Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2023

Supporting Information

Nonribosomal lipopeptides protect Pseudomonas nunensis 4A2e from amoebal and
nematodal predation

Sebastian Pflanze,? Ruchira Mukherji,® Anan Ibrahim,? Markus Glinther,? Sebastian Gotze,? Somak
Chowdhury,? Lisa Reimer,? Lars Regestein® and Pierre Stallforth®<

a) Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology — Leibniz-HKI,
Beutenbergstrasse 11a, 07745 Jena, Germany

b) Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology — Leibniz-HKI, Beutenbergstrasse 11a,
07745 Jena, Germany

c) Faculty of Chemistry and Earth Sciences, Friedrich Schiller University (FSU), Jena, Germany

Contents

GENEIAI MELNOTS ...ttt bbb e bt bt e bbbt b e s b e s bs et e bt e bt e b e s b e s bt et e e bt et e b e s b e s bbb 1
Isolation of Pseudomonas nunensis 4A2e, Polysphondylium pallidum RM1, and Oscheius myriophilus SP1..............cccocveevunen. 4
Genomic analysis of PSEUAOMONAS NUNENSIS AA2E .......ccueeeeeeeeeeeeesie et et e seese et e teesseessteeteesseesseessaeaseesseesseesnseenseesseesnsesnses 5
PRYIOZENETIC @NAIYSIS . ..eeiureitieiierie ettt ettt et sb e st e bt et e s a et e e et e bt e e h e e e Rt e bt e b e nh et e bt e Rt e nhe e e an e e ee e teeeneeenneenreeas 10
Metabolic analysis of wild type 4A2€ and MUEANT STrAINS .....cuiiiiiiiiiiee et eeee e sbe e e s e e e sbaeesbbeeebbeeesabeessseaesnsseaens 14
Regulation of nonribosomal peptide DIOSYNTRESIS .......ccccuiiiiiiiicee et s e s be e e s te e e e breesbaeeentaeeeans 15
Plagque assays with WT 4A2e and gene deletion MULANTS ......cc.ieveiiierieiieee ettt ae e e saeessteeteenaeesseesnneeaeeneeas 17
GrOWEN INNIDITION @SSAYS ...viiiuiiiiiiiie ettt s et e s bt e e s bt e e s bt e e sabte e s bbeesabbeesabeeeaasbeeesbeessbeessbeeesabeessabaesnnseeesas 20
Bacteria—nematode CO-CUIIVATION @SSAY.....iivuiiiiiieiiiieiiieeeriee ettt e sie e e s be e e sbeeestaeesbeeesabteeassseesssseesabeeesssseessseesssseesnsseeansn 22
Isolation of NONIIDOSOMAl IPOPEPTIAES ......cccuiiiiiiie e et e e et e e st a e e s ba e e e taeesbaeesbaeessaeeesbeeesbeeeseaeanne 22
Sequence analysis 0f NONIDOSOMAl PEPTIAES. ......cccuiiiiiiie e ettt e et e e te e e e sta e e eeabeeeestaeenaseeesabeseenteeeanseas 26
Synthesis of protected 4-Chloro-L-TNIrEONINE ......cc.eiciiee et e e e et e s e ete e seesseessseeseenseesseesnseenseenseanns 29
Marfey’s analysis of NONIIDOSOM@Al PEPLIAES ......eeiiiiiieiie ittt st e st et et e b e sate et e e beesneesane s 31
Stable isotope labelling Of NUNAPEPTIN C.....uviiiiiiiciie ettt e et e e s b e e s ba e e s taeesbaeesbeeeesbeeesbeesseeeesrens 34
Determination of the ring Size Of NUNAPEPTINS.......iiiiiiee et e e e et e e e sta e e s eab e e eeabeeesateeeeabeeesabesenssaaennns 36
Determination of the absolute configuration of the 3-hydroxytetradecanoic acid residue in keanumycin D.........ccccevcvvrnennne 37
LCMS analysis of hydrolysed NUNAPEPLIN € ....eeeeeeieeiieiee ettt sttt s r et e s e e e st et e e sbeesmeesanesneesneenanens 40
HCN production in PSEUdOMONGAS NUNENSIS BA2E ..........cccuueeeiirieeiiiesiieeesteeesveesstteesssseeesaseesssbeesssteasssseessseessstsessseessssesesssseennns 41
REFEIENCES ...ttt s h et b bt a b s b h b b e bRt b e bR e bbb e b s h e bbbt et b e sh e e nenb e bt s 41

L A2 o 1= ot of - PSP PP RPPPPPPRTPRt 43



General methods
Reagents and materials

Chemical reagents and materials were purchased from Acros Organics, Alfa Aesar, CDN isotopes, Merck, TCl, and were used
without further purification. Organic solvents were supplied by VWR and Th. Geyer as HPLC or LCMS grade. Anhydrous
solvents were purchased from Acros Organics. Nematode counting dishes were supplied by the laboratory of nematology of
Wageningen University & Research, Netherlands.

Table S1 List of Media

Medium Composition (L)

Phosphate-buffered 8.0 g NaCl, 200 mg KCl, 1.78 g Na,HPO,4-2H,0, 240 mg KH,PO,, adjusted to pH 7.4 with NaOH.
saline (PBS)

R2A agar 500 mg yeast extract, 500 mg proteose peptone, 500 mg casamino acids, 500 mg glucose,

500 mg soluble starch, 300 mg sodium pyruvate, 300 mg K,HPO,4, 50 mg MgS0,4-7H,0, 15 g
agar, adjusted to pH 7.2 with NaOH.

Hay agar 1.5 g KH,PO,4, 620 mg Na,HPO,4-2H,0, 15 g agar, fill to 1 L with hay infusion (10 g hay/L, filtered
through cheese cloth).

Starving agar 2.0 g K;HPO,4, 300 mg Na,HPO,4-2H,0, 20 g agar.

NGM 3.0 g NaCl, 17 g agar, 2.5 g tryptone/peptone ex casein, adjusted to 975 mL. After autoclave

sterilization, cool to 55 °C and add 1 mL of a 1M CaCl, solution, 1 mL of a 1M MgSO, solution,
1 mL of 5 mg/mL cholesterol solution in EtOH, and 25 mL of 1M KPO, buffer (108.3 g KH,POy,,
35.6 g K,HPO,, filled to 1 L and adjusted pH to 6.0 with HCI).

K-medium 3.1 g NaCl, 2.4 g KCI.

S-buffer 5.85 g NaCl, 1.12 g K,HPO,, 5.93 g KH,PO,.

Modified Davis medium 18.4 g glycerol, 5.0 g (NH4),S04, 2.6 g K;HPO,, 3.25 g trisodium citrate dihydrate, 200 mg
MgS0,4-7H,0, 1 mL of a 0.1 M FeCls solution in 1% HCI, 580 mg NaCl.

SM/5 broth 2.0 g glucose, 2.0 g tryptone/peptone ex casein, 200 mg yeast extract, 200 mg MgS0,4-7H,0,
1.9 g KH,PO,, 1.0 g K,HPO,.

SM/5 agar SM/5 broth supplemented with 15 g agar.

LB Lysogeny broth-Miller (Carl Roth).

HL5 HL5 medium including glucose (Formedium).

PYG 20.0 g proteose peptone, 18.0 g glucose, 2.0 g yeast extract, 1.0 g trisodium citrate dihydrate,

980 mg MgS0,4:7H,0, 355 mg Na,HPO,4-7H,0, 340 mg KH,PO,4, 20 mg Fe(NH4),(S04),-6H,0,
adjusted to pH 6.5 with HCI.

Sorensen’s buffer 2.0 g KH,PO,4, 550 mg Na,HPO,4-2H,0, adjusted to pH 6.0 with HCI.

Co-cultivation agar 18.4 g glycerol, 5.0 g (NH,4),S0,, 2.6 g K,HPO,, 3.25 g trisodium citrate dihydrate, 200 mg
MgS0,-7H,0, 1 mL of a 0.1 M FeCl; solution in 1% HCI, 580 mg NaCl, 2.5 g tryptone/peptone
ex casein, 15 g agar, filled to 975 mL and adjusted to pH 6.5 with HCl. After autoclave
sterilization, cool to 55 °C and add 1 mL of a 1M CaCl, solution, and 1 mL of 5 mg/mL
cholesterol solution in EtOH.

Stable isotope labelling 1.84 g glycerol, 1.0 g (NH,4),S0,, 2.6 g K,HPO,, 625 mg trisodium citrate dihydrate, 200 mg
medium MgS0,4-7H,0, 1 mL of a 0.1 M FeCls solution in 1% HCI, 90 mg t-alanine-2-d4, 117 mg L-valine,
131 mg L-isoleucine.

Labelling control medium | 1.84 g glycerol, 1.0 g (NH4),S04, 2.6 g K;HPO,4, 625 mg trisodium citrate dihydrate, 200 mg
MgS0,4-7H,0, 1 mL of a 0.1 M FeCl; solution in 1% HCI, 89 mg L-alanine, 117 mg L-valine, 131
mg L-isoleucine.

Maintenance of social amoebae

Social amoebae (Polysphondylium pallidum RM1, Polysphondylium pallidum PN500, Dictyostelium discoideum AX2,
Dictyostelium purpureum QSpul, and Dictyostelium caveatum WS695) were maintained at 22 °C on SM/5 agar, on lawns of
Klebsiella aerogenes. Cryogenic stocks were prepared by freezing amoebal spores in Sérensen’s buffer at —80 °C.

Maintenance of the bacteriovorus nematode Oscheius myriophilus SP1

The nematode Oscheious myriophilus SP1 was routinely maintained at 22 °C on NGM agar, on lawns of Pseudomonas nunensis
4A2e AnuplAkealbra. Every 10 to 14 days, nematodes were gently washed off the plate with sterile K-medium and transferred
to a new NGM plate onto a bacterial lawn. Cryogenic stocks of Oscheius myriophilus were prepared by freezing early
developmental stages of the nematode in S-buffer containing 15% (w/v) glycerol and 1 mM CaCl, in a small styrofoam box
and were kept at =80 °C.12



Gene deletion via homologous recombination

Markerless, in-frame gene deletion mutants of Pseudomonas nunensis 4A2e were generated by a gentamicin-resistance
selection and a subsequent sucrose counter-selection approach.3 The plasmid pEXG2 was linearised by restriction digestion
with Hindlll and EcoRI. Chromosomal regions flanking the target sequence (“left arm” (LA) and “right arm” (RA)) were
amplified from genomic DNA of 4A2e with Q5 HF DNA polymerase (NEB), introducing additional overhangs of 18 — 20 bps.
The linearised vector, LA and RA fragments were purified using the Monarch DNA Gel Extraction Kit (NEB).

The suicide vector was ligated by Gibson Assembly (NEB) and transformed directly into chemically competent Escherichia coli
DH5a. Transformants were selected for on LB agar containing gentamicin at 37 °C and later confirmed by colony PCR
(DreamTaq DNA polymerase, Thermo Scientific) with the primer pair pEXG2_seq_fwd/pEXG2_seq_rev. Plasmid DNA was
isolated using the Monarch Plasmid Miniprep Kit (NEB) and subsequently transformed into E. coli S17-1Apir. Transformants
were selected for on LB agar containing gentamicin at 37 °C. Then, the respective plasmids were introduced into 4A2e by
conjugation. Overnight cultures of the donor (LB containing gentamicin) and recipient (LB) strain were used to inoculate new
cultures (3 mL), which were grown (37 °C for E. coli, 28 °C for 4A2e) to an ODgy of 0.4-0.6. Cultures were mixed in ratios of
1:3 to 1:9 (recipient/donor) and washed by repeated centrifugation (6000 x g, 2 min) and resuspension in fresh LB. Cells were
resuspended in LB (100 uL) and spotted onto LB agar, which was incubated at 28 °C overnight. Then, spots were resuspended
in LB (450 pL) and plated on LB agar containing gentamicin and ampicillin to select for 4A2e transformants, which had
integrated the pEXG2 vector into their chromosome. A single colony was resuspended in LB (450 uL) and incubated at 750
rpm at 28 °C for 4 h. The suspension was plated on LB agar containing 10% sucrose (w/v) and plates were incubated at 28 °C.
Colonies were screened via colony PCR for the loss of the target sequence.

