Electronic Supplementary Information

Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes

Sewon Park,^{†a} Saehun Kim,^{†a} Jeong-A Lee,^a Makoto Ue^b and Nam-Soon Choi^{*a}

^aDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science

and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

^bResearch Organization for Nano & Life Innovation, Waseda University, 513 Waseda-

tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan

[†]These authors contributed equally to this work

*Corresponding author. Email: nschoi@kaist.ac.kr

Additive compound	Patent	Company	Priority
Vinylene carbonate (VC)	FR2719161B1 ¹	SAFT	1994
Vinylethylene carbonate (VEC)	JP4489207B2 ²	Mitsui Chemicals	1998
F $\downarrow_{0}^{0} \neq 0$ Fluoroethylene carbonate (FEC)	US6506524B1 ³	NRCC	1996
o=s Ethylene sulfite (ES)	JP3546566B2 ⁴	Sony	1995
Ethylene sulfate (DTD)	JP3760540B2 ⁵	Mitsubishi Chemical	1996
1,3-Propane sultone (PS)	JP3978881B2 ⁶	Ube Industries	1997
1,3-Propene 1,3-sultone (PES)	JP4190162B2 ⁷	Mitsui Chemicals	2001
Methylene methanedisulfonate (MMDS)	JP4033074B2 ⁸	NEC	2002

Table S1. Commercialized SEI forming electrolyte additives for lithium-ion batteries

Triallyl phosphate (TALP)	US6919141B2 ⁹	Wilson Greatbatch	2003
Tripropargyl phosphate (TPGP)	US6919141B2 ⁹	Wilson Greatbatch	2003
Lithium bis(fluorosulfonyl)imide (LiFSI)	EP0699349B1 ¹⁰	CNRS, Hydro- Québec	1994
F $O = P' - F$ $Li^{+} O'$ Lithium diflurophosphate (LiDFP)	JP3439085B2 ¹¹	Sanyo Electric	1997
$Li^{+} \bigcirc 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	DE19829030C1 ¹²	Chemetall	1998
Li ⁺ O O D E F Lithium difluoro(oxalato)borate (LiFOB)	JP3722685B2 ¹³	Central Glass	2000
Li ⁺ $\overset{\circ}{\underset{O}{\overset{P}{\underset{F}{\overset{O}{\underset{F}{\overset{O}{\underset{F}{\overset{O}{\underset{F}{\overset{O}{\underset{F}{\overset{O}{\underset{O}{\underset{O}{\overset{O}{\underset{F}{\overset{O}{\underset{O}{\underset{O}{\overset{O}{\underset{O}{\underset{O}{\overset{O}{\underset{O}{\underset$	JP3722685B2 ¹³	Central Glass	2000

Name	Chemical structure	Density (g mL ⁻¹)	Molecular weight (g mol ⁻¹)	Melting point (°C)	Boiling point (°C)
FEC	F O O	1.50	106.05	18–23	210–212
VC	() 0 0 0	1.35	86.05	19–22	162
LiDFP	F O=P ['] -F Li ⁺ O	N/A	107.91	>300	decomposes
LiBOB		N/A	193.79	>300	decomposes
LiFOB	Li ⁺ O F	N/A	143.77	265–271	decomposes
LiDFBOP		N/A	251.95	255	decomposes
LiNO ₃	Li O 	2.38	68.95	255	decomposes
LiFSI	Li [†] 0 0 0 F ₃ C S S S CF ₃	1.05	187.06	126	decomposes

Table S2. Properties of electrolyte additives used in lithium batteries containing silicon and
 lithium metal as anodes

	Name	Chemical structure	Density (g mL ⁻¹)	Molecular weight (g mol ⁻¹)	Boiling point (°C)
	EC	0000000000000	1.321	88.06	243–244
	PC		1.204	102.09	240–242
Nonfluorina tad salvanta	DMC		1.069	90.08	90
ted solvents	DEC	\sim°	0.975	118.13	126–128
	DME	~°~~_°	0.867	90.12	84-85
	DOL	o	1.07	74.08	74–76
	FEC	F O O	1.50	106.05	210–212
	DFEC		1.52	124.04	233.8
	BTFE	F ₃ C ^C CF ₃	1.404	180.06	62–64
Fluorinated solvents	TTE		1.54	232.07	92
	TFOFE (OTE)		1.66	332.09	133
	TFEO	$F_{3}C O CF_{3}$	1.457	310.12	144–146
	MTFP	F ₃ CO	1.29	142.08	96
	DMTMSA	$F_3C - S - N$	1.443	177.16	116.9
	FDMB		1.21	190.14	154

