680(w), 3420(w), 2986(w), 2928(s), 2853(m), 2793(w), 2670(w), 2523(w), 2405(w), 2351(w), 2323(w), 1618(m), 1450(m), 1392(w), 1344(w), 1308(w), 1275(w), 1234(w), 1153(s), 1072(s), 1024(s), 989(s), 893(w), 860(w), 783(w), 763(m), 702(w), 613(w), 567(m), 517(w), 483(m), 457(w).

For $\boldsymbol{S}-\mathbf{1 H}-10 \%$. Yield: $\mathbf{6 2 . 1 \%}$ based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{61.0} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P}_{3} \mathrm{~Tb}$: C 37.21, H 7.06, and N 4.82 ; found: C 36.82, H 6.96, and N 4.68 . IR (KBr, cm-1): 3733(w), 3680(w), 3420(w), 2986(w), 2928(s), 2853(m), 2793(w), 2670(w), 2523(w), 2405(w), 2351(w), 2323(w), 1618(m), 1450(m), 1392(w), 1344(w), 1308(w), 1275(w), 1234(w), 1153(s), 1072(s), 1024(s), 989(s), 893(w), 860(w), 783(w), 763(m), 702(w), 613(w), 567(m), 517(w), 483(m), 457(w).

For $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 2 0 \%}$. Yield: 68.1\% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{59.4} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P}_{3} \mathrm{~Tb}$: C 37.27, H 6.89, and N 4.83; found: C 37.27, H 6.58, and N4.71. IR (KBr, cm ${ }^{-1}$): 3733(w), 3680(w), 3420(w), 2986(w), 2928(s), 2853(m), 2793(w), 2670(w), 2523(w), 2405(w), 2351(w), 2323(w), 1618(m), 1450(m), 1392(w), 1344(w), 1308(w), 1275(w), 1153(s), 1072(s), 1024(s), 989(s), 893(w), 860(w), 763(m), 702(w), 613(w), 567(m), 517(w), 477(m), 457(w).

For $\mathbf{S - 1 H} \mathbf{- 2 0 \%}$. Yield: 68.3\% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{59.3} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P}_{3} \mathrm{~Tb}$: C 37.28, H 6.87, and N 4.83 ; found: C 36.98, H 6.73, and N 4.69 . IR (KBr, cm ${ }^{-1}$): 3733(w), 3680(w), 3420(w), 2986(w), 2928(s), 2853(m), 2793(w), 2670(w), 2523(w), 2405(w), 2351(w), 2323(w), 1618(m), 1450(m), 1392(w), 1344(w), 1308(w), 1275(w), 1153(s), 1072(s), 1024(s), 989(s), 893(w), 860(w), 763(m), 702(w), 613(w), 567(m), 517(w), 477(m), 457(w).
\boldsymbol{R}-Tb(cyamp) $)_{3 a}(\text { Fpemp })_{3(1-a)}$ (the molar ratio $a \approx x$ and the doping ratio $x=5 \%$ and 10\%) ($\boldsymbol{R} \mathbf{- 2 F}-\boldsymbol{x}$). The compounds $\boldsymbol{R} \mathbf{- 2 F}-\boldsymbol{x}$ were prepared through the similar procedures to $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- x}$ except that R-pempH ${ }_{2}$ were replaced by R-FpempH ${ }_{2}$. For \boldsymbol{R}-2F-5\%. Yield: 65.1% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{62.1} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{~F}_{0.13} \mathrm{~Tb}: \mathrm{C}, 37.05$; H, 7.15; N, 4.80; found: C, 36.73; H, 6.73; N, 4.64. IR (KBr, cmri): 3732(w), 3674(w),

3425(w), 2984(w), 2928(s), 2855(m), 2793(w), 2669(w), 2519(w), 2401(w), 2353(w), 2324(w), 1618(m), 1514(w), 1450(m), 1391(w), 1344(w), 1308(w), 1275(w), 1229(w), 1153(s), 1074(s), 1022(s), 988(s), 891(w), 856(w), 841(w), 810(w), 781(w), 764(m), 730(w), 613(w), 565(m), 515(w), 484(m), 476(m), 457(w), 419(w).

