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S1 Supplementary Computational Methods

S1.1 Definition of ∼1M compound augmented ZINC library

We defined an augmentation of the ZINC small molecule library1–4 to train our VAE network

for deep representational embeddings of our immunomodulator candidates. We combined the

2,674 molecules employed in our prior screening work,5 with a subset of 924,870 molecules

from the ZINC libraries1–4 comprising those molecules that containing a biphenyl scaffold,

inspired by the structure of previous small molecule immunomodulator discovery of Hon-

okiol.6 We also incorporated some other generic molecular libraries from various vendors.

As a result, our augmented ZINC library consists of 1,262,866 small molecule compounds in

total. A list of the molecular libraries compiled to define the initial augmented ZINC library

is provided in Table S1.

We then filtered the library under a number of criteria. First, we represented each

compound as simplified molecular-input line-entry system (SMILES) strings.7–10 We then

canonicalized these SMILES representations and removed duplicates. Second, we translated

each SMILES string into self-referencing embedded strings (SELFIES) as a more robust rep-

resentation of molecules that are guaranteed to define valid chemical structures.11 We then

eliminated compounds that produced an inconsistent SMILES string upon back-translation

from the SELFIES representation to ensure a strict one-to-one mapping between SMILES

representations and SELFIES representations of the compounds, thus enforcing a strict one-

to-one mapping between SELFIES representations and the structure of the compounds.

With the first two steps of filtering, we removed 8734 entries and were left with 1,254,132

compounds in the library. Third, we capped the maximum SELFIES string length to 137

characters and eliminated compounds containing tokens that appear in fewer than 500 com-

pounds. Since the SELFIES strings will ultimately be represented to the VAE input layer as

fixed-length vectors, this step constrained the dimension of the representation space so as to

limit the size of the network and its associated training costs. These constraints resulted in
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the elimination of only 5468 compounds, corresponding to fewer than 0.5% of candidates in

the immunomodulator library (Section S1.2). After performing these filtering operations, we

were left with 1,248,664 compounds in the augmented ZINC library. We note that a num-

ber of candidate compounds within the library exist as salts or with other components that

can serve as, for example, stabilizers. The SELFIES representation is sufficiently flexible

to support representation of such compounds by joining the two molecules within a single

string using a special “linking token”. We elected to take this approach as it more faithfully

represented the substance actually delivered in the experimental assay and also eliminated

the need for manual curation of the data to enhance the scalability of the approach.

Finally, we digitized the SELFIES representations into one-hot matrices of dimension 137-

by-55, where 137 represents the maximum possible string length and 55 are the number of

possible SELFIES tokens, including the null token. SELFIES strings less than the maximum

length are padded with null tokens. We then flattened the one-hot matrices into 7535-element

vectors to provide a fixed length representation of each molecule to be passed to the VAE.

S1.2 Definition of ∼140k compound immunomodulator candidate

library

We selected seven generic commercial small molecule compound libraries to define an initial

pool of 139,998 candidate immunomodulators to draw candidates from and bring to high

throughput screening experimentation. These libraries were a subset of our previously as-

sembled 1,248,664 compound augmented ZINC library. These screening compound libraries

were designed with the intention of enabling cell-based and target-based high throughput

screening initiatives by making a diverse range of small molecules readily available, which

make it easier for us to access the molecules for screening experiments. This immunomodu-

lator candidate library went through the same filtering steps as introduced in Section S1.1,

with the only exception that we were not using a new set of SELFIES tokens, but we used

the token dictionary we used for the augmented ZINC library. This is to ensure the map-
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Table S1: Compound libraries used to assemble the augmented ZINC library.

Company/Institution Compound Library # Compounds URL
UChicago Our Prior Screen Work5 2674 N/A
Analyticon Synthetic Screening Compounds 5000 URL
ChemBridge DS550-3 29882 URL
ChemBridge ES550-1 49966 URL
ChemBridge ES550-2 49958 URL
ChemRoutes ChemArray 21135 URL
Life Chemicals Pre-plated Diversity Sets PS4 50200 URL
Life Chemicals Pre-plated Diversity Sets PS5 50168 URL
Life Chemicals Biologically Active Compound Library 7991 URL

MedChemExpress STAT Inhibitors 58 URL
Micro Source The Spectrum Collection 1975 URL

Prestwick Chemical Prestwick Chemical Library 1276 URL
Selleckchem FDA-approved Drug Library 2667 URL
Selleckchem STAT Inhibitors 18 URL
UCSF SMDC Various Compound Libraries 65790 URL
ZINC1–4 Biphenyl Scaffold 924870 URL

Sum 1262866
Sum (After Filtering) 1248664

ping between the network parameters of VAE and the one-hot encodings of compounds. We

transformed the SELFIES representations into one-hot matrices, with a dimension of 137-

by-55 then flattened the one-hot matrices into 7535-element vectors to obtain a standardized

representation of each molecule. A list of the molecular libraries compiled to define the initial

immunomodulator candidate library is provided in Table S2. A CSV file providing SMILES

strings of all compounds of the 139,998 compound library is provided in the Supporting

Information.