Table S2 List of Primers

Oligonucleotide Sequence Notes
27f AGAGTTTGATCCTGGCTCAG Amplify 16S rDNA
1492r GGTTACCTTGTTACGACTT Amplify 16S rDNA

18SSU Primer A

CCGAATTCGTCGACAACCTGGTTGATCCTGCCAGT

Amplify 18S rDNA in social
amoebae*

18SSU Primer B

CCCGGGATCCAAGCTTGATCCTTCTGCAGGTTCACCTAC

Amplify 18S rDNA in social
amoebae*

SSU18A AAAGATTAAGCCATGCATG Amplify 18S rDNA in rhabditid
nematodes®

SSU26R CATTCTTGGCAAATGCTTTCG Amplify 18S rDNA in rhabditid
nematodes®

nupA_LA_ fwd GGAAGCATAAATGTAAAGCACAAGGTCGGCTCGTCCAC Amplify the region 5 to target
sequence in nupA

nupA_LA rev TCAACAACTGGGAGTCAGTACAGGAATCATCG Amplify the region 5 to target
sequence in nupA

nupA_RA_fwd TACTGACTCCCAGTTGTTGATCTTCGTAAACCACCG Amplify the region 3 to target
sequence in nupA

nupA_RA _rev GGAAATTAATTAAGGTACCGCGCATCGACGCCTTGGCA Amplify the region 3 to target
sequence in nupA

keaA_LA_fwd GGAAGCATAAATGTAAAGCAGCGCAGTTCGCCAGCGGC Amplify the region 5 to target
sequence in keaA

keaA _LA_rev AGGTGCTGCGACTCAGCACCTGACCGCTGTCATCG Amplify the region 5 to target
sequence in keaA

keaA _RA_fwd TCAGGTGCTGAGTCGCAGCACCTTGCCG Amplify the region 3 to target
sequence in keaA

keaA _RA_rev GGAAATTAATTAAGGTACCGTGCGGTCAGATTGGCGTC Amplify the region 3 to target
sequence in keaA

braB_LA_fwd GGAAGCATAAATGTAAAGCACGTCTCGGTGAACTGACG Amplify the region 5 to target
sequence in braB

braB _LA_rev TGCCACCGTGCAGGGTTTGATTGTCGAAG Amplify the region 5 to target
sequence in braB

braB _RA_fwd TCAAACCCTGCACGGTGGCACTTCCACC Amplify the region 3 to target
sequence in braB

braB _RA_rev GGAAATTAATTAAGGTACCGGCGGTAGGCCGAACGGTG Amplify the region 3 to target

sequence in braB

nupR1_LA_ fwd

GGAAGCATAAATGTAAAGCAAAATACGCCGTATGACTGAGG

Amplify the region 5‘ to
nupR1

nupR1 _LA rev

ACAGTAGAAGGATGGGAGGGCTCGGATAATG

Amplify the region 5‘ to
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nupR1

nupR1 _RA_fwd

CCCTCCCATCCTTCTACTGTACTGGTCAGTTAATCTTCCG

Amplify the region 3 to
nupR1

nupR1 _RA_rev

GGAAATTAATTAAGGTACCGAGCCGCCTCGGCTTTTGG

Amplify the region 3’ to
nupR1

nupR2_LA_fwd

GGAAGCATAAATGTAAAGCACCAACAATCCTAGAGCAAATACTC

Amplify the region 5 to
nupR2

nupR2_LA_rev

GGAAGTGGGGCGGCTCTCCATGTCATGATTTC

Amplify the region 5’ to
nupR2

nupR2_RA_fwd

TGGAGAGCCGCCCCACTTCCACTCTTTTC

Amplify the region 3‘ to
nupR2

nupR2 _RA_rev

GGAAATTAATTAAGGTACCGTCACGCTGTCCATCGAAC

Amplify the region 3 to
nupR2

GG

pcol_LA fwd GGAAGCATAAATGTAAAGCACAGTCACCACCCATGAATAATC Amplify the region 5‘ to pcol
pcol_LA_rev CTCTATGATGGGTCTGACGTTCTTGGTTG Amplify the region 5‘ to pcol
pcol_RA_fwd ACGTCAGACCCATCATAGAGCCATCCCACCC Amplify the region 3’ to pcol
pcol_RA_rev GGAAATTAATTAAGGTACCGCAGGCGATCGGCAAAGCG Amplify the region 3’ to pcol
nunF_LA_fwd GGAAGCATAAATGTAAAGCAATTTGTCCTACAACTTACAAATGAT | Amplify the region 5 to nunF

nunF_LA_rev

CGGGGCATTACGCGTTGGTGAGCTGATAG

Amplify the region 5‘ to nunF

nunF_RA_fwd

CACCAACGCGTAATGCCCCGAACCCTTCTG

Amplify the region 3’ to nunF

nunF_RA_rev

GGAAATTAATTAAGGTACCGACCTTCGACGGTGGTCCG

Amplify the region 3’ to nunF

pEXG2_ctrl_fwd

CATAATATCTCATTTCACTAAATAATAGTGAACGGCAGGTAAGC

Confirm pEXG2 insert

pEXG2_ctrl_rev

CATTCTGCTAACCAGTAAGGCAACCCCG

Confirm pEXG2 insert

nupA_ctrl_LA_fwd AGGCCAAGTGATGAAGGCTG Confirm deletion in nupA
nupA_ctrl_LA rev GTATGTGCTTGAGCAGGGGT Confirm deletion in nupA
nupA_ctrl_RA_fwd TGCAACGACACCAATCCGTA Confirm deletion in nupA
nupA_ctrl_RA_rev CCGTTTTCATCTGGCCAAGC Confirm deletion in nupA
keaA _ctrl_LA_fwd CCGGAACGTTTCTACTGGCT Confirm deletion in keaA
keaA _ctrl_LA_rev AACAGCTCGGCTTCTTCCTC Confirm deletion in keaA
keaA _ctrl_RA_fwd TCTGTCGATGCTGGAAACGG Confirm deletion in keaA
keaA _ctrl_RA_rev AACCGATCACCACTTCGTCC Confirm deletion in keaA
braB_ctrl_LA_fwd CGTTGATGGCTGGTCGTTTG Confirm deletion in braB
braB_ctrl_LA_rev GGGTGCATCATCGAGTGGTA Confirm deletion in braB
braB _ctrl_RA_fwd TGCAACAGCGTTTCATGAGC Confirm deletion in braB
braB _ctrl_RA_rev TATTGAGGAACAGCCCCAGC Confirm deletion in braB
nupR1_ctrl_LA_fwd TCGGCAGAAAGCGACTACAT Confirm nupR1 deletion

nupR1 _ctrl_LA_rev CGGGCGGATGGTCAATAGAA Confirm nupR1 deletion

nupR1_ctrl_RA_fwd CACAGCCCCTCAGATTCTCT Confirm nupR1 deletion

nupR1 _ctrl_RA_rev CTTGCCCGAGAACTCTGTCC Confirm nupR1 deletion

nupR2_ctrl_LA fwd ACAACTGGCAAAAACCAGAC Confirm nupR2 deletion

nupR2_ctrl_LA_rev

AACGTTGCTGAGTCTATTGGTG

Confirm nupR2 deletion

nupR2_ctrl_RA_fwd

GTATTCAACAAGAACACTCCAGC

Confirm nupR2 deletion

nupR2_ctrl_RA_rev

ACGATCTCGATGCAATCAACCAA

Confirm nupR2 deletion

pcol_ctrl_LA_fwd ACAGCGACATGAATGGCACA Confirm pcol deletion
pcol_ctrl_LA_rev ACGTGCGGGAACAATCTTTG Confirm pcol deletion
pcol_ctrl_RA_fwd ATTAATGCGCCACACCGATT Confirm pcol deletion
pcol_ctrl_RA_rev GAGTGGAAGTGGGGTTAGACG Confirm pcol deletion
nunF_ctrl_LA_fwd GGTTTGTGGCGGGTGAAGT Confirm nunF deletion
nunF_ctrl_LA_rev TTAACGAACAACCGCCGAGA Confirm nunF deletion
nunF_ctrl_RA_fwd AATGTTTCTCACGGCACGGA Confirm nunF deletion
nunF_ctrl_RA_rev GGCGGACTTGAGCAGGTATT Confirm nunF deletion

Liquid chromatography — mass spectrometry (LCMS)

LCMS data were acquired using a Shimadzu Nexera X3 UHPLC connected to a Shimadzu single quadrupole mass spectrometer
(LCMS-2020). Data were analysed using Shimadzu LabSolutions software. The UHPLC was equipped with a Phenomenex
Kinetex C18 (50 x 2.1 mm, 1.7 um, 100 &) and the column oven set to 40 °C. The scan range of MS was set to m/z 150 to 2000,
a scan speed of 7500 u/s and an event time of 300 ms. The interface temperature was set to 350 °C, the desolvation line
temperature to 250 °C and the heat block temperature to 400 °C. The nebulising gas flow was set to 1.5 L/min and dry gas
flow to 15 L/min. The following method was used: flow rate of 0.7 mL/min; 0 — 0.5 min: 10% MeCN in water containing 0.1%
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formic acid; 0.5 — 8.5 min: linear gradient from 10% to 100% MeCN in water containing 0.1% formic acid; 8.5 —11.5 min: 100%
MeCN containing 0.1% formic acid.

High-resolution mass spectrometry (HRMS/HRMS?)

High-resolution mass (HRMS) and high-resolution tandem mass (HRMS?) spectrometry data were acquired using a Thermo
Scientific Accela UHPLC connected to a Thermo Scientific QExactive Orbitrap mass spectrometer. Data were analysed using
Thermo Scientific Xcalibur software. The UHPLC was equipped with a Thermo Scientific Accucore C18 (100 x 2.1 mm, 2.6
pm, 80 A). For HRMS2 experiments, the higher-energy collisional dissociation (hcd) was set to 10%, 15%, or 25%.

Nuclear magnetic resonance spectroscopy (NMR)

NMR spectra were recorded on Bruker Avance Il 300, Avance Il 500, and Avance Il 600 (equipped with a Bruker CryoProbe)
machines. Deuterated NMR solvents were supplied by VWR (Darmstadt, Germany) and Deutero (Kastellaun, Germany).
Chemical shifts 6 are reported in parts per million (ppm) and coupling constants (J) in Hz. Residual solvent signals were used
as internal standards: CDCl3: & = 7.26 (H), 77.16 (13C); CD;0D: & = 3.31 (*H), 49.00 (13C); DMSO-dg: 6 = 2.50 (*H), 39.52 (*3C).
Spectra were analysed using the Bruker TopSpin 3.2 software.

Optical rotation

Optical rotation was measured on a Kriiss P3000 polarimeter in a 100 mm cuvette at 22 °C.

Isolation of Pseudomonas nunensis 4A2e, Polysphondylium pallidum RM1, and Oscheius myriophilus SP1

All environmental samples were obtained from an isolated area (50.962 N 11.592 E) in a mixed forest in a nature reserve near
Jena, Germany. We removed the upper layer of leaves and collected the top layer of decaying vegetative material and forest
soil.

Pseudomonas nunensis 4A2e was isolated by resuspending vegetative forest material in PBS and serial diluting the
supernatant. The suspension was plated on R2A agar and incubated at 22 °C until bacterial colonies emerged. Colonies were
picked and re-streaked on R2A to obtain isolated colonies. Cryogenic stocks were prepared by freezing the bacterial
suspension in glycerol-containing water (final glycerol concentration of 20% (w/v)) at —80 °C.

The social amoeba Polysphondylium pallidum RM1 was isolated using the straw method described by Queller and
Strassmann.® In short, a suspension of the upper soil layer in Sérensen’s buffer was plated out on hay agar and subsequently
covered with a suspension of Klebsiella aerogenes in SM/5 broth. A few pieces of activated charcoal were sprinkled on the
agar and the plates left open in the laminar flow until all liquid was absorbed. Plates were incubated at 22 °C until the
emergence of fruiting bodies. Potential contaminants were removed by resuspending fruiting bodies in a suspension of K.
aerogenes and pipetting a single strip of the cell suspension onto starving agar. Clonal isolates were obtained from clean
looking fruiting bodies by a serial dilution of the respective spores in Sorensen’s buffer, followed by the addition of K.
aerogenes suspension and plating on SM/5 agar. Single colonies were picked with a sterile inoculation loop and transferred
to a new SM/5 plate onto a bacterial lawn. The identity of the amoeba was determined by amplification of the 18S rDNA
sequence using the primer pair 185SU Primer A/18SSU Primer B, described by Medlin et al.* Cryogenic stocks were prepared
as described above.

The nematode Oscheius myriophilus was isolated using the agar culture plate method described by Barriére and Félix.” In
short, decaying vegetative material was arranged around a lawn of Pseudomonas nunensis 4A2e AnupAkealAbra on NGM
agar. The vegetative material was moistened with K-medium and plates were incubated at 22 °C overnight. When worms
were spotted in the bacterial lawn, a sterile scalpel was used to cut out the respective piece of agar which was then
transferred to a single, new plate of AnupAkealAbra. Thereby, several animals were pooled and incubated for several days at
22 °C. After the emergence of new worms, the plate was flooded with K-medium and animals resuspended. Single adult
animals, carrying embryos, were transferred to new AnupAkeaAbra plates respectively, thereby establishing a single
progenitor breed. The identity of the strain was determined by amplification of the 185 rDNA sequence using the primer pairs
SSU18A/SSU26R, described by Floyd et al.> Cryogenic stocks of Oscheius myriophilus were prepared as described above using
a styrofoam box.