For $\boldsymbol{R}-2 \mathrm{~F}-10 \%$. Yield: 61.6% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{61.0} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{~F}_{0.29} \mathrm{~Tb}: \mathrm{C}, 36.97$; H, 7.01; N, 4.79; found: C, 36.89; H, 7.19; N, 4.68. IR (KBr, cm ${ }^{-1}$): 3732(w), 3674(w), 3425(w), 2984(w), 2928(s), 2855(m), 2793(w), 2669(w), 2519(w), 2401(w), 2353(w), 2324(w), 1618(m), 1514(w), 1450(m), 1391(w), 1344(w), 1308(w), 1275(w), 1229(w), 1153(s), 1074(s), 1022(s), 988(s), 891(w), 856(w), 841(w), 810(w), 781(w), 764(m), 730(w), 613(w), 565(m), 515(w), 484(m), 476(m), 457(w), 419(w).
$\boldsymbol{R}-\mathrm{Tb}(\text { cyamp })_{3 a}(\text { Clpemp })_{3(1-a)}$ (the molar ratio $a \approx x$ and the doping ratio $x=5 \%$ and 10% ($\boldsymbol{R} \mathbf{- 3 C l}-\boldsymbol{x}$). The compounds $\boldsymbol{R}-\mathbf{3 C l}-\boldsymbol{x}$ were prepared through the similar procedures to \boldsymbol{R}-1H-x except that R-pempH ${ }_{2}$ were replaced by R-Cl-pempH ${ }_{2}$. For \boldsymbol{R} - $\mathbf{3 C l}-5 \%$. Yield: 62.2% based on Tb . Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{62.1} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{Cl}_{0.13} \mathrm{~Tb}$: $\mathrm{C}, 36.97$; H, 7.14; N, 4.79; found: C, 36.60; H, 6.77; N, 4.55. IR (KBr, cm^{-1}): 3732(w), 3674(w), 3424(w), 2984(w), 2928(s), 2853(m), 2791(w), 2669(w), 2517(w), 2399(w), 2353(w), 2324(w), 1618(m), 1450(m), 1391(w), 1346(w), 1308(w), 1275(w), 1234(w), 1153(s), 1072(s), 1022(s), 988(s), 891(w), 858(w), 781(w), 764(m), 615(w), 565(m), 517(w), 484(m), 476(m), 457(w), 419(w).

For $\boldsymbol{R}-\mathbf{3 C l}-10 \%$. Yield: 69.4\% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{61.1} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{Cl}_{0.27} \mathrm{~Tb}: \mathrm{C}, 36.80$; H, 6.99; N, 4.77; found: C, 36.53; H, 7.19; N, 4.66. IR (KBr, cm ${ }^{-1}$): 3732(w), 3674(w), 3424(w), 2984(w), 2928(s), 2853(m), 2791(w), 2669(w), 2517(w), 2401(w), 2353(w), 2324(w), 1620(m), 1450(m), 1391(w), 1344(w), 1308(w), 1275(w), 1234(w), 1153(s), 1074(s), 1022(s), 988(s), 891(w), 858(w), 783(w), 764(m), 615(w), 565(m), 517(w), 484(m), 474(m), 457(w), 419(w).
\boldsymbol{R}-Tb(cyamp) $\mathbf{3 a}_{\mathbf{a}}(\text { Brpemp })_{3(1-a)}$ (the molar ratio $a \approx x$ and the doping ratio $x=5 \%$ and 10%) ($\boldsymbol{R}-\mathbf{4 B r}-\boldsymbol{x}$). The compounds $\boldsymbol{R}-\mathbf{4 B r}-\boldsymbol{x}$ were prepared through the similar procedures to $\boldsymbol{R} \mathbf{- 1 H - \boldsymbol { x }}$ except that R-pempH ${ }_{2}$ were replaced by R - $\mathrm{Br}^{-p e m p H} \mathrm{H}_{2}$. For $\boldsymbol{R} \mathbf{- 4 B r - 5 \%}$. Yield: 53.7% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{62.2} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{Br}_{0.11} \mathrm{~Tb}$: C, 36.60; H, 6.77; N, 4.55; found: C, 36.40; H, 6.73; N, 4.29. IR (KBr, cm^{-1}): 3732(w), 3674(w), 3422(w), 2984(w), 2928(s), 2853(m), 2791(w), 2669(w), 2517(w), 2399(w), 2353(w), 2322(w), 1620(m), 1450(m), 1391(w), 1344(w), 1308(w), 1275(w), 1234(w), 1153(s), 1072(s), 1022(s), 988(s), 891(w), 858(w), 783(w), 764(m), 615(w), 565(m), 517(w), 484(m), 474(m), 457(w), 419(w).

For $\boldsymbol{R} \mathbf{- 4 B r - 1 0 \%}$. Yield: 59.6\% based on Tb. Elemental analysis (\%) calcd for $\mathrm{C}_{27} \mathrm{H}_{60.6} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{Br}_{0.36} \mathrm{~Tb}: \mathrm{C}, 36.02$; H, 6.77; N, 4.67; found: C, 35.61; H, 6.53; N, 4.25. IR (KBr, cm ${ }^{-1}$): 3732(w), 3674(w), 3420(w), 2984(w), 2928(s), 2853(m), 2793(w),

2669(w), 2519(w), 2399(w), 2351(w), 2324(w), 1620(m), 1450(m), 1391(w), 1346(w), 1308(w), 1277(w), 1232(w), 1153(s), 1074(s), 1022(s), 988(s), 891(w), 858(w), 818(w), 779(w), 762(m), 615(w), 565(m), 517(w), 484(m), 474(m), 457(w), 420(w).

