# Palladium Catalyzed Asymmetric Desymmetrization Approach to Enantioenriched 1,3-disubstituted Isoindolines 

Dattatraya H. Dethe*, Vimlesh kumar and Manmohan Shukla
Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur - 208016, India. Tel: + 91-512-2596537, fax: +91-512-2597436.

## Contents

1. General information .....  3
2. Experimental procedure for the preparation of starting material
2.1 General procedure for preparation of Diarylmethyltriflamides ..... 4
2.2 General procedure for the synthesis of Diarylmethylamine. ..... 4-5
2.3 General procedure for preparation of substrates substituted with F , and Cl .....  . 5
2.4 Examples with spectral data ..... 5-6
3. Experimental procedure and characterization of products
3.1 General procedure for $\mathrm{Pd}(\mathrm{II})$-Catalysed racemic synthesis of 1,3 disubstituted isoindoline ..... 6
3.2 General procedure for $\operatorname{Pd}$ (II)-Catalysed enantioselective synthesis of 1,3 disubstituted isoindoline ..... 6
3.3 Gram scale synthesis of (+) enantiomer of 1,3 disubstituted isoindoline ..... 7
3.4 Gram scale synthesis of (-) enantiomer of 1,3 disubstituted isoindoline ..... 7-8
3.5 Deuterium labelling experiment ..... 8-9
3.6 Detection of intermediate D ..... 10
3.7 Examples with spectral data ..... 10-14
4. NMR spectra of starting material 1 ..... 15-22
5. NMR spectra of compounds 3 and 4 ..... 23-47
6. HPLC spectra of compounds 3 and 4 ..... 48-72
7. Crystallographic Data of 3a ..... 73-79

## 1. General Information

General Aspects: Experiments involving moisture and air-sensitive components were performed in oven-dried glassware. Commercial solvents and reagents were used without further purification unless otherwise noted. Yields refer to chromatographically pure compounds unless otherwise stated. Reactions were monitored by thinlayer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F-254) using UV light as a visualizing agent and a p-anisaldehyde or ninhydrin stain, and heat as developing agents. Merck silica gel (particle size 100-200 and 230-400 mesh) was used for flash column chromatography. Neat compounds were used for record IR spectra. NMR spectra were recorded on either a Bruker Avance $400\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100 \mathrm{MHz}\right)$, Bruker Avance $500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125 \mathrm{MHz}\right)$, or JEOL DELTA (ECX) $500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125 \mathrm{MHz}\right)$. Mass spectrometric data were obtained using Agilent-Premier-APCI-MS instruments and IR data recorded from PerkinElmer, FT-IR spectrometer. Optical rotations were measured using a Polarimeter (AUTOPOL II) at $28{ }^{\circ} \mathrm{C}$. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}$, $\mathrm{spt}=$ septet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of a doublet of a doublet, $\mathrm{dt}=$ doublet of a triplet, $\mathrm{td}=$ triplet of a doublet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad .

## Experimental procedure for preparation of starting material:

### 2.1 General procedure for preparation of Diarylmethyltriflamides. ${ }^{3}$



To a stirred solution of diarylmethylamine ( $5 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane ( 20 mL ) was added triethylamine ( $6 \mathrm{mmol}, 1.2$ equiv) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen. After stirring for 5 min at $-78{ }^{\circ} \mathrm{C}$, trifluoromethanesulfonic anhydride ( $5.5 \mathrm{mmol}, 1.1$ equiv.) was added dropwise and the mixture was stirred for 1 h at the same temperature before being quenched by water ( 20 mL ). The organic layer was separated and the aqueous layer was extracted with dichloromethane ( $10 \mathrm{~mL} \times 2$ ). The combined organic phase was washed with brine ( 20 mL ) and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and column chromatography on silica gel (ethyl acetate $/$ hexane $=1: 20$ as eluant) afforded corresponding trifluoromethanesulfonamide.

### 2.2 General procedure for preparation of diarylmethylamines. ${ }^{1}$



To a stirred solution of Mg (1.1 equiv), $\mathrm{I}_{2}$ (catalytic amount) in anhydrous THF ( 20 ml ) was added arylbromide ( 1.0 equiv.) dropwise. The resulting solution was stirred for another 1 h at room temperature. Then this solution was added dropwise into corresponding arylnitrile in THF ( 10 ml ) at room temperature. The resulting mixture was heated to reflux for 12 h and then allowed to cool to room temperature and then to $0^{\circ} \mathrm{C}$. To this mixture was transferred a suspension of $\mathrm{LiAlH}_{4}(20 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ via cannula. The ice bath was then removed, and the reaction mixture was heated to reflux, which was maintained for 12 h . Upon completion, the mixture was cooled to room temperature, and carefully quenched by slow addition of water ( 5 ml ), The resulting slurry was filtered through a celite pad and washed with DCM until no amine was left. The combined organic layer was washed with sat. aq. NaCl and concentrated under reduced pressure to give the crude amine, which could be used directly in the next step without purification. And the corresponding trifluoromethane sulfonamides $\mathbf{1 a}, \mathbf{1 c}, \mathbf{1 h}$, $\mathbf{1 j}, \mathbf{1 k}, \mathbf{1 1}, \mathbf{1 m}$ and $\mathbf{1 n}$ could be synthesized using the same protocol shown above.

### 2.3 General procedure for preparation of biarylamine substituted with $\mathbf{F}$ and $\mathbf{C l} .^{1}$



To a 25 ml round bottom flask has added the ketone ( 1.5 mmol ), hydroxylamine hydrochloride ( $7.5 \mathrm{mmol}, 0.52$ g ), pyridine ( 1 ml ), and $\mathrm{EtOH}(5 \mathrm{ml})$. The resulting solution was heated in an oil bath to reflux for 6 h . After completion of the reaction, the solvent was removed in vacuo and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}(1: 1)$. The aqueous layer was extracted with EtOAc twice, and the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation afforded the crude oxime, which could be used directly into the next step without purification.


To a stirred suspension of oxime ( 3 mmol ) in $\mathrm{EtOH}(4 \mathrm{ml})$ and ammonia solution (ammoniumhydroxide solution) $(16 \mathrm{ml})$ was added $\mathrm{NH}_{4} \mathrm{OAc}(1.5 \mathrm{mmol}, 0.12 \mathrm{~g})$, followed by portion-wise addition of zinc powder ( 15.0 mmol , 0.98 g ). The mixture was heated to $50^{\circ} \mathrm{C}$ in an oil bath for 1 h and then refluxed for 10 h . The mixture was cooled to room temperature, diluted with 20 ml of EtOAc , stirred for 30 min , and filtered through filter paper. The filtrate was transferred to a separation funnel. The organic layer was collected, and the aqueous layer was extracted with $\mathrm{EtOAc}(2 \times 20 \mathrm{ml})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude amine. And the corresponding trifluoromethanesulfonamides $\mathbf{1 d}$ and $\mathbf{1 e}$ could be synthesized using the same protocol shown above.

Note- Compounds $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 f}, \mathbf{1 g}$ and $\mathbf{1 i}$ are reported in literature ${ }^{2,3}$.

## References:

1. Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429.
2. Chu, L.; Wang, X.-C.; Moore, C. E.; Rheingold, A. L.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 16344.
3. Vidal, X.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2019, 141, 1862.

