Supporting Information

Controllable Synthesis of Na-Enriched Na₄V₂(PO₄)₃ Cathode for

High-Energy Sodium-Ion Batteries: A Redox-Potential-Matched

Chemical Sodiation Approach

Mingli Xu^a, Fengxue Zhang^b, Yanhui Zhang^b, Chen Wu^a, Xue Zhou^c, Xinping Ai^a, Jiangfeng Qian^a*

 ^a Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
 ^b Hubei Baijierui Advanced Materials Co., Ltd., Wuhan, Hubei 430072, China
 ^c College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
 *Corresponding authors. Email: jfgian@whu.edu.cn

Keywords:

sodium-ion battery, $Na_3V_2(PO_4)_3$ cathode, Na-enriched $Na_4V_2(PO_4)_3$ cathode, chemical sodiation approach, redox-potential matching principle

Figure S1 *In-situ* XRD stacked patterns and corresponding charge-discharge profiles of Na₃VP cathode in half cell.

Figure S2 Cyclic voltammetry profiles of Na_3VP in the potential range of 0.1-3.7 V vs. Na^+/Na at scan rate of 0.1 mV/s.

Figure S3 Cyclic voltammetry profiles of Na_3VP in the typical potential range of 1.0-4.0 V vs. Na^+/Na at scan rate of 0.1 mV/s.

Figure S4 SEM images of HC anodes attained from (a) Na_5VP ||HC and (b) Na_4VP ||HC full cells after initial cycle.

Figure S5 XRD patterns of presodiated electrodes with different treatment time (90 s, 120 s, and 30 min).

Figure S6 Initial charge-discharge curves of the NaxVP electrodes with different presodiation time (0 s, 30 s, 60 s, 90 s, and 120 s).

Figure S7 (a) Charge-discharge curves of the Na_4VP obtained by electrochemical presodiation. (b) Charge-discharge curves of the Na_4VP obtained by chemical presodiation with extended treatment time of 30 min.

Figure S8 In-situ XRD counter maps and corresponding charge-discharge profiles of a PNZ-Na presodiated $Na_4VP||Na$ half cell

Figure S9 *In-situ* XRD stacked patterns and corresponding charge-discharge profiles of a PNZ-Na presodiated $Na_4VP||Na$ half cell

Figure S10 XPS full spectrum of the Na_3VP and Na_4VP .

Figure S11 XPS P 2p spectra of the Na_3VP and Na_4VP .

Figure S12 SEM images of NaxVP with different sodiation depth.

Figure S13 EDX images of the Na₃VP and Na₄VP and corresponding relative element ratio.

Figure S14 ³¹P ssNMR spectra of the Na₃VP and Na₄VP.

Figure S15 CV curves of Na_3VP at various scan rates in the potential range of 1-3.7 V vs. Na^+/Na .

Figure S16 Corresponding relationships between I_p and $v^{1/2}$ Na⁺ duffusion coefficients (D_{Na}) can be estimated by the Randles-sevick equation (Eq 1):

$$I_p = 2.69 \times 10^5 n^{3/2} A D_{Na}^{1/2} C \upsilon^{1/2}$$
 (Eq 1)

where I_p and v correspond to the peak current (A) and scan rate (mV/s), respectively. n is the number of transferred electron, A is the electrode area (cm²), C is the molar concentration of sodium ion (mol/cm³). The remarkably correlated linearly between I_p and $v^{1/2}$ indicates typical diffusion controlled behavior in Na3VP. According to the fitted slope, the calculated D_{Na} are 1.18×10^{-9} , 2.89×10^{-9} , 1.33×10^{-9} , and 3.07×10^{-9} cm²/s, associated with the peaks of C1, C2, D1, and D2. Therefore, the Na⁺ diffusion in the Na₃VP is faster than in the Na₄VP.

Figure S17 Cycling performance of the NaxVP electrodes with different presodiation time (0 s, 30 s, 60 s, 90 s, 120 s and 30 min).

Figure S18 Coulombic efficiency of $Na_3VP \parallel HC$ and $Na_4VP \parallel HC$ full cells.

Figure S19 Long-term cycling stability at 2C of Na_3VP ||HC and Na_4VP ||HC full cells.

