Supplementary Information for

Palladium Catalyzed Asymmetric Desymmetrization Approach to Enantioenriched 1,3-disubstituted Isoindolines

Dattatraya H. Dethe*, Vimlesh kumar and Manmohan Shukla

Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur - 208016, India. Tel: + 91-512-2596537, fax: + 91-512-2597436.

Contents

1.	General information
2.	Experimental procedure for the preparation of starting material
	2.1 General procedure for preparation of Diarylmethyltriflamides4
	2.2 General procedure for the synthesis of Diarylmethylamine4-5
	2.3 General procedure for preparation of substrates substituted with F, and Cl5
	2.4 Examples with spectral data5-6
3.	Experimental procedure and characterization of products
	3.1 General procedure for Pd(II)-Catalysed racemic synthesis of 1,3 disubstituted isoindoline
	3.2 General procedure for Pd(II)-Catalysed enantioselective synthesis of 1,3 disubstituted isoindoline
	3.3 Gram scale synthesis of (+) enantiomer of 1,3 disubstituted isoindoline7
	3.4 Gram scale synthesis of (-) enantiomer of 1,3 disubstituted isoindoline7-8
	3.5 Deuterium labelling experiment
	3.6 Detection of intermediate D10
	3.7 Examples with spectral data10-14
	4. NMR spectra of starting material 115-22
	5. NMR spectra of compounds 3 and 423-47
	6. HPLC spectra of compounds 3 and 4
	7. Crystallographic Data of 3a73-79

1. General Information

General Aspects: Experiments involving moisture and air-sensitive components were performed in oven-dried glassware. Commercial solvents and reagents were used without further purification unless otherwise noted. Yields refer to chromatographically pure compounds unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F-254) using UV light as a visualizing agent and a p-anisaldehyde or ninhydrin stain, and heat as developing agents. Merck silica gel (particle size 100-200 and 230-400 mesh) was used for flash column chromatography. Neat compounds were used for record IR spectra. NMR spectra were recorded on either a Bruker Avance 400 (¹H, 400 MHz; ¹³C, 100 MHz), Bruker Avance 500 (¹H, 500 MHz; ¹³C, 125 MHz), or JEOL DELTA (ECX) 500 (¹H, 500 MHz; ¹³C, 125 MHz). Mass spectrometric data were obtained using Agilent-Premier-APCI-MS instruments and IR data recorded from PerkinElmer, FT-IR spectrometer. Optical rotations were measured using a Polarimeter (AUTOPOL II) at 28 °C. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, spt= septet, dd = doublet of doublet, ddd = doublet of a doublet of a doublet, dt = triplet of a doublet, t = triplet, td = triplet of a doublet, m = multiplet, br = broad.

Experimental procedure for preparation of starting material:

2.1 General procedure for preparation of Diarylmethyltriflamides.³

To a stirred solution of diarylmethylamine (5 mmol, 1.0 equiv.) in dichloromethane (20 mL) was added triethylamine (6 mmol, 1.2 equiv) at -78 °C under nitrogen. After stirring for 5 min at -78 °C, trifluoromethanesulfonic anhydride (5.5 mmol, 1.1 equiv.) was added dropwise and the mixture was stirred for 1h at the same temperature before being quenched by water (20 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane (10 mL \times 2). The combined organic phase was washed with brine (20 mL) and then dried over Na₂SO₄. Evaporation and column chromatography on silica gel (ethyl acetate/hexane= 1:20 as eluant) afforded corresponding trifluoromethanesulfonamide.

2.2 General procedure for preparation of diarylmethylamines.¹

To a stirred solution of Mg (1.1 equiv), I_2 (catalytic amount) in anhydrous THF (20 ml) was added arylbromide (1.0 equiv.) dropwise. The resulting solution was stirred for another 1h at room temperature. Then this solution was added dropwise into corresponding arylnitrile in THF (10 ml) at room temperature. The resulting mixture was heated to reflux for 12h and then allowed to cool to room temperature and then to 0 °C. To this mixture was transferred a suspension of LiAlH₄ (20 mmol) in THF (20 mL) via cannula. The ice bath was then removed, and the reaction mixture was heated to reflux, which was maintained for 12h. Upon completion, the mixture was cooled to room temperature, and carefully quenched by slow addition of water (5 ml), The resulting slurry was filtered through a celite pad and washed with DCM until no amine was left. The combined organic layer was washed with sat. aq. NaCl and concentrated under reduced pressure to give the crude amine, which could be used directly in the next step without purification. And the corresponding trifluoromethane sulfonamides **1a**, **1c**, **1h**, **1j**, **1k**, **1l**, **1m** and **1n** could be synthesized using the same protocol shown above.

2.3 General procedure for preparation of biarylamine substituted with F and Cl.¹

To a 25 ml round bottom flask has added the ketone (1.5 mmol), hydroxylamine hydrochloride (7.5 mmol, 0.52 g), pyridine (1 ml), and EtOH (5 ml). The resulting solution was heated in an oil bath to reflux for 6h. After completion of the reaction, the solvent was removed in vacuo and the residue was partitioned between EtOAc and H_2O (1:1). The aqueous layer was extracted with EtOAc twice, and the combined organic layer was washed with brine and dried over Na₂SO₄. Evaporation afforded the crude oxime, which could be used directly into the next step without purification.

To a stirred suspension of oxime (3 mmol) in EtOH(4 ml) and ammonia solution (ammonium hydroxide solution) (16 ml) was added NH₄OAc (1.5 mmol, 0.12 g), followed by portion-wise addition of zinc powder (15.0 mmol, 0.98 g). The mixture was heated to 50 °C in an oil bath for 1h and then refluxed for 10h. The mixture was cooled to room temperature, diluted with 20 ml of EtOAc, stirred for 30 min, and filtered through filter paper. The filtrate was transferred to a separation funnel. The organic layer was collected, and the aqueous layer was extracted with EtOAc (2×20 ml). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude amine. And the corresponding trifluoromethanesulfonamides **1d** and **1e** could be synthesized using the same protocol shown above.

Note- Compounds 1a, 1b, 1f, 1g and 1i are reported in literature^{2,3}.

References:

1. Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429.

1199, 1047, 834, 616.

2. Chu, L.; Wang, X.-C.; Moore, C. E.; Rheingold, A. L.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 16344.

3. Vidal, X.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2019, 141, 1862.

2.4 Examples with data.

Compound 1d

Compound 1h

Compound **1h** was obtained as a pale yellow liquid (1.02 g, 2.13 mmol, 75%) ¹H NMR (400 MHz, CDCl₃) δ 7.42 (t, *J* = 8.0 Hz, 2H), 7.24 – 7.19 (m, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 7.08 (s, 2H), 5.91 (brs, 1H), 5.87 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.79, 141.11, 130.79, 125.58, 121.18, 120.40 (q, *J* = 321.25 Hz), 119.39 (q, *J* = 355.25 Hz), 119.88, 61.27. HRMS (APCI-TOF) m/z calcd. for C₁₆H₁₀F₉NO₄S [M]⁺ 483.0187; found 483.0195. IR (neat): v_{max}/cm⁻¹ 3296, 3075, 2927, 1610, 1490, 1453, 1377, 1264, 1145, 610.

Compound 1j

Compound **1j** was obtained as a white solid (1.0 g, 2.15 mmol, 72%) ¹H NMR (400 MHz, CDCl₃) δ 7.60 (ddd, J = 9.4, 7.2, 1.1 Hz, 8H), 7.44 (dd, J = 10.8, 4.5 Hz, 4H), 7.39 – 7.33 (m, 6H), 5.96 (d, J = 8.7 Hz, 1H), 5.72 (d, J = 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.46, 140.25, 138.55, 128.96, 127.81, 127.73, 127.18, 119.59 (q, J = 321.25 Hz), HRMS (APCI-TOF) m/z calcd. for C₂₆H₂₀F₃NO₂S [M]⁺ 467.1167; found 467.1164. IR (neat): v_{max}/cm⁻¹ 3308, 3031, 2925, 1600, 1487, 1374, 1230, 1144, 1039, 1007, 764.

Compound **1c** was obtained as a pale yellow liquid (1.28 g, 3.47 mmol, 83%) ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.02 (m, 8H), 5.81 (s, 1H), 5.41 (brs, 1H) 2.64 (q, *J* = 7.6 Hz, 4H), 1.22 (t, *J* = 7.6 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 144.46, 137.18, 128.48, 127.20, 119.57 (q, *J* = 321.25 Hz), 62.24, 28.55, 15.46. HRMS (APCI-TOF) m/z calcd. for C₁₈H₂₀F₃NO₂S [M]⁺ 371.1167; found 371.1166. IR (neat): v_{max}/cm⁻¹ 3300, 2958, 2921, 2852, 1604, 1464, 1370, 1390, 1224, 1182, 1054, 603.