Genomic analysis of Pseudomonas nunensis 4A2e

Genomic DNA suitable for lllumina sequencing was extracted from an overnight culture of Pseudomonas nunensis 4A2e using
a Blood & Cell Culture DNA Kit (Qiagen) and sent to Qiagen CLC Genomics for Next Generation Illumina sequencing and contig
assembly (299 contigs; N50 167,693 bp). The assembled genome was analysed using antiSMASH version 5.1.0 for any
potential BGCs. Out of the 11 candidate BGCs recovered, one BGC found on contig_05 (Figure S1) showed high similarities
with syringomycin and nunapeptin/nunamycin containing BGCs according to the KnownClusterBlast search (Figure S2).
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Figure S1 AntiSMASH output illustration for contig_05. NRPS genes for brabantamide (335 kb — 343 kb), keanumycin (347 kb
— 375 kb), and nunapeptin (386 kb — 459 kb) biosynthesis can be identified on the contig.

Query sequence
HAECHCOO T8 M- DDA T ) ¢ D B D
BGC0000437: syringomycin (100% of genes show similarity), NRP

R S s i i

BGC0001416: nunapeptin / nunamycin (100% of genes show similarity), NRP
K Y 0 s s

Figure S2 KnownClusterBlast analysis of contig_05 with antiSMASH version 5.1.0. High similarities with biosynthetic gene
clusters for syringomycin and nunapeptin/nunamycin biosynthesis are illustrated.

Closer inspection of the domain annotation of the respective NRPS clusters predicted 22 modules for the nunapeptins, with
one starter condensation (C) domain (module 1), two '‘C, domains (modules 20 and 21), and 19 dual E/C domains (Figure S3).
For the keanumycin NRPS genes, a starter C domain (module 1), six “C, domains (modules 2, 4, 7, 9, and two C domains in
module 6), and three dual E/C domains (modules 3, 5, and 8) were predicted (Figure S4).

contig_05 - Region 1 - NRPS,hserlactone

Location: 257,187 - 482,289 nt. (tofal. 225,103 nt) Show pHMM detection rules used Downiload regicn GenBank file

NRPS/PKS domains
Detailed domain annotation

Figure S3 Predicted NRPS domain annotation for the nunapeptin NRPS genes (nupA, nupB, nupC). A) Location of the BGC
within the amoebicidal genomic island. B) Software prediction of the amino acid sequence. C) C domain prediction: one
starter C domain (red), two 'C, domains (blue), and 19 dual E/C domains (grey).
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Figure S4 Predicted NRPS domain annotation for the keanumycin NRPS genes (keaA, keaB). A) Location of the BGC within the
amoebicidal genomic island. B) Software prediction of the amino acid sequence. C) C domain prediction: one starter C domain
(red), six “C, domains (blue), and three dual E/C domains (grey).
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Figure S5 Amino acid specificity prediction for module 4 of KeaA. In silico analysis of amino acid substrate specificity for
module 4 does not predict an unambiguous substrate candidate (“X”) in antiSMASH version 5.1.0 and version 7.0.0.8° A) The
predicted Stachelhaus segence (DLKNVGSDVK) shows little confidence (“50% (weak)”) for an amino acid match in antiSMASH
version 5.1.0. B) The same Stachelhaus sequence matches with homoserine (Hse) as putative amino acid substrate strongly
(“100% (strong)”) in version 7.0.0. The predicted substrate preference for Hse was later supported experimentally by Marfey’s
analysis.

Further analysis of genes adjacent to the NRPS genes of brabantamide, keanumycin and nunapeptin revealed the presence
of three bacterial regulatory proteins (NupR1, NupR2, NunF) belonging to the LuxR family and an autoinducer synthase (Pcol)
(Figure S6; tables S3 and S4). Closer inspection showed that NupR1 contains both a LuxR-type DNA-binding HTH domain and
an autoinducer binding domain, while NupR2 and NunF only contain a LuxR-type DNA-binding HTH domain (LuxR solos)
(Figure S7).
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Figure S6 Detailed analysis of genes in proximity to NRPS BGCs. A) Overview. B) Genes downstream the nup BGC. C) Genes
flanked by keaA and nupA. D) Genes downstream the kea BGC.

Table S3 Protein BLAST analysis of genes flanking the NRPS genes.

ORF prediction E value NCBI accession number of
number closest match
1 LysR family transcriptional regulator 0.0 WP_054050478.1
2 putative hydro-lyase 7 E-173 WP_054614555.1
3 AraC family transcriptional regulator 0.0 WP_054614554.1
4 sugar ABC transporter substrate-binding protein 0.0 WP_163910367.1
5 L-iditol 2-dehydrogenase 0.0 WP_054614552.1
6 hypothetical protein FX983_03450 7 E-104 KAF2395464.1
7 autoinducer binding domain-containing protein 5E-178 WP_082356697.1
8 hypothetical protein 2 E-137 WP_054614551.1
9 hypothetical protein 2 E-154 WP_054614550.1
10 helix-turn-helix transcriptional regulator 0.0 WP_163910370.1
11 efflux RND transporter permease subunit 0.0 WP_163910371.1
12 nickel and cobalt resistance protein CnrB 0.0 KAF2395470.1
13 antibiotic efflux pump outer membrane protein ArpC 0.0 KAF2395471.1
14 diaminobutyrate—2-oxoglutarate transaminase family 0.0 WP_163910373.1
protein
15 MacB family efflux pump subunit 0.0 WP_054050453.1
16 macrolide transporter subunit MacA 0.0 WP_163910374.1
17 cyclic peptide export ABC transporter 0.0 WP_163914726.1
18 TauD/TfdA family dioxygenase 0.0 WP_239512095.1
19 amino acid adenylation domain-containing protein 0.0 WP_163914722.1
20 chlorinating enzyme 0.0 WP_054049640.1
21 alpha/beta hydrolase 0.0 WP_054049642.1
22 MEFS transporter 0.0 WP_054049644.1
23 hypothetical protein 0.0 AHL29303.1
24 - - -
25 hypothetical protein FX983_06522 0.0 KAF2392037.1
26 AdeC/AdeK/OprM family multidrug efflux complex outer 0.0 WP_163914705.1
membrane factor
27 hypothetical protein 6 E-37 WP_054049663.1
28 glycosyltransferase 0.0 WP_054049657.1
29 FAD-dependent monooxygenase 0.0 WP_054049661.1
30 ATP-binding protein 0.0 WP_163914699.1
31 NADPH-dependent oxidoreductase 6 E-177 WP_163914696.1




[ 32

| LLM class flavin-dependent oxidoreductase

[ 0.0 | WP_163914694.1

Table S4 InterProScan results for analysis of genes flanking the NRPS genes. Results for Pfam database matches are listed.

ORF name accession
number
1 LysR substrate binding domain PF03466
bacterial regulatory helix-turn-helix protein, lysR family PF00126
2 D-glutamate cyclase PF07286
3 helix-turn-helix domain PF12833
AraC-like ligand binding domain PF02311
4 bacterial extracellular solute-binding protein PF01547
5 enoyl-(Acyl carrier protein) reductase PF13561
6 - -
7 bacterial regulatory proteins, luxR family PF00196
autoinducer binding domain PF03472
8 - R
9 autoinducer synthase PFO0765
10 bacterial regulatory proteins, luxR family PF00196
11 AcrB/AcrD/AcrF family PFO0873
12 barrel-sandwich domain of CusB or HlyD membrane-fusion PF16576
13 outer membrane efflux protein PF02321
14 aminotransferase class-Ill PF00202
15 MacB-like periplasmic core domain PF12704
ABC transporter PFO0005
FtsX-like permease family PF02687
16 barrel-sandwich domain of CusB or HlyD membrane-fusion PF16576
17 ABC transporter transmembrane region PFO0664
ABC transporter PFO0005
18 taurine catabolism dioxygenase TauD, TfdA family PF02668
19 AMP-binding enzyme C-terminal domain PF13193
AMP-binding enzyme PFO0501
phosphopantetheine attachment site PFO0550
20 phytanoyl-CoA dioxygenase (PhyH) PF05721
21 - -
22 major Facilitator Superfamily PF07690
23 cupin-like domain PF13621
24 - -
25 bacterial regulatory proteins, luxR family PF00196
26 outer membrane efflux protein PF02321
27 - -
28 UDP-glucoronosyl and UDP-glucosyl transferase PF00201
glycosyltransferase family 28 N-terminal domain PF03033
29 FAD binding domain PF01494
30 DAHL domain PF19443
histidine kinase-, DNA gyrase B-, and HSP90-like ATPase PF02518
31 nitroreductase family PFO0881
32 luciferase-like monooxygenase PF00296

Table S5 Amino acid sequences of LuxR-type bacterial regulatory proteins (NupR1, NupR2, NunF) and the autoinducer
synthase Pcol.

name amino acid sequence

NupR1 MPKLSSSQSIFDLIQELENNIPGLNKKEYVEILEWIFGKLEVSKFAYVHMDASPFESSDIAIHSNYPAEWVETYRKNALYKSDPV
MANSAITSNPFFWNEIPVESNTEIFEQSQEYGIQQGFSIPLHEPGRAFGSIHLTSEDNDPDFVRIVRENMFIIKTISIIAHQYRPIE
TSTESALKLTPREHEFLHWLALGKNYKEIGLIMSITERTVKFHAKQMTEKLDCINVKQAMIKALYLNLI

Pcol MKQFHSEFEFSGVYTSVGSYSTIPPTILEQILSIRKVAFIDRKKWDIESYQGSDYESDEYDDTDAIYIYSHQRDRVTGCVRLRPSS
KPTLISGALSFMLTTDKTRPNTKHCWEATRFALAANDNCMGELNKSNIDFRTAAIFLSMIKFAFKQNVHTYEVVVDAMMEKI
LKRSGWTVNRRNIAQGTKGEKVIYGTLPCTTSVFEEVFNKNTPARTTLYDEVLSDSLMAC

NupR2 MNLQRLFPHVGKVIASTGSRHFPRMLHDLIVTEVPVDATHITEQWIDDRDISELSTSSIGCVGLNNTCIDAIMDTHTVKKPYLL
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https://www.ebi.ac.uk/interpro/entry/pfam/PF03466/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00126/
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https://www.ebi.ac.uk/interpro/entry/pfam/PF00765/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00196/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00873/
https://www.ebi.ac.uk/interpro/entry/pfam/PF16576/
https://www.ebi.ac.uk/interpro/entry/pfam/PF02321/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00202/
https://www.ebi.ac.uk/interpro/entry/pfam/PF12704/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00005/
https://www.ebi.ac.uk/interpro/entry/pfam/PF02687/
https://www.ebi.ac.uk/interpro/entry/pfam/PF16576/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00664/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00005/
https://www.ebi.ac.uk/interpro/entry/pfam/PF02668/
https://www.ebi.ac.uk/interpro/entry/pfam/PF13193/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00501/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00550/
https://www.ebi.ac.uk/interpro/entry/pfam/PF05721/
https://www.ebi.ac.uk/interpro/entry/pfam/PF07690/
https://www.ebi.ac.uk/interpro/entry/pfam/PF13621/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00196/
https://www.ebi.ac.uk/interpro/entry/pfam/PF02321/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00201/
https://www.ebi.ac.uk/interpro/entry/pfam/PF03033/
https://www.ebi.ac.uk/interpro/entry/pfam/PF01494/
https://www.ebi.ac.uk/interpro/entry/pfam/PF19443/
https://www.ebi.ac.uk/interpro/entry/pfam/PF02518/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00881/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00296/
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HVAALLPSAPSRPDAHIALDEPEHGGMETLRQRFADRLLESGLTLSSRETEVCVGLLAGHTAPELAEQFDLRVNTVESYLKRAA
IKMGIGGRRSLIRWMHSVDAQSATPALRNAV

NunF MKRNGGNLTWGQGYFRPGGRKPGQPAILVCRLMNRISSVRNIENPHIYFELGKLISSVGHEHFVANMHQLIGTSVSISLVELS
EWTTDDNQGSVIDIQSLGNAGLPEELSSPSSLPCSITPRQRDEHPLLQRILEVDDSILIHMNAPMMDAKGYQLTNATHQCNL
VSGKGNRRCVITLHRPLADRDFSLSELSFLKNLSETLLPLVERHARISRQVSVRKTGSPMARPVVAFEQTPLQRDFNERLTLCDV
ALSAREKEVCLGLLTGGTVPEMAEKLCVKNSSVETYLKRAAAKLGVSGRHGLAKWMIGA
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Figure S7 Conserved Domain Database/SPARCLE analysis of the autoinducer synthase Pcol and LuxR-type regulatory
proteins NupR1, NupR2, and NunF against the CD database version 3.20.1°
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Phylogenetic analysis