Cathode Anode	ICE	Energy	density	Electrochemical performance	Ref
	(%)	(Wh/kg)			
Na3VP Pb-C	~70	170		~36% after 300 th @ 2C	1
Na3VP thin film MoSe2	~50	213.6		${\sim}50\%$ after 50th @ 22.2 mA/cm^2	2
Na3VP graphite	~88	78		~48% after 200 th @ 50 mA/g	3
Na3VP hard carbon	70.6	143.7		~89% after 300 th @ 100 mA/g	4
Na3VP hard carbon	50	120		~55% after 550 th @ 2C	5
Na3VP hard carbon	~50	151		~65% after 100 th @ 1C	6
Na3VP hard carbon	71.5	169		62% after 70 th @ 0.2C	7
Na3VP hard carbon	43.5	~90		${\sim}70\%$ after $50^{th}@~50$ mA/g	8
Na3VP hard carbon	60	159.4		58.5% after 100 th @ 1C	Our
					work
Na3VP presodiated hard carbon	~94	251.1		73.3% after 450 th @ 1 A/g	9
Na3VP presodiated hard carbon	~95	218		~55% after 550 th @ 2C	5
Na3VP presodiated hard carbon	82.6	~191		83.3% after 50 th @ 50 mA/g	8
Electrochemical presodiated Na4VP hard	~50	265		78% after 100 th @ 1C	6
carbon				66% after 200 th @ 1C	
Biph-Na presodiated Na4VP hard carbon	62.7	218.4		70% after 500th @ 1C (using	7
				excess cathode)	
PNZ-Na presodiated Na4VP hard carbon	65	251.1		78% after 100th @ 1C	Our
				57% after 500 th @2C	work

reported in literatures

Reference

- B. Pandit, M. T. Sougrati, B. Fraisse and L. Monconduit, Exploration of a Na₃V₂(PO₄)₃/C –Pb full cell Na-ion prototype, *Nano Energy*, 2022, **95**, 107010.
- J. A. Sam Oh, Q. Sun, C. Tian, X. Song, B. Chua, K. Zeng and L. Lu, Aerosol-deposited Freestanding Na₃V₂(PO₄)₃ Thin-film Microbattery, *Materials Today Energy*, 2022, 27, 101006.
- K. Subramanyan, M. Akshay, Y. S. Lee and V. Aravindan, Na-Ion Battery with Graphite Anode and Na₃V₂(PO₄)₃ Cathode via Solvent-Co-Intercalation Process, *Advanced Materials Technologies*, 2022, 7, 2200399.
- 4. X. Jiang, X. Liu, Z. Zeng, L. Xiao, X. Ai, H. Yang and Y. Cao, A Bifunctional Fluorophosphate Electrolyte for Safer Sodium-Ion Batteries, *iScience*, 2018, **10**, 114.
- M. Liu, J. Zhang, S. Guo, B. Wang, Y. Shen, X. Ai, H. Yang and J. Qian, Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries, ACS Appl Mater Interfaces, 2020, 12, 17620.
- S. Mirza, Z. Song, H. Zhang, A. Hussain, H. Zhang and X. Li, A Simple Pre-sodiation Strategy to Improve the Performance and Energy Density of Sodium Ion Batteries with Na₄V₂(PO₄)₃ as the Cathode Material, *Journal of Materials Chemistry A*, 2020, 8, 23368.
- Y. Liu, X. Wu, A. Moeez, Z. Peng, Y. Xia, D. Zhao, J. Liu and W. Li, Na-Rich Na₃V₂(PO₄)₃
 Cathodes for Long Cycling Rechargeable Sodium Full Cells, *Advanced Energy Materials*, 2022, 13, 2203283.
- B. Xiao, F. A. Soto, M. Gu, K. S. Han, J. Song, H. Wang, M. H. Engelhard, V. Murugesan, K. T. Mueller, D. Reed, V. L. Sprenkle, P. B. Balbuena and X. Li, Lithium-Pretreated Hard Carbon as High-Performance Sodium-Ion Battery Anodes, *Advanced Energy Materials*, 2018, 8, 1801441.
- X. Yin, Y. Zhao, X. Wang, X. Feng, Z. Lu, Y. Li, H. Long, J. Wang, J. Ning and J. Zhang, Modulating the Graphitic Domains of Hard Carbons Derived from Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage, *Small*, 2021, 18, 2105568.