References

1 Z.-S. Cai, S.-S. Bao, M. Ren, L.-M. Zheng, Chem. Eur. J., 2014, 20, 17137-17142.
2 (a) X.-G. Liu, S. Bao, Y.-Z. Li and L.-M. Zheng, Inorg. Chem., 2008, 47, 5525; (b) J.-G. Jia, J.-S. Feng, X.-D. Huang, S.-S. Bao and L.-M. Zheng, Chem. Commun., 2019, 55, 28252828.

3 J.-G. Jia, C.-C. Zhao, S.-S. Bao, L.-Q. Wu, G.-H. Wen, A. J. Jacobson, J. Ma and L.-M. Zheng, J. Am. Chem. Soc., 2021, 143, 17587-17598.

Figure S1 Pawley fit of powder samples of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 5 \%}$ using Topas 5.0 program. Fitted cell parameters $\left(R_{\mathrm{wp}}=5.30\right): P 65, a=17.01 \AA, c=23.53 \AA, V=5898.8 \AA^{3}$.

Figure S2 Pawley fit of powder samples of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 1 0 \%}$ using Topas 5.0 program. Fitted cell parameters $\left(R_{\mathrm{wp}}=5.16\right): P 65, a=17.01 \AA, c=23.53 \AA, V=5898.8 \AA^{3}$.

Figure S3 Pawley fit of powder samples of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 2 0 \%}$ using Topas 5.0 program. Fitted cell parameters $\left(R_{\mathrm{wp}}=5.96\right): P 65, a=17.01 \AA, c=23.53 \AA, V=5898.8 \AA^{3}$.

Figure S4 IR spectra (4000-400 cm ${ }^{-1}$ (a) and 2000-400 cm^{-1} (b)) of the ligands R-cyampH ${ }_{2}$, R-pempH ${ }_{2}, R$-FpempH $2, R$-ClpempH ${ }_{2}$, and R - BrpempH $_{2}$, which are used in the syntheses of superhelices $\boldsymbol{R}-1 \mathrm{H}-\boldsymbol{x}, \boldsymbol{R}-2 \mathrm{~F}-\boldsymbol{x}, \boldsymbol{R}-3 \mathrm{Cl}-\boldsymbol{x}$, and $\boldsymbol{R}-4 \mathrm{Br}-\boldsymbol{x}$.

Figure S5 (a) Excitation spectra (with emission at 543 nm) and (b) emission spectra excited at 247 nm of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- x}(x=0 \%, 5 \%, 10 \%, 20 \%)$ obtained at $\mathrm{pH}=5.0$.

Figure S6 Transient emission decay spectra of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- x}(x=0 \%, 5 \%, 10 \%, 20 \%)$.

Figure S7 EDX spectra of \boldsymbol{R} - and $\mathbf{S} \mathbf{- 1 H} \mathbf{- x}(x=5 \%, 10 \%, 20 \%)$ superhelices.

(a)

Figure S8 TG analyses of \boldsymbol{R} - and $\mathbf{S} \mathbf{- 1 H} \mathbf{- x}(x=5 \%, 10 \%, 20 \%)$ obtained at $\mathrm{pH}=5.0$.

Figure S9 $\mathbf{1 H}-\mathrm{NMR}$ spectra of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 0 \%}$ obtained at $\mathrm{pH}=5.0$. The peaks at 8.5 and 8.8 ppm are attributed to the H atoms adjacent to N and O atoms of the ligand.

Figure S10 $\quad 1 \mathrm{H}-\mathrm{NMR}$ spectra of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 5 \%}$ obtained at $\mathrm{pH}=5.0$.

Figure S11 $1 \mathrm{H}-\mathrm{NMR}$ spectra of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 1 0 \%}$ obtained at $\mathrm{pH}=5.0$.

Figure S12 $\mathbf{1 H}-\mathrm{NMR}$ spectra of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- 2 0 \%}$ obtained at $\mathrm{pH}=5.0$.

Figure S13 SEM images of $\boldsymbol{S} \mathbf{- 1 H - x}(x=0 \%, 5 \%, 10 \%$, and $20 \%)$ obtained at pH 5.0 .
(a)

(b)

Figure S14 IR spectra (4000-400 cm^{-1}) (a) and PXRD patterns (b) of $\boldsymbol{S}-\mathbf{1 H - x}(x=0 \%, 5 \%$, $10 \%, 20 \%$) obtained under pH 5.0.

Figure S15 1H-NMR spectra of $\mathbf{S} \mathbf{- 1 H - 5 \%}$ obtained at $\mathrm{pH}=5.0$.