To confirm the identity of the Pseudomonas species from which the BGC is recovered, an approximate maximum likelihood
phylogenetic tree was constructed. All code used to generate the following genomic based analysis and supplementary tables
can be found on (https://github.com/Darcy220606/NRPS-Pnunensis4A2e). A total of 1,432 ‘reference’ and ‘complete’
genomes were downloaded from the assembly database!! from NCBI on the 16 of April 2023 using entrez-direct version
15.6 (Supplementary table 1a).12 This does not consider genomes in scaffolds or contig formats. Aestuariirhabdus haliotis
(GCF_023509475.1) was used as the outgroup for the phylogenetic tree. The de novo phylogenetic tree was constructed
using gtotree version 1.7.07.13 All distant clades with closely related genomes were collapsed, when possible, for label
legibility (Figure S8A). The unknown Pseudomonas genome was found to cluster with Pseudomonas sp. B21-053
(GCF_026016365.1) and Pseudomonas nunensis In5 (GCF_024296925.1). As the tree is based on the alignment of the amino
acid sequences of all representative Gammaproteobacteria 203 core genes - which might create an alignment bias - we
further investigated the cluster based on the nucleotide identities. The tree was pruned to only include the genomes
occupying the parent clade of the unknown Pseudomonas sp. genome. This included 19 genomes (Supplementary table 1b).
With these genomes a phylogenetic distance tree based on the average nucleotide identities (ANI) was constructed (Figure
S6B). This was done using fastANI version 1.33% (Supplementary table 2), whilst excluding any contigs below 3,000 bp within
the genomes. This analysis further confirms that the 4A2e genome shares >95% ANI with Pseudomonas nunensis In5
(GCF_024296925) and Pseudomonas sp. B21-053 (GCF_026016365) making it more likely to be a new strain of Pseudomonas
nunensis which we term here as Pseudomonas nunensis 4A2e.
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Figure S8 Alignment of Pseudomonas nunensis 4A2e with other closely related reference genomes. A) An approximate
maximum likelihood phylogenetic tree illustrating the clustering of the Pseudomonas nunensis 4A2e with Pseudomonas sp.
B21-053 (GCF_026016365.1) and Pseudomonas nunensis In5 (GCF_024296925.1) reference genomes in one clade based on
the amino acid alignment of all representative Gammaproteobacteria core genes. Some genomes are highlighted to indicate
their relationship to the BGC of interest as indicated in Figure S9. B) A heatmap illustrating the average nucleotide identities
value across all genomes found in the parent clade within which the Pseudomonas nunensis 4A2e genome was found.

To screen for similar NRPSs with complementary topologies to that found in Pseudomonas nunensis 4A2e in the reference
database, tblastn from Blast+ version 2.12.0+ was carried out using the gene tycC 4 (keaB) as a query. The number of
maximum sequences to be recovered was set at 100 and the E value to 0.05. The nucleotide database was downloaded on
April 9 2023. Multi subject high-scoring segment pairs (HSPs) were limited to one HSP hit with the longest alignment lengths.
A total of 24 genomes shared more than 75% amino acid similarity and more than 95% coverage with the tycC_4 found in
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Pseudomonas nunensis 4A2e (Supplementary table 3). Their genomes were downloaded and annotated using Prokka version
1.14.6.> The QS1027 corresponding to accession number MW331495 was replaced by the complete contig just uploaded to
the NCBI under accession number (OR047437). The genbank files were sliced to include only 20 CDSs downstream and
upstream of the tycC_4 gene. Some genomes were removed from further downstream analysis due to a missing tycC_4 gene
annotated, a completely different gene topology with no significant linkage to the gene topology of the query BGC or a
truncated sequence fragment of a genome already represented. This was used as input to clinker version 0.0.27%6 to generate
a gene topology across the NRPS (Figure S9).

S pseemoes s @G
\

Pseudomonas nunensis 4A2E |
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Figure S9 Gene synteny across the NRPS genomic island based on the presence of tycC 4 (keaB) gene using clinker.
Approximately 20 CDS are illustrated downstream and upstream of the gene. Any genes without a gene ID were annotated
as hypothetical protein with no gene ID. Similar to the genome level alignments (Figure S8), Pseudomonas nunensis strain In5
contains an identical NRPS topology. The genomes used in this analysis were highlighted (if they correspond to the
representative complete and reference genome) in the full Pseudomonas tree (Figure S8) for ease of traceability.

From the 17 bacterial genomes linked to 4A2e, Pseudomonas nunensis In5, Pseudomonas sp. QS1027 and Pseudomonas
brassicacearum DF41 have been the source of cyclic lipopeptides similar to those described in this work, and which were at
least analysed with MS? (Figure S10A).17-20 Therefore, we chose these genomes for a closer comparison of their genomic
architecture (Figure S10B). Although specificity differs for some modules in the NRPSs, thereby resulting in the diversity of
known lipopeptides, the overall gene topology appears quite conserved across these pseudomonads. Putative regulatory
(NupR1, Pcol, NupR2 in 4A2e and In5) and transporter genes are located downstream the peptin BGC. The intergenic region
between the peptin and mycin BGC shows an array of a transporter, dioxygenase (KeaF) and three genes involved in the
biosynthesis and incorporation of 4-Cl-Thr in the mycin biosynthesis (KeaC—KeaE), while another transcriptional regulator
(NunF in 4A2e and In5) and transporter are located downstream of the mycin BGC.
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Figure S10 Comparison of NRPS genomic islands across pseudomonads with MS?-analysed cyclic lipopeptides similar to
keanumycin D and nunapeptins C. A) Amino acid sequences of jessenipeptin and keanumycin B from Pseudomonas sp.
QS1027, nunapeptin and nunamycin from Pseudomonas nunensis In5, and sclerosin (peptin-like) from Pseudomonas
brassicacearum DF41 (no characterised mycin-like lipopeptide). Lipid: C,: x indicates the number of carbon atoms in the acyl
chain; OH: indicates beta-hydroxylation of the acyl chain. Green shading indicates amino acids involved in lactone formation.
B) Gene synteny across the NRPS island and blastp analysis of the respective proteins from 4A2e.
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Metabolic analysis of wild type 4A2e and mutant strains

In order to link the production of natural products with the respective BGCs, we cultivated the wild type and NRPS gene
deletion mutants in SM/5 broth or modified Davis medium (10 mL in 250 mL Erlenmeyer flasks) on a gyratory shaker (22 °C,
180 rpm) for 2 days. Culture aliquots (500 uL) were mixed with an equal amount of MeOH and centrifuged (21,000 x g, 5
min). The resulting supernatant was filtered (PTFE, 0.22 um) and subjected to LCMS analysis using the standard method (see:
“Liquid chromatography — mass spectrometry (LCMS)”). A comparison of total ion chromatograms revealed, that the main
peaks correlated with an intact kea BGC appear around 4.4—4.6 min, whilst peaks of putative brabantamide (bra BGC; 5.9—-6.0

min) and peptin (nup BGC; 7.7-8.2 min) congeners appear later.
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Figure S11 Total ion chromatograms (positive mode) of extracts of wild type 4A2e and gene deletion mutants cultivated in
modified Davis medium. All chromatogram profiles are displayed at the same scale.
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Regulation of nonribosomal peptide biosynthesis

Overnight cultures of wild type (WT) Pseudomonas nunensis 4A2e and the respective gene deletion mutants were used to
inoculate 10 mL modified Davis medium in 250 mL Erlenmeyer flasks, and cultures were incubated on a gyratory shaker (22
°C, 180 rpm) for two days. A 500 pL aliquot of each bacterial suspension was mixed with MeOH (500 uL) and centrifuged
(21,000 x g, 5 min). The resulting supernatant was filtered (PTFE, 0.22 um) and subjected to LCMS analysis using the standard
method.
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Figure S12 Regulation of NRP bibsynthesis. Exfracted ion chromatograms for keanvumycin D (m/z 562 [M+2H]%, black),
brabantamide A (m/z 555 [M+H]*, red), and nunapeptin C (m/z 1019 [M+2H]%*, blue) for wild type 4A2e and gene deletion

mutants.

For further identification of the putative signal of the autoinducer synthase Pcol, we compared extracted ion chromatograms
of different homoserine lactones for the wild type and the Apco/ mutant and found N-hexanoyl-homoserine lactone to be the
most likely candidate. Hence, we extracted both wild type and Apcol cultures (modified Davis medium, 100 mL respectively)
after two days with iPrOH/CHClI; (1:1 (v/v), 600 mL), dried the organic layers with anhydrous Na,SO,, and concentrated the
extracts in vacuo. LCMS analysis showed the presence of a molecule (m/z 200.1 in pos. mode) in the wild type extract, which
was absent in the mutant, and shared the same retention time (tz = 1.44 min) with a synthetic standard of N-hexanoyl-L-
homoserine lactone (Figure S12).
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Figure S13 Identification of N-hexanoyl-.-homoserine lactone (C6-HSL) as autoinducer in 4A2e. Extracted ion
chromatograms of C6-HSL (m/z 200.1 [M+H]*, tz = 1.44 min) for WT, Apcol and synthetic C6-HSL.

To restore nonribosomal peptide biosynthesis in the Apcol mutant, we spiked the culture medium with synthetic C6-HSL.
Aliquots of overnight cultures (200 pL from 2 mL) of WT and Apcol were used to start new cultures (10 mL in 250 mL
Erlenmeyer flasks), which were incubated on a gyratory shaker (180 rpm, 22 °C) for 7 hours. 100 uL DMSO was added to WT
and a Apcol culture, while 100 pL of a C6-HSL stock (100 uM in DMSO) was added to a second Apcol culture. Cultivation was
continued for another 18 h and aliquots (500 L) of the respective cultures analysed as described above.
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Figure S14 Restoration of NRP production in Apcol. Extracted ion chromatograms for keanumycin D (m/z 562 [M+2H]%*,
black), brabantamide A (m/z 555 [M+H]*, red), and nunapeptin C (m/z 1019 [M+2H]%*, blue) for WT, Apcol, and Apcol
supplemented with synthetic C6-HSL.
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Plaque assays with WT 4A2e and gene deletion mutants

The edibility of WT 4A2e and various gene deletion mutants was tested in a 24-well plate format as previously described.821.22
Bacteria were grown in SM/5 broth at 28 °C overnight, and 30 L of a bacterial suspension was used to inoculate a single well
with SM/5 agar, respectively. Plates were left to dry in a laminar flow hood for ca. 2 h.

Amoebae were grown in submerged Klebsiella aerogenes cultures in SM/5 broth (120 rpm, 22 °C) for 2 days, until amoebae
reached the late exponential phase. Cells were harvested, and washed by repeated centrifugation (500 x g, 5 min) and
resuspension in cold Soérensen’s buffer until the supernatant remained clear. The cell concentration was adjusted to 2,000
cells/pL and 5 pL of the respective suspension was used to seed a single well with bacterial lawn. Subsequently, assays were
incubated at 22 °C for 14 d. The assays were performed in biological triplicates of technical duplicates.

Plaque Assay with Polysphondylium pallidum RM1

Anup Akea Abra K. aerogenes

L

AkeaAbra AnupAbra AnupAkea AnupAkeaAbra

Apcol AnunF AnupR1 AnupR2

Figure S15 Edibility assays with Polysphondylium pallidum RM1.
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Plaque Assay with Polysphondylium pallidum PN500

Anup Akea Abra K. aerogenes

AkeaAbra AnupAbra AnupAkea AnupAkeaAbra

Apcol AnunF AnupR1 AnupR2

Plaque Assay with Dictyostelium discoideum AX2

K. aerogenes

AkeaAbra AnupAbra AnupAkea

Apcl AnuF AnuR1 AnupR2

Figure S16 Edibility assays with Polysphondylium pallidum PN500 and Dictyostelium discoideum AX2.
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Plaque Assay with Dictyostelium purpureum QSpu‘

K. aerogenes

AnupAbra

AnupR1

Apcol AnunF

Plaque Assay with Dictyostelium caveatum WS695

K. aerogenes

AkeaAbra AnupAkeaAbra

Apcol AnunF AnupR1 AnuR2

Figure S17 Edibility assays with Dictyostelium purpureum QSpul and Dictyostelium caveatum WS695.
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Growth inhibition assays

Growth inhibition of Dictyostelium discoideum AX2

The amoebicidal activity of the lipopeptides was evaluated as previously described.?? Briefly, Dictyostelium discoideum AX2
cells were cultivated in 96-well plates (3,000 cells/well) containing HL5 + 1% DMSO (200 uL/well) and a specific amount of
compound (starting from 50 pg/mL for peptins and brabantamide A, and from 0.5 pg/mL for keanumycin D; 2-fold serial
dilution). Dilution series were performed in triplicates and plates incubated at 22 °C for 72 h. Cell concentrations were
determined using a CASY® Cell Counter + Analyser System (Model TT, Roche Innovatis AG) equipped with a 60 um capillary
and the evaluation cursor set to 7.5 — 17.5 um. The concentration of viable cells (including standard deviation) was plotted
against the logarithmic concentration of the compounds and the ICsq values were determined using PRISM (GraphPad, version
5.03). The presented values are results of three biological replicates.
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Figure S18 Dose-response curves for the amoebicidal activity of nonribosomal lipopeptides against Dictyostelium
discoideum AX2.