Compound **1d** was obtained as a colorless liquid (1.29 g, 3.66 mmol, 80%) ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, J = 7.7, 5.4 Hz, 4H), 7.10 – 6.93 (m, 4H), 6.09 (brs, 1H), 5.83 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.61 (d, J = 249.47 Hz), 135.35 (d, J = 3.1 Hz), 128.99 (d, J = 8.2 Hz), 119.46 (q, J = 321.26 Hz), 116.10 (d, J = 21.3 Hz), 61.28. HRMS (APCI-TOF) m/z calcd. for C₁₄H₁₀F₅NO₂S [M]⁺ 351.0352; found 351.0345. IR (neat): v_{max}/cm⁻¹ 3298, 2925, 2854, 1895, 1606, 1510, 1375, 1231,

Compound 1k

Compound 11

NHTf

Compound **11** was obtained as a white solid (1.1g, 2.96 mmol, 74%) ¹H NMR (400MHz, CDCl₃) δ 7.02 (dd, J = 8.4, 2.4 Hz, 2H), 6.97 (d, J = 2.1 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 5.71 (d, J = 6.4 Hz, 1H), 5.29 (s, 1H), 3.81 (s, 6H), 2.17 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 161.45 (d, J = 247.12 Hz), 138.96 (d, J = 6.3 Hz), 132.16 (d, J = 6.3 Hz), 125.42(d, J = 16.38 Hz), 122.49, 119.11 (q, J = 321.26 Hz) 113.95 (d, J = 21.3 Hz), 61.28, 14.34.HRMS (APCI-TOF) m/z calcd. for C₁₆H₁₄F₅NO₂S [M]⁺ 379.0665; found 379.0668. IR (neat): v_{max}/cm⁻¹ 3300, 2957, 2928, 1991,

Compound 1k was obtained as a white solid (996mg, 2.40 mmol, 68%) ¹H NMR (500 MHz, CDCl₃)

 δ 7.86 - 7.79 (m, 6H), 7.76 (s, 2H), 7.54 - 7.48 (m, 4H), 7.35 (dd, J = 8.6, 1.7 Hz, 2H), 6.20 (d, J = 8.6, 1.7 Hz, 2H), 7.20 (d, J = 8.6, 1.7 Hz, 2H),

8.9 Hz, 1H), 5.83 (d, J = 8.7 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ 136.88, 133.22, 133.09, 129.19, 128.28, 127.83, 126.85, 126.45, 124.95, 119.61 (q, J = 321.25 Hz), 62.82. HRMS (APCI-TOF) m/z calcd. for C₂₂H₁₆F₃NO₂S [M]⁺ 415.0854; found 415.0856. IR (neat): v_{max}/cm⁻¹ 3306, 3058, 2927,

Compound **1m** was obtained as a pale yellow liquid (1.01g, 2.50 mmol, 34%) ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dd, J = 8.4, 2.2 Hz, 2H), 6.96 (d, J = 1.9 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 5.70 (s, 1H), 5.32 (s, 1H), 3.81 (s, 6H), 2.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 157.61, 131.73, 129.46, 127.33, 125.62, 109.93, 61.83, 55.43, 16.41. HRMS (APCI-TOF) m/z calcd. for C₁₈H₁₉F₃NO₄S [M-H]⁺402.0992; found 402.1008. IR (neat): v_{max}/cm⁻¹ 343, 2954, 2854, 2836, 2060, 1609, 1503, 1464, 1375, 1253, 1131, 1035, 620.

Compound 1n

Compound 1m

Compound **1n** was obtained as a pale yellow liquid (400mg, 0.924 mmol, 28%) ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, J = 8.3 Hz, 2H), 6.78 (d, J = 2.0 Hz, 1H), 6.75 (d, J = 1.9 Hz, 1H), 6.72 (d, J = 1.9 Hz, 2H), 5.76 (d, J = 8.6 Hz, 1H), 5.66 – 5.52 (m, 1H), 3.85 (s, 6H), 3.79 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 149.32, 149.04, 132.26, 119.59 (q, J = 321.26 Hz), 119.65, 111.24, 110.49, 62.08, 56.01, 55.98. HRMS (APCI-TOF) m/z calcd. for C₁₈H₂₁F₃NO₅S [M+H]⁺ 420.1093; found 420.1099. IR (neat): v_{max}/cm⁻¹ 3456, 2957, 294, 2055, 1639, 1516, 1375, 1228, 1191, 1026, 606.

3. Experimental procedure and characterization of products

3.1 General procedure for Pd(II)-Catalysed Racemic Synthesis of 1,3 disubstituted isoindoline

2250, 1601, 1508, 1428, 1374, 1198, 1230, 1198, 1046, 609.

1627, 1584, 1510, 1454, 1230, 1198, 1052, 969, 633.

A 5 mL vial was charged with $Pd(OAc)_2$ (4.5 mg, 0.20 mmol, 10 mol%), $Cu(OAc)_2$ ·H₂O (79.6 mg, 0.40 mmol, 2.0 equiv), Cs_2CO_3 (97.5 mg, 0.3 mmol, 1.5 equiv), toluene (3.0 mL) and then the reaction mixture was stirred at room temperature for 10 min under a nitrogen atmosphere. Then diarylmethyltriflamide **1a** (0.2 mmol, 1.0 equiv) and activated olefin **2** (0.3 mmol, 1.5 equiv) were added into the solution in sequence. The vial was sealed under nitrogen and heated to 60 °C (using an oil bath) with stirring for 24h. After cooling down, the reaction mixture was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography.

3.2 General procedure for Pd(II)-Catalysed Enantioselective Synthesis of 1,3 disubstituted isoindoline

A 5 mL vial was charged with $Pd(OAc)_2$ (4.5 mg, 0.020 mmol, 10 mol%), $Cu(OAc)_2$ ·H₂O (79.6 mg, 0.40 mmol, 2.0 equiv), Cs_2CO_3 (97.5 mg, 0.3 mmol, 1.5 equiv.), Cbz-L-Phe-OH (12 mg, 0.04 mmol, 0.20 equiv), toluene (2.0 mL), and then the reaction mixture was stirred at room temperature for 10 min under a nitrogen atmosphere. Then diarylmethyltriflamide **1a** (0.20 mmol, 1.0 equiv) and activated olefin **2** (0.3mmol, 1.5 equiv) were added into the solution in sequence. The vial was sealed under nitrogen and heated to 60 °C (using an oil bath) with stirring for 24h. After cooling down, the reaction mixture

was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography.

A 50 mL screw-cap vial was charged with $Pd(OAc)_2$ (72 mg, 0.32 mmol, 10 mol%), $Cu(OAc)_2 \cdot H_2O$ (1.27 g, 6.4 mmol, 2.0 equiv), Cs_2CO_3 (1.04 g, 4.80 mmol 1.5 equiv), Cbz-L-Phe-OH (127mg, 0.4 mmol, 20 mol%), toluene (20 mL) and then the reaction mixture was stirred at room temperature for 30 min under a nitrogen atmosphere. Then diarylmethyltriflamides **1a** (3.2 mmol, 1.0 equiv) and methyl vinyl ketone **2a** (4.8 mmol, 1.5 equiv) were added into the solution in sequence. The vial was sealed under nitrogen and heated to 60 °C (using an oil bath) with stirring for 24h. After cooling down, the reaction mixture was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography to afford desired product **3a** (1.04 g, 2.7 mmol, 85 %). HPLC analysis (Chiralpak IC-3; *n*-Hexane/*i*-PrOH =95/5, 0.9 ml/min, 254 nm): t_r (major) = 5.2 min, t_r (minor) = 5.85 min, 94:6 er.

3.4 Gram scale synthesis of (-) enantiomer of 1,3 disubstituted isoindoline

A 50 mL screw-cap vial was charged with $Pd(OAc)_2$ (72 mg, 0.32 mmol, 10 mol%), $Cu(OAc)_2$ ·H₂O (1.27 g, 6.4 mmol, 2.1 equiv), Cs_2CO_3 (1.04 g, 4.80 mmol 1.5 equiv), Cbz-D-Phe-OH (127mg, 0.4 mmol, 20 mol%), toluene (20 mL) and then the reaction mixture was stirred at room temperature for 30 min under a nitrogen atmosphere. Then diarylmethyltriflamides **1a** (3.2 mmol, 1.0 equiv) and methyl vinyl ketone **2a** (4.8 mmol, 1.5 equiv) were added into the solution in sequence. The vial was sealed under nitrogen and heated to 60 °C (using an oil bath) with stirring for 24h. After cooling down, the reaction

mixture was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography to afford desired product *ent-3a* (980mg, 2.56 mmol, 80%). HPLC analysis (Chiralpak IC-3; *n*-Hexane/*i*-PrOH = 95/5, 0.9 ml/min, 254 nm): t_r (major) = 7.51 min, t_r (minor) = 6.36 min, 4:96 er.

3.5 Deuterium labelling experiment.

A 10 mL screw-cap vial was charged with $Pd(OAc)_2$ (4.5 mg, 0.20mmol, 10 mol%), $Cu(OAc)_2$ · H_2O (79.6 mg, 0.40 mmol, 2.0 equiv), Cs_2CO_3 (97.5 mg, 0.3mmol, 1.5 equiv.), Cbz-L-Phe-OH (12mg, 0.04mmol, 0.20 equiv), toluene (2.0 mL) and then the reaction mixture was stirred at room temperature for 10 min under a nitrogen atmosphere. Then diarylmethyltriflamides **1a** (0.20 mmol, 1.0 equiv) and D_2O (3.0 mmol, 15 equiv) were added into the solution in sequence. The vial was sealed under nitrogen atmosphere and heated to 60 °C (using an oil bath) with stirring for 10h. After cooling down, the reaction mixture was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography to afford desired product **D4-1a in** 78% (49 mg, 0.156mmol, 78%).