Figure S16 $1 \mathrm{H}-\mathrm{NMR}$ spectra of $\mathrm{S}-\mathbf{1 H} \mathbf{- 1 0 \%}$ obtained at $\mathrm{pH}=5.0$.

Figure S 17 1H-NMR spectra of $\mathbf{S} \mathbf{- 1 H} \mathbf{- 2 0 \%}$ obtained at $\mathrm{pH}=5.0$.

Figure S18 The ECD spectra of \boldsymbol{R} - and $\boldsymbol{S} \mathbf{- 1} \mathbf{H} \mathbf{- x}(x=0 \%, 5 \%, 10 \%$, and 20%) obtained under pH 5.0.

(b)

Figure S20 IR spectra (4000-400 cm^{-1}) (a) and PXRD patterns (b) of $\boldsymbol{R} \mathbf{- 1 H} \boldsymbol{- x}(x=5 \%, 10 \%$, 20%) obtained under $100^{\circ} \mathrm{C}$ and different pH .

Figure S21 IR spectra (4000-400 cm^{-1}) (a) and PXRD patterns (b) of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- x}(x=5 \%, 10 \%)$ obtained under pH 5.0 and different temperatures.

Figure S22 SEM images of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- x}(x=5 \%$ and $10 \%)$ obtained at pH 5.0 under hydrothermal reaction in different temperatures T (from $60^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$).

Figure S23 SEM images of $\boldsymbol{R} \mathbf{- 1 H} \mathbf{- x}(x=30 \%$ and $40 \%)$ obtained at pH 5.0 .

Figure S24 $1 \mathrm{H}-\mathrm{NMR}$ spectra of $\boldsymbol{R} \mathbf{- 2 F}-5 \%$ obtained at $\mathrm{pH}=5.0$.

Figure S25 $1 \mathrm{H}-\mathrm{NMR}$ spectra of $\boldsymbol{R} \mathbf{- 2 F}-\mathbf{1 0} \%$ obtained at $\mathrm{pH}=5.0$.

Figure S26 $1 \mathrm{H}-\mathrm{NMR}$ spectra of $\boldsymbol{R}-\mathbf{3 C l}-5 \%$ obtained at $\mathrm{pH}=5.0$.

Figure S27 $1 \mathrm{H}-\mathrm{NMR}$ spectra of $\boldsymbol{R} \mathbf{- 3 C l}-\mathbf{1 0} \%$ obtained at $\mathrm{pH}=5.0$.

Figure S28 $1 \mathrm{H}-\mathrm{NMR}$ spectra of $\boldsymbol{R}-4 \mathrm{Br}-5 \%$ obtained at $\mathrm{pH}=5.0$.

Figure S29 $1 \mathrm{H}-\mathrm{NMR}$ spectra of $\boldsymbol{R}-\mathbf{4 B r}-\mathbf{1 0 \%}$ obtained at $\mathrm{pH}=5.0$.

Figure S30 EDX spectra of $\boldsymbol{R} \mathbf{- 2 F}-\boldsymbol{x}, \boldsymbol{R} \mathbf{- 3 C l}-\boldsymbol{x}$ and $\boldsymbol{R} \mathbf{- 4 B r} \mathbf{- x}(x=5 \%, 10 \%)$ superhelices.

Figure S31 TG analyses of $\boldsymbol{R} \mathbf{- 2 F}-\boldsymbol{x}(x=5 \%, 10 \%)$ obtained at $\mathrm{pH}=5.0$.

Figure S32 TG analyses of $\boldsymbol{R}-\mathbf{3 C l}-\boldsymbol{x}(x=5 \%, 10 \%)$ obtained at $\mathrm{pH}=5.0$.

Figure S33 TG analyses of $\boldsymbol{R}-\mathbf{4 B r}-\mathbf{x}(x=5 \%, 10 \%)$ obtained at $\mathrm{pH}=5.0$.

Figure S34 IR spectra (4000-400 cm^{-1} (a) and 2000-400 cm^{-1} (b)) of $\boldsymbol{R} \mathbf{- 2 F}-\boldsymbol{x}, \boldsymbol{R}-\mathbf{3 C l}-\boldsymbol{x}$, and $\boldsymbol{R}-4 \mathrm{Br}-\boldsymbol{x}(x=5 \%, 10 \%)$ obtained under pH 5.0 . The marked peak positions are the IR signal peaks of the doped ligands X - pempH_{2}, which are indicated in Figure S 4 .

Figure S35 PXRD patterns of $\boldsymbol{R} \mathbf{- 2 F}-\boldsymbol{x}, \boldsymbol{R}-\mathbf{3 C l}-\boldsymbol{x}$, and $\boldsymbol{R}-\mathbf{4 B r} \boldsymbol{- x}(x=5 \%, 10 \%)$ obtained under pH 5.0.