Growth inhibition of Acanthamoeba castellanii and A. comandoni

The amoebicidal activity of the lipopeptides against Acanthamoeba castellanii and A. comandoni was determined as
previously described for keanumycin A.X° Briefly, Acanthamoeba cells were cultivated in 96-well plates (1,250 cells/well)
containing PYG medium + 1% DMSO (100 pL/well) and a specific amount of compound (starting from 50 pg/mL; 2-fold serial
dilution). Dilution series were performed in triplicates and plates incubated at 28 °C for 96 h. Cell viability was determined by
a resazurin-based assay. A freshly prepared aqueous resazurin solution (20 pL, 1 mM, resazurin sodium salt) was added to
every well, and plates were incubated at 28 °C for 3 h. A plate reader (Tecan, Infinite M200 PRO, excitation at A = 560 nm,
emission at A = 590 nm) was used to determine the fluorescence emission. The fluorescence intensity (including standard
deviation) was plotted against the logarithmic concentration of the compounds and the ICs, values were determined using
PRISM (GraphPad, version 5.03). The presented values are results of three biological replicates.
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Figure S19 Dose-response curves for the amoebicidal activity of nonribosomal lipopeptides against Acanthamoeba
castellanii.
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Figure S20 Dose-response curves for the amoebicidal activity of nonribosomal lipopeptides against
Acanthamoeba comandoni.
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Table S6 Amoebicidal activity of nonribosomal lipopeptides against amoebae. Average ICso values are the result of three
independent biological replicates.

Average ICsg

Organism Nunapeptin B Nunapeptin C Keanumycin D Brabantamide A
Dictyostelium 11.5 pg/mL 6.2 ug/mL 83 ng/mL 2.6 pg/mL
discoideum AX2 5.7 uM 3.1uM 74 nM 4.7 uM
Acanthamoeba 7.2 ug/mL 5.3 ug/mL 25.6 ug/mL 8.1 ug/mL
castellanii 3.5uM 2.6 uM 22.8 uM 14.6 uM
Acanthamoeba 8.1 pg/mL 6.8 ug/mL 23.2 ug/mL 4.9 pg/mL
comandoni 4.0 uM 3.3 uM 20.6 uM 8.9 uM

Bacteria—nematode co-cultivation assay

Aliquots of overnight cultures of WT 4A2e and the respective gene deletion mutants were used to inoculate co-cultivation
agar plates, which were subsequently incubated at 28 °C overnight. Starved nematodes were washed from NGM agar plates
by flooding the plates with sterile K-medium (3 x 4.5 mL) and the suspension was transferred into a 15 mL conical tube.
Worms were gently pelleted by centrifugation (250 x g, 2 min). The supernatant was removed and the nematodes washed by
repeated resuspension in K-medium and centrifugation, until the supernatant remained clear. The concentration was
adjusted to 400 — 800 animals/mL. Then, the nematode suspension (100 uL) was added to the bacterial lawn, and the plates
incubated at 22 °Cin a humid environment for 10 d. Thereafter, worms were gently washed of the agar by flooding the plate
with K-medium (3 x 4.5 mL) and the suspension was transferred into a 15 mL conical centrifuge tube. Nematodes were washed
by repeated centrifugation (250 x g, 2 min) and resuspension in K-medium, until the supernatant remained clear. An aliquot
of the suspension was transferred to a nematode counting dish and the number of viable worms counted manually using a
stereo microscope.

The nematode count for each strain was calculated based on the average of three technical replicates. For statistical analysis,
the data of each experiment was normalised to the minimum and maximum nematode count. One-way ANOVA followed by
Tukey's post-hoc test was performed with normalised data of four independent experiments (Supplementary table 4).

Isolation of nonribosomal lipopeptides

A pre-culture of Pseudomonas nunensis 4A2e in modified Davis medium (400 mL) was used to inoculate a batch fermenter
(40 L) and incubated at 22 °C for 48 h. The biomass was separated from the supernatant by centrifugation (9,000 x g, 20 min)
and freeze-dried. The supernatant was extracted with Amberlite XAD-4 resin (Alfa Aesar), which was then rinsed with
deionised water and washed with MeOH. The supernatant was extracted three times in total. MeOH fractions were pooled
and concentrated under reduced pressure. The residue was dissolved in a minimal amount of MeOH and dried on Isolute®
HM-N (Biotage), which was loaded on a Sfar C18 cartridge (Biotage, 60 g, 100 A, 30 um, 85 mL column volume (CV)) and
fractionated using a flash chromatography system (Biotage Isolera Prime) and the following method: flow rate of 50 mL/min;
3 CV: 10% MeCN in water containing 0.1% formic acid; 12 CV: linear gradient from 10% to 100% MeCN in water containing
0.1% formic acid; 3 CV: 100% MeCN containing 0.1% formic acid. Fractions containing keanumycin D, brabantamide A, and
nunapeptin B and C were identified by LCMS, combined respectively and concentrated under reduced pressure. The
lyophilised biomass was extracted with MeOH and the organic solvent separated by centrifugation (12,000 x g, 15 min, PPCO
centrifuge bottles). The biomass was extracted twice, supernatants were combined and solvents removed in vacuo. The
residue was dissolved in a minimal amount of warm MeOH and the solution stored in a PPCO centrifuge tube (Thermo Fisher,
50 mL) at —20 °C overnight. Precipitate was removed by centrifugation (20,000 x g, 5 min, —10 °C), the supernatant
concentrated under reduced pressure, and the residue subjected to flash fractionation as described above.

Nunapeptins were further purified by preparative HPLC equipped with a Luna® C18(2) column (Phenomenex, 250 x 21.4 mm,
100 A, 5 um) and the following method: flow rate of 20 mL/min; 0 — 5 min: 10% MeCN in water containing 0.1% trifluoroacetic
acid; 5 — 45 min: linear gradient from 10% to 100% MeCN in water containing 0.1% trifluoroacetic acid; 45 — 55 min: 100%
MeCN containing 0.1% trifluoroacetic acid.

Nunapeptin B

14 NMR (600 MHz, DMSO-dg): & 9.72 (s, 1H), 9.29 (s, 1H), 9.23 (d, J = 5.9 Hz, 1H), 9.20 (s, 1H), 9.11 (s, 1H), 8.33 (d, J = 7.1 Hz,
1H), 8.11 (d, J = 5.4 Hz, 1H), 8.07 (d, J = 6.8 Hz, 1H), 8.00 (br. s, 1H), 7.93 (d, J = 7.1 Hz, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.83 (d, J =
7.5 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.73 (m, 3H), 7.69 (d, J = 8.7 Hz, 1H), 7.59 (m, 2H), 7.52 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 7.1
Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 9.6 Hz, 1H), 6.43 (q, J = 7.0 Hz, 1H), 6.24 (g, J = 7.0 Hz, 1H), 5.99 (br. s, 1H), 5.53
(m, 2H), 4.89 (m, 1H), 4.43 (dd, J = 9.6, 4.9 Hz, 1H), 4.39 (m, 1H), 4.34 (m, 3H), 4.24 (m, 5H), 4.13 (m, 6H), 3.99 (m, 1H), 3.86
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(d,J=10.9, 3.3 Hz, 1H), 3.83 (m, 1H), 3.74 (t, J = 10.4 Hz, 2H), 3.62 (m, 4H), 3.53 (t, J = 6.1 Hz, 1H), 2.81 (m, 2H), 2.30 (m, 3H),
2.18 (m, 1H), 2.02 (m, 6H), 1.83 (m, 4H), 1.69 (d, J = 7.1 Hz, 3H), 1.66 (d, J = 7.1 Hz, 3H), 1.62 (d, J = 7.1 Hz, 3H), 1.50 (m, 4H),
1.31 (m, 6H), 1.23 (m, 26H), 1.14 (d, J = 6.0 Hz, 3H), 1.11 (m, 1H), 1.03 (m, 1H), 0.91 (dd, J = 11.6, 6.7 Hz, 6H), 0.83 (m, 35H)

13C NMR (150 MHz, DMSO-dg): 6 174.7, 172.8, 172.5, 172.4, 172.2, 172.1, 171.9, 171.8, 171.4, 170.7, 170.6, 170.0, 169.5,
168.8, 166.9, 164.2, 163.9, 163.6, 163.0, 135.3, 131.4, 131.0, 130.1, 128.8, 126.9, 118.7, 104.4, 70.7, 61.6, 61.0, 60.7, 58.7,
58.4, 57.7, 57.61, 57.56, 57.1, 56.8, 55.6, 55.3, 52.0, 49.5, 49.3, 49.2, 49.1, 49.0, 48.63, 48.59, 48.2, 37.2, 36.2, 35.6, 34.3,
31.1, 30.6, 30.24, 30.21, 30.1, 29.3, 28.6, 28.4, 27.1, 25.6, 24.7, 24.4, 24.0, 22.1, 19.3, 19.2, 19.1, 18.20, 18.15, 18.1, 17.8,
17.7,17.6,17.5,17.3,17.1, 16.7, 16.4, 15.7, 14.5, 13.9, 13.0, 12.8, 12.0, 11.8, 11.5 ppm.

HRMS (ESI, m/z): calculated for CosH157,N2302¢ [M+2H]?* 1012.0830; found 1012.0823.
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Figure S21 HRMS spectrum of nunapeptin B. HRMS (ESI, m/z): calculated for Cg4H157N230,6 [M+2H]?* 1012.0830; found
1012.0823.

Nunapeptin C

14 NMR (600 MHz, DMSO-dg): & 9.71 (s, 1H), 9.26 (s, 1H), 9.24 (d, J = 6.4 Hz, 1H), 9.16 (s, 1H), 9.09 (s, 1H), 8.31 (d, J = 7.0 Hz,
1H), 8.06 (m, 2H), 8.02 (br. s, 1H), 7.90 (d, J = 7.3 Hz, 1H), 7.83 (m, 3H), 7.74 (m, 4H), 7.67 (d, J = 8.6 Hz, 1H), 7.58 (d, J = 6.8
Hz, 2H), 7.47 (m, 3H), 7.39 (d, J = 9.6 Hz, 1H), 6.43 (q, J = 7.1 Hz, 1H), 6.26 (g, J = 7.0 Hz, 1H), 5.98 (br. s, 1H), 5.53 (m, 2H), 4.90
(m, 1H), 4.40 (m, 3H), 4.33 (m, 3H), 4.24 (m, 6H), 4.14 (m, 7H), 3.98 (m, 1H), 3.88 (dd, J = 11.0, 3.6 Hz, 1H), 3.84 (m, 1H), 3.76
(t,J = 10.4 Hz, 1H), 3.63 (m, 3H), 3.53 (t, J = 6.4 Hz, 3H), 2.81 (m, 2H), 2.30 (m, 3H), 2.20 (m, 2H), 2.11-1.94 (m, 6H), 1.84 (m,
4H), 1.70 (d, J = 7.1 Hz, 3H), 1.66 (d, J = 7.1 Hz, 3H), 1.63 (d, J = 7.1 Hz, 3H), 1.52 (m, 3H), 1.31 (m, 7H), 1.24 (m, 29H), 1.15 (d,
J=6.0 Hz, 3H), 1.10 (m, 2H), 0.92 (dd, J = 11.4, 6.8 Hz, 7H), 0.84 (m, 37H) ppm.

13C NMR (150 MHz, DMSO-d¢): 6 174.6, 172.7, 172.42,172.37,172.2,172.0, 171.9, 171.7, 171.3, 170.7, 170.6, 170.4, 169.91,
169.87,169.4, 168.7, 166.8, 164.0, 163.9, 163.5, 162.7, 135.3, 131.3, 130.8, 130.0, 128.6, 127.1, 118.6, 104.5, 70.5, 61.4, 60.9,
60.7, 58.7, 58.5, 57.8, 57.7, 57.1, 56.6, 55.5, 51.9, 49.4, 49.2, 49.1, 49.0, 48.9, 48.7, 48.2, 37.1, 36.0, 34.3, 30.9, 30.3, 29.93,
29.86, 29.1, 28.7, 28.4, 28.2, 27.1, 25.4, 24.6, 24.3, 21.8, 19.4, 19.1, 19.0, 18.1, 18.0, 17.9, 17.7, 17.43, 17.36, 17.3,17.2, 17.1,
16.9, 16.4, 16.2, 14.4,13.7,12.7, 12.6, 11.8, 11.3 ppm.

HRMS (ESI, m/z): calculated for CosH159N»30,6 [M+2H]2* 1019.0908; found 1019.0895.
. - [a]® .
Optical rotation D:-67.9 (¢ 0.53 in MeOH).
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21072308Pflanze #8193-8308 RT: 24,29-24,64 AV: 58 NL: 9,84E6
T: FTMS + p ESIFull ms [140,0000-2100,0000]
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Figure S22 HRMS spectrum of nunapeptin C. HRMS (ESI, m/z): calculated for CosH159N230,6 [M+2H]2* 1019.0908; found
1019.0895.