### 2.4 Examples with data.



Compound $\mathbf{1 c}$ was obtained as a pale yellow liquid ( $1.28 \mathrm{~g}, 3.47 \mathrm{mmol}, 83 \%)^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.02(\mathrm{~m}, 8 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{brs}, 1 \mathrm{H}) 2.64(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.22(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 144.46,137.18,128.48,127.20,119.57(\mathrm{q}, J=321.25 \mathrm{~Hz}$ ), 62.24, 28.55, 15.46. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$ [M] 371.1167 ; found 371.1166. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3300,2958,2921,2852,1604,1464,1370,1390,1224,1182,1054$, 603.
Compound 1d
Compound 1d was obtained as a colorless liquid ( $1.29 \mathrm{~g}, 3.66 \mathrm{mmol}, 80 \%)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.21(\mathrm{dd}, J=7.7,5.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.10-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.09(\mathrm{brs}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz ,


Compound 1h


Compound $\mathbf{1 j} \quad$ Compound $\mathbf{1} \mathbf{j}$ was obtained as a white solid ( $1.0 \mathrm{~g}, 2.15 \mathrm{mmol}, 72 \%){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 $7.60(\mathrm{ddd}, J=9.4,7.2,1.1 \mathrm{~Hz}, 8 \mathrm{H}), 7.44(\mathrm{dd}, J=10.8,4.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.96(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.46,140.25,138.55$, 128.96, 127.81, 127.73, 127.18, $119.59(\mathrm{q}, J=321.25 \mathrm{~Hz}$ ), HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]+467.1167$; found 467.1164. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3308,3031,2925,1600,1487$, 1374, 1230, 1144, 1039, 1007, 764.


Compound $1 \mathbf{k}$ was obtained as a white solid ( $996 \mathrm{mg}, 2.40 \mathrm{mmol}, 68 \%$ ) ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.86-7.79(\mathrm{~m}, 6 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.88,133.22,133.09,129.19$, $128.28,127.83,126.85,126.45,124.95,119.61(\mathrm{q}, J=321.25 \mathrm{~Hz}), 62.82$. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 415.0854$; found 415.0856. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3306,3058$, 2927, 2250, 1601, 1508, 1428, 1374, 1198, 1230, 1198, 1046, 609.



Compound 1m


Compound 1n


Compound $\mathbf{1 l}$ was obtained as a white solid ( $1.1 \mathrm{~g}, 2.96 \mathrm{mmol}, 74 \%$ ) ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.02(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.45(\mathrm{~d}, J=$ $247.12 \mathrm{~Hz}), 138.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 132.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 125.42(\mathrm{~d}, J=16.38 \mathrm{~Hz}), 122.49$, $119.11(\mathrm{q}, J=321.26 \mathrm{~Hz}) 113.95(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 61.28,14.34 . \mathrm{HRMS}$ (APCI-TOF) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]+379.0665$; found 379.0668. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3300,2957,2928,1991$, 1627, 1584, 1510, 1454, 1230, 1198, 1052, 969, 633.

Compound $\mathbf{1 m}$ was obtained as a pale yellow liquid $(1.01 \mathrm{~g}, 2.50 \mathrm{mmol}, 34 \%){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{~s}$, $1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.61,131.73,129.46$, 127.33, 125.62, 109.93, 61.83, 55.43, 16.41. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$ [M-H]+402.0992; found 402.1008. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 343,2954,2854,2836,2060,1609,1503$, 1464, 1375, 1253, 1131, 1035, 620.

## 3. Experimental procedure and characterization of products

### 3.1 General procedure for Pd(II)-Catalysed Racemic Synthesis of $\mathbf{1 , 3}$ disubstituted isoindoline



A 5 mL vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(79.6 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv $)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), toluene ( 3.0 mL ) and then the reaction mixture was stirred at room temperature for 10 min under a nitrogen atmosphere. Then diarylmethyltriflamide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv) and activated olefin $\mathbf{2}(0.3 \mathrm{mmol}$, 1.5 equiv) were added into the solution in sequence. The vial was sealed under nitrogen and heated to $60^{\circ} \mathrm{C}$ (using an oil bath) with stirring for 24 h . After cooling down, the reaction mixture was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography.

### 3.2 General procedure for $\mathbf{P d}(\mathbf{I I})$-Catalysed Enantioselective Synthesis of $\mathbf{1 , 3}$ disubstituted isoindoline



A 5 mL vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(79.6 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv $)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $97.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), Cbz-L-Phe-OH ( $12 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.20$ equiv), toluene ( 2.0 mL ), and then the reaction mixture was stirred at room temperature for 10 min under a nitrogen atmosphere. Then diarylmethyltriflamide $\mathbf{1 a}$ ( $0.20 \mathrm{mmol}, 1.0$ equiv) and activated olefin $\mathbf{2}(0.3 \mathrm{mmol}, 1.5$ equiv) were added into the solution in sequence. The vial was sealed under nitrogen and heated to $60^{\circ} \mathrm{C}$ (using an oil bath) with stirring for 24 h . After cooling down, the reaction mixture
was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography.

### 3.3 Gram scale reaction for synthesis of (+) enantiomer of $\mathbf{1 , 3}$ disubstituted isoindoline



A 50 mL screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(72 \mathrm{mg}, 0.32 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.27 \mathrm{~g}, 6.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.04 \mathrm{~g}, 4.80 \mathrm{mmol} 1.5$ equiv), Cbz-L-Phe-OH ( $127 \mathrm{mg}, 0.4 \mathrm{mmol}, 20 \mathrm{~mol} \%$ ), toluene ( 20 mL ) and then the reaction mixture was stirred at room temperature for 30 min under a nitrogen atmosphere. Then diarylmethyltriflamides $\mathbf{1 a}$ ( $3.2 \mathrm{mmol}, 1.0$ equiv) and methyl vinyl ketone $\mathbf{2 a}$ ( $4.8 \mathrm{mmol}, 1.5$ equiv) were added into the solution in sequence. The vial was sealed under nitrogen and heated to $60^{\circ} \mathrm{C}$ (using an oil bath) with stirring for 24 h . After cooling down, the reaction mixture was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography to afford desired product $\mathbf{3 a}(1.04 \mathrm{~g}, 2.7 \mathrm{mmol}, 85 \%)$. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i$-PrOH $=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=5.2 \mathrm{~min}, t_{r}($ minor $)=5.85 \mathrm{~min}, 94: 6 \mathrm{er}$.


| Peak |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RetTime Type | Width | Area | Height | Area |
| [min] | [min] | [mAU*s] | [mAU] | $\%$ |

### 3.4 Gram scale synthesis of (-) enantiomer of 1,3 disubstituted isoindoline



A 50 mL screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(72 \mathrm{mg}, 0.32 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.27 \mathrm{~g}, 6.4 \mathrm{mmol}, 2.1$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.04 \mathrm{~g}, 4.80 \mathrm{mmol} 1.5$ equiv), Cbz-D-Phe-OH ( $127 \mathrm{mg}, 0.4 \mathrm{mmol}, 20 \mathrm{~mol} \%$ ), toluene ( 20 mL ) and then the reaction mixture was stirred at room temperature for 30 min under a nitrogen atmosphere. Then diarylmethyltriflamides 1a ( $3.2 \mathrm{mmol}, 1.0$ equiv) and methyl vinyl ketone $\mathbf{2 a}$ ( $4.8 \mathrm{mmol}, 1.5$ equiv) were added into the solution in sequence. The vial was sealed under nitrogen and heated to $60^{\circ} \mathrm{C}$ (using an oil bath) with stirring for 24 h . After cooling down, the reaction
mixture was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography to afford desired product ent-3a $(980 \mathrm{mg}, 2.56 \mathrm{mmol}, 80 \%)$. HPLC analysis (Chiralpak IC- 3 ; $n$-Hexane $/ i$ $\operatorname{PrOH}=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=7.51 \mathrm{~min}, t_{r}($ minor $)=6.36 \mathrm{~min}, 4: 96 \mathrm{er}$.
DAD1 B, Sig=254,4 Ref=off (C:ICHEM32111DATAIVIMLESHIVK1318 IC-3 5\% 0.9 ML MIN.D)


| Peak \# | RetTime [min] | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.363 | MM | 0.1357 | 261.24463 | 32.08454 | 3.8056 |
| 2 | 7.511 | MM | 0.2263 | 6603.45459 | 486.28693 | 96.1944 |

