Isomerism Tunes the Diradical Character of DifluorenoPyrroles at Constant Hückel-level Antiaromaticity

Ryotaro Moriyasu^[a,\$], Sergio Moles Quintero^[b,\$], Carlos J. Gómez-García^[c], Kazumasa Suzuki^[d], Chitoshi Kitamura^[a], Michihisa Murata^[e], Mercedes Alonso^f, Juan Casado^{[b]*} and Shin-ichiro Kato^{[a]*}

Table of Contents

- 1. Experimental details: synthesis of compounds (S2–S4)
- 2. Characterization of compounds (S5–S8)
- 3. Computational details (S9)
- 4. TD-DFT (S9–S10)
- 5. Physicochemical data (S11–S12)
- 6. Temperature-dependent ¹H NMR (S13)
- 7. Magnetic measurements (S14)
- 8. Geometry optimization (S14)
- 9. Stability studies (S15–S16)
- 10. ACID calculation (S18)
- 11. Magnetically induced current density calculations (S19-22)
- 12. Cartesian coordinates (S23-S28)
- 13. References (S29)

Experimental Details: Synthesis of Compounds

General procedures. All air-sensitive manipulations were carried out under inert nitrogen gas. Compound **9** was synthesized according to the literature procedures.^[1] An oil bath was used as the heat source. Column chromatography was carried out using SiO₂. Thin-layer chromatography (TLC) was conducted on aluminum sheets coated with SiO₂ 60 F₂₅₄. Recycling gel-permeation chromatography (JAIGEL LC-918 and LaboACE LC-5060) was performed with UV detectors using 1H and 2H polystyrene columns eluted with CHCl₃. Melting points (M.p.) were measured with a capillary tube (Stanford Research Systems OPTiMelt MPA100). ¹H and ¹³C NMR spectra were recorded on a spectrometer (JEOL JNM-ECS400) at 400 MHz for ¹H and 100 MHz for ¹³C. CDCl₃ and CD₂Cl₂ were used as a solvent, and the residual solvent signal in the ¹H and ¹³C NMR spectra was used as an internal reference. To avoid the effect of DCl on spectral broadening, Et₃N was included in CDCl₃. HRMS (Thermo Fisher Scientific LTQ Orbitrap XL) spectrometric analyses were conducted in a positive mode. Electronic absorption (JASCO V-670 or JV-550) spectra were measured in a cuvette of 1 cm at room temperature.

Preparation of dibromide 5. Bromine (0.30 mL, 3.87 mmol, 3.0 equiv) was added to a solution of diformylcarbazole **8** (1.0 g, 3.98 mmol, 1.0 equiv) in CHCl₃ (5 mL) under a nitrogen atmosphere. After the mixture was stirred at room temperature for 0.5 h, the resulting mixture was evaporated under reduced pressure. The residue was suspended with saturated aqueous Na₂S₂O₃ (100 mL), and the precipitate was collected by filtration and washed with CH₃OH to give **5** (1.47 g, 3.62 mmol, *ca.* 91 %) including some impurities as a yellow solid. Dibromide **5** was used without further purification. M.p. 120-122 °C. ¹H NMR (CDCl₃/Et₃N, 400 MHz): δ 10.2 (s, 2H), 8.34 (s, 2H), 8.05 (s, 2H), 4.51 (q, 2H, *J* = 7.4 Hz), 1.50 (t, 3H, *J* = 7.4 Hz) ppm. ¹³C NMR (CDCl₃/Et₃N, 100 MHz, 50 °C): δ 192.50, 141.09, 132.43, 127.29, 126.77, 116.96, 111.07, 38.91, 14.40 ppm (9 signals out of 9 expected). UV– vis (CH₂Cl₂): λ^{abs} (relative intensity) 281 (1.0), 316 (0.67), 358 (0.58), 430 (0.08), 454 (0.07) nm. HRMS (APCI, positive): *m/z* calcd for C₁₆H₁₁Br₂NO₂ 408.9151, found 408.9132 [M⁺].