3.6 Detection of intermediate D.

A screw-cap 10 mL vial was charged with Pd(OAc)₂ (45 mg, 0.20 mmol, 1.0 equiv), Cs₂CO₃ (97.5 mg, 0.30 mmol, 1.5 equiv.), Cbz-L-Phe-OH (120 mg, 0.40 mmol, 2.0 equiv), toluene (2.0 mL) and then the reaction mixture was stirred at room temperature for 10 min under a nitrogen atmosphere. Then diarylmethyltriflamide 1a (0.20 mmol, 1.0 equiv) was added into the solution. The vial was sealed under a nitrogen and heated to 60 °C (using an oil bath) with stirring for 6h. After cooling down, the reaction mixture was filtered through a celite pad and concentrated to give the crude compound which was directly submitted for HRMS.

3.7 Examples with data

Compound 3a Following the general procedure, Compound **3a** was obtained as a white crystalline solid (68.9 mg, 0.18 mmol, 90%) Melting point = 119 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.26 (m, 8H), 7.05 (d, J = 7.1 Hz, 2H), 6.17 (s. 1H), 5.85 (d, J = 8.8 Hz, 1H), 3.43 (dd, J = 17.8, 2.1 Hz, 1H), 3.04 (dd, J = 17.9, 9.7 Hz, 1H), 2.21(s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 205.13, 140.67, 138.87, 138.34, 129.11, 129.03, 128.92, 128.74, 127.77, 123.77, 123.43, 70.07, 62.45, 52.89, 30.59. HRMS (APCI-TOF) m/z calcd. for C₁₈H₁₇F₃NO₃S [M+H]+ 384.0881; found 384.0882. IR (neat): vmax/cm-1 3035, 2957, 2922, 2851, 1717, 1392, 1364, 1226, 1189, 1056, 599. HPLC analysis (Chiralpak IC-3; *n*-Hexane/*i*-PrOH = 95/5, 0.9 ml/min, 254 nm): t_r (major) = 6.21 min, $t_r(\text{minor}) = 7.02 \text{ min}, 95:5 \text{ er}. [\alpha]_D^{30} = +15.03 \text{ (c} = 0.13 \text{ in CHCl}_3).$

Compound 3b Following the general procedure, Compound 3b was obtained as a colorless liquid (69 mg, 0.17 mmol, 84%)

¹H NMR (500 MHz, $CDCl_3$) δ 7.18 – 7.06 (m, 6H), 6.91 (d, J = 7.8 Hz, 1H), 6.08 (s, 1H), 5.76 (d, J = 8.6 Hz, 1H), 3.38 (dd, J = 17.8, 2.2 Hz, 1H), 3.00 (dd, J = 17.9, 9.7 Hz, 1H), 2.34 (d, J = 2.3 Hz, 6H), 2.20 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.24, 139.14, 139.09, 138.54, 137.99, 135.65, 129.94, 129.53, 127.74, 123.67, 123.45, 69.70, 62.23, 53.07, 30.59, 21.45, 21.23. HRMS (APCI-TOF) m/z calcd. for C₂₀H₂₁F₃NO₃S [M+H]+412.1194; found 412.1184. IR (neat): v_{max}/cm⁻¹ 3054, 2956, 2869, 1718, 1616, 1592, 1459, 1392, 1056, 863. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 95/5, 0.9 ml/min, 254 nm): t_r (major) = 5.67 min, t_r (minor) = 7.42 min, 92:8 er. $[\alpha]_D^{30} = +13.33$ (c = 0.15 in CHCl₃).

Compound 3c

Compound 3d

er. $[\alpha]_D^{30} = +10.00$ (c = 0.10 in CHCl₃).

Following the general procedure, Compound 3d was obtained as a yellow liquid (69 mg, 0.16 mmol, 82 %) ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.16 (m, 2H), 7.13 – 7.07 (m, 1H), 7.07 – 6.87 (m, 4H), 6.09 (s, 1H), 5.75 (d, J = 9.4 Hz, 1H), 3.39 (dd, J = 18.1, 1.9 Hz, 1H), 2.98 (dd, J = 18.2, 9.9 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.92, 164.29, 163.91, 162.32, 161.93, 140.96, 136.27, 133.68, 129.79, 129.11, 129.04, 125.29, 125.22, 116.83, 116.65, 116.04, 115.87, 111.04, 110.84, 68.77, 62.09, 52.50, 30.41. HRMS (APCI-TOF) m/z calcd. for $C_{18}H_{15}F_5NO_3S$ [M+H]+ 420.0693; found 420.0686. IR (neat): v_{max}/cm⁻¹3033, 2924, 2854, 1716, 1605, 1510, 1491, 1392, 1055, 866. HPLC analysis (Chiralpak IC-3; n-Hexane/*i*-PrOH = 98/2, 0.9 ml/min, 254 nm): t_r (major) = 8.27 min, t_r (minor) = 7.72 min, 95:5 er. $[\alpha]_D^{30}$ = +12.00 (c = 0.08 in CHCl₃).

Following the general procedure, Compound 3c was obtained as a colorless liquid (73 mg, 0.17 mmol, 85%) ¹H NMR (500 MHz, CDCl₃) δ 7.20 – 7.15 (m, 5H), 7.13 (d, J = 7.9 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H),

6.09 (s, 1H), 5.78 (d, J = 8.8 Hz, 1H), 3.40 (dd, J = 17.8, 2.3 Hz, 1H), 3.01 (dd, J = 17.8, 9.6 Hz, 1H), 2.67 - 2.62 (m, 4H), 2.21 (s, 3H), 1.22 (td, J = 7.6, 5.2 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 205.28, 145.54, 144.74, 139.07, 138.19, 135.88, 128.79, 128.31, 127.74, 123.54, 122.49, 69.76, 62.30, 53.08, 30.64, 28.84, $28.58, 15.64, 15.38. HRMS (APCI-TOF) m/z \ calcd. \ for C_{22}H_{25}F_3NO_3S[M+H]^+ 440.1507; found 440.1518.$ IR (neat): v_{max}/cm⁻¹ 3052, 2960, 2854, 1716, 1617, 1590, 1460, 1390, 1060, 897. HPLC analysis (Chiralpak IC-3; *n*-Hexane/*i*-PrOH = 90/10, 0.9 ml/min, 254 nm): t_r (major) = 4.61 min, t_r (minor) = 5.82 min, 93:7

Compound 3e

 $[\alpha]_{D}^{30} = +20.0$ (c = 0.10 in CHCl₃).

9.8 Hz, 1H), 2.35 (s, 3H), 2.28 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 205.26, 140.76, 139.07, 138.58, 135.92, 129.99, 129.44, 128.76, 128.49, 124.65, 124.60, 124.04, 123.12, 70.09, 62.30, 53.08, 30.65, $21.58, 21.32. HRMS \, (APCI-TOF) \, m/z \ calcd. \ for \ C_{20}H_{20}F_3NO_3SNa \ [M+Na]^+ \\ 434.1014; \ found \ 434.1020. \ IR \, (M+Na)^+ \\ 434.1014; \ found \ M+Na)^+ \\ 434.1020; \ M+Na)^+ \\$ (neat): vmax/cm-12956, 2923 2868, 1716, 1608, 1496, 1392, 1226, 1057, 882. HPLC analysis (Chiralpak IC-3; *n*-Hexane/*i*-PrOH = 95/5, 0.9 ml/min, 254 nm): t_r (major) = 5.96 min, t_r (minor) = 6.63 min, 87:13 er. Following the general procedure, Compound **3h** was obtained as a colorless liquid (82 mg, 0.15 mmol,

75 %) ¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.39 (m, 2H), 7.25 – 7.17 (m, 3H), 7.07 (s, 1H), 6.89 (s, 1H), 6.15 (s, 1H), 5.80 (d, J = 9.6 Hz, 1H), 3.42 (d, J = 18.5 Hz, 1H), 2.97 (dd, J = 18.1, 10.0 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 204.85, 149.93, 149.68, 141.99, 141.96, 139.50, 137.49, 137.44, 132.36, 130.64, 126.19, 125.46, 122.40, 121.52, 120.26, 119.30, 117.37, 116.34, 68.87, 62.06, 52.67. HRMS (APCI-TOF) m/z calcd. for C₂₀H₁₅F₉NO₅S [M+H]⁺552.0527; found 552.0526. IR (neat): v_{max}/cm⁻¹2955, 2924, 2869, 2852, 1737, 1600, 1491, 1461, 1377, 1191, 832. HPLC analysis (Chiralpak OD-H; *n*-Hexane/*i*-PrOH = 99/1, 0.5 ml/min, 254 nm): t_r (major) = 8.86 min, t_r (minor) = 9.28 min, 95:5

er. $[\alpha]_D^{30} = +62.50$ (c = 0.016 in CHCl₃).