### 3.5 Deuterium labelling experiment.



A 10 mL screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(79.6 \mathrm{mg}, 0.40 \mathrm{mmol}$, 2.0 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $97.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), Cbz-L- $\mathrm{Phe}-\mathrm{OH}(12 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.20$ equiv), toluene ( 2.0 mL ) and then the reaction mixture was stirred at room temperature for 10 min under a nitrogen atmosphere. Then diarylmethyltriflamides $1 \mathbf{1 a}\left(0.20 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{D}_{2} \mathrm{O}(3.0 \mathrm{mmol}, 15$ equiv) were added into the solution in sequence. The vial was sealed under nitrogen atmosphere and heated to $60^{\circ} \mathrm{C}$ (using an oil bath) with stirring for 10 h . After cooling down, the reaction mixture was diluted with ethyl acetate and concentrated to give the crude compound which was directly purified by column chromatography to afford desired product D4-1a in $78 \%$ ( $49 \mathrm{mg}, 0.156 \mathrm{mmol}, 78 \%$ ).



### 3.6 Detection of intermediate $D$.



A screw-cap 10 mL vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(45 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv $), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv.), Cbz-L-Phe-OH ( $120 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv), toluene ( 2.0 mL ) and then the reaction mixture was stirred at room temperature for 10 min under a nitrogen atmosphere. Then diarylmethyltriflamide $\mathbf{1 a}(0.20 \mathrm{mmol}, 1.0$ equiv) was added into the solution. The vial was sealed under a nitrogen and heated to $60^{\circ} \mathrm{C}$ (using an oil bath) with stirring for 6 h . After cooling down, the reaction mixture was filtered through a celite pad and concentrated to give the crude compound which was directly submitted for HRMS.


### 3.7 Examples with data

Compound 3a Following the general procedure, Compound 3a was obtained as a white crystalline solid ( $68.9 \mathrm{mg}, 0.18 \mathrm{mmol}$,
 $90 \%)$ Melting point $=119^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.17(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=17.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=17.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.13$, 140.67, 138.87, 138.34, 129.11, 129.03, 128.92, 128.74, 127.77, 123.77, 123.43, 70.07, 62.45, 52.89, 30.59. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$384.0881; found 384.0882. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3035$, 2957, 2922, 2851, 1717, 1392, 1364, 1226, $1189,1056,599$. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}$ (major) $=6.21 \mathrm{~min}, t_{r}($ minor $)=7.02 \mathrm{~min}, 95: 5 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+15.03\left(\mathrm{c}=0.13 \mathrm{in} \mathrm{CHCl}_{3}\right)$.

Compound 3b Following the general procedure, Compound 3b was obtained as a colorless liquid ( $69 \mathrm{mg}, 0.17 \mathrm{mmol}, 84 \%$ ) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=8.6$
 $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=17.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=17.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.20$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.24$, 139.14, 139.09, 138.54, 137.99, 135.65, 129.94, 129.53, $127.74,123.67,123.45,69.70,62.23,53.07,30.59,21.45,21.23$. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+412.1194$; found 412.1184. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3054,2956,2869,1718,1616$, 1592, 1459, 1392, 1056, 863. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254$ $\mathrm{nm}): t_{r}($ major $)=5.67 \mathrm{~min}, t_{r}($ minor $)=7.42 \mathrm{~min}, 92: 8 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+13.33\left(\mathrm{c}=0.15 \mathrm{in} \mathrm{CHCl}_{3}\right)$.

Compound 3c Following the general procedure, Compound $\mathbf{3 c}$ was obtained as a colorless liquid ( $73 \mathrm{mg}, 0.17 \mathrm{mmol}, 85 \%$ ) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.09(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=17.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=17.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ $-2.62(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{td}, J=7.6,5.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.28,145.54$, $144.74,139.07,138.19,135.88,128.79,128.31,127.74,123.54,122.49,69.76,62.30,53.08,30.64,28.84$, 28.58, 15.64, 15.38. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+440.1507$; found 440.1518 . IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3052,2960,2854,1716,1617,1590,1460,1390,1060,897$. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=90 / 10,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ (major $)=4.61 \mathrm{~min}, t_{r}($ minor $)=5.82 \mathrm{~min}, 93: 7$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+10.00\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Compound 3d Following the general procedure, Compound 3d was obtained as a yellow liquid ( $69 \mathrm{mg}, 0.16 \mathrm{mmol}, 82 \%$ )
 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H})$, $5.75(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=18.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=18.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 204.92,164.29,163.91,162.32,161.93,140.96,136.27,133.68,129.79$, $129.11,129.04,125.29,125.22,116.83,116.65,116.04,115.87,111.04,110.84,68.77,62.09,52.50$, 30.41. HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+420.0693$; found 420.0686. IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3033,2924,2854,1716,1605,1510,1491,1392,1055,866$. HPLC analysis (Chiralpak IC-3; $n$ Hexane $/ i-\mathrm{PrOH}=98 / 2,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=8.27 \mathrm{~min}, t_{r}($ minor $)=7.72 \mathrm{~min}, 95: 5$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=$ $+12.00\left(\mathrm{c}=0.08\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

## Compound 3e



Following the general procedure, Compound $\mathbf{3 e}$ was obtained as a colorless liquid ( $75 \mathrm{mg}, 0.17 \mathrm{mmol}, 84$ \%) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{dd}, J=18.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.89,140.71,138.63$, 137.73, 135.48, 135.06, 134.76, 129.64, 129.42, 129.27, 128.62, 124.88, 124.02, 68.84, 62.03, 61.28, 52.52, 30.44. HRMS(APCI-TOF) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 452.0102$; found 452.0108. IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$,2957, 2926, 2854, 1716, 1604, 1492, 1393, 1227, 1154, 1055, 862. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=99 / 1,0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=15.57 \mathrm{~min}, t_{r}($ minor $)=17.33$ $\min , 95: 5$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+4.0\left(\mathrm{c}=0.25\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.


Following the general procedure, Compound $\mathbf{3 f}$ was obtained as a colorless liquid ( $78 \mathrm{mg}, 0.18 \mathrm{mmol}, 88$ $\%)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{dd}, J=9.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.79(\mathrm{~m}, 5 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.74$ $(\mathrm{t}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=18.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=18.0,9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.31,160.49,159.84,140.48,132.30,130.44,129.30$, $124.63,115.99,114.14,107.72,69.22,62.18,55.62,55.37,53.03,30.57$. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+444.1093$; found 444.1091. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3006$, 2950, 2848, 1717, 1616, 1575, 1492, 1392, 1230, 872. HPLC analysis (Chiralpak IC; $n$-Hexane $/ i-\mathrm{PrOH}=90 / 10,0.9 \mathrm{ml} / \mathrm{min}, 254$ $\mathrm{nm}): t_{r}($ major $)=6.34 \mathrm{~min}, t_{r}($ minor $)=7.54 \mathrm{~min}, 94: 6 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+13.33\left(\mathrm{c}=0.15 \mathrm{in} \mathrm{CHCl}_{3}\right)$.