Preparation of dialdehyde 6. A solution of dibromide **5** (1.0 g, 2.46 mmol, 1.0 equiv), phenylboronic acid (900 mg, 7.38 mmol, 3.0 equiv), Cs_2CO_3 (2.4 g, 7.38 mmol, 3.0 equiv), $Pd_2(dba)_3 \cdot CHCl_3$ (120 mg, 0.12 mmol, 0.05 equiv) and [(*t*-Bu)_3PH][BF₄] (71 mg, 0.25 mmol, 0.1 equiv) in degassed 1,4-dioxane/H₂O (10:1, 33 mL) was stirred at 70 °C for 12 h under a nitrogen atmosphere. The resulting mixture was evaporated under reduced pressure. The residue was suspended with CH₂Cl₂ and the suspension was filtered through a bed of Celite. The filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂; CH₂Cl₂) to give **6** (758 mg, 1.88 mmol, 77 %) as a yellow solid. M.p. 151–153 °C; ¹H NMR (CDCl₃, 400 MHz): δ 10.2 (s, 2H), 8.18 (d, 4H, *J* = 8.0 Hz), 7.52–7.44 (m, 10H), 4.51 (q, 2H, *J* = 7.4 Hz), 1.50 (t, 3H, *J* = 7.4 Hz) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 192.88, 141.03, 138.59, 137.78, 132.88, 130.76, 128.55, 127.83, 126.48, 123.59, 108.10, 38.40, 14.24 ppm (13 signals out of 13 expected). UV–vis (CH₂Cl₂): λ^{abs} (relative intensity): 284 (1.00), 310 (0.97), 348 (0.78), 429 (0.13), 440 (0.13) nm. HRMS (APCI, positive): *m/z* calcd for C₂₈H₂₁NO₂ 403.1566, found 403.1571 [M⁺].

Preparation of dihydrodifluorenopyrrole 7. A Et₂O solution of mesitylmagnesium bromide (1.0 M, 12.0 mL, 12.0 mmol, 6.0 equiv) was added to a solution of dialdehyde **6** (700 mg, 1.98 mmol, 1.0 equiv) in THF (30 mL) at room temperature under a nitrogen atmosphere, and the mixture was stirred for 4 h. After addition of H₂O (1.0 mL, 5.56 mmmol, 2.8 equiv), the organic layer was separated and concentrated under reduced pressure; the aqueous layer was extracted with CH₂Cl₂. The residue was diluted with the CH₂Cl₂ solution, and the resulting solution was washed with brine, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂; CH₂Cl₂/hexane 1:5 \rightarrow pure CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 5:1) to give diol (881 mg, 1.37 mmol) as a white solid. BF₃·OEt₂ (2.20 mL, 18.3 mmol, 10 equiv) was added to a solution of the diol (881 mg, 1.37 mmol, 1.0 equiv) in CH₂Cl₂ (30 mL) at room temperature under a nitrogen atmosphere. After the mixture was stirred for 0.5 h, aqueous NaHSO₃ (5 %) was added. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced with CH₂Cl₂ (30 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure.

was purified by recycling GPC to give 7 (613 mg, 1.01 mmol, 51 %) as a pale yellow solid. M.p. 170-172 °C. ¹H NMR (CDCl₃, 400 MHz, diastereomer mixture): δ 8.61, 8.60 (2s, 2H), 7.96 (d, 2H, J = 7.0 Hz), 7.42 (t, 2H, J = 7.0 Hz), 7.20 (t, 2H, J = 7.0 Hz), 7.19 (s, 4H), 7.06 (s, 2H), 6.67 (s, 2H), 5.64 (s, 2H), 4.22 (q, 2H, J = 7.3 Hz), 2.74 (s, 6H), 2.30 (s, 6H), 1.11 (s, 6H), 1.29 (t, 3H, J = 7.3 Hz) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 146.65, 146.29, 141.77, 141.73, 140.96, 138.36, 137.86, 136.29, 134.99, 133.17, 133.14, 130.73, 128.84, 127.02, 126.11, 124.13, 122.75, 119.26, 111.51, 104.32, 104.28, 49.87, 37.76, 22.80, 21.04, 19.07, 13.98, 13.89 ppm (28 signals out of 48 expected). UV–vis (CH₂Cl₂): λ^{abs} (reactive intensity) 284 (0.90), 330 (1.00), 361 (0.36) nm. HRMS (APCI, positive): m/z calcd for C₄₆H₄₁N 607.3233, found 607.3236 [M⁺].

Preparation of DFPy-Iso. DDQ (28.0 mg, 0.123 mmol, 2.5 equiv) in degassed toluene (5 mL) was added into a degassed toluene (10 mL) of dihydrodifluorenopyrrole **7** (30 mg, 0.049 mmol, 1.0 equiv) under an argon atmosphere. The mixture was stirred at 60 °C for 1 h, and the resulting solution was evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂; toluene/Et₃N 100:1) to give DFPy-Iso (30 mg, 0.049 mmol, quant) as a bluish-purple solid; the solvents, namely toluene and Et₃N, were replaced with cyclohexane by evaporation followed by dilution, and the resulting cyclohexane solution of DFPy-Iso was evaporated to give its solid. M.p. 170-172 °C. ¹H NMR (CD₂Cl₂/Et₃N, -80 °C, 400 MHz): δ 7.52 (s, 2H), 7.26 (d, 2H, *J* = 7.6 Hz), 6.90 (s, 4H), 6.83-6.77 (m, 4H), 6.36 (br, 2H), 5.72 (s, 2H), 3.55 (br, 2H), 2.24 (s, 6H), 2.04 (s, 12H) ppm; the CH₃ protons in the Et group were not identified because their signals overlapped with those of cyclohexane and/or Et₃N. ¹³C NMR (CD₂Cl₂/Et₃N, -80 °C, 400 MHz): δ 167.56, 131.55 ppm (Only 2 signals were observed due to the relatively high diradical character). UV-vis (toluene/Et₃N = 100:1): λ^{abs} (ε) 398 (16300), 577 (34100), 829 (4750), 914 (5610), 1060 (3000) nm. HRMS (APCI, positive): *m/z* calcd for C₄₆H₃₉N 605.3077, found 605.3081 [M⁺].