Brabantamide A was further purified by preparative HPLC equipped with a Luna® C18(2) column (Phenomenex, 250 x 21.4
mm, 100 A, 5 um) and the following method: flow rate of 20 mL/min; 0 — 5 min: 10% MeCN in water containing 0.1% formic
acid; 5 — 45 min: linear gradient from 10% to 100% MeCN in water containing 0.1% formic acid; 45 — 55 min: 100% MeCN
containing 0.1% formic acid.

Brabantamide A

1H NMR (300 MHz, CD;0D): & 6.25 (d, J = 1.8 Hz, 1H), 4.99 (m, 1H), 4.79 (d, J = 1.4 Hz, 1H), 4.17 (m, 1H), 3.75 (m, 1H), 3.60
(m, 3H), 3.36 (m, 1H), 3.28 (m, 1H), 2.69 (m, 3H), 2.10 (m, 2H), 1.60 (m, 3H), 1.32 (m, 18H), 1.21 (d, J = 6.2 Hz, 3H), 0.90 (t, J
=6.6 Hz, 3H) ppm.

13C NMR (75 MHz, CD3;0D): 6 173.6, 168.8, 166.4, 158.2, 100.0, 98.0, 74.9, 73.8, 72.6, 72.3, 70.3, 66.2, 47.0, 44.0, 34.5, 33.1,
31.2,30.80, 30.76, 30.74, 30.70, 30.5, 27.2, 25.8, 23.7, 18.0, 14.5 ppm.

HRMS (ESI, m/z): calculated for CygH4;N,0q [M+H]* 555.3276; found 555.3273.

. - [a]® .
Optical rotation "1 D: +37.5 (¢ 0.4 in MeOH).

All data are in agreement with previously reported data.?? Slight differences in the 'H NMR data, however, are a result of
using different values for the residual solvent signal of CD;0D as internal standard.
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21120204Pflanze #1161-1191 RT: 9,22-9,45 AV: 31 NL: 4,34E7
T: FTMS + p ESIFull ms [100,0000-1500,0000]
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Figure S23 HRMS spectrum of brabantamide A. HRMS (ESI, m/z): calculated for CygH4;N,09 [M+H]* 555.3276; found
555.3273.

The keanumycin D-containing fraction was further subjected to size exclusion chromatography on Sephadex LH-20 (Cytiva).
The column (1000 x 10 mm) was operated with gravity flow and pure MeOH as mobile phase. Fractions containing
keanumycin D were identified by LCMS, combined, and solvents removed in vacuo. Further purification was accomplished by
preparative HPLC equipped with a Luna® C18(2) column (Phenomenex, 250 x 21.4 mm, 100 A, 5 pm) and the following
method: flow rate of 20 mL/min; 0—5 min: 25% MeCN in water containing 0.1% trifluoroacetic acid; 5— 35 min: linear gradient
from 25% to 50% MeCN in water containing 0.1% trifluoroacetic acid; 35 — 40 min: linear gradient from 50% to 100% MeCN
in water containing 0.1% trifluoroacetic acid; 40 — 50 min: 100% MeCN containing 0.1% trifluoroacetic acid. Finally,
keanumycin D was obtained after semipreparative HPLC equipped with a Jupiter® Proteo column (Phenomenex, 250 x 10
mm, 90 A, 4 pm) and the following method: flow rate of 5 mL/min; 0 — 5 min: 25% MeCN in water containing 0.1%
trifluoroacetic acid; 5 — 35 min: linear gradient from 25% to 50% MeCN in water containing 0.1% trifluoroacetic acid; 35 — 40
min: linear gradient from 50% to 100% MeCN in water containing 0.1% trifluoroacetic acid; 40 — 50 min: 100% MeCN
containing 0.1% trifluoroacetic acid.

Keanumycin D

1H NMR (600 MHz, DMSO-de): 6 6.80 (g, J = 7.1 Hz, 1H), 5.05 (m, 2H), 4.96 (m, 1H), 4.37 (td, J = 6.4, 2.1 Hz, 2H), (dd, J = 9.3,
4.9 Hz, 2H), 4.26 (m, 1H), 4.10 (m, 3H), 3.94 (m, 2H), 3.77 (m, 2H), 3.65 (m, 2H), 3.58 (m, 3H), 3.52 (m, 2H), 3.03 (m, 6H),
2.35 (m, 3H), 2.24 (m, 3H), 2.21-2.01 (m, 8H), 1.78 (d, J = 7.1 Hz, 2H), 1.60 (m, 2H), 1.46 (m, 4H), 1.37 (m, 2H), 1.29 (m,
16H), 0.90 (t, J = 7.1 Hz, 3H) ppm.

HRMS (ESI, m/z): calculated for C47HgiCIN1101g [M+H]* 1122.5444; found 1122.5433.

. - [a]® .
Optical rotation D:+23.1(c0.13 in MeOH).
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21050609Pflanze #2545-2692 RT: 6,32-6,75 AV: 74 NL: 2,78E6
T: FTMS + p ESIFull ms [100,0000-1500,0000]
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Figure $24 HRMS spectrum of keanumycin D. HRMS (ESI, m/z): calculated for C47Hg1CIN;1015 [M+H]* 1122.5444; found
1122.5433.

Sequence analysis of nonribosomal peptides
Analysis of nunapeptin B
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Figure $25 Amino acid sequence analysis of nunapeptin B via HRMS?.
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Analysis of nunapeptin C
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Figure $26 Amino acid sequence analysis of nunapeptin C via HRMS2.

Analysis of keanumycin D

For HRMS? analysis, keanumycin D was hydrolysed by the addition of 1 M aq. NH;HCO; (20 L) to a solution of the lipopeptide
(50 pg) in MeOH (100 pL). The reaction was shaken at 37 °C for 16 h and diluted to a final concentration of 0.1 mg/mL prior
to analysis. Unexpectedly, a C-terminal methyl ester of the linearised lipopeptide had formed and the chloride substituent
was mostly unaffected under these reaction conditions, in contrast to our previous work on keanumycin A — C.*°
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21050610Pflanze #2536-2608 RT: 6,28-6,50 AV: 36 NL: 1,32E6
T: FTMS + p ESIFull ms [100,0000-1500,0000]
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Figure S27 HRMS spectrum of linearised keanumycin D methyl ester. HRMS (ESI, m/z): calculated for C4gHgsCIN;;019 [M+H]*
1154.5706; found 1154.5681.
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Figure $28 Amino acid sequence analysis of linearised keanumycin D methyl ester via HRMS?2.
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Synthesis of protected 4-chloro-L-threonine
Synthesis of protected L-vinylglycine (11)

0]
3 ) 5 5 7
HN (@]
10 1}% 9
O 12
13
14
15
16

A solution of N-Cbz-L-glutamic acid 1-benzyl ester (500 mg, 1.4 mmol, 1.0 eq.) in benzene (17 mL) was degassed by passing a
gentle stream of argon through the solution for 30 min. Cu(OAc), monohydrate (134 mg, 0.7 mmol, 0.5 eq.) was added and
the suspension stirred for 1 h. Freshly preparred Pb(OAc), (1.2 g, 2.7 mmol, 2.0 eq.) was added in small portions and the
reaction refluxed overnight. When a TLC control showed the absence of starting material, the suspension was filtered through
a pad of Celite. The filtrate was diluted with EtOAc and washed with water and brine. The organic layer was dried with
anhydrous MgSO, and concentrated in vacuo. The product was obtained after flash chromatography (9:1 — 4:1 (v/v)
cyclohexane/EtOAc) as a white wax (147 mg, 34% yield).

14 NMR (500 MHz, CDCl3): 6 7.38 — 7.34 (m, 10H, 7-H — 9-H, 14-H — 16-H), 5.95 (m, 1H, 3-H), 5.70 (d, J = 7.3 Hz, 1H, 10-H), 5.39
(dd, J=17.2, 1.3 Hz, 1H, 4-H), 5.29 (dd, J = 10.4, 1.4 Hz, 1H, 4-H), 5.21 (s, 2H, 5-H), 5.16 (s, 2H, 12-H), 5.05 (m, 1H, 2-H) ppm.

13C NMR (125 MHz, CDCls): 6 170.3 (C-1), 155.6 (C-11), 136.2, 135.2 (C-6, C-13), 132.3 (C-3), 128.6, 128.50, 128.46, 128.2,
128.1 (C-7 - C-9, C-114 — C-16), 117.8 (C-4), 67.4, 67.1 (C-5, C-12), 56.3 (C-2) ppm.

HRMS (ESI, m/z): calculated for C,gH,0NO4 [M+H]* 326.1387; found 326.1389.

. - [a]® .
Optical rotation D:-2.0(c 1.0 in CHCIs).

Synthesis of protected epoxide (12)
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To a solution of protected vinylglycine (75 mg, 0.23 mmol, 1.0 eq.) in CH,Cl, (3 mL) was added 50% mCPBA (400 mg, 1.16
mmol, 5.0 eq.) and the reaction stirred in an argon atmosphere at r.t. for 6 d until TLC analysis showed the absence of starting
material. The reaction was cooled to 0 °C, diluted with CH,Cl, (3 mL), and stopped by the addition of a 10% (w/v) Na,SO3
solution in water (3 mL). The mixture was extracted with CH,Cl, (2 x 5 mL) and combined organic layers were washed with
phosphate buffer (2 x 5 mL, 0.1 M, pH 7.0), dried over anhydrous Na,SO, and concentrated in vacuo. The crude product was
recrystallised from n-hexane/EtOAc (8:1) to yield white crystals (72 mg, 92% yield).

1H NMR (500 MHz, DMSO-dg): 6 8.04 (d, J = 8.2 Hz, 1H, 10-H), 7.37 = 7.32 (m, 10H, 7-H — 9-H, 14-H — 16-H), 5.17 (dd, J = 16.6,
12.7 Hz, 2H, 5-H), 5.06 (s, 2H, 12-H), 4.09 (dd, J = 7.9, 6.5 Hz, 1H, 2-H), 3.31 (hidden under water peak, 1H, 3-H), 2.83 (m, 1H,
4-H), 2.73 (m, 1H, 4-H) ppm.

13C NMR (125 MHz, DMSO-dg): § 169.3 (C-1), 156.1 (C-11), 136.8, 135.7 (C-6, C-13), 128.4, 128.3, 128.0, 127.8, 127.7, 127.6
(C-7-C-9, C-14 — C-16), 66.3, 65.7 (C-5, C-12), 56.2 (C-2), 50.5 (C-3), 44.9 (C-4) ppm.

HRMS (ESI, m/z): calculated for C19H,0NOs [M+H]* 342.1336; found 342.1338.
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. - [a]® .
Optical rotation D:-4.0(c1.0in MeOH).

Synthesis of protected 4-chloro-L-threonine (13)
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The protected epoxide (33 mg, 0.1 mmol, 1.0 eq.) was dissolved in a solution of Li,CuCl, in THF (1.9 mL, 0.1 M, 0.2 mmol, 2.0
eq.) and stirred at r.t. under an argon atmosphere overnight. The reaction was stopped by the addition of a saturated NaHCO;
solution in water (5 mL) and subsequently diluted with water (5 mL). The suspension was extracted with Et,0 (3 x 20 mL),
combined organic layers were dried over anhydrous Na,SO, and concentrated in vacuo. The product was obtained after
recrystallisation from n-hexane/EtOAc (4:1) as white crystals (18 mg, 50% yield).

14 NMR (500 MHz, DMSO-dg): 6 7.38 — 7.31 (m, 10H, 7-H — 9-H, 14-H — 16-H), 5.67 (d, J = 6.9 Hz, 1H, -OH), 5.17 (s, 2H, 5-H),
5.09 (d, J = 12.7 Hz, 1H, 12-H), 5.05 (d, J = 12.7 Hz, 1H, 12-H), 4.49 (dd, J = 9.1, 2.9 Hz, 1H, 2-H), 4.17 (m, 1H, 3-H), 3.62 (dd, J
=10.9, 6.7 Hz, 1H, 4-H), 3.51 (dd, J = 10.9, 6.6 Hz, 1H, 4-H) ppm.

13C NMR (125 MHz, DMSO-dg): 6 170.2 (C-1), 156.5 (C-11), 136.8, 135.8 (C-6, C-13), 128.4, 128.3, 128.0, 127.8, 127.7, 127.6
(C-7-C-9, C-14-C-16), 70.8 (C-3), 66.3, 65.7 (C-5, C-12), 56.5 (C-2), 45.0 (C-4) ppm.

HRMS (ESI, m/z): calculated for CigH,,CINOs [M+H]* 378.1103; found 378.1106.

[a]zz
Optical rotation D:-13.0 (c 1.0 in MeOH).
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Marfey’s analysis of nonribosomal peptides

Marfey’s analysis was performed as previously described.181°

500 pg of nunapeptin B and C, respectively, and approximately 100 pg of keanumycin D were hydrolysed by the addition of
6 N HCI (200 pL) and heating to 100 °C for 12 h. The solvent was removed in vacuo and the residue dissolved in water (100
pL). 1 M ag. NaHCO; (40 pL) and 0.5% (w/v) Marfey’s reagent (1-fluoro-2,4-dinitrophenyl-5-L-alanine amide, FDAA) in acetone
(200 pL) were added and the reaction shaken at 40 °C for 1 h. The reaction was stopped by the addition of 2 M HCI (20 uL)
and then filtered (PTFE, 0.22 um). Amino acid standards were dissolved in water (100 uL, 5 umol) and treated analogously.