Following the general procedure, Compound $\mathbf{3 g}$ was obtained as a pale yellow liquid ( $68 \mathrm{mg}, 0.16 \mathrm{mmol}$, $83 \%)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{dt}, J=7.9,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=17.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=17.8$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $8205.26,140.76,139.07$, $138.58,135.92,129.99,129.44,128.76,128.49,124.65,124.60,124.04,123.12,70.09,62.30,53.08,30.65$, 21.58, 21.32.HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{SNa}$ [M+Na]+434.1014; found 434.1020. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2956,2923$ 2868, 1716, 1608, 1496, 1392, 1226, 1057, 882. HPLC analysis (Chiralpak IC$3 ; n$-Hexane $/ i-\mathrm{PrOH}=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=5.96 \mathrm{~min}, t_{r}($ minor $)=6.63 \mathrm{~min}, 87: 13 \mathrm{er}$. $[\alpha]_{\mathrm{D}}^{30}=+20.0\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.


Following the general procedure, Compound $\mathbf{3 h}$ was obtained as a colorless liquid ( $82 \mathrm{mg}, 0.15 \mathrm{mmol}$, $75 \%){ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}$, $1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=18.1,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 204.85,149.93,149.68,141.99,141.96,139.50,137.49$, $137.44,132.36,130.64,126.19,125.46,122.40,121.52,120.26,119.30,117.37,116.34,68.87,62.06$, 52.67. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{9} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 552.0527$; found 552.0526. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2955,2924,2869,2852,1737,1600,1491,1461,1377,1191,832$. HPLC analysis (Chiralpak OD-H; $n$-Hexane $/ i$ - $\mathrm{PrOH}=99 / 1,0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=8.86 \mathrm{~min}, t_{r}($ minor $)=9.28 \mathrm{~min}, 95: 5$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+62.50\left(\mathrm{c}=0.016\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Following the general procedure, Compound $\mathbf{3 i}$ was obtained as a colorless liquid ( $84 \mathrm{mg}, 0.17 \mathrm{mmol}$, $85 \%)^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=$ $17.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.36,152.52$, $151.52,138.74,135.59,127.29,126.31,125.74,123.19,119.85,69.69,62.51,53.20,34.97,34.67,31.44$, 31.36, 30.75. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+496.2133$; found 496.2 129. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2964,2906,2870,1719,1615,1498,1406,1193,1054,869,616$. HPLC analysis (Chiralpak IC; $n$-Hexane $/ i$ - $\mathrm{PrOH}=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=4.27 \mathrm{~min}, t_{r}($ minor $)=6.37$ $\min , 95: 5$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+13.33\left(\mathrm{c}=0.075\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.


Following the general procedure, Compound $\mathbf{3 j}$ was obtained as a colorless liquid ( $86.6 \mathrm{mg}, 0.16 \mathrm{mmol}$, $81 \%)^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H})$, $7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=18.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{dd}, J=18.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.23,142.61,141.74$, $140.43,140.17,139.75,139.61,137.28,129.04,128.95,128.24,127.96,127.71,127.32,127.22,124.14$, 122.09, 69.66, 62.44, 53.12, 30.61. HRMS (ESI-MS) m/z calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaO}_{3} \mathrm{~S}$ [M+Na] 5 588.1327; found 558.1312. IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3441,3032,2924,2857,1716,1642,1483,1391,1155,1057,762$. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=98 / 2,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}$ (major) $=10.97 \mathrm{~min}$, $t_{r}($ minor $)=17.52 \mathrm{~min}, 95: 5 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+9.20\left(\mathrm{c}=0.108\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Compound 3k Following the general procedure, Compound $\mathbf{3 k}$ was obtained as a pale yellow liquid ( $80 \mathrm{mg}, 0.16 \mathrm{mmol}$,
 $83 \%)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.78(\mathrm{~m}, 5 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}$, $1 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=$ $18.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=18.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.31$, 138.12, 137.56, 136.84, 133.71, 133.50, 133.32, 133.15, 129.12, 128.42, 128.36, 128.06, 127.84, 127.50, $126.82,126.75,125.01,123.13,122.77,69.66,61.97,53.19,30.64$. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 484.1194$; found 484.1189. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2955,2924,2869,2853,1716$, 1602, 1493, 1461, 1392, $12221159,967,859$. HPLC analysis (Chiralpak IC- $3 ; n$-Hexane $i-\operatorname{-PrOH}=98 / 2$, $0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=21.21 \mathrm{~min}, t_{r}($ minor $)=24.57 \mathrm{~min}, 92: 8 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+12.04(\mathrm{c}=0.083 \mathrm{in}$
$\mathrm{CHCl}_{3}$ ).
Compound 31 Following the general procedure, Compound 31 was obtained as a pale yellow liquid ( $70 \mathrm{mg}, 0.15 \mathrm{mmol}$, $78 \%)^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.16(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=$
 $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=16.8,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.11(\mathrm{dd}, J=16.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.00,162.58,160.11,156.70,154.21,144.34,139.82,139.75,138.26,132.94$, $132.90,131.87,131.82,125.85,125.68,125.50,125.15,123.49,123.46,123.15,119.06,119.02,114.66$, $114.42,110.28,110.03,69.73,60.73,50.76,30.42,14.44,14.21$. HRMS (ESI-MS) m/z calcd.for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~F}_{5} \mathrm{~S}$ [M-H]-446.0855; found 446.0875.IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2956,2923,2851,1719,1493,1394$, 1226, 1191, 1066, 646. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=97 / 3,0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}$ $($ major $)=9.78 \mathrm{~min}, t_{r}($ minor $)=11.42 \mathrm{~min}, 90: 10$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=-15.10\left(\mathrm{c}=0.066\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.


Following the general procedure, Compound $\mathbf{3 m}$ was obtained as a colorless liquid ( $78 \mathrm{mg}, 0.16 \mathrm{mmol}$, $83 \%)^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=14.4,6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{brs}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=$ $18.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.81,158.55$, $157.95,137.44,130.17,129.86,128.27,127.05,126.63,125.20,109.74,104.19,69.62,62.32,55.57$, 55.39, 53.39, 30.65, 16.56, 16.51.HRMS (ESI-MS) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]+494.1225$; found 494.1237. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3423,2955,2922,2850,1717,1610,1503,1465,1390,1205,1187$, 1034, 607. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=98 / 2,0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=$ $13.84 \mathrm{~min}, t_{r}($ minor $)=20.33 \mathrm{~min}, 93: 7$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+30.30\left(\mathrm{c}=0.033\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Following the general procedure, Compound $\mathbf{3 n}$ was obtained as a colorless liquid ( $80 \mathrm{mg}, 0.16 \mathrm{mmol}$, $80 \%)^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.91-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.3$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.33(\mathrm{dd}, J=17.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=17.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.72,150.20,149.50,149.20,133.17,129.88,120.52,111.86,111.11,105.87$, $105.82,69.93,62.44,56.22,56.14,56.02,53.53,53.15,30.66$. HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 526.1123$; found 526.1119. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2956,2923,2851,1715$, 1465, 1389, 1224, 1190, 1026, 611. HPLC analysis (Chiralpak ID; $n$-Hexane $i$ - $\mathrm{PrOH}=95 / 5,0.9$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=30.66 \mathrm{~min}, t_{r}($ minor $)=32.99 \mathrm{~min}, 87: 13$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+15.10\left(\mathrm{c}=0.066\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Compound 4b


Following the general procedure, Compound $\mathbf{4 b}$ was obtained as a colorless liquid ( $67.5 \mathrm{mg}, 0.17 \mathrm{mmol}$, $85 \%){ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=17.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=17.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dq}, J=17.7,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40(\mathrm{dq}, J=17.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 207.90$, $140.68,138.92,138.31,129.06,128.97,128.88,128.70,127.75,123.74,123.37,70.05,62.60,51.64$, 36.63, 7.59. HRMS (ESI-MS) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~F}_{3} \mathrm{~S}[\mathrm{M}-\mathrm{H}]-396.0887$; found 396.0912. IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3036,2980,2941,2856,1715,1602,1496,1460,1392,1153,1051,912$. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=98 / 2,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=6.76 \mathrm{~min}, t_{r}($ minor $)=7.42$ $\min , ~ 93: 7$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+4.0\left(\mathrm{c}=0.25\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Compound 4c