Characterization of Compounds

¹³C NMR spectrum of **5** in CDCl₃/Et₃N solution (100 MHz, 50 °C).

¹H NMR spectrum of **6** in CDCl₃ solution (400 MHz).

 13 C NMR spectrum of **6** in CDCl₃ solution (100 MHz).

¹H NMR spectrum of 7 (diastereomer mixture) in CDCl₃ solution (400 MHz).

¹³C NMR spectrum of 7 in CDCl₃ solution (100 MHz).

¹H NMR spectrum of DFPy-Iso 4 in CD₂Cl₂/Et₃N solution (-80 °C, 400 MHz).

¹³C NMR spectrum of DFPy-Iso 4 in CD₂Cl₂/Et₃N solution (-80 °C, 400 MHz). The signals at 45.04 and 10.65 ppm are ascribed to Et₃N.

Computational Details.

General. The gas-phase quantum chemical calculations were performed in order to investigate electronic structures of difluorenopyrrol isomers, i.e., DFPy-Iso-H and DFPy. In the first step, the optimized geometry was calculated by DFT methodology at the (U)B3LYP/6-311G* level of theory.

In this work, the Doehnert-Koutecký definition^[2] has been used, $y_0 = N_{LUMO}$, where N_{LUMO} is the lowest

unoccupied natural orbital occupation number.^[2,3] In a second step, N_{LUMO} were calculated in two ways, at (U)B3LYP/6-31G** level of theory and at the restricted active space spin-flip (RAS-SF) level of theory with 4 electrons in 4 orbitals in the active space and with the 6-31G** basis set. In order to investigate aromatic characters, we analyzed the nucleous-independent chemical shift values, $NICS(1,7)^{[4]}$, the aromaticity of induced current density (ACID) maps^[5,6] and the magnetically induced current density analysis.^[7] Magnetic responses were evaluated at the B3LYP/6-31G* level of theory.

Time Dependent-DFT

Electronic excitation properties of neutrals were examined by the TD-UM06-2X/6-311+G** level of theory. The results are found to reproduce qualitatively the experimental UV-vis-NIR spectra of neutrals.

Figure S1. Results of TD-DFT calculations for DFPy-Iso-H in the open-shell singlet ground states at the UM06-2X/6-311+G** level of theory.

Figure S2. Results of TD-DFT calculations for DFPy in the open-shell singlet ground states at the UM06-2X/6- $311+G^{**}$ level of theory.

Physicochemical Data

Electrochemistry. Cyclic voltammetry (EC Frontier ECstat-100) was performed using a cell equipped with a platinum wire working electrode, a platinum wire counter electrode, and an Ag/AgNO₃ reference electrode. All electrochemical measurements were performed in CH₂Cl₂ solution (*ca.* 0.5 mM) containing 0.1 M tetrabutyl ammonium hexafluorophosphate, $[(n-Bu)_4N][PF_6]$, at room temperature. All potentials are referenced to the ferrocenium/ferrocene (Fc⁺/Fc) couple, which was used as a standard.

Figure S3. Cyclic voltammograms of DFPy-Iso as well as DFPy; scan rate: 100 mV s⁻¹; in CH_2Cl_2 with 0.1 M [(*n*-Bu)₄N][PF₆].

Electrochemical experiments have been conducted in CH_2Cl_2 at room temperature by using 0.1 M $[(n-Bu)_4N][PF_6]$ as the supporting electrolyte. In situ UV-Vis-NIR spectroelectrochemical studies were conducted on the Varian Cary 5000 UV-Vis-NIR Spectrophotometer, respectively. A C3 epsilon potentiostat from BASi was used for the electrolysis using a thin layer cell from a demountable omni cell from Specac. In this cell, a three electrodes system was coupled to conduct in situ spectroelectrochemistry. A Pt gauze was used as the working electrode, a Pt wire was used as the counter electrode, and an Ag wire was used as the pseudo-reference electrode. The spectra were collected through a constant potential electrolysis and the potentials were changed in interval of 15 mV. The electrochemical medium used was 0.1 M [(*n*-Bu)₄N][PF₆] in spectroscopic grade CH₂Cl₂, at room temperature with sample concentrations of 10^{-3} M.