Amino acid standards and derivatized peptides were analysed using a UHPLC-MS (Phenomenex Luna® C18(2), 150 x 2 mm,
1004, 5 um) with the following method: flow rate of 0.2 mL/min; 0 — 5 min: 10% (v/v) MeCN in water containing 0.1% formic
acid; 5 — 35 min: linear gradient from 10% to 50% (v/v) MeCN in water containing 0.1% formic acid; 35 — 36.5 min: linear
gradient from 50% to 100% (v/v) MeCN in water containing 0.1% formic acid; 36.5 — 46.5 min: 100% MeCN containing 0.1%
formic acid.

Marfey’s analysis of nunapeptins
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Figure S29 Marfey’s analysis of nunapeptin B and C. Asterisks indicate unidentified peaks.

Marfey’s analysis of nunapeptin B and C allowed to determine the following amino acid compositions:

2x D-Ser (tz = 23.0 min); 1x p-allo-Thr (tg = 23.0 min); 1x L-Ala (tz = 26.8 min); 1x D-Pro (tz = 28.7 min); 6x D-Ala (tg = 29.3 min);
1x L-Val for nunapeptin B (tz = 31.8 min); 1x L-Dab (tg = 34.0 min); 1x L-lle for nunapeptin C (tz = 34.8 min); 4x p-Val (tg = 35.2
min); 1x p-lle (tz = 38.3 min).

The difference between nunapeptin B and C is the presence of a single L-valine in nunapeptin B, which is substituted with L-
isoleucine in nunapeptin C. Using this approach, it is not possible to distinguish between L-isoleucine and L-allo-isoleucine or
p-isoleucine and p-allo-isoleucine, respectively.
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Figure S30 HPLC profile of hydrolysed and FDAA-derivatized nunapeptin B (A = 330 nm).

Table S7 Integration areas for Marfey’s analysis of nunapeptin B.

Amino Acid Retention Time [min] Area under the peak
D-Ser 23.0 1,595,910
p-allo-Thr 25.0 868,663
L-Ala 26.7 1,293,472
p-Pro 28.7 1,861,268
p-Ala 29.3 8,250,643
L-Val 31.8 1,897,566
L-Dab 34.0 388,193
Dp-Val 35.2 7,504,581
D-lle 38.3 1,250,276
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Figure S31 HPLC profile of hydrolysed and FDAA-derivatized nunapeptin C (A = 330 nm).

Table S8 Integration areas for Marfey’s analysis of nunapeptin C.

Amino Acid Retention Time [min] Area under the peak
D-Ser 23.1 1,581,968

p-allo-Thr 25.1 842,843

L-Ala 26.8 1,257,249

D-Pro 28.8 2,208,248

p-Ala 29.3 8,319,963

L-Dab 34.0 346,573

L-lle 34.8 1,942,315

b-Val 35.3 7,264,691

p-lle 38.3 1,228,272
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Marfey’s analysis of keanumycin D
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Figure S32 Marfey’s analysis of keanumycin D. Asterisks indicate unidentified peaks.
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Figure S33 HPLC profile of hydrolysed and FDAA-derivatized keanumycin D (A = 330 nm).

Table S9 Integration areas for Marfey’s analysis of keanumycin D.

Amino Acid Retention Time [min] Area under the peak
L-threo-3-OH-Asp 19.0 1,166,090

L-Ser 22.4 2,251,778

L-allo-Thr 23.7 3,985,841

D-Hse 24.1 2,538,509

Gly 25.3 4,684,221

4-Cl-L-Thr 26.4 n/a

L-Dab 34.0 2,091,678

p-Dab 35.3 2,646,310
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Marfey’s analysis of keanumycin D allowed to determine the following amino acid compositions:

1x L-threo-3-OH-Asp (tg = 19.0 min); 1x L-Ser (tg = 22.4 min); 1x L-allo-Thr (tg = 23.7 min); 1x p-Hse (tz = 24.1 min); 1x Gly (tgz =
25.3 min); 1x 4-Cl-L-Thr (tz = 26.4 min); 1x L.-Dab (tz = 34.0 min); 1x p-Dab (tg = 35.3 min).

It has to be noted, that 4-Cl-L.-Thr (m/z 406.1 in pos. mode) was found to coelute with an unidentified impurity (m/z 271.2 in
pos. mode) and was only identified in the MS chromatogram. Therefore, we are unable to report a peak area for 4-Cl-L.-Thr
unambiguously.

Stable isotope labelling of nunapeptin C

An overnight culture of WT 4A2e was used to inoculate 100 mL of stable isotope labelling medium in a 1 L Erlenmeyer flask
which was shaken at 22 °C for 28 h. The broth was extracted with EtOAc (250 mL), the organic layer washed with brine, dried
over anhydrous Na,S0O,, and concentrated in vacuo. The residue was dissolved in a minimal amount of MeOH and loaded on
Isolute HM-N. The dried Isolute material was loaded on a pre-equilibrated (10% MeOH in water) C18 HyperSep SPE column
(Thermo Scientific, 1 g, 6 mL), and gradually washed with 10%, 50%, and 100% MeOH in water (25 mL, each). Fractions were
concentrated in vacuo and analysed via LCMS for the presence of nunapeptins, which were only found in the 100% MeOH
fraction. This residue was finally purified using semipreparative HPLC (Phenomenex Luna® C18(2), 5 um, 100 A, 250 x 10 mm)
and the following method: flow rate of 5 mL/min; 0 — 5 min: 10% (v/v) MeCN in water containing 0.1% formic acid; 5 — 45
min: linear gradient from 10% to 100% (v/v) MeCN in water containing 0.1% formic acid; 45 — 55 min: 100% MeCN containing
0.1% formic acid. A nunapeptin C-containing fraction (tz = 45.4 min) was further subjected to HRMS? analysis.
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Figure $34 HRMS analysis of nunapeptin C-d;. HRMS (ESI, m/z): calculated for CosH15sDN»30,6 [M+2H]?* 1019.5939; found
1019.5914.

Under these experimental conditions, we obtained a mixture of non-labelled, monoisotopic (m/z 1019.0890) nunapeptin C
and isotopologues (m/z 1019.5914). To distinguish the selective incorporation of L-alanine-2-d; into the peptide backbone
from random distribution of isotopes in other isotopologues (e.g. Cos*3CH159N23056 Or CosH150N2,°NO5g), we compared the
relative intensities of monoisotopic ions and isotopic ions observed for the fragmentation of m/z 1019.5914 for nunapeptin
Cisolated from stable isotope labelling medium and labelling control medium.
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Figure S35 Example for the comparison of relative fragment ion intensities of monoisotopic nunapeptin C and isotopologues.
A) Nunapeptin C from labelling control medium, B) Nunapeptin C from stable isotope labelling medium.

Table S10 Comparison of the relative intensities of C-terminal.

m/z of monoisotopic m/z of isotopic ions | relative intensity for labelling relative intensity for stable isotope

ions control medium [%] labelling medium [%]
1517.87 1518.87 95 65
1418.80 1419.80 96 186
1347.76 1348.76 90 122
1264.73 1265.73 81 119
1177.69 1178.69 73 106
1078.62 1079.63 63 91
965.54 966.54 53 78
896.52 897.52 46 68
825.48 826.48 37 51
726.41 727.42 33 53
655.38 656.38 29 35
556.31 557.31 23 39
473.27 474.27 18 34
390.23 391.24 12 24

Table S11 Comparison of the relative intensities of N-terminal fragment ions.

m/z of monoisotopic m/z of isotopic ions | relative intensity for labelling relative intensity for stable isotope

ions control medium [%] labelling medium [%]
449.28 450.28 19 7
520.31 521.32 22 19
619.38 620.39 30 28
690.42 691.42 37 31
773.46 774.46 41 36
860.49 861.49 49 44
959.55 960.56 60 50
1072.64 1073.64 71 63
1141.66 1142.66 82 65
1212.70 1213.70 79 56
1311.77 1312.77 105 83
1382.80 1383.80 112 104
1481.87 1482.87 137 109
1564.91 1565.91 165 138
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The comparison of the intensities found for N-terminal fragment ions shows that the incorporation of heavier isotopes in 3
from labelling control medium is greater than in 3 from stable isotope labelling medium for all fragment ions assigned. For C-
terminal fragment ions however, an enrichment of heavier isotopes is observed, indicating the presence of the deuterated
alanine in these fragments. Since the enrichment is found in almost all fragment ions, even the smaller ones with a lower
m/z, we conclude that they all must share the deuterated amino acid. This is only possible for the alanine on position 19,
which is in agreement with the bioinformatic prediction. Hence, Alal9 must be L-configured.

Determination of the ring size of nunapeptins

During ESI-MS? analysis, the lactone moiety of both nunapeptins fragmented to give the free carboxylic acid of the C-terminal
amino acid and dehydrobutyrine (Dhb) instead of the initial p-allo-threonine. Due to the presence of three additional
dehydrobutyrines in the peptide backbone, it was difficult to deduce the correct position of b-allo-threonine from the analysis
of the native nunapeptins alone. Therefore, we decided to mask the original dehydroamino acids by catalytic hydrogenation.
This would result in the observation of a single remaining dehydrobutyrine moiety in the peptide backbone, when analysed
via ESI-MS2.

In a Schlenk tube, nunapeptin C (ca. 1 mg) was stirred with Pd/C in MeOH (2 mL) in a hydrogen atmosphere. The reaction was
stirred at r.t. overnight and subsequently filtered through a pad of Celite. The solvent was removed in vacuo and the residue
analysed with HRMS?. As expected, we observed an increase of 8 Da (hydrogenation of 3 x Dhb and 1 x Dha) in the product
and a single Dhb upon MS? analysis at position 18. Hence, nunapeptins must contain a 16-membered lactone motif, which is
in agreement with the previous reports on nunapeptins.'”

22071104Pflanze #9898-9997 RT: 24,29-24,53 AV: 100 NL: 3,80E4
T: FTMS + p ESIFull ms [140,0000-2100,0000]

2046,2327
2045,2290

9
g
g 70
2
:(? 65 2047,2265
2 60
s
3 55
50
45
40
35
30
25
20
15 2048,2318
10
5 2038,8876
2037,7166 2039,5029 2041,8480 2049,2784
LS e e e
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
miz

Figure S36 HRMS spectrum of reduced nunapeptin C. HRMS (ESI, m/z): calculated for CosH166N23056 [M+H]* 2045.2369;
found 2045.2290.
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Figure $S37 Amino acid sequence analysis of reduced nunapeptin C via HRMS?2,

Determination of the absolute configuration of the 3-hydroxytetradecanoic acid residue in keanumycin D
Synthesis of methyl 3-oxotetradecanoate (8)

O O

15 5 7 9 11 13
e )

2 4 6 8 10 12 14

Meldrum’s acid (721 mg, 5.0 mmol, 1.0 eq.) was dissolved in 20 mL CH,Cl, with anhydrous pyridine (810 puL, 10.0 mmol, 2.0
eq.) and cooled to 0 °C. Lauroyl chloride (1.31 mL, 5.5 mmol, 1.1 eq.) was added dropwise and the reaction slowly warmed
to r.t. After 1 h at r.t., toluene (5 mL) was added and the solvents were removed in vacuo. The residual oil was dissolved in
MeOH (15 mL) and refluxed overnight. Solvents were removed in vacuo and the product purified by flash chromatography
(98:2 — 95:5 (v/v) cyclohexane/EtOAc) to yield 886 mg (63% yield) of white needles.

14 NMR (300 MHz, CDCl3): 6 3.60 (s, 3H, 15-H), 3.33 (s, 2H, 2-H), 2.42 (t, J = 7.4 Hz, 2H, 4-H), 1.47 (m, 2H, 5-H), 1.15 (m, 16H,
6-H to 13-H), 0.76 (t, J = 6.6 Hz, 3H, 14-H) ppm.

13C NMR (75 MHz, CDCl3): & 202.5 (C-3), 167.5 (C-1), 52.0 (C-15), 48.8 (C-2), 42.8 (C-4), 31.8, 29.5, 29.4, 29.3, 29.2, 28.9 (C-6
to C-13), 23.3 (C-5), 22.6, 13.9 (C-14) ppm.