Following the general procedure, Compound $\mathbf{4 c}$ was obtained as a colorless liquid ( $69 \mathrm{mg}, 0.16 \mathrm{mmol}, 84$ $\%){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ $(\mathrm{s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=17.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=17.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dt}$, $J=16.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 207.56,140.73,139.01,138.35,129.08,128.97,128.91,128.72,127.77$, $123.75,123.44,70.05,62.53,52.06,45.34,17.19,13.73 . \operatorname{HRMS}$ (APCI-TOF) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]+412.1194$; found 412.1197. IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 29612925,2855,1714,1575,1483,1460,1392$, 1186, 1054, 897. HPLC analysis (Chiralpak IC-3; $n-H e x a n e / i-\mathrm{PrOH}=98 / 2,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}$ (major) $=6.08 \mathrm{~min}, t_{r}($ minor $)=6.37 \mathrm{~min}, 98: 2 \mathrm{er} .[\alpha]_{\mathrm{D}}^{30}=+16.60\left(\mathrm{c}=0.183\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Compound $\mathbf{4 d}$ Following the general procedure, Compound $\mathbf{4 d}$ was obtained as a yellow liquid ( $66.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 75$ $\%){ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$
 $-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{ddd}, J=7.1,4.2,1.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=17.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=17.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $196.78,140.72,138.95,138.37,136.40,133.82,129.07,128.97,128.91,128.82,128.27,127.99,127.32$, $123.83,123.79,70.07,63.16,48.37$. HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+446.1038$; found 446.1078. IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3437,2955,2924,2855,1682,1636,1460,1392,1225,1118,1060$, 733. HPLC analysis (Chiralpak AD-H; $n$-Hexane $/ i-\mathrm{PrOH}=99 / 1,0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}$ (major) $=15.40$ $\min , t_{r}($ minor $)=13.55 \mathrm{~min}, 90: 10$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+30.00\left(\mathrm{c}=0.033\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Compound $4 \mathbf{e}$ Following the general procedure, Compound $\mathbf{4 e}$ was obtained as a pale yellow liquid ( $43.9 \mathrm{mg}, 0.12 \mathrm{mmol}$, $60 \%){ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$
 $(\mathrm{t}, J=6.2 \mathrm{~Hz}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.86,135.07,130.17,129.49,129.26,128.94,128.78,124.34$, $122.77,116.03,70.73,62.36,26.39 .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.25,138.89,135.07,130.17,129.51$, 129.26, 128.95, 124.34, 122.79, 116.25, 70.83, 62.48, 26.14. HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 367.0728$; found 367.0735. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3037$, 2955, 2923, 2851, 2253, 1960, 1461, 1392, 1226, 1194, 1056, 612. HPLC analysis (Chiralpak IC-3; $n-H e x a n e / i-\operatorname{PrOH}=90 / 10,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}($ major $)=14.74 \mathrm{~min}, t_{r}($ minor $)=6.86 \mathrm{~min}, 90: 10 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+7.51\left(\mathrm{c}=0.133\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Compound $4 f$ Following the general procedure, Compound $\mathbf{4 f}$ was obtained as a pale yellow liquid ( $52.2 \mathrm{mg}, 0.14 \mathrm{mmol}$, $65 \%)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}$,
 $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=16.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=16.6,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.66,139.12,136.56,136.13,135.32$, 131.11, $129.56,128.65,124.02,123.06,116.23,70.46,62.27,26.34,21.51,21.26$. HRMS (ESI-MS) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]+417.0861$; found 417.0851. IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3030,2925,2854,2253,1914$, $1515,1458,1392,1225,1194,1044,823,643$. HPLC analysis (Chiralpak AD-H; $n$-Hexane $/ i-\mathrm{PrOH}=95 / 5$, $0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=6.44 \mathrm{~min}, t_{r}($ minor $)=7.46 \mathrm{~min}, 91: 9 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+3.0\left(\mathrm{c}=0.33\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.


Following the general procedure, Compound $\mathbf{4 g}$ was obtained as colorless liquid ( $47.9 \mathrm{mg}, 0.11 \mathrm{mmol}, 56$ $\%)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 4 \mathrm{H}), 6.95$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=17.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=17.1,6.4 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 136.94,136.65,135.96,135.68,130.85,130.39,129.27,125.55$, $122.99,115.68,69.70,62.13,25.88$.HRMS (ESI-MS) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 456.9768$; found 456.9777. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3037,2926,2855,2253,1915,1493,1393,1226,1212.1149,1088$, 626. HPLC analysis (Chiralpak AD-H; $n$-Hexane $/ i-\mathrm{PrOH}=95 / 5,0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}($ major $)=22.60$ $\min , t_{r}($ minor $)=20.89 \mathrm{~min}, 94: 6 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+10.0\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.


Following the general procedure, Compound $\mathbf{4 h}$ was obtained as colorless liquid ( $57.8 \mathrm{mg}, 0.12 \mathrm{mmol}$, $62 \%)^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.06(\mathrm{~s}, 3 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.85(\mathrm{dd}, J=19.1,11.7 \mathrm{~Hz}$, $11 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.61-7.44(\mathrm{~m}, 13 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.52(\mathrm{~s}, 3 \mathrm{H}), 5.70(\mathrm{~s}, 3 \mathrm{H})$, 3.34 (dd, $J=16.9,3.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 134.01,133.58,133.53$, $133.03,129.20,128.48,128.41,128.18,127.84,127.39,127.23,127.02,126.75,125.43,123.77,122.34$, 116.15, 70.41, 61.91, 26.69. HRMS (ESI-MS) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 489.0861$; found 489.0843. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3058,2956,2925,2852,2254,1957,1508,1390,1221,1152,1055$, 649. HPLC analysis (Chiralpak AD-H; $n$-Hexane $/ i-\mathrm{PrOH}=98 / 2,0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}($ major $)=58.05$ $\min , t_{r}($ minor $)=52.65 \mathrm{~min}, 94: 6$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+40.0\left(\mathrm{c}=0.05\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

i Following the general procedure, Compound $\mathbf{4 i}$ was obtained as a colorless liquid ( $62.5 \mathrm{mg}, 0.13 \mathrm{mmol}, 68$
 $\%)^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=14.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.8$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 166.90,140.49,138.14,137.43,129.16,128.90,128.80,127.93$, $124.80,123.85,123.59,120.10,70.25,63.93,46.38$. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 461.1147$; found 461.1157. IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2955,2955,2921,2850,1660,1600,1543,1497$, 1393, 1225, 1189, 1055, 696. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=90 / 10,0.9 \mathrm{ml} / \mathrm{min}, 254$ $\mathrm{nm}): t_{r}($ major $)=9.62 \mathrm{~min}, t_{r}($ minor $)=8.93 \mathrm{~min}, 90: 10 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+86.90\left(\mathrm{c}=0.023 \mathrm{in} \mathrm{CHCl}_{3}\right)$.