Figure S4. UV-Vis-NIR spectroelectrochemical reductions and oxidations in CH_2Cl_2 with 0.1 M [(*n*-Bu)₄N][PF₆] as the electrolyte at room temperature of DFPy **3** (broken lines) and and DFPy-Iso **4** (solid lines). RC: radical cation and RA: radical anion.

Table S1. Redox Potentials and Comproportionation Constants K_c^{RC} and K_c^{RA}

Cmpd.	$E_{\mathrm{ox}}(\mathrm{V})^{[\mathrm{a}]}$	$E_{\rm red} \left({\rm V} ight)^{[a]}$	$\Delta E_{ m redox} ({ m V})^{[b]}$	$K_{\rm c}^{\rm RC[c]}$	$K_{\rm c}^{\rm RA[d]}$
DFPy-Iso	-0.05	-1.32	1.27	$8.4 imes 10^{10}$	$2.3 imes 10^4$
	+0.60	-1.58			
DFPy	+0.17	-1.33	1.50	1.2×10^9	$7.6 imes 10^5$
	+0.71	-1.66			

[a] Scan rate 100 mV s⁻¹. [b] $\Delta E_{\text{redox}} = E_{\text{ox}}^1 - E_{\text{red}}^1$. [c] Comproportionation constant for radical cation. [d] Comproportionation constant for radical anion.

[a] In CD₂Cl₂. [b] PCM model (CH₂Cl₂).

Magnetic measurements

Variable temperature susceptibility measurements were carried out with a Quantum Design MPMS-XL-7 SQUID magnetometer, in the temperature range 4-400 K, with an applied magnetic field of 0.5 T, on polycrystalline samples of both compounds, sealed in glass capillaries under inert atmosphere. The samples were measured in heating and cooling scans at a scan rate of 2 K/min. The data (and the fits) were very similar in the cooling and heating scans. The susceptibility data were corrected for the empty glass capillary previously measured using the same conditions and for the diamagnetic contribution of the samples as deduced by using Pascal's constant tables.^[7]

Geometry optimizations

Quantum chemical calculations were performed by Gaussian 16 package of ab initio MO calculations.^[8]

Figure S6. Optimized structures of DFPy-Iso (left) and DFPy (right) at the UB3LYP/6-31G** level of theory. Bond lengths (Å) from the calculated structures are in black.

Stability studies

Figure S7. Absorbance–time profiles of (a) DFPy and (b) DFPy-Iso under protection from light in air-saturated CH_2Cl_2 at room temperature. (c) Time dependence of the electronic absorption of DFPy-Iso at 577 nm.

Thermal gravimetric analysis. Thermogravimetric analysis (TGA) was performed from 25–450 °C on samples of DFPy-Iso using a Rigaku Thermo Plus TG 8120 instrument. The measurements were performed under an oxygen-free dry N_2 flow.

Figure S8. TGA plot for DFPy-Iso.

ACID calculations

The anisotropy of current-induced density (ACID) plots were analyzed by the ACID 2.0.1 program provided by Prof. Rainer Herges (Institut für Organische Chemie, Universität Kiel).^[5,6]

Figure S9. ACID plots for **DFPy-Iso-H** as well as **DFPy-H** in the open-shell singlet (OS) and the triplet states (T) calculated at the B3LYP/6-31G* level of theory.

Magnetically induced current density calculations

The magnetically induced current density calculations^[7] were performed with the GIMIC program^[8] at the PBE0^[9]/def2-TZVP^[10] level of theory. This level of theory performs well in the ring current calculations, as shown in previous works.^[11,12] For the calculations, the external magnetic field was oriented perpendicular to the molecular plane. The plots of the current density vectors were generated in planes at 0.0 and 0.5 Å above the molecular plane, commonly used in GIMIC calculations.^[6] At 0.5 Å, local sigma contributions are minimized, making the π -circuits more visible. The Paraview5.10.0^[13] program was employed to visualize the current density paths. Ring current strengths (RCS), a measure of the net current intensity around the molecular ring, were obtained for selected integration planes. The integration planes correspond to cut-off planes perpendicular to the selected bonds. The two-dimensional Gauss-Lobatto algorithm^[8] was used to integrate the current passing through an integration plane. The current density analysis on the archetypal benzene molecule was also included for comparative purposes.

Figure S10. Current density vector plots at 0.0 (left) and 0.5Å (center) above the molecular plane for benzene. Current density values $(|J^{\beta}|)$ values are given in atomic units (1 a.u. = 100.63 nA/T/Å²). On the left, current strength profiles for the selected integration plane in bencene (right). A net RCS of 12.22 nA/T is obtained for benzene in line with previous studies.^[6]

3 SOS 0.5Å

Figure S11. Current density vector plots at 0.0 (top) and 0.5 Å (bottom) above the molecular plane for the DFPy (**3**) isomer computed for the singlet open-shell configuration. Current density values $(|J^{\beta}|)$ values are given in atomic units (1 a.u. = 100.63 nA/T/Å²).