HRMS (ESI, m/z): calculated for Cy5H,903 [M+H]* 257.2111; found 257.2106.
Synthesis of methyl (R)-3-hydroxytetradecanoate (9)

O OH

15 2 s 7 9 11 13
~071 3

2 4 6 g8 10 12 14

Preparation of catalyst: (R)-BINAP (10.5 mg, 17 umol, 0.024 eq.) and (COD)Ru(2-methylallyl), (4.4 mg 0.014 umol, 0.020 eq.)
were suspended in degassed acetone (700 uL) in a 10 mL Schlenk-tube. Then, 180 uL degassed MeOH and 48% aq. HBr (5 uL,
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30.9 mmol, 44 eq.) were added and the reaction stirred at r.t. for 45 min. The solvents are removed in vacuo and the tube
flushed with argon gas.

A solution of methyl 3-oxotetradecanoate (180 mg, 0.7 mmol, 1.0 eq.) in degassed MeOH (2 mL) was added to freshly
prepared hydrogenation catalyst in the Schlenk-tube. A balloon with hydrogen gas was connected to the tube, the vessel
flushed with hydrogen thoroughly, and the reaction stirred at 55 °C for 3 h. Solvents were removed in vacuo and the product
obtained after flash chromatography (10:1 — 4:1 (v/v) cyclohexane/EtOAc) as a colourless resin (146 mg, 81% yield).

1H NMR (600 MHz, CDCl3): & 3.97 (m, 1H, 3-H), 3.68 (s, 3H, 15-H), 2.97 (s, 1H, -OH), 2.47 (dd, J = 16.4, 3.1 Hz, 1H, 2-H), 2.39
(dd, J = 16.4, 9.1 Hz, 1H, 2-H), 1.51 — 1.37 (m, 3H), 1.31 — 1.22 (m, 17H), 0.85 (t, J = 7.0 Hz, 3H, 14-H) ppm.

13C NMR (150 MHz, CDCls): & 173.6 (C-1), 68.1 (C-3), 51.8 (C-15), 41.2 (C-2), 36.7, 32.0, 29.74, 29.72, 29.67, 29.61, 29.4, 25.6,
22.8 (C-4 to C-13), 14.2 (C-14) ppm.

HRMS (ESI, m/z): calculated for CsH3;03 [M+H]* 259.2268; found 259.2264.

. - [a]® .
Optical rotation D:-14.0 (c 1.0 in CHCl3).

Synthesis of methyl (S)-3-hydroxytetradecanoate (10)

O OH

1 M
R

2 4 6 8 10 12 14

Synthesis of methyl (S)-3-hydroxytetradecanoate was performed in the same manner as mentioned above, but using (S)-
BINAP instead of (R)-BINAP, to yield a faint brownish resin (147 mg, 80% vyield).

14 NMR (600 MHz, CDCl5): 6 3.96 (m, 1H, 3-H), 3.66 (s, 3H, 15-H), 3.01 (s, 1H, -OH), 2.48 (dd, J = 16.4, 3.2 Hz, 1H, 2-H), 2.38
(dd, J = 16.4, 9.1 Hz, 1H, 2-H), 1.50 — 1.36 (m, 3H), 1.28 — 1.21 (m, 17H), 0.84 (t, J = 7.1 Hz, 3H, 14-H) ppm.

13C NMR (150 MHz, CDCl5): & 173.5 (C-1), 68.0 (C-3), 51.7 (C-15), 41.3 (C-2), 36.6, 32.0, 29.72, 29.69, 29.65, 29.59, 29.4, 25.6,
22.7 (C-4 to C-13), 14.2 (C-14) ppm.

HRMS (ESI, m/z): calculated for Cy5H3,03 [M+H]* 259.2268; found 259.2265.

. - [a]® .
Optical rotation "1 D: +16.0 (¢ 1.0 in CHCl3).

Synthesis of methyl (3R)-3-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)tetradecanoate (7)
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Methyl (R)-3-hydroxytetradecanoate (17.4 mg, 67 umol, 1.0 eq.) was dissolved in CH,Cl, and pyridine (1 mL, anhydrous, 1:1
(v/v)), (S)-MTPA-CI (16 uL, 88 umol, 1.3 eq.) was added neat and the solution stirred at r.t. for 1 h. After complete consumption
of starting material, the reaction was stopped by addition of 0.1 M HCI (3 mL) and extracted three times with CH,Cl, (4 mL,
respectively). Combined organic layers are dried over anhydrous Na,SO,, filtered, toluene (5 mL) was added and the solvents
were removed in vacuo. Product was obtained after flash chromatography (98:2 — 95:5 (v/v) cyclohexane/EtOAc) as a
colourless resin (27.7 mg, 87% yield).

14 NMR (600 MHz, CDCls): § 7.53 (m, 2H, -Ph), 7.39 (m, 3H, -Ph), 5.48 (m, 1H, 3-H), 3.66 (s, 3H, 15-H), 3.54 (s, 3H, 18-H), 2.69
(dd, J = 16.0, 8.3 Hz, 1H, 2-H), 2.61 (dd, J = 16.0, 4.6 Hz, 1H, 2-H), 1.69 — 1.59 (m, 2H, 4-H), 1.31 — 1.19 (m, 18H, 5-H to 13-H),
0.88 (t, /= 7.1 Hz, 3H, 14-H) ppm.
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13C NMR (150 MHz, CDCls): & 170.7 (C-1), 166.1 (C-16), 132.4 (C-20), 129.7, 128.5, 127.4 (C-21 to C-23), 123.4 (J = 288.6 Hz, -
CFs3), 73.5 (C-3), 55.6 (C-18), 52.0 (C-15), 38.7 (C-2), 33.7 (C-4), 32.1, 29.7, 29.6, 29.50, 29.48, 29.3, 24.7, 22.8 (C-5 to C-13),
14.3 (C-14) ppm.

HRMS (ESI, m/z): calculated for CysH3gF305 [M+H]* 475.2666; found 475.2663.

Synthesis of methyl (35)-3-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)tetradecanoate (6)
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Synthesis of the (R)-Mosher ester of methyl (S)-3-hydroxytetradecanoate was performed the same way as described above.
Methyl (S)-3-hydroxytetradecanoate (20.3 mg, 79 umol) was esterified to yield the title compound (22.9 mg, 61% yield) as a
colourless resin.

14 NMR (600 MHz, CDCls): § 7.53 (m, 2H, -Ph), 7.39 (m, 3H, -Ph), 5.48 (m, 1H, 3-H), 3.58 (s, 3H, 15-H), 3.53 (s, 3H, 18-H), 2.64
(dd, J = 16.0, 8.2 Hz, 1H, 2-H), 2.57 (dd, J = 16.0, 4.9 Hz, 1H, 2-H), 1.70 (m, 2H, 4-H), 1.35 — 1.25 (m, 18H, 5-H to 13-H), 0.88 (t,
J=7.1Hz, 3H, 14-H) ppm.

13C NMR (150 MHz, CDCl3): 6§ 170.5 (C-1), 166.0 (C-16), 132.3 (C-20), 129.7, 128.5, 127.6 (C-21 to C-23), 123.4 (/ = 288.6 Hz, -
CF3), 73.6 (C-3), 55.5 (C-18), 51.9 (C-15), 38.6 (C-2), 33.9 (C-4), 32.0, 29.7, 29.6, 29.54, 29.47, 29.4, 25.1, 22.8 (C-5 to C-13),
14.3 (C-14) ppm.

HRMS (ESI, m/z): calculated for Cy5H3gF305 [M+H]* 475.2666; found 475.2661.

Derivatisation of the 3-hydroxytetradecanoate residue of keanumycin D

HCl(aq O OH
keanumycin D - = )]\)\/\
TMS-CHN,
CF3
BT~ OMe (S)-MTPA-CI 0O OH
— A A~
0O 0" 0 O CgH1g
"o CaHig

Approximately 150 ug of keanumycin D were hydrolysed with 6 N HCI (200 uL) and heating to 100 °C for 12 h. Solvents were
removed in vacuo and the residue dissolved in anhydrous MeOH (200 pL). Trimethylsilyldiazomethane (200 L, ca. 0.6 M in
hexane, 0.12 mmol) was added dropwise at r.t. until a faint yellow colour persisted and the suspension was stirred for an
additional 15 min. The reaction was stopped by addition of formic acid (5 uL). Toluene (1 mL) was added and the solvents
were removed in vacuo. The residue was suspended in CH,Cl, and pyridine (200 pL, anhydrous, 1:1 (v/v)) and (S)-MTPA-CI
(100 pL, 88 umol, 1.3 eq.) was added neat in small batches and the reaction stirred at r.t. for 35 min before it was stopped by
the addition of MeOH (200 pL). Solvents were removed in vacuo and the residue dissolved in CHCl3 (100 pL) prior to GCMS
analysis.

GCMS analysis of MTPA-derivatised 3-hydroxytetradecanoate methyl esters

GCMS analysis was performed on a TRACE 1310 GC (Thermo Scientific) coupled with a TSQ 9000 electron impact-triple
quadrupole mass spectrometer (Thermo Scientific). A4 mm GC inlet liner with quartz wool and a BPX5 capillary column (SGE,
30m, 0.25 mm ID, 0.25 um film) were used. The column was operated with helium carrier gas (0.6 mL/min) and split injection
(split flow: 15 mL/min, ratio 1:25). The injector temperature was set to 250 °C, the GC temperature was set to 200 °C
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(isothermic program for 4h), MS transfer line was set to 300 °C, the ion source temperature was set to 200 °C. Total ion
current (TIC) values were recorded in the mass range of 45 — 600 amu.
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Figure S38 Elucidation of the absolute configuration of 3-hydroxytetradecanoic acid in keanumycin D. Total ion
chromatograms of A) derivatised 3-hydroxytetradecanoic acid from keanumycin D; B) MTPA ester of (R)-configured standard
7; C) MTPA ester of (S)-configured standard 6; D) 1:1 mixture of (R)- and (S)-configured standards 7 and 6.

LCMS analysis of hydrolysed nunapeptin C

Nunapeptin C (ca. 500 ug) was resuspended in 1N NaOH (100 pL) and heated at 80 °C for 16 h. After cooling the reaction to
r.t., an aliquot (10 pL) was analysed on a Shimadzu Nexera X3 UHPLC connected to a Shimadzu single quadrupole mass
spectrometer (LCMS-2020). The UHPLC was equipped with a Phenomenex Kinetex Phenyl-Hexyl column (50 x 2.1 mm, 1.7
pm, 100 A) and the column oven set to 40 °C. The scan range of MS was set to m/z 140 to 300, a scan speed of 7500 u/s and
an event time of 300 ms. The interface temperature was set to 350 °C, the desolvation line temperature to 250 °C and the
heat block temperature to 400 °C. The nebulising gas flow was set to 1.5 L/min and dry gas flow to 15 L/min. The following
method was used: flow rate of 0.7 mL/min; 0 — 0.5 min: 10% MeCN in water; 0.5 — 8.5 min: linear gradient from 10% to 100%
MeCN in water. A commercial standard of octanoic acid (m/z 143.1 in negative mode) was treated equally.
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0,0

— T T T T T T T T T T T T T T T T T T T T
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(x100,000)

2:143,1000(-)
1,004
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0,50-] commercial standard of
] octanoic acid

1,0 20 30 40 50 6,0 min
Figure S39 Extracted ion chromatograms of the N-acyl lipid from hydrolysed nunapeptin B and a commercial standard of
octanoic acid (m/z 143.1 [M-H]’, t; = 4.1 min).
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HCN production in Pseudomonas nunensis 4A2e

The ability of 4A2e to produce HCN was tested as recently described by Pacheco-Moreno et al.?* An overnight culture of wild
type 4A2e was used to inoculate different solid media (LB, SM/5, NGM, co-cultivation agar, and modified Davis medium agar)
in a 48-well plate. A Feigl-Anger reagent paper was prepared by soaking a Whatman 3MM chromatography paper in Feigl-
Anger reagent (copper(ll) ethyl acetoacetate (5 mg/mL) and 4,4’-methylenebis(N,N-dimethylaniline) (5 mg/mL) in CHCl3)
followed by evaporation of the solvent. The paper was placed under the plate lid and the plate was incubated at 22 °C for 2
d. An aqueous solution of KCN (100 pL, 0.25 mg/mL) served as positive control. The production of HCN was scored by the
intensity of the blue staining on the paper. It was highest on LB, whilst co-cultivation agar, modified Davis medium, and SM/5
showed medium production; and little production was observed on NGM agar. In addition, comparison of wild type 4A2e
with a gene deletion mutant (AnupAkeaAbra) impaired in the production of 1-4, and regulatory mutants showed no evident
difference in HCN production.
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Figure S40 Investigation of HCN production of 4A2e. A) Comparison of HCN production of wild type 4A2e on different media.
B) Comparison of HCN production of wild type 4A2e and different mutants on LB agar.
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Figure S41 'H NMR spectrum of nunapeptin B (2, 600 MHz, DMSO-dg).
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Figure S70 3C NMR spectrum of Mosher ester (R)-3 (7, 150 MHz, CDClI).
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Figure S71 'H NMR spectrum of Mosher ester (S)-3 (6, 600 MHz, CDCl,).
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Figure S72 3C NMR spectrum of Mosher ester (S)-3 (6, 150 MHz, CDCl,).
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