Following the general procedure, Compound $\mathbf{4} \mathbf{j}$ was obtained as a colorless liquid ( $80 \mathrm{mg}, 0.14 \mathrm{mmol}$, $70 \%)^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{brs}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}$, $1 \mathrm{H}), 3.30(\mathrm{dd}, J=14.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.98,157.49,152.62,151.62,150.03,137.99,137.63,137.47,137.29,135.48$, $129.13,127.41,126.50,125.76,124.74,123.30,120.00,69.82,64.07,47.02,35.00,34.67,31.40,31.35$. HRMS (APCI-TOF) m/z calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 573.2399$; found 573.2405 IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2959,2925,2868,1660,1601,1544,1498,1378,1225,1188,1059,691$. HPLC analysis (Chiralpak AD-H; $n$-Hexane $/ i$ - $\mathrm{PrOH}=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=8.02 \mathrm{~min}, t_{r}($ minor $)=6.28$ $\min , 90: 10$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+40.00\left(\mathrm{c}=0.05\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

## Compound 4k



Following the general procedure, Compound $\mathbf{4} \mathbf{k}$ was obtained as a yellow liquid ( $59.5 \mathrm{mg}, 0.12 \mathrm{mmol}$, $60 \%){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=15.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.18$ $(\mathrm{m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=9.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=16.3,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.12(\mathrm{~s}$, $1 \mathrm{H}), 5.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=14.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.52,164.59,164.18,162.09,161.69,140.17,137.20,136.08,133.56,130.06$, $129.98,129.19,125.35,125.26,124.98,120.11,117.12,116.89,115.99,115.77,111.23,110.98,69.14$, 63.53, 45.60. HRMS(ESI-MS) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$ [M+Na] +519.0773 ; found 519.0778. IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2919,2956,2851,1660,1602,1547,1510,1444,1394,1225,1192,1055,617$. HPLC analysis (Chiralpak IC-3; $n$-Hexane $/ i-\mathrm{PrOH}=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}): t_{r}($ major $)=12.13 \mathrm{~min}, t_{r}($ minor $)$ $=10.69,86: 14$ er. $[\alpha]_{\mathrm{D}}{ }^{30}=+12.00\left(\mathrm{c}=0.25\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

## Compound 41



Following the general procedure, Compound $\mathbf{4 I}$ was obtained as a colorless liquid ( $70.3 \mathrm{mg}, 0.14 \mathrm{mmol}$, $72 \%)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=14.8,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{dt}, J=$ $23.0,8.5 \mathrm{~Hz}, 6 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=14.7,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.01$, $139.24,138.62,138.37,137.78,137.44,135.47,130.13,129.52,129.12,127.89,124.74,123.79,123.53$, 120.13, 69.91, 63.77, 46.54, 21.49, 21.23. HRMS(ESI-MS) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 511.1279$; found 511.1260 IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2955,2923,2851,1655,1600,1548,1443,1378$, 1225, 1188, 1055, 652. HPLC analysis (Chiralpak AD-H; $n$-Hexane $/ i$-PrOH $=95 / 5,0.9 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ ): $t_{r}$ $($ major $)=12.47 \mathrm{~min}, t_{r}($ minor $)=10.62 \mathrm{~min}, 91: 9 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{30}=+7.69\left(\mathrm{c}=0.13\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

## 4. NMR spectra of Diarylmethyltriflamides 1

S\#712703




$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


VK1010
single pulse decoupled gated NOE

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$




S\#739163



1h
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$




VK1137
~~

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$00 \mathrm{MHz}, \mathrm{CDCl}_{3}$


VK1100P
single pulse decoupled gated NOE

$\stackrel{\tilde{N}}{\underset{\sim}{i}}$
$\stackrel{\stackrel{+}{m}}{\stackrel{+}{+}}$

$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$




$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$


## 5. NMR spectra of compound 3 and 4



VK1032


$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$





$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


VK1013
single_pulse




VK1013
single pulse

$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$







$\mathrm{MHz}, \mathrm{CDCl}_{3}$

VK1027
single pulse 制coupled gated NOE


 N Ju_usar







$\int \sqrt{ } 1$
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


-





S\#455465











$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ $\| \iiint$


MMS1521


$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$




$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

S\#707266
$\stackrel{\stackrel{\rightharpoonup}{n}}{\stackrel{\sim}{0}}$



$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$




S\#824431 $\underset{\sim}{\stackrel{\rightharpoonup}{\dot{\sim}}}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
|
!




$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


VK988
single puls्pe decoupled gated NOE


$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


VK984PP
single pulse decoupled gated NOE

宗

$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$



VK1208PP



VK117PB


 / $/$
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


S\#842176




$400 \mathrm{MHz}, \mathrm{CDCl}_{3} \mathrm{C}$
(
 u

$\qquad$ $l$ $\mu$


VK1455





VK1459PR



$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


VK1459PR
single pulse decoupled gated NOE

$\underbrace{\circ}$

$\stackrel{\infty}{\sim}$

```
S\#695641
```


## 



$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


S\#12026

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$



$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

MMS1596 A
single pulse decoupled gated NOE
$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\stackrel{\circ}{\circ}$
$\stackrel{+}{\circ}$
$\stackrel{1}{\mid}$


$\stackrel{\text { on }}{\stackrel{\circ}{\circ}}$正





MMS1639D
single pulse decoupled gated NOE
©



$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ NHPh




S\#858085

## 



$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ NHPh



S\#530420


च.
$\stackrel{\sim}{i}$


HPLC Chromatogram of Compound 3a (Racemic)


HPLC Chromatogram of Compound 3a (Chiral)


## HPLC Chromatogram of Compound 3b (Racemic)




HPLC Chromatogram of Compound 3b (Chiral)




HPLC Chromatogram of Compound 3c (Chiral)



DAD1 B, Sig=254,4 Ref=off (C:ICHEM32\1\DATAIVIMLESHIVK1027 IC-3 2\%.D)


HPLC Chromatogram of Compound 3d (Chiral)


## HPLC Chromatogram of Compound 3e (Racemic)




HPLC Chromatogram of Compound 3e (Chiral)


HPLC Chromatogram of Compound 3f (Racemic)



HPLC Chromatogram of Compound $3 f$ (Chiral)




| Peak \# | $\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$ | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.705 MM | 0.174 | 2.82698 | 2699.4318 | 48.02 |
| 2 | . 2 | 0.2147 | 3.05924e4 | 2375. 30981 | 51.9729 |

HPLC Chromatogram of Compound 3g (Chiral)


| Peak \# | RetTime <br> [min] |  | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.965 | MM | 0.1408 | 473.16995 | 56.02436 | 87.4 |
| 2 | 6.63 | MM | 0.15 | 68.04 | 7.28279 | 12.5 |

## HPLC Chromatogram of Compound 3h (Racemic)




HPLC Chromatogram of Compound 3h (Racemic)




HPLC Chromatogram of Compound 3i (chiral)


## HPLC Chromatogram of Compound 3j (Racemic)




| Peak \# | RetTime [min] |  | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.977 | MM | 0.3434 | 1.89587 e 4 | 920.15253 | 50.3405 |
| 2 | 17.312 | MM | 0.5447 | 1.87022 e 4 | 572.20557 | 49.6 |

HPLC Chromatogram of Compound 3j (Chiral)




| Peak \# | $\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$ | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21.603 MM | 0.5564 | 2.17613 e 4 | 651.86334 | 49.7403 |
| 2 | 25.098 MM | 0.6298 | 2.19885 e | 581.871 | 50.2 |

HPLC Chromatogram of Compound 3k (chiral)

```
                                    DAD1 B, Sig=254,4 Ref=off (C:ICHEM32I1\DATAIVIMLESHIVK1168PP IC-3 2%.5ML.D)
```



```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime
[min] & & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} * \mathrm{~s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\%
\end{gathered}
\] \\
\hline 1 & 21.211 & & 0.5340 & 4.49417e4 & 1402.58838 & 92. \\
\hline 2 & 24.574 & & 0.5812 & 3718.682 & 106.6430 & \\
\hline
\end{tabular}
```




| Peak \# | $\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$ | Width <br> [min] |  | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.921 MM | 0.2384 | 2538.82202 | 177.47005 | 50.4906 |
| 2 | 11.575 MM | 0.26 | 24 | 157 | . |

HPLC Chromatogram of Compound 31 (Chiral)