4 SOS 0Å

4 SOS 0.5Å

Figure S12. Current density vector plots at 0.0 (top) and 0.5 Å (bottom) above the molecular plane for the DFPy-Iso (4) isomer computed for the singlet open-shell configuration. Current density values ($|J^{\beta}|$) values are given in atomic units (1 a.u. = 100.63 nA/T/Å²).

Figure S13. Profiles of the current strength corresponding to the selected planes to assess the RCS associated to selected bonds of the ring fused structure of DFPy (3) and DFPy-Iso (4). Insert: structures of 3 a 4 with the selected plane highlighted.

Cartesian Coordinates

			-			
Center	Atomic	Atomic	Coordinates (Å)			
number	number	type	X	Y	Z	
1	6	0	0.291368	-0.060902	1.135482	
2	6	0	-1.092472	-0.053390	0.696545	
3	6	0	-1.092472	-0.053390	-0.696545	
4	6	0	0.291368	-0.060902	-1.135482	
5	7	0	1.095533	-0.080649	-0.000000	
6	6	0	0.639773	-0.049561	2.460352	
7	6	0	-0.419883	-0.046275	3.418095	
8	6	0	-1.816904	-0.040482	2.979919	
9	6	0	-2.146569	-0.042843	1.658384	
10	6	0	-2.146569	-0.042843	-1.658384	
11	6	0	-1.816904	-0.040482	-2.979919	
12	6	0	-0.419883	-0.046275	-3.418095	
13	6	0	0.639773	-0.049561	-2.460352	
14	6	0	3.144118	1.347359	-0.000000	
15	6	0	2.548311	-0.062794	-0.000000	
16	6	0	-0.379032	-0.032863	4.804516	
17	6	0	-1.755650	-0.021377	5.301631	
18	6	0	-2.644895	-0.027281	4.192617	
19	6	0	-2.644895	-0.027281	-4.192617	
20	6	0	-1.755650	-0.021377	-5.301631	
21	6	0	-0.379032	-0.032863	-4.804516	
22	6	0	-2.257719	-0.022540	6.600200	
23	6	0	-3.645478	-0.020885	6.788624	
24	6	0	-4.515027	-0.022461	5.699737	
25	6	0	-4.015135	-0.027737	4.388248	
26	6	0	-4.015135	-0.027737	-4.388248	
27	6	0	-4.515027	-0.022461	-5.699737	
28	6	0	-3.645478	-0.020885	-6.788624	
29	6	0	-2.257719	-0.022540	-6.600200	
30	6	0	0.833837	-0.035979	5.657810	
31	6	0	1.541042	-1.235184	5.880652	
32	6	0	2.678266	-1.213273	6.690962	
33	6	0	3.136764	-0.040124	7.289864	
34	6	0	2.424401	1.136389	7.055071	
35	6	0	1.281622	1.161377	6.254000	

Cartesian Coordinates of DFPy-Iso at the B3LYP/6-311G* level.

36	6	0	0.556668	2.465368	6.015800
37	6	0	1.079389	-2.537438	5.268446
38	6	0	4.349304	-0.047396	8.189083
39	6	0	0.833837	-0.035979	-5.657810
40	6	0	1.541042	-1.235184	-5.880652
41	6	0	2.678266	-1.213273	-6.690962
42	6	0	3.136764	-0.040124	-7.289864
43	6	0	2.424401	1.136389	-7.055071
44	6	0	1.281622	1.161377	-6.254000
45	6	0	0.556668	2.465368	-6.015800
46	6	0	1.079389	-2.537438	-5.268446
47	6	0	4.349304	-0.047396	-8.189083
48	1	0	1.671676	-0.033525	2.792596