Following the general procedure, Compound 3e was obtained as a colorless liquid (75 mg, 0.17 mmol, 84 %) ¹H NMR (500 MHz, CDCl₃) δ 7.40 (s,1H), 7.36 – 7.32 (m, 2H), 7.29 (dd, J = 8.2, 1.8 Hz, 1H), 7.21 – 7.15 (m, 2H), 6.95 (d, J = 8.1 Hz, 1H), 6.07 (s, 1H), 5.76 (d, J = 9.1 Hz, 1H), 3.40 (d, J = 17.8 Hz, 1H), 2.98 (dd, J = 18.2, 9.9 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 204.89, 140.71, 138.63, 137.73, 135.48, 135.06, 134.76, 129.64, 129.42, 129.27, 128.62, 124.88, 124.02, 68.84, 62.03, 61.28, 52.52, 30.44. HRMS(APCI-TOF) m/z calcd. for C₁₈H₁₅Cl₃F₃NO₃S [M+H]⁺452.0102; found 452.0108. IR (neat): v_{max}/cm⁻¹,2957, 2926, 2854, 1716, 1604, 1492, 1393, 1227, 1154, 1055, 862. HPLC analysis (Chiralpak IC-3; *n*-Hexane/*i*-PrOH = 99/1, 0.5 ml/min, 254 nm): t_r (major) = 15.57 min, t_r (minor) = 17.33 min, 95:5 er. $[\alpha]_D^{30} = +4.0$ (c = 0.25 in CHCl₃).

Following the general procedure, Compound 3f was obtained as a colorless liquid (78 mg, 0.18 mmol, 88 %) ¹H NMR (400 MHz, CDCl₃) δ 7.15 (dd, *J* = 9.1, 2.4 Hz, 2H), 6.97 – 6.79 (m, 5H), 6.05 (s, 1H), 5.74 (t, J = 13.4 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.35 (dd, J = 18.0, 2.7 Hz, 1H), 2.97 (dd, J = 18.0, 9.7 Hz, 1H), 2.97 (dd, J = 18 1H), 2.19 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 205.31, 160.49, 159.84, 140.48, 132.30, 130.44, 129.30, 124.63, 115.99, 114.14, 107.72, 69.22, 62.18, 55.62, 55.37, 53.03, 30.57. HRMS (APCI-TOF) m/z calcd. for C₂₀H₂₁F₃NO₃S [M+H]⁺ 444.1093; found 444.1091. IR (neat): v_{max}/cm⁻¹ 3006, 2950, 2848, 1717, 1616, 1575, 1492, 1392, 1230, 872. HPLC analysis (Chiralpak IC; n-Hexane/i-PrOH = 90/10, 0.9 ml/min, 254 nm): t_r (major) = 6.34 min, t_r (minor) = 7.54 min, 94:6 er. $[\alpha]_D^{30} = +13.33$ (c = 0.15 in CHCl₃).

Following the general procedure, Compound 3g was obtained as a pale yellow liquid (68 mg, 0.16 mmol, 83 %)¹H NMR (400 MHz, CDCl₃) δ 7.23 (dt, J = 7.9, 4.4 Hz, 2H), 7.14 – 7.09 (m, 3H), 7.00 (d, J = 7.6 Hz, 1H), 6.81 (s, 1H), 6.04 (s, 1H), 5.77 (d, J = 9.0 Hz, 1H), 3.42 (dd, J = 17.7, 2.3 Hz, 1H), 2.99 (dd, J = 17.8,

Compound 3i

Compound 3k

CHCl₃).

Compound 31

Following the general procedure, Compound 3i was obtained as a colorless liquid (84 mg, 0.17 mmol, (85%)¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.34 (m, 2H), 7.34 – 7.30 (m, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.3 Hz, 1H), 6.10 (s, 1H), 5.79 (d, J = 8.8 Hz, 1H), 3.41 (d, J = 17.7 Hz, 1H), 3.01 (dd, J = 17.717.6, 9.5 Hz, 1H), 2.21 (s, 3H), 1.30 (s, 9H), 1.29 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) & 205.36, 152.52, 151.52, 138.74, 135.59, 127.29, 126.31, 125.74, 123.19, 119.85, 69.69, 62.51, 53.20, 34.97, 34.67, 31.44, 31.36, 30.75. HRMS (APCI-TOF) m/z calcd. for C₂₆H₃₃F₃NO₃S [M+H]+ 496.2133; found 496.2129. IR (neat): v_{max}/cm⁻¹ 2964, 2906, 2870, 1719, 1615, 1498, 1406, 1193, 1054, 869, 616. HPLC analysis (Chiralpak IC; *n*-Hexane/*i*-PrOH = 95/5, 0.9 ml/min, 254 nm): t_r (major) = 4.27 min, t_r (minor) = 6.37 min, 95:5 er. $[\alpha]_D^{30} = +13.33(c = 0.075 \text{ in CHCl}_3).$

> Following the general procedure, Compound 3j was obtained as a colorless liquid (86.6 mg, 0.16 mmol, 81 %) ¹H NMR (500 MHz, CDCl₃) δ 7.65 – 7.60 (m, 4H), 7.60 – 7.56 (m, 4H), 7.46 (t, J = 7.6 Hz, 4H), 7.42 - 7.35 (m, 4H), 7.16 (t, J = 11.2 Hz, 1H), 6.26 (s, 1H), 5.94 (d, J = 9.0 Hz, 1H), 3.52 (d, J = 18.6 Hz, 1H), 3.14 (dd, J = 18.0, 9.7 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.23, 142.61, 141.74, 140.43, 140.17, 139.75, 139.61, 137.28, 129.04, 128.95, 128.24, 127.96, 127.71, 127.32, 127.22, 124.14, $122.09, 69.66, 62.44, 53.12, 30.61. \ HRMS \ (ESI-MS) \ m/z \ calcd. \ for \ C_{30}H_{24}F_3NNaO_3S \ [M+Na]^+ \ 558.1327;$ found 558.1312. IR (neat): v_{max}/cm⁻¹3441, 3032, 2924, 2857, 1716, 1642, 1483, 1391, 1155, 1057, 762. HPLC analysis (Chiralpak IC-3; *n*-Hexane/*i*-PrOH = 98/2, 0.9 ml/min, 254 nm): t_r (major) = 10.97 min, $t_r(\text{minor}) = 17.52 \text{ min}, 95:5 \text{ er}. [\alpha]_D^{30} = +9.20 \text{ (c} = 0.108 \text{ in CHCl}_2\text{)}.$

> Following the general procedure, Compound 3k was obtained as a pale yellow liquid (80 mg, 0.16 mmol, 83 %) ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.90 – 7.78 (m, 5H), 7.73 (d, J = 7.9 Hz, 1H), 7.56 (s, 1H), 7.56 (s, 2H), 1H), 7.55 - 7.42 (m, 4H), 7.38 (d, J = 8.5 Hz, 1H), 6.49 (s, 1H), 6.04 (d, J = 9.2 Hz, 1H), 3.50 (dd, J = 9.18.0, 2.6 Hz, 1H), 3.16 (dd, J = 18.0, 9.9 Hz, 1H), 2.23 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 205.31, 138.12, 137.56, 136.84, 133.71, 133.50, 133.32, 133.15, 129.12, 128.42, 128.36, 128.06, 127.84, 127.50, 126.82, 126.75, 125.01, 123.13, 122.77, 69.66, 61.97, 53.19, 30.64. HRMS (APCI-TOF) m/z calcd. for $C_{26}H_{21}F_{3}NO_{3}S \ [M+H]^{+} \ 484.1194; \ found \ 484.1189. \ IR \ (neat): \ v_{max}/cm^{-1} \ 2955, \ 2924, \ 2869, \ 2853, \ 1716, \ 1860$ 1602, 1493, 1461, 1392, 1222 1159,967, 859. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 98/2, $0.5 \text{ ml/min}, 254 \text{ nm}): t_r(\text{major}) = 21.21 \text{ min}, t_r(\text{minor}) = 24.57 \text{ min}, 92.8 \text{ er}. [\alpha]_D^{30} = +12.04 \text{ (c} = 0.083 \text{ in})$

Following the general procedure, Compound 31 was obtained as a pale yellow liquid (70 mg, 0.15 mmol, 78 %) ¹H NMR (400 MHz, $CDCl_3$) δ 7.16 (q, J = 7.4 Hz, 2H), 7.00 (dd, J = 7.8, 1.4 Hz, 1H), 6.91 (d, J = 7.8, 1.4 Hz, 1H), 7.8 10.4 Hz, 1H), 6.70 (d, J = 7.7 Hz, 1H), 6.07 (s, 1H), 5.95 (t, J = 5.0 Hz, 1H), 3.22 (dd, J = 16.8, 4.3 Hz, 1H), 3.11 (dd, J = 16.8, 5.9 Hz, 1H), 2.27 (d, J = 1.8 Hz, 1H), 2.25 (d, J = 1.6 Hz, 1H), 2.21 (s, 3H).¹³C NMR (100 MHz, CDCl₃) & 203.00, 162.58, 160.11, 156.70, 154.21, 144.34, 139.82, 139.75, 138.26, 132.94, 132.90, 131.87, 131.82, 125.85, 125.68, 125.50, 125.15, 123.49, 123.46, 123.15, 119.06, 119.02, 114.66, 114.42, 110.28, 110.03, 69.73, 60.73, 50.76, 30.42, 14.44, 14.21.HRMS (ESI-MS) m/z calcd.for C₂₀H₁₇NO₃F₅S [M-H]⁻446.0855; found 446.0875. IR (neat): v_{max}/cm⁻¹2956, 2923, 2851, 1719, 1493, 1394, 1226, 1191, 1066, 646. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 97/3, 0.5 ml/min, 254 nm): tr

(major) = 9.78 min, t_r (minor) = 11.42 min, 90:10 er. $[\alpha]_D^{30}$ = -15.10 (c = 0.066 in CHCl₃).