DAD1 B, Sig=254,4 Ref=off (C:ICHEM3211IDATAIVIMLESHIVK1237PA IC-3 $2 \%$.5ML-MIN.D)


| Peak <br> \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.971 |  | 0.3173 | 1423.60010 | 74.78687 | 50.5313 |
| 2 | 20.667 |  | 0.43 | 1393.6654 | 53.12901 | 49. |

HPLC Chromatogram of Compound 3m (Chiral)




HPLC Chromatogram of Compound 3n (Chiral)



HPLC Chromatogram of Compound 4b (Chiral)


## HPLC Chromatogram of Compound 4c (Racemic)




HPLC Chromatogram of Compound 4c (Chiral)




| Peak | RetTime Type | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | $[m i n]$ | $[m i n]$ | $[m A U * s]$ | $[m A U]$ | $\%$ |


| 1 | 13.746 MM | 0.4736 | 3.74193 e 4 | 1316.88147 | 49.4597 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15.364 MM | 0.5754 | 3.82368 e 4 | 1107.56274 | 50.54 |

HPLC Chromatogram of Compound 4d (Chiral)



4e


| Peak <br> \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.832 |  | 0.1466 | 1752.72791 | 181.66571 | 50.0324 |
| 2 | 14.626 |  | 0.302 | 1750.46118 | 89.4 | 49. |

HPLC Chromatogram of Compound 4e (Chiral)


## HPLC Chromatogram of Compound 4 (Racemic)



HPLC Chromatogram of Compound $4 f$ (chiral)




| Peak | RetTime Type | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | $[\mathrm{~min}]$ | $[\mathrm{min}]$ | $[\mathrm{mAU}$ * $]$ | $[\mathrm{mAU}]$ | $\%$ |

HPLC Chromatogram of Compound 4 g (Chiral)




Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak <br> \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 52.938 | MM | 2.4574 | 9.46233 e 4 | 641.75934 | 47.6211 |
| 2 | 58.392 | MM | 2.8673 | 1.04077 e 5 | 604.96198 | 52.3 |

HPLC Chromatogram of Compound 4h (Chiral)


| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime <br> [min] |  | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 52.655 | MM | 2.0852 | 6676.47900 | 53.36424 | 6.11 |
| 2 | 58.058 | MM | 2.7680 | 1.02480e5 | 617.04022 | 93.88 |




HPLC Chromatogram of Compound 4i (Chiral)




HPLC Chromatogram of Compound $\mathbf{4 j}$ (Chiral)


## HPLC Chromatogram of Compound 4k (Racemic)


DAD1 B, Sig=254,4 Ref=off (Snapshot.d)


| eak <br> \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.166 |  | 0.285 | 2.46401 e | 1440.2418 | 50.146 |
| 2 | 11.62 |  | 0.30 | 44966e | 1335. | 49 |

HPLC Chromatogram of Compound 4k (chiral)


HPLC Chromatogram of Compound 41 (Racemic)



HPLC Chromatogram of Compound 41 (chiral)


| Peak | RetTime Type | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | [min] | [min] | [mAU*s] | [mAU] | $\%$ |

## 7. Crystallographic Data of 3a

## Table 1

| Identification code | UPS_UK_1163_0m_a |
| :---: | :---: |
| Empirical formula | C18H16F3NO3S |
| Formula weight | 383.38 |
| Temperature | 124 K |
| Crystal system | orthorhombic |
| Space group | P212121 |
| Unit cell dimensions | $\begin{aligned} & \mathrm{a}=10.274(2) \AA ; \\ & \alpha=90^{\circ} \end{aligned}$ |
|  | $\begin{aligned} & \mathrm{b}=11.716(4) \AA ; \\ & \beta=90^{\circ} \end{aligned}$ |
|  | $\begin{aligned} & \mathrm{c}=14.422(4) \AA \\ & \gamma=90^{\circ} \mathrm{o} \end{aligned}$ |
| Volume | 1736.0(8) $\AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.467 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $2.115 \mathrm{~mm}^{-1}$ |
| $\mathrm{F}(000)$ | 792.0 |
| Crystal size | $0.343 \times 0.32 \times 0.12 \mathrm{~mm}^{3}$ |
| Radiation | $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54178)$ |
| $2 \Theta$ range for data collection | 9.726 to 133.06 |
| Index ranges | $-12 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 13,-17 \leq 1 \leq 17$ |
| Reflections collected | 40412 |
| Independent reflections | 3009 [Rint $=0.0636$, Rsigma $=0.0305$ ] |
| Completeness of theta $=28.310^{\circ}$ | 98.00 \% |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.508 and 0.776 |
| Refinement method | Full-matrix least-square on $\mathrm{F}^{2}$ |
| Data/restraints/parameters | 3009/0/237 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.063 |
| Final R indexes [ $\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\mathrm{R} 1=0.0317, \mathrm{wR} 2=0.0847$ |
| Final R indexes [all data] | $\mathrm{R} 1=0.0318, \mathrm{wR} 2=0.0848$ |
| Largest diff. peak/hole | 0.22/-0.30 $\AA^{-3}$ |



Table 2 Fractional Atomic Coordinates ( $\times 104$ ) and Equivalent Isotropic Displacement Parameters ( $\AA 2 \times 103$ ) for UPS_UK_1163_0m_a. Ueq is defined as $1 / 3$ of the trace of the orthogonalised UIJ tensor.


Table 3 Anisotropic Displacement Parameters ( $\AA 2 \times 103$ ) for UPS_UK_1163_0m_a. The Anisotropic displacement factor exponent takes the form:

```
-2\pi2[h2a*2U11+2hka*b*U12+...].
```

| Atom | U11 | U22 | U33 | U23 | U13 | U12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S11 | 17.5(3) | 31.7(3) | 20.8(3) | -0.1(2) | -0.1(2) | -1.4(2) |
| O13 | 22.2(8) | 43.9(10) | 26.9(8) | 1.9(8) | 6.3(7) | 1.7(8) |
| O12 | 25.6(9) | 43.3(10) | 29.0(9) | -5.3(8) | -8.0(7) | -3.1(7) |
| F17 | 38.8(9) | 45.8(9) | 57.0(11) | 7.7(8) | -5.0(8) | 14.9(7) |
| F15 | 62.5(12) | 50.9(10) | 48.9(10) | 18.6(8) | 21.7(10) | 3.2(9) |
| F16 | 65.6(12) | 32.8(8) | 63.6(12) | 3.7 (8) | -31.6(10) | -8.0(8) |
| O9 | 73.1(15) | 35.8(10) | 21.1(9) | 0.8(8) | 7.7(10) | -4.1(10) |
| N2 | 20.4(10) | 29.7(10) | 16.1(9) | -1.6(7) | 0.2(8) | 0.7(8) |
| C3A | 22.6(11) | 26.2(11) | 19.1(10) | $3.6(9)$ | -0.8(9) | -0.4(9) |
| C18 | 20.1(11) | 29.7(11) | 15.4(10) | -1.2(9) | -1.1(9) | -1.9(9) |
| C3 | 21.5(11) | 27.7(11) | 15.9(10) | $-2.7(9)$ | -0.8(8) | -1.0(9) |
| C21 | 31.2(13) | 35.6(13) | 19.0(11) | 2.6(9) | 0.0(10) | -3.6(10) |
| C23 | 25.1(12) | 31.5(12) | 22.8(12) | $-1.0(9)$ | 2.1(10) | 2.8(9) |
| C7A | 21.3(11) | 26.5(11) | 18.6(11) | 2.1(9) | -0.8(9) | 1.0(9) |
| C22 | 28.4(13) | 40.5(13) | 22.8(12) | 0.9(11) | 6.5(10) | $0.9(11)$ |
| C9 | 27.0(12) | 32.6(12) | 17.4(10) | -0.7(11) | -0.7(10) | 2.1(10) |
| C19 | 26.0(12) | 33.1(12) | 17.8(10) | $-2.0(9)$ | 1.5(9) | 2.5(10) |
| C4 | 26.7(12) | 33.6(13) | 22.4(11) | -1.3(9) | -2.5(9) | -3.3(10) |
| C6 | 20.1(11) | 39.2(13) | 32.1(13) | 10.6(11) | 2.6(9) | 1.1(10) |
| C7 | 24.7(12) | 34.1(12) | 21.2(11) | 4.9(9) | 1.5(10) | $3.0(10)$ |
| C20 | 27.7(13) | 30.7(11) | 24.8(12) | -0.2(10) | -1.4(11) | 2.3(10) |
| C1 | 21.5(11) | 29.7(11) | 16.5(10) | -0.2(8) | $1.0(9)$ | -0.5(9) |
| C8 | 27.8(12) | 30.6(12) | 17.8(10) | $-2.0(9)$ | 4.1(10) | -1.6(9) |
| C5 | 21.1(11) | 37.6(13) | 32.6(12) | 5.1(11) | -4.1(10) | $-3.7(10)$ |
| C10 | 38.2(15) | 35.1(13) | 20.8(11) | -6.8(11) | -0.8(10) | -0.5(11) |
| C14 | 26.0(13) | 37.2(13) | 29.1(12) | 3.7(11) | -3.2(11) | 1.1(10) |