Center	Atomic	Atomic	Coordinates (Å)		
number	number	type	X	Y	Z
49	1	0	-3.181545	-0.034395	1.329969
50	1	0	-3.181545	-0.034395	-1.329969
51	1	0	1.671676	-0.033525	-2.792596
52	1	0	4.236796	1.299842	-0.000000
53	1	0	2.828928	1.906711	-0.883755
54	1	0	2.828928	1.906711	0.883755
55	1	0	2.889978	-0.623489	0.874154
56	1	0	2.889978	-0.623489	-0.874154
57	1	0	-1.586245	-0.027720	7.453113
58	1	0	-4.048425	-0.020338	7.796546
59	1	0	-5.587382	-0.022100	5.865547
60	1	0	-4.702007	-0.034216	3.546752
61	1	0	-4.702007	-0.034216	-3.546752
62	1	0	-5.587382	-0.022100	-5.865547
63	1	0	-4.048425	-0.020338	-7.796546
64	1	0	-1.586245	-0.027720	-7.453113
65	1	0	3.217573	-2.141866	6.861638
66	1	0	2.769429	2.064421	7.504574
67	1	0	1.073385	3.295608	6.501546
68	1	0	0.481536	2.693068	4.948736
69	1	0	-0.466524	2.437537	6.401240
70	1	0	1.157609	-2.524837	4.177417
71	1	0	1.676116	-3.374999	5.635602
72	1	0	0.031345	-2.742373	5.503435
73	1	0	4.892499	0.899713	8.140246
74	1	0	4.065239	-0.202851	9.235923
75	1	0	5.044745	-0.846552	7.921276
76	1	0	3.217573	-2.141866	-6.861638
77	1	0	2.769429	2.064421	-7.504574
78	1	0	0.481536	2.693068	-4.948736
79	1	0	1.073385	3.295608	-6.501546
80	1	0	-0.466524	2.437537	-6.401240
81	1	0	1.157609	-2.524837	-4.177417
82	1	0	0.031345	-2.742373	-5.503435
83	1	0	1.676116	-3.374999	-5.635602
84	1	0	4.892499	0.899713	-8.140246
85	1	0	5.044745	-0.846552	-7.921276
86	1	0	4.065239	-0.202851	-9.235923

Cartesian Coordinates of DFPy-Iso at the B3LYP/6-311G* level (Contin.).

Center	Atomic	Atomic	Coordinates (Å)		
number	number	type	X	Y	Z
1	7	0	1.110048	0.021781	0.000000
2	6	0	0.266383	-0.034147	1.129124
3	6	0	0.575566	-0.112747	2.460574
4	6	0	1.800333	-0.286716	3.240518
5	6	0	3.115113	-0.590882	2.903461
6	6	0	4.062480	-0.755026	3.921096
7	6	0	3.700203	-0.638504	5.265382
8	6	0	2.375062	-0.384333	5.622515
9	6	0	1.425196	-0.217893	4.615989
10	6	0	-0.015145	-0.054781	4.707381
11	6	0	-0.523369	-0.022695	3.416899
12	6	0	-1.882654	0.060654	2.981296
13	6	0	-2.178745	0.036061	1.648736
14	6	0	-1.116412	-0.003206	0.696855
15	6	0	2.174455	1.056273	0.000000
16	6	0	-0.783022	0.010924	5.968092
17	6	0	-0.738700	1.178183	6.755952
18	6	0	-1.461025	1.219100	7.948578
19	6	0	-2.223870	0.134846	8.384652
20	6	0	-2.247172	-1.014245	7.594041
21	6	0	-1.540953	-1.097918	6.392839
22	6	0	0.060806	2.377065	6.304586
23	6	0	-3.023845	0.214545	9.661923
24	6	0	-1.570508	-2.371384	5.580619
25	6	0	0.266383	-0.034147	-1.129124
26	6	0	0.575566	-0.112747	-2.460574
27	6	0	1.800333	-0.286716	-3.240518
28	6	0	3.115113	-0.590882	-2.903461
29	6	0	4.062480	-0.755026	-3.921096
30	6	0	3.700203	-0.638504	-5.265382
31	6	0	2.375062	-0.384333	-5.622515
32	6	0	1.425196	-0.217893	-4.615989
33	6	0	-0.015145	-0.054781	-4.707381
34	6	0	-0.523369	-0.022695	-3.416899
35	6	0	-1.882654	0.060654	-2.981296
36	6	0	-2.178745	0.036061	-1.648736
37	6	0	-1.116412	-0.003206	-0.696855
38	6	0	-0.783022	0.010924	-5.968092
39	6	0	-0.738700	1.178183	-6.755952
40	6	0	-1.461025	1.219100	-7.948578
41	6	0	-2.223870	0.134846	-8.384652
42	6	0	-2.247172	-1.014245	-7.594041
43	6	0	-1.540953	-1.097918	-6.392839
44	6	0	0.060806	2.377065	-6.304586
45	6	0	-3.023845	0.214545	-9.661923
46	6	0	-1.570508	-2.371384	-5.580619
47	6	0	1.616603	2.479766	0.000000
48	1	0	3.407063	-0.742349	1.871002

Cartesian Coordinates of DFPy at the B3LYP/6-311G* level.