Following the general procedure, Compound **3m** was obtained as a colorless liquid (78 mg, 0.16 mmol, 83%) ¹H NMR (500 MHz, CDCl₃) δ 7.02 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.98 (s, 1H), 6.77 (dd, *J* = 14.4, 6.0 Hz, 3H), 5.98 (s, 1H), 5.70 (brs, 1H), 3.81 (s, 3H), 3.81 (s, 3H), 3.40 (d, *J* = 18.0 Hz, 1H), 2.99 (dd, *J* = 18.0, 9.8 Hz, 1H), 2.20 (s, 3H), 2.18 (s, 3H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 205.81, 158.55, 157.95, 137.44, 130.17, 129.86, 128.27, 127.05, 126.63, 125.20, 109.74, 104.19, 69.62, 62.32, 55.57, 55.39, 53.39, 30.65, 16.56, 16.51.HRMS (ESI-MS) m/z calcd. for C₂₂H₂₄F₃NO₅SNa [M+Na]⁺ 494.1225; found 494.1237. IR (neat): v_{max}/cm⁻¹ 3423, 2955, 2922, 2850, 1717, 1610, 1503, 1465, 1390, 1205, 1187, 1034, 607. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 98/2, 0.5 ml/min, 254 nm): t_r (major) = 13.84 min, t_r (minor) = 20.33 min, 93:7 er. $[\alpha]_D^{30}$ = +30.30 (c = 0.033 in CHCl₃).

Following the general procedure, Compound **3n** was obtained as a colorless liquid (80 mg, 0.16 mmol, 80 %) ¹H NMR (400 MHz, CDCl₃) δ 6.91 – 6.82 (m, 2H), 6.80 (d, J = 8.4 Hz, 1H), 6.67 (dd, J = 8.3, 1.4 Hz, 1H), 6.46 (s, 1H), 6.02 (s, 1H), 5.65 (d, J = 8.9 Hz, 1H), 3.86 (s, 6H), 3.84 (s, 3H), 3.76 (s, 3H), 3.33 (dd, J = 17.9, 2.7 Hz, 1H), 2.92 (dd, J = 17.9, 9.7 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.72, 150.20, 149.50, 149.20, 133.17, 129.88, 120.52, 111.86, 111.11, 105.87, 105.82, 69.93, 62.44, 56.22, 56.14, 56.02, 53.53, 53.15, 30.66. HRMS (APCI-TOF) m/z calcd. for C₂₂H₂₄F₃NO₇SNa [M+Na]⁺ 526.1123; found 526.1119. IR (neat): v_{max}/cm⁻¹2956, 2923, 2851, 1715, 1465, 1389, 1224, 1190, 1026, 611. HPLC analysis (Chiralpak ID; n-Hexane/i-PrOH = 95/5, 0.9

ml/min, 254 nm): t_r (major) = 30.66 min, t_r (minor) = 32.99 min, 87:13 er. $[\alpha]_D^{30} = +15.10$ (c = 0.066 in CHCl₃).

Following the general procedure, Compound 4b was obtained as a colorless liquid (67.5 mg, 0.17 mmol, (85%)¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 8H), 7.05 (d, J = 7.1 Hz, 1H), 6.17 (s, 1H), 5.87 (d, J = 7.1 Hz, 1H), 5.8 J = 8.7 Hz, 1H), 3.39 (dd, J = 17.5, 2.7 Hz, 1H), 3.00 (dd, J = 17.5, 9.6 Hz, 1H), 2.52 (dq, J = 17.7, 7.3) Hz, 1H), 2.40 (dq, J = 17.7, 7.3 Hz, 1H), 1.10 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) & 207.90, 140.68, 138.92, 138.31, 129.06, 128.97, 128.88, 128.70, 127.75, 123.74, 123.37, 70.05, 62.60, 51.64, 36.63, 7.59. HRMS (ESI-MS) m/z calcd. for $C_{19}H_{17}NO_3F_3S$ [M-H]-396.0887; found 396.0912. IR (neat): v_{max}/cm⁻¹ 3036, 2980, 2941, 2856, 1715, 1602, 1496, 1460, 1392, 1153, 1051, 912. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 98/2, 0.9 ml/min, 254 nm): t_r (major) = 6.76 min, t_r(minor) = 7.42

min, 93:7 er. $[\alpha]_D^{30} = +4.0$ (c = 0.25 in CHCl₃).

Following the general procedure, Compound 4c was obtained as a colorless liquid (69 mg, 0.16 mmol, 84 %) ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 6H), 7.27 – 7.24 (m, 2H), 7.03 (d, *J* = 6.9 Hz, 1H), 6.14 (s, 1H), 5.85 (d, J = 8.9 Hz, 1H), 3.37 (dd, J = 17.7, 2.6 Hz, 1H), 2.97 (dd, J = 17.7, 9.8 Hz, 1H), 2.46 (dt, J = 17.7, 9.8 Hz), 2.46 (dt, J = 17.7, 9.8 Hz), 2.46 (J = 16.4, 7.4 Hz, 1H), 2.41 – 2.30 (m, 1H), 1.69 – 1.57 (m, 2H), 1.54 (s, 3H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 207.56, 140.73, 139.01, 138.35, 129.08, 128.97, 128.91, 128.72, 127.77, 123.75, 123.44, 70.05, 62.53, 52.06, 45.34, 17.19, 13.73. HRMS (APCI-TOF) m/z calcd. for C₂₀H₂₁F₃NO₃S [M+H]+ 412.1194; found 412.1197. IR (neat): v_{max}/cm⁻¹ 2961 2925, 2855, 1714, 1575, 1483, 1460, 1392, 1186, 1054, 897. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 98/2, 0.9 ml/min, 254 nm): t_r (major) = 6.08 min, t_r (minor) = 6.37 min, 98:2 er. $[\alpha]_D^{30}$ = +16.60 (c = 0.183 in CHCl₃).

Compound 4d

Compound 4e

%) ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.89 (m, 2H), 7.61 – 7.54 (m, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.44 -7.35 (m, 4H), 7.31 (ddd, J = 7.1, 4.2, 1.9 Hz, 4H), 7.06 (d, J = 4.4 Hz, 1H), 6.21 (s, 1H), 6.06 (d, J = 8.8 Hz, 1H), 3.94 (dd, J = 17.3, 2.6 Hz, 1H), 3.53 (dd, J = 17.3, 10.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 196.78, 140.72, 138.95, 138.37, 136.40, 133.82, 129.07, 128.97, 128.91, 128.82, 128.27, 127.99, 127.32, 123.83, 123.79, 70.07, 63.16, 48.37. HRMS (APCI-TOF) m/z calcd. for C₂₃H₁₉F₃NO₃S [M+H]⁺446.1038; found 446.1078. IR (neat): vmax/cm-13437, 2955, 2924, 2855, 1682, 1636, 1460, 1392, 1225, 1118, 1060, 733. HPLC analysis (Chiralpak AD-H; *n*-Hexane/*i*-PrOH = 99/1, 0.5 ml/min, 254 nm): t_r (major) = 15.40 min, $t_r(\text{minor}) = 13.55 \text{ min}$, 90:10 er. $[\alpha]_D^{30} = +30.00 \text{ (c} = 0.033 \text{ in CHCl}_3)$.

Following the general procedure, Compound 4d was obtained as a yellow liquid (66.7mg, 0.15 mmol, 75

Following the general procedure, Compound 4e was obtained as a pale yellow liquid (43.9 mg, 0.12 mmol, 60 %) ¹H NMR (500 MHz, CDCl₃) δ 7.55 (s, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 6.2 Hz, 5H), 7.05 (d, J = 4.8 Hz, 1H), 6.21 (s, 1H), 5.52 (s, 1H), 3.24 (d, J = 14.3 Hz, 1H), 3.02 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.86, 135.07, 130.17, 129.49, 129.26, 128.94, 128.78, 124.34, 122.77, 116.03, 70.73, 62.36, 26.39. ¹³C NMR (100 MHz, CDCl₃)δ139.25, 138.89, 135.07, 130.17, 129.51, 129.26, 128.95, 124.34, 122.79, 116.25, 70.83, 62.48, 26.14. HRMS (APCI-TOF) m/z calcd. for C₁₇H₁₄F₃N₂O₂S [M+H]⁺ 367.0728; found 367.0735. IR (neat): v_{max}/cm⁻¹ 3037, 2955, 2923, 2851, 2253, 1960, 1461, 1392, 1226, 1194, 1056, 612. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 90/10, 0.9 ml/min, 254 nm): t_r (major) = 14.74 min, t_r (minor) = 6.86 min, 90:10 er. $[\alpha]_D^{30} = +7.51$ (c = 0.133 in CHCl₃).