Table 4 Bond Lengths for UPS_UK_1163_0m_a.
Atom Atom Length/Å Atom Atom Length/A

| S 11 | O 13 | $1.4254(17)$ | C 18 | C 23 | $1.388(3)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| S 11 | O 12 | $1.4274(18)$ | C 18 | C 19 | $1.401(3)$ |


| S11 | N2 | $1.594(2) \mathrm{C} 21$ | C 22 | $1.393(4)$ |
| :--- | :--- | :--- | :--- | :--- |
| S 11 | C 14 | $1.851(3) \mathrm{C} 21$ | C 20 | $1.386(3)$ |
| F 17 | C 14 | $1.331(3) \mathrm{C} 23$ | C 22 | $1.396(4)$ |
| F 15 | C 14 | $1.313(3) \mathrm{C} 7 \mathrm{~A}$ | C 7 | $1.395(3)$ |
| F 16 | C 14 | $1.321(3) \mathrm{C} 7 \mathrm{~A}$ | C 1 | $1.510(3)$ |
| O 9 | C 9 | $1.210(3) \mathrm{C} 9$ | C 8 | $1.528(3)$ |
| N 2 | C 3 | $1.510(3) \mathrm{C} 9$ | C 10 | $1.502(3)$ |
| N 2 | C 1 | $1.499(3) \mathrm{C} 19$ | C 20 | $1.386(3)$ |
| C3A | C3 | $1.511(3) \mathrm{C} 4$ | C 5 | $1.395(3)$ |
| C3A | C7A | $1.391(3) \mathrm{C} 6$ | C 7 | $1.392(4)$ |
| C3A | C4 | $1.386(3) \mathrm{C} 6$ | C 5 | $1.395(4)$ |
| C18 | C3 | $1.527(3) \mathrm{C} 1$ | C 8 | $1.535(3)$ |

Table 5 Bond Angles for UPS_UK_1163_0m_a.
Atom Atom Atom Angle $/{ }^{\circ}$ Atom Atom Atom Angle $/^{\circ}$

| O13 | S11 | O 12 | 121.71(11) | C7 | C7A | C1 | 127.49(19) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O13 | S11 | N2 | 109.64(10) | C21 | C22 | C23 | 120.1(2) |
| O13 | S11 | C14 | 103.89(11) | O9 | C9 | C8 | 121.2(2) |
| O12 | S11 | N2 | 109.15(10) | O9 | C9 | C10 | 122.3(2) |
| O12 | S11 | C14 | 103.89(12) | C10 | C9 | C8 | 116.5(2) |
| N2 | S11 | C14 | 107.48(11) | C20 | C19 | C18 | 120.4(2) |
| C3 | N2 | S11 | 120.73(15) | C3A | C4 | C5 | 118.3(2) |
| C1 | N2 | S11 | 120.51(15) | C7 | C6 | C5 | 120.6(2) |
| C1 | N2 | C3 | 113.58(17) | C6 | C7 | C7A | 118.3(2) |
| C7A | C3A | C3 | 111.8(2) C19 | C20 | C21 | 120. |  |
| C4 | C3A | C3 | 127.1(2) N2 | C1 | C7A | 101.0 |  |
| C4 | C3A | C7A | 121.1(2) N2 | C1 | C8 | 111.9 |  |
| C23 | C18 | C3 | 119.6(2) C7A | C1 | C8 | 115.6 |  |
| C23 | C18 | C19 | 119.0(2) C9 | C8 | C1 | 113.1 |  |
| C19 | C18 | C3 | 121.4(2) C4 | C5 | C6 | 120.9 |  |
| N2 | C3 | C3A | 100.43(16) | F17 | C14 | S11 | 109.40(18) |
| N2 | C3 | C18 | 111.74(18) | F15 | C14 | S11 | 110.62(18) |


| C3A | C3 | C18 | $114.45(19)$ | F 15 | C 14 | F 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C20 | C21 | C22 | $119.5(2) \mathrm{F} 15$ | C 14 | F 16 | $109.8(2)$ |
| C18 | C23 | C22 | $120.5(2) \mathrm{F} 16$ | C 14 | S 11 | $111.07(17)$ |
| C3A | C7A | C7 | $120.7(2) \mathrm{F} 16$ | C 14 | F 17 | $107.8(2)$ |
| C3A | C7A | C1 | $111.8(2)$ |  |  |  |

Table 6 Torsion Angles for UPS_UK_1163_0m_a.


C18 C19 C20 C21 0.2(4) C1 C7A C7 C6 $-175.2(2)$
C3 N2 C1 C7A8.4(2) C5 C6 C7 C7A-0.6(3)

C3 N2 C1 C8 -115.2(2)C10 C9 C8 C1 $\quad-178.2(2)$

C3 C3A C7A C7 175.0(2) C14 S11 N2 C3 -72.82(19)
C3 C3A C7A C1 -6.5(3) C14 S11 N2 C1 80.14(19)

Table 7 Hydrogen Atom Coordinates $(\AA \times 104)$ and Isotropic Displacement Parameters $(\AA 2 \times 103)$ for UPS_UK_1163_0m_a.

| Atom | X | y | Z |  | U(eq) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H3 | 8101 |  | 4573 | 3911 | 26 |
| H21 | 8580 |  | 8449 | 1557 | 34 |
| H23 | 9349 |  | 5333 | 2662 | 32 |
| H22 | 9724 |  | 6716 | 1521 | 37 |
| H19 | 6684 |  | 7406 | 3867 | 31 |
| H4 | 5429 |  | 4547 | 3397 | 33 |
| H6 | 3160 |  | 5368 | 5611 | 37 |
| H7 | 4987 |  | 6058 | 6414 | 32 |
| H20 | 7053 |  | 8777 | 2728 | 33 |
| H1 | 7774 |  | 5462 | 6347 | 27 |
| H8A | 8688 |  | 7443 | 5988 | 31 |
| H8B | 7220 |  | 7702 | 5685 | 31 |
| H5 | 3389 |  | 4574 | 4136 | 37 |
| H10A | 6934 |  | 9137 | 7056 | 47 |
| H10B | 8408 |  | 8917 | 7366 | 47 |
| H10C |  |  |  |  |  |
| Experim | ntal | 7245 |  | 8695 | 8082 |