Center	Atomic	Atomic	Coordinates (Å)		
number	number	type	X	Y	Z
49	1	0	5.089448	-0.988865	3.659766
50	1	0	4.451079	-0.770398	6.037755
51	1	0	2.077225	-0.337124	6.665324
52	1	0	-2.668112	0.122533	3.727403
53	1	0	-3.206556	0.069194	1.303962
54	1	0	2.798358	0.900122	0.875991
55	1	0	2.798358	0.900122	-0.875991
56	1	0	-1.430274	2.123084	8.551878
57	1	0	-2.824124	-1.874071	7.925485
58	1	0	1.131234	2.156232	6.266081
59	1	0	-0.083492	3.226255	6.975453
60	1	0	-0.228153	2.687255	5.296324
61	1	0	-4.024985	0.618269	9.474078
62	1	0	-2.545312	0.866233	10.397328
63	1	0	-3.152330	-0.769625	10.119283
64	1	0	-2.115422	-2.240471	4.641450
65	1	0	-2.049968	-3.181139	6.134315
66	1	0	-0.561535	-2.694260	5.310508
67	1	0	3.407063	-0.742349	-1.871002
68	1	0	5.089448	-0.988865	-3.659766
69	1	0	4.451079	-0.770398	-6.037755
70	1	0	2.077225	-0.337124	-6.665324
71	1	0	-2.668112	0.122533	-3.727403
72	1	0	-3.206556	0.069194	-1.303962
73	1	0	-1.430274	2.123084	-8.551878
74	1	0	-2.824124	-1.874071	-7.925485
75	1	0	1.131234	2.156232	-6.266081
76	1	0	-0.083492	3.226255	-6.975453
77	1	0	-0.228153	2.687255	-5.296324
78	1	0	-4.024985	0.618269	-9.474078
79	1	0	-2.545312	0.866233	-10.397328
80	1	0	-3.152330	-0.769625	-10.119283
81	1	0	-2.115422	-2.240471	-4.641450
82	1	0	-2.049968	-3.181139	-6.134315
83	1	0	-0.561535	-2.694260	-5.310508
84	1	0	1.004602	2.662258	-0.886317
85	1	0	1.004602	2.662258	0.886317
86	1	0	2.437182	3.202213	0.000000

Cartesian Coordinates of DFPy at the B3LYP/6-311G* level (contin.).

Center	Atomic	Atomic	Coordinates (Å)		
number	number	type	X	Y	Z
1	6	0	-0.709879	0.230588	-0.093608
2	6	0	-1.131782	1.598674	-0.186442
3	6	0	1.131699	1.598713	-0.186428
4	6	0	0.709841	0.230612	-0.093599
5	6	0	-1.670233	-0.806607	-0.022967
6	6	0	-2.999880	-0.468200	-0.041480
7	6	0	-3.418875	0.918337	-0.130578
8	6	0	-2.470187	1.959156	-0.201278
9	6	0	2.470093	1.959239	-0.201246
10	6	0	3.418815	0.918452	-0.130534
11	6	0	2.999865	-0.468099	-0.041443
12	6	0	1.670229	-0.806551	-0.022947
13	7	0	-0.000055	2.402835	-0.255286
14	6	0	-0.000128	4.527479	1.057336
15	6	0	-0.000081	3.855139	-0.317929
16	6	0	4.827106	0.956910	-0.124663
17	6	0	5.331316	-0.388007	-0.034003
18	6	0	4.219781	-1.283439	0.018768
19	6	0	-4.219769	-1.283581	0.018719
20	6	0	-5.331334	-0.388187	-0.034067
21	6	0	-4.827167	0.956747	-0.124723
22	6	0	6.635729	-0.887159	0.006626
23	6	0	6.830133	-2.266512	0.099601
24	6	0	5.740603	-3.138755	0.151291
25	6	0	4.426655	-2.649591	0.110847
26	6	0	-4.426597	-2.649740	0.110801
27	6	0	-5.740529	-3.138948	0.151231
28	6	0	-6.830088	-2.266742	0.099527
29	6	0	-6.635730	-0.887382	0.006548
30	1	0	-1.350505	-1.842200	0.045474
31	1	0	-2.789239	2.994289	-0.259916
32	1	0	2.789111	2.994383	-0.259879
33	1	0	1.350535	-1.842154	0.045489
34	1	0	-0.000147	5.615941	0.949864
35	1	0	0.882959	4.243128	1.634018
36	1	0	-0.883232	4.243093	1.633975
37	1	0	-0.873370	4.165577	-0.897400
38	1	0	0.873226	4.165610	-0.897355
39	1	0	5.435391	1.851629	-0.179662
40	1	0	-5.435482	1.851446	-0.179732
41	1	0	7.487485	-0.214645	-0.033165
42	1	0	7.838638	-2.666258	0.131979
43	1	0	5.911645	-4.207973	0.223418
44	1	0	3.590690	-3.341823	0.151997
45	1	0	-3.590610	-3.341943	0.151962
46	1	0	-5.911536	-4.208172	0.223360
47	1	0	-7.838580	-2.666522	0.131894
48	1	0	-7.487508	-0.214898	-0.033254