Compound 4f

Following the general procedure, Compound 4f was obtained as a pale yellow liquid (52.2 mg, 0.14 mmol, (65 %) ¹H NMR (400 MHz, CDCl₃) δ 7.34 (s, 1H), 7.22 (t, J = 7.2 Hz, 3H), 7.16 (d, J = 7.9 Hz, 2H), 6.93 (d, J = 7.2 Hz, 1H), 6.15 (s, 1H), 5.45 (s, 1H), 3.21 (dd, J = 16.8, 2.5 Hz, 1H), 2.99 (dd, J = 16.6, 7.3 Hz, 1H), 2.43 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.66, 139.12, 136.56, 136.13, 135.32, 131.11, 129.56, 128.65, 124.02, 123.06, 116.23, 70.46, 62.27, 26.34, 21.51, 21.26. HRMS (ESI-MS) m/z calcd. for C₁₉H₁₇F₃N₂O₂SNa [M+Na]⁺417.0861; found 417.0851. IR (neat): v_{max}/cm⁻¹3030, 2925, 2854, 2253, 1914, 1515, 1458, 1392, 1225, 1194, 1044, 823, 643. HPLC analysis (Chiralpak AD-H; *n*-Hexane/*i*-PrOH = 95/5, 0.9 ml/min, 254 nm): t_r (major) = 6.44 min, t_r (minor) = 7.46 min, 91:9 er. $[\alpha]_D^{30} = +3.0$ (c = 0.33 in CHCl₃).

Compound 4g

Following the general procedure, Compound 4g was obtained as colorless liquid (47.9 mg, 0.11 mmol, 56 %) ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.40 (dd, J = 8.3, 1.6 Hz, 1H), 7.37 – 7.25 (m, 4H), 6.95 (d, J = 7.9 Hz, 1H), 6.14 (s, 1H), 5.48 (s, 1H), 3.18 (dd, J = 17.1, 3.2 Hz, 1H), 3.08 (dd, J = 17.1, 6.4 Hz, 1H), 3.08 (dd, J = 17.1, 6.4 Hz, 1H), 3.18 (dd, J = 17. 1H).¹³C NMR (125 MHz, CDCl₃) δ 136.94, 136.65, 135.96, 135.68, 130.85, 130.39, 129.27, 125.55, $122.99, 115.68, 69.70, 62.13, 25.88. HRMS (ESI-MS) \, \text{m/z calcd. for } C_{19}H_{17}F_3N_2O_2SNa \, [\text{M+Na}]^+ \, 456.9768;$ found 456.9777. IR (neat): vmax/cm-13037, 2926, 2855, 2253, 1915, 1493, 1393, 1226, 1212. 1149, 1088, 626. HPLC analysis (Chiralpak AD-H; n-Hexane/i-PrOH = 95/5, 0.5 ml/min, 254 nm): t_r (major) = 22.60 min, $t_r(\text{minor}) = 20.89 \text{ min}$, 94:6 er. $[\alpha]_D^{30} = +10.0 \text{ (c} = 0.10 \text{ in CHCl}_3)$.

Compound 4h

Following the general procedure, Compound 4h was obtained as colorless liquid (57.8 mg, 0.12 mmol, 62 %)¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 3H), 7.95 (d, J = 8.1 Hz, 3H), 7.85 (dd, J = 19.1, 11.7 Hz, 11H), 7.73 (d, J = 7.9 Hz, 3H), 7.61 – 7.44 (m, 13H), 7.42 (d, J = 8.6 Hz, 3H), 6.52 (s, 3H), 5.70 (s, 3H), 3.34 (dd, J = 16.9, 3.5 Hz, 3H), 3.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 134.01, 133.58, 133.53, 133.03, 129.20, 128.48, 128.41, 128.18, 127.84, 127.39, 127.23, 127.02, 126.75, 125.43, 123.77, 122.34, 116.15, 70.41, 61.91, 26.69. HRMS (ESI-MS) m/z calcd. for C₂₅H₁₇F₃N₂O₂SNa [M+Na]⁺ 489.0861; found 489.0843. IR (neat): v_{max}/cm⁻¹ 3058, 2956, 2925, 2852, 2254, 1957, 1508, 1390, 1221, 1152, 1055, 649. HPLC analysis (Chiralpak AD-H; n-Hexane/i-PrOH = 98/2, 0.5 ml/min, 254 nm): t_r (major) = 58.05

min, $t_r(\text{minor}) = 52.65 \text{ min}$, 94:6 er. $[\alpha]_D^{30} = +40.0 \text{ (c} = 0.05 \text{ in CHCl}_3)$.

Following the general procedure, Compound 4i was obtained as a colorless liquid (62.5 mg, 0.13 mmol, 68 %) ¹H NMR (500 MHz, CDCl₃) δ 7.49 (t, J = 8.1 Hz, 3H), 7.36 – 7.26 (m, 6H), 7.12 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 6.19 (s, 1H), 5.84 (d, J = 6.6 Hz, 1H), 3.30 (dd, J = 14.7, 3.7 Hz, 1H), 2.85 (dd, J = 14.8, 9.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) & 166.90, 140.49, 138.14, 137.43, 129.16, 128.90, 128.80, 127.93, 124.80, 123.85, 123.59, 120.10, 70.25, 63.93, 46.38. HRMS (APCI-TOF) m/z calcd. for C₂₃H₂₀F₃N₂O₃S [M+H]+ 461.1147; found 461.1157. IR (neat): v_{max}/cm⁻¹ 2955, 2955, 2921, 2850, 1660, 1600, 1543, 1497, 1393, 1225, 1189, 1055, 696. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 90/10, 0.9 ml/min, 254 nm): t_r (major) = 9.62 min, t_r (minor) = 8.93 min, 90:10 er. $[\alpha]_D^{30}$ = +86.90 (c = 0.023 in CHCl₃).

Following the general procedure, Compound 4j was obtained as a colorless liquid (80 mg, 0.14 mmol, 70 %) ¹H NMR (500 MHz, CDCl₃) δ 7.48 (t, *J* = 9.0 Hz, 2H), 7.45 (s, 1H), 7.38 – 7.27 (m, 5H), 7.21 (d, J = 8.3 Hz, 2H), 7.16 (brs, 1H), 7.12 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H), 6.15 (s, 1H), 5.79 (s, 1H), 3.30 (dd, J = 14.4, 4.2 Hz, 1H), 2.80 (dd, J = 14.3, 8.9 Hz, 1H), 1.29 (s, 9H), 1.24 (s, 9H). ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \ \delta \ 166.98, 157.49, 152.62, 151.62, 150.03, 137.99, 137.63, 137.47, 137.29, 135.48, 125.62, 150.62, 150.62, 150.63, 137.99, 137.63, 137.47, 137.29, 135.48, 125.62, 150.62, 150.62, 150.63, 137.99, 137.63, 137.47, 137.29, 135.48, 125.62, 150.6$ 129.13, 127.41, 126.50, 125.76, 124.74, 123.30, 120.00, 69.82, 64.07, 47.02, 35.00, 34.67, 31.40, 31.35.HRMS (APCI-TOF) m/z calcd. for $C_{31}H_{36}F_3N_2O_3S$ [M+H]⁺ 573.2399; found 573.2405 IR (neat): v_{max}/cm⁻¹ 2959, 2925, 2868, 1660, 1601, 1544, 1498, 1378, 1225, 1188, 1059, 691. HPLC analysis (Chiralpak AD-H; *n*-Hexane/*i*-PrOH = 95/5, 0.9 ml/min, 254 nm): t_r (major) = 8.02 min, t_r (minor) = 6.28

min, 90:10 er. $[\alpha]_D^{30} = +40.00$ (c = 0.05 in CHCl₃).

Compound 4k

Following the general procedure, Compound 4k was obtained as a yellow liquid (59.5 mg, 0.12 mmol, 60 %) ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.1 Hz, 2H), 7.31 (dd, J = 15.3, 7.2 Hz, 2H), 7.27 – 7.18 (m, 4H), 7.13 (t, J = 7.3 Hz, 1H), 7.03 (dd, J = 9.6, 7.5 Hz, 1H), 6.94 (dd, J = 16.3, 8.0 Hz, 3H), 6.12 (s, 10.1), 6.12 (s, 10.1), 10.10 (s1H), 5.77 (d, J = 8.0 Hz, 1H), 3.27 (dd, J = 14.9, 3.0 Hz, 1H), 2.88 (dd, J = 15.1, 9.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) & 166.52, 164.59, 164.18, 162.09, 161.69, 140.17, 137.20, 136.08, 133.56, 130.06, 129.98, 129.19, 125.35, 125.26, 124.98, 120.11, 117.12, 116.89, 115.99, 115.77, 111.23, 110.98, 69.14, 63.53, 45.60. HRMS(ESI-MS) m/z calcd. for C₂₃H₁₇F₃N₂O₃SNa [M+Na]⁺519.0773; found 519.0778. IR (neat): v_{max}/cm⁻¹ 2919, 2956, 2851, 1660, 1602, 1547, 1510, 1444, 1394, 1225, 1192, 1055, 617. HPLC analysis (Chiralpak IC-3; n-Hexane/i-PrOH = 95/5, 0.9 ml/min, 254 nm): t_r (major) = 12.13 min, t_r (minor) = 10.69, 86:14 er. $[\alpha]_D^{30}$ = +12.00 (c = 0.25 in CHCl₃).