 Table S3. Properties of nonfluorinated and fluorinated solvents used in lithium batteries

 containing silicon and lithium metal as anodes

	TFEMC	F ₃ C O O	1.34	158.08	90
	TFEP		1.52	206.06	160
	TFETFE		1.49	200.06	56
	mFT	F	0.991	110.13	115
	BFE	F F	0.98	110.10	128
	DFDEC		1.51	226.07	118
	TFE		1.464	196.05	55
	HFPM		1.38	182.07	50

Section S1. On lithium dendrite suppression ability¹⁴

During lithium plating, lithium dendrites need to penetrate the passivation layer along grain boundaries. Based on Griffith's energy-based analysis, interfacial energy ($E_{interface}$) increases because of the construction of a new interface at Li/SEI, while strain energy (E_{strain}) is released upon the growth of lithium dendrites. Therefore, the total energy (E_{total}) for lithium dendrite growth (Eq. S1) can be expressed as the sum of $E_{interface}$ and E_{strain} :

$$E_{\text{total}} = E_{\text{interface}} + E_{\text{strain}}.$$
(S1)

*E*_{interface} can be expressed as follows:

$$E_{\text{interface}} = 2\gamma LB,\tag{S2}$$

where γ is the interfacial energy required to create a new Li/SEI interface per unit area, *L* is the interface length, and *B* is the interface thickness.

 E_{strain} can be expressed as follows:

$$E_{\text{strain}} = \frac{\sigma^2}{2E} V - \frac{\sigma^2}{2E} B\pi L^2, \tag{S3}$$

where σ is the stress at the tip of the crack or grain boundary, *E* is the bulk modulus, and *V* is the volume.

Therefore, Eq. S1 can be rewritten as

$$E_{\text{total}} = 2\gamma LB + \frac{\sigma^2}{2E}V - \frac{\sigma^2}{2E}B\pi L^2.$$
(S4)

 E_{total} increases with the increasing length of lithium dendrites, reaching a maximum at a critical dendrite length (L_c) and subsequently decreasing. Therefore, L_c is the value at which the derivative of E_{total} with respect to L becomes zero:

$$\frac{dE_{total}}{dL} = 2\gamma B - \frac{\sigma^2}{E} B\pi L = 0.$$
(S5)

The above equation implies

$$L_{\rm c} = \frac{2\gamma E}{\pi \sigma^2}.$$
 (S6)

The lithium dendrite suppression abilities listed in Table 1 are expressed as the products of γ and *E* and are therefore positively correlated with L_c , which indicates a delay of lithium dendrite growth according to SEI properties.

Supplementary references

- B. Simon and J.-P. Boeuve, Societe des Accumulateurs Fixes et de Traction SA, FR Pat., FR2719161B1, 1994.
- M. Toriida, H. Tan, S. Mita, T. Ishida and T. Ishitoku, Mitsui Chemicals Inc., JP Pat., JP4489207B2, 1998.
- R. S. McMillan, D. J. Worsfold, J. J. Murray, I. Davidson and Z. X. Shu, National Research Council of Canada, US Pat., US6506524B1, 1996.
- 4. Y. Naruse, S. Fujita and T. Komaru, Sony Corp., JP Pat., JP3546566B2, 1995.
- K. Shima, S. Yasukawa and S. Mori, Mitsubishi Chemical Corp., JP Pat., JP3760540B2, 1996.
- S. Hamamoto, A. Hidaka, Y. Nakada and K. Abe, Ube Corp., JP Pat., JP2000003724A, 1997.
- A. Hibara, T. Ishida, C. Hirano and T. Hayashi, Mitsui Chemicals Inc., JP Pat., JP4190162B2, 2001.
- 8. K. Utsuki, T. Kusachi and I. Yamazaki, NEC Corp., JP Pat., JP4033074B2, 2002.

- 9. H. Gan, E. S. Takeuchi and R. Rubino, Wilson Greatbatch Technologies Inc., US6919141B2, 2003.
- 10. C. Michot, M. Armand, J.-Y. Sanchez, Y. Choquette and M. Gauthier, Hydro Québec and Centre National de la Recherche Scientifique, EP Pat., EP0699349B1, 1994.
- R. Oshita, M. Fujimoto, T. Noma and K. Nishio, *Sanyo Electric Co. Ltd.*, JP Pat., JP3439085B2, Priority: 1997.
- 12. U. Lischka, U. Wietelmann and M. Wegner, Chemetall GmbH, DE Pat., DE19829030C1, 1998.
- S. Tsujioka, H. Takase, M. Takahashi, H. Sugimoto and M. Koide, Central Glass Co Ltd., JP Pat., JP3722685B2, 2000.
- 14. X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang and C. Wang, *Sci. Adv.*, 2018, 4, eaau9245.