Cartesian Coordinates of DFPy-Iso-H at the UB3LYP/6-311G* level (open-shell singlet)

Center	Atomic	Atomic	Coordinates (Å)		
number	number	type	X	Y	Z
1	6	0	-0.698243	2.131168	0.058171
2	6	0	-1.149039	0.755238	-0.016707
3	6	0	1.149006	0.755165	-0.016703
4	6	0	0.698271	2.131125	0.058197
5	6	0	-1.600100	3.224644	0.095187
6	6	0	-2.938591	2.975674	0.046898
7	6	0	-3.404418	1.632379	-0.019891
8	6	0	-2.514530	0.471689	-0.033635
9	6	0	2.514496	0.471560	-0.033652
10	6	0	3.404420	1.632227	-0.019768
11	6	0	2.938647	2.975536	0.047076
12	6	0	1.600168	3.224560	0.095294
13	6	0	3.412487	-0.716505	-0.066778
14	6	0	4.757423	-0.218723	-0.102329
15	6	0	4.723606	1.211465	-0.071735
16	6	0	-4.723612	1.211636	-0.071889
17	6	0	-4.757452	-0.218559	-0.102347
18	6	0	-3.412527	-0.716357	-0.066671
19	6	0	3.245409	-2.100910	-0.039792
20	6	0	4.356189	-2.953423	-0.072428
21	6	0	5.654935	-2.451522	-0.127533
22	6	0	5.858992	-1.074806	-0.138176
23	6	0	-5.859021	-1.074644	-0.138137
24	6	0	-5.654967	-2.451361	-0.127293
25	6	0	-4.356226	-2.953265	-0.072030
26	6	0	-3.245443	-2.100752	-0.039455
27	1	0	-1.218025	4.237825	0.151924
28	1	0	-3.661370	3.785162	0.063143
29	1	0	3.661459	3.784993	0.063410
30	1	0	1.218133	4.237756	0.152061
31	1	0	2.274910	-2.564782	0.019896
32	1	0	4.193053	-4.026221	-0.051290
33	1	0	6.500988	-3.130409	-0.154644
34	1	0	6.864152	-0.664887	-0.168499
35	1	0	-6.864179	-0.664726	-0.168564
36	1	0	-6.501021	-3.130247	-0.154359
37	1	0	-4.193098	-4.026060	-0.050714
38	1	0	-2.274939	-2.564604	0.020399
39	7	0	-0.000047	-0.040634	-0.074917
40	6	0	-0.000133	-1.478446	-0.281506
41	1	0	0.862979	-1.719241	-0.897564
42	1	0	-0.863443	-1.719167	-0.897320
43	6	0	-0.000011	-2.263433	1.032771
44	1	0	-0.000108	-3.341812	0.845198
45	1	0	0.880123	-2.024811	1.632125
46	1	0	-0.879966	-2.024683	1.632339
47	1	0	5.591015	1.860186	-0.078826
48	1	0	-5.591009	1.860371	-0.079075

Cartesian Coordinates of DFPy-H at the UB3LYP/6-311G* level (open-shell singlet)

References

- 1. D. Myśliwiec, M. Stępień, Angew. Chem. Int. Ed. 2013, 52, 1713.
- 2. D. Doehnert, J. Koutecký, J. Am. Chem. Soc. 1980, 102, 1789.
- For a recent example for the use of y₀ for the teranthene diradical molecule, see: A. Konishi, Y. Hirao, M. Nakano, A. Shimizu, E. Botek, B. Champagne, D. Shiomi, K. Sato, T. Takui, K. Matsumoto, H. Kurata, T. Kubo, *J. Am. Chem. Soc.* 2010, *132*, 11021.
- 4. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, *Chem. Rev.* 2005, 105, 3842.
- 5. R. Herges, D. Geuenich, J. Phys. Chem. A 2001, 105, 3214.
- 6. D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758.
- 7. D. Sundholm, H. Fliegl, R. J. F. Berger, WIREs Comput. Mol. Sci. 2016, 6, 639.
- 8. J. Jusélius, D. Sundholm, J. Gauss, J. Chem. Phys. 2004, 121, 3952.
- 9. C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
- 10. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 11. S. Lehtola, M. Dimitrova, H. Fliegl, D. Sundholm, J. Chem. Theory Comput. 2021, 17, 1457.
- D. Inostroza, V. García, O. Yañez, J. J. Torres-Vega, A. Vásquez-Espinal, R. Pino-Rios, R. Báez-Grez, W. Tiznado, *New J. Chem.* 2021, 45, 8345.
- U. Ayachit, *The ParaView Guide: A Parallel Visualization Application*, Kitware, Inc., USA, 2015.