Compound 41

Following the general procedure, Compound 41 was obtained as a colorless liquid (70.3 mg, 0.14 mmol, 72 %)¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.0 Hz, 2H), 7.31 (dd, J = 14.8, 7.1 Hz, 3H), 7.11 (dt, J = 14.8, 7.1 (dt, J = 14.23.0, 8.5 Hz, 6H), 6.92 (d, J = 7.8 Hz, 1H), 6.11 (s, 1H), 5.75 (d, J = 7.1 Hz, 1H), 3.24 (dd, J = 14.7, 3.4 Hz, 1H), 5.75 (d, J = 7.1 Hz, 1H), 3.24 (dd, J = 14.7, 3.4 Hz, 1H), 5.75 (d, J = 7.1 Hz, 1H 1H), 2.83 (dd, J = 14.8, 8.7 Hz, 1H), 2.33 (s, 3H), 2.30 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 167.01, 139.24, 138.62, 138.37, 137.78, 137.44, 135.47, 130.13, 129.52, 129.12, 127.89, 124.74, 123.79, 123.53, 124.74, 123.79, 123.54, 124.74, 125.120.13, 69.91, 63.77, 46.54, 21.49, 21.23. HRMS(ESI-MS) m/z calcd. for C₂₅H₂₃F₃N₂O₃SNa $[M+Na]^{+}511.1279; found 511.1260 \ IR \ (neat): v_{max}/cm^{-1}2955, 2923, 2851, 1655, 1600, 1548, 1443, 1378, 1283,$ 1225, 1188, 1055, 652. HPLC analysis (Chiralpak AD-H; *n*-Hexane/*i*-PrOH = 95/5, 0.9 ml/min, 254 nm): *t*_r (major) = 12.47 min, t_r (minor) = 10.62 min, 91:9 er. $[\alpha]_D^{30}$ = +7.69 (c = 0.13 in CHCl₃).

4. NMR spectra of Diarylmethyltriflamides 1

5. NMR spectra of compound 3 and 4

l

400 MHz, CDCI₃

6. HPLC Spectra of Compounds 3 and 4

HPLC Chromatogram of Compound 3a (Chiral)

1 2

7.043 MM	0.1357	52.66973	6.47013

6.218 MM 0.1403 1009.24139 119.89330

48

95.0401

4.9599

HPLC Chromatogram of Compound 3b (Racemic)

HPLC Chromatogram of Compound 3b (Chiral)

HPLC Chromatogram of Compound 3c (Racemic)

HPLC Chromatogram of Compound 3c (Chiral)

HPLC Chromatogram of Compound 3e (Racemic)

HPLC Chromatogram of Compound 3e (Chiral)

HPLC Chromatogram of Compound 3f (Racemic)

HPLC Chromatogram of Compound 3f (Chiral)

HPLC Chromatogram of Compound 3g (Chiral)

HPLC Chromatogram of Compound 3h (Racemic)

HPLC Chromatogram of Compound 3h (Racemic)

HPLC Chromatogram of Compound 3i (Racemic)

HPLC Chromatogram of Compound 3i (chiral)

HPLC Chromatogram of Compound 3j (Racemic)

HPLC Chromatogram of Compound 3j (Chiral)

HPLC Chromatogram of Compound 3k (Racemic)

HPLC Chromatogram of Compound 3k (chiral)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.211	MM	0.5340	4.49417e4	1402.58838	92.3579
2	24.574	MM	0.5812	3718.68262	106.64301	7.6421

HPLC Chromatogram of Compound 31 (Racemic)

HPLC Chromatogram of Compound 31 (Chiral)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.783	MM	0.1904	2465.45923	215.80150	90.2267
2	11.422	MM	0.1983	267.05786	22.45020	9.7733

HPLC Chromatogram of Compound 3m (Racemic)

HPLC Chromatogram of Compound 3m (Chiral)

HPLC Chromatogram of Compound 3n (Racemic)

HPLC Chromatogram of Compound 3n (Chiral)

HPLC Chromatogram of Compound 4b (Racemic)

HPLC Chromatogram of Compound 4b (Chiral)

HPLC Chromatogram of Compound 4c (Racemic)

HPLC Chromatogram of Compound 4c (Chiral)

1	13.746	MM	0.4736	3.74193e4	1316.88147	49.4597
2	15.364	MM	0.5754	3.82368e4	1107.56274	50.5403

HPLC Chromatogram of Compound 4d (Chiral)

Реак	Retlime	туре	ωιατη	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.558	MM	0.4276	7225.92334	281.66183	9.9544
2	15.406	MM	0.7024	6.53643e4	1550.87988	90.0456

HPLC Chromatogram of Compound 4e (Racemic)

HPLC Chromatogram of Compound 4e (Chiral)

HPLC Chromatogram of Compound 4f (Racemic)

HPLC Chromatogram of Compound 4f (chiral)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.770	MM	0.9905	9282.55762	156.18779	49.9335
2	24.001	MM	1.3959	9307.27734	111.12739	50.0665

HPLC Chromatogram of Compound 4g (Chiral)

HPLC Chromatogram of Compound 4h (Racemic)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	52.938	MM	2.4574	9.46233e4	641.75934	47.6211
2	58.392	MM	2.8673	1.04077e5	604.96198	52.3789

HPLC Chromatogram of Compound 4h (Chiral)

HPLC Chromatogram of Compound 4i (Racemic)

HPLC Chromatogram of Compound 4i (Chiral)

HPLC Chromatogram of Compound 4j (Racemic)

HPLC Chromatogram of Compound 4j (Chiral)

HPLC Chromatogram of Compound 4k (chiral)

HPLC Chromatogram of Compound 4l (Racemic)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.289	MM	0.5499	1.25662e4	380.89542	50.4109
2	12.189	BB	0.5659	1.23613e4	319.09689	49.5891

HPLC Chromatogram of Compound 41 (chiral)

7. Crystallographic Data of 3a
Table 1

Identification code	UPS_UK_1163_0m_a
Empirical formula	C18H16F3NO3S
Formula weight	383.38
Temperature	124 K
Crystal system	orthorhombic
Space group	P212121
Unit cell dimensions	a = 10.274(2) Å; $\alpha = 90 ^{\circ}$
	b = 11.716(4) Å;
	$\beta = 90^{\circ}$
	c = 14.422(4) A; $y = 90^{\circ}$
Volume	1736.0(8) Å ³
Z	4
Density (calculated)	1.467 g/cm ³
Absorption coefficient	2.115 mm ⁻¹
F(000)	792.0
Crystal size	$0.343\times0.32\times0.12\ mm^3$
Radiation	$Cu K\alpha (\lambda = 1.54178)$
2Θ range for data collection	9.726 to 133.06
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -17 \le l \le 17$
Reflections collected	40412
Independent reflections	3009 [Rint = 0.0636, Rsigma = 0.0305]
Completeness of theta = 28.310°	98.00 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.508 and 0.776
Refinement method	Full-matrix least-square on F ²
Data/restraints/parameters	3009/0/237
Goodness-of-fit on F ²	1.063
Final R indexes [I>=2σ (I)]	R1 = 0.0317, wR2 = 0.0847
Final R indexes [all data]	R1 = 0.0318, $wR2 = 0.0848$
Largest diff. peak/hole	0.22/-0.30 Å ⁻³

Table 2 Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for UPS_UK_1163_0m_a. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom	Х	У	Z	U(eq)				
S11	9912.6(5)5150.5(5)5236.7(4)23.3(2)							
013	10666.2	(16)	5142.8(1	6)	4406.9(1	12)	31.0(4)	
012	10389.7	(17)	5649.5(1	6)	6073.2(1	12)	32.6(4)	
F17	10898.0	(17)	3134.3(1	5)	5570.6(1	14)	47.2(5)	
F15	9166(2)	3498.7(1	16)	6339.7(1	3)	54.1(5)		
F16	9048(2)	3079.8(1	14)	4887.1(1	4)	54.0(5)		
09	7066(2)	6670.0(1	16)	7604.5(1	2)	43.4(5)		
N2	8496.8(1	9)	5642.3(1	17)	5023.8(1	12)	22.1(4)	
C3A	6415(2)	5243.1(1	19)	4489.6(1	5)	22.6(5)		
C18	7998(2)	6234(2)	3386.7(1	4)	21.8(5)			
C3	7797(2)	5333.7(1	19)	4138.4(1	4)	21.7(5)		
C21	8428(2)	7885(2)	2018.1(1	6)	28.6(6)			
C23	8888(2)	6035(2)	2680.7(1	17)	26.5(5)			
C7A	6294(2)	5661.8(1	19)	5388.3(1	5)	22.1(5)		
C22	9108(3)	6857(2)	1998.7(1	17)	30.6(6)			
C9	7408(2)	7439(2)	7100.1(1	5)	25.6(5)			
C19	7307(2)	7265(2)	3394.0(1	5)	25.7(5)			
C4	5342(2)	4838(2)	4008.7(1	6)	27.5(5)			
C6	3997(2)	5331(2)	5332.7(1	8)	30.5(6)			
C7	5077(2)	5737(2)	5812.8(1	6)	26.6(5)			
C20	7525(2)	8080(2)	2715.1(1	6)	27.7(5)			
C1	7600(2)	5965(2)	5800.9(1	5)	22.6(5)			
C8	7770(2)	7217(2)	6088.0(1	5)	25.4(5)			
C5	4131(2)	4870(2)	4445.9(1	8)	30.4(5)			
C10	7507(3)	8652(2)	7429.7(1	17)	31.4(6)			
C14	9728(2)	3620(2)	5528.1(1	8)	30.8(6)			

Table 3 Anisotropic Displacement Parameters ($Å2 \times 103$) for UPS_UK_1163_0m_a. The Anisotropic displacement factor exponent takes the form:

 $-2\pi 2[h2a*2U11+2hka*b*U12+...].$

Atom	U11	U22	U33	U23	U13	U12
S11	17.5(3)	31.7(3)	20.8(3)	-0.1(2)	-0.1(2)	-1.4(2)
O13	22.2(8)	43.9(10)	26.9(8)	1.9(8)	6.3(7)	1.7(8)
012	25.6(9)	43.3(10)	29.0(9)	-5.3(8)	-8.0(7)	-3.1(7)
F17	38.8(9)	45.8(9)	57.0(11)	7.7(8)	-5.0(8)	14.9(7)
F15	62.5(12)	50.9(10)	48.9(10)	18.6(8)	21.7(10)	3.2(9)
F16	65.6(12)	32.8(8)	63.6(12)	3.7(8)	-31.6(10))-8.0(8)
O9	73.1(15)	35.8(10)	21.1(9)	0.8(8)	7.7(10)	-4.1(10)
N2	20.4(10)	29.7(10)	16.1(9)	-1.6(7)	0.2(8)	0.7(8)
C3A	22.6(11)	26.2(11)	19.1(10)	3.6(9)	-0.8(9)	-0.4(9)
C18	20.1(11)	29.7(11)	15.4(10)	-1.2(9)	-1.1(9)	-1.9(9)
C3	21.5(11)	27.7(11)	15.9(10)	-2.7(9)	-0.8(8)	-1.0(9)
C21	31.2(13)	35.6(13)	19.0(11)	2.6(9)	0.0(10)	-3.6(10)
C23	25.1(12)	31.5(12)	22.8(12)	-1.0(9)	2.1(10)	2.8(9)
C7A	21.3(11)	26.5(11)	18.6(11)	2.1(9)	-0.8(9)	1.0(9)
C22	28.4(13)	40.5(13)	22.8(12)	0.9(11)	6.5(10)	0.9(11)
C9	27.0(12)	32.6(12)	17.4(10)	-0.7(11)	-0.7(10)	2.1(10)
C19	26.0(12)	33.1(12)	17.8(10)	-2.0(9)	1.5(9)	2.5(10)
C4	26.7(12)	33.6(13)	22.4(11)	-1.3(9)	-2.5(9)	-3.3(10)
C6	20.1(11)	39.2(13)	32.1(13)	10.6(11)	2.6(9)	1.1(10)
C7	24.7(12)	34.1(12)	21.2(11)	4.9(9)	1.5(10)	3.0(10)
C20	27.7(13)	30.7(11)	24.8(12)	-0.2(10)	-1.4(11)	2.3(10)
C1	21.5(11)	29.7(11)	16.5(10)	-0.2(8)	1.0(9)	-0.5(9)
C8	27.8(12)	30.6(12)	17.8(10)	-2.0(9)	4.1(10)	-1.6(9)
C5	21.1(11)	37.6(13)	32.6(12)	5.1(11)	-4.1(10)	-3.7(10)
C10	38.2(15)	35.1(13)	20.8(11)	-6.8(11)	-0.8(10)	-0.5(11)
C14	26.0(13)	37.2(13)	29.1(12)	3.7(11)	-3.2(11)	1.1(10)

Table 4 Bond Lengths for UPS_UK_1163_0m_a.

Atom At	om Len	gth/Å	Atom At	om Leng	gth/Å	
S11	013	1.4254(1	7)	C18	C23	1.388(3)
S11	012	1.4274(1	8)	C18	C19	1.401(3)

S11	N2	1.594(2) C21	C22	1.393(4)
S11	C14	1.851(3) C21	C20	1.386(3)
F17	C14	1.331(3) C23	C22	1.396(4)
F15	C14	1.313(3) C7A	C7	1.395(3)
F16	C14	1.321(3) C7A	C1	1.510(3)
09	C9	1.210(3) C9	C8	1.528(3)
N2	C3	1.510(3) C9	C10	1.502(3)
N2	C1	1.499(3) C19	C20	1.386(3)
C3A	C3	1.511(3) C4	C5	1.395(3)
C3A	C7A	1.391(3) C6	C7	1.392(4)
C3A	C4	1.386(3) C6	C5	1.395(4)
C18	C3	1.527(3) C1	C8	1.535(3)

Table 5 Bond Angles for UPS_UK_1163_0m_a.

Atom Atom Atom Angle/° Atom Atom Atom Angle/°

013	S11	012	121.71(11)	C7	C7A	C1	127.49(19)
013	S11	N2	109.64(10)	C21	C22	C23	120.1(2)
013	S 11	C14	103.89(11)	O9	C9	C8	121.2(2)
012	S11	N2	109.15(10)	09	C9	C10	122.3(2)
012	S11	C14	103.89(12)	C10	C9	C8	116.5(2)
N2	S11	C14	107.48(11)	C20	C19	C18	120.4(2)
C3	N2	S11	120.73(15)	C3A	C4	C5	118.3(2)
C1	N2	S11	120.51(15)	C7	C6	C5	120.6(2)
C1	N2	C3	113.58(17)	C6	C7	C7A	118.3(2)
C7A	C3A	C3	111.8(2) C19	C20	C21	120.5(2	2)
C4	C3A	C3	127.1(2) N2	C1	C7A	101.07	(17)
C4	C3A	C7A	121.1(2) N2	C1	C8	111.90	(19)
C23	C18	C3	119.6(2) C7A	C1	C8	115.6(2	2)
C23	C18	C19	119.0(2) C9	C8	C1	113.11	(19)
C19	C18	C3	121.4(2) C4	C5	C6	120.9(2	2)
N2	C3	C3A	100.43(16)	F17	C14	S11	109.40(18)
N2	C3	C18	111.74(18)	F15	C14	S11	110.62(18)

C3A	C3	C18	114.45(19)	F15	C14	F17 108.1(2)
C20	C21	C22	119.5(2) F15	C14	F16	109.8(2)
C18	C23	C22	120.5(2) F16	C14	S11	111.07(17)
C3A	C7A	C7	120.7(2) F16	C14	F17	107.8(2)
C3A	C7A	C1	111.8(2)			

Table 6 Torsion Angles for UPS_UK_1163_0m_a.

A B C D Angle/° A B C D Angle/° S11 N2 C3 C3A 142.96(16) C3 C3A C4 C5 -177.3(2) S11 N2 C3 C18 -95.3(2) C3 C18 C23 C22 -178.5(2) S11 N2 C1 C7A -146.37(16) C3 C18 C19 C20 178.7(2) S11 N2 C1 C8 90.0(2) C23 C18 C3 N2 101.7(2) O13 S11 N2 C3 39.5(2) C23 C18 C3 C3A-145.0(2) O13 S11 N2 C1 -167.55(17) C23 C18 C19 C20 -1.1(3) O13 S11 C14 F17 54.3(2) C7A C3A C3 N2 10.8(2) O13 S11 C14 F15 173.24(17) C7A C3A C3 C18-109.1(2) O13 S11 C14 F16 -64.5(2) C7A C3A C4 C5 0.6(4) O12 S11 N2 C3 175.11(16) C7A C1 C8 C9 92.1(2) O12 S11 N2 C1 -31.9(2) C22 C21 C20 C19 0.6(4) O12 S11 C14 F17 -73.9(2) C19 C18 C3 N2 -78.0(3) O12 S11 C14 F15 45.0(2) C19 C18 C3 C3A35.3(3) O12 S11 C14 F16 167.23(19) C19 C18 C23 C22 1.3(3) O9 C9 C8 C1 2.1(3) C4 C3A C3 N2 -171.2(2) N2 S11 C14 F17 170.48(17) C4 C3A C3 C18 69.0(3) N2 S11 C14 F15 -70.60(19) C4 C3A C7A C7 -3.2(3) N2 S11 C14 F16 51.6(2) C4 C3A C7A C1 175.4(2) N2 C1 C8 C9 -152.93(19) C7 C7A C1 N2 177.4(2) C3A C7A C7 C6 3.2(3) C7 C7A C1 C8 -61.6(3) C3A C7A C1 N2 -1.1(2) C7 C6 C5 C4 -2.0(4) C3A C7A C1 C8 119.9(2) C20 C21 C22 C23 -0.4(4) C3A C4 C5 C6 2.0(4) C1 N2 C3 C3A-11.7(2) C18 C23 C22 C21 -0.5(4) C1 N2 C3 C18 110.0(2)

C18	C19	C20	C21	0.2(4)	C1 (C7A	C7	C6	-175.2(2)
C3	N2	C1	C7A	.8.4(2)	C5	C6	C7	C7A	-0.6(3)
C3	N2	C1	C8	-115.2(2)	C10	C9	C8	C1	-178.2(2)
C3	C3A	A C74	A C7	175.0(2)	C14	S11	N2	C3	-72.82(19)
C3	C3A	A C74	A C1	-6.5(3)	C14	S11	N2	C1	80.14(19)

Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for UPS_UK_1163_0m_a.

Atom	х	У	Z		U(eq)
Н3	8101		4573	3911	26
H21	8580		8449	1557	34
H23	9349		5333	2662	32
H22	9724		6716	1521	37
H19	6684		7406	3867	31
H4	5429		4547	3397	33
H6	3160		5368	5611	37
H7	4987		6058	6414	32
H20	7053		8777	2728	33
H1	7774		5462	6347	27
H8A	8688		7443	5988	31
H8B	7220		7702	5685	31
Н5	3389		4574	4136	37
H10A	6934		9137	7056	47
H10B	8408		8917	7366	47
H10C					
Experin	nental	7245		8695	8082