S1.3 Deep representational learning using variational autoencoders

(VAEs)

S1.3.1 Model architecture

We employ a VAE architecture inspired by prior work by Aspuru-Guzik and co-workers11,12

and implemented in PyTorch.13 The encoder consists of three fully-connected (FC) layers
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Table S2: Compound libraries used to assemble the immunomodulator candidate
library.

Company Compound Library Number of Molecules URL
ChemBridge DS550-3 29547 URL
ChemBridge ES550-3 49584 URL

Life Chemicals Biologically Active Compound Library 7938 URL
Life Chemicals Pre-plated Diversity Sets PS4 50233 URL
Micro Source The Spectrum Collection 1821 URL

Prestwick Chemical Prestwick Chemical Library 1233 URL
Selleckchem FDA-approved Drug Library 1539 URL

Sum (After Filtering) 139998

that passes into a fourth fully-connected bottleneck layer corresponding to the latent space

embedding. For the decoder, we employed a stack of gated recurrent units (GRU).14 The

architecture of the VAE is illustrated in Figure S1. The hyperparameters of the model

architecture were optimized over the ranges reported in Table S3.

Table S3: Architecture and hyperparameter optimization ranges for the VAE.

Hyper-parameter description Value Optimization range
The number of neurons in the first FC layer 500 [250, 1000]

The number of neurons in the second FC layer 200 [200, 500]
The number of neurons in the third FC layer 100 [50, 250]

Latent space dimension 100 [3, 250]
The number of recurrent layers of GRU 3 [1, 3]

The number of features in the hidden state of GRU 200 [20, 400]

S1.3.2 Model training over augmented ZINC library

The VAE loss function LVAE comprises two components: (1) the reconstruction loss LRec

measured by the cross-entropy between the input and output one-hot SELFIES vectors to

enforce reconstruction fidelity and (2) the Kullback-Leibler divergence (KLD)15 LKLD of the

latent vectors relative to the standard normal distribution to regularize the latent space,12,16

LVAE = LRec + LKLD, (S1)
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Figure S1: Architecture of VAE for deep representational learning of molecular
latent space. The input and output of the VAE model are 7535-element one-hot vector
that are one-to-one with the SELFIES string representation of each molecule. The encoder
stack comprises three fully-connected feedforward layers with a 500-200-100 architecture.
A bottleneck layer comprising 100 neurons defines the 100D latent space embedding. The
decoder comprises three stacked GRUs each containing 200 neurons.

where,

LRec = −
N∑
i=1

D∑
j=1

xij log (x̂ij) + (1− xij) log (1− x̂ij) , (S2)

where N is the number of samples, D is the dimension of the data, xij is the jth component

of the ith input vector, and x̂ij is the corresponding reconstructed output of the autoencoder,

and,

LKLD = −1

2

J∑
j=1

(
1 + log(σ2

j )− µ2
j − σ2

j

)
, (S3)

where µj and σ2
j are the mean and variance of the jth element of the latent vector z, respec-

tively, and J is the dimensionality of z.

Network training is conducted by minimizing Equation S1 using the Adam optimizer.17

We first train the VAE over the augmented ZINC library for 10,000 epochs. To guard
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against posterior collapse,18 we employ an initial KLD loss coefficient of α = 10−2 that we

schedule to reduce to α = 10−3 at epoch 2000, and to α = 10−4 at epoch 5500. The training

hyperparameters comprising batch size and learning rates were optimized over the ranges

reported in Table S4. We assess model performance by computing the exact reconstruction

accuracy defined as the fraction of molecules in the training set whose SELFIES strings can

be reconstructed with 100% fidelity. Since the intended application of the trained VAE is

to define a latent space embedding of our candidate molecules to support an active learning

search, we use the decoder in service of learning this latent embedding but, in the present

work, do not make use of its generative capacity to extend the model beyond the training

data and produce novel synthetic molecules. As such, we assess model performance on the

training data rather than the usual practice of employing a hold-out test set. Our model

achieves an exact reconstruction accuracy of 97.3% at epoch 9032 after more than 1344

GPU-hours of training. This high accuracy indicates that the network has discovered a

100D latent space embedding that preserves the salient information necessary for accurate

molecular reconstruction, and we terminate training at this point. The training curves for

the model are illustrated in Figure S2.

Table S4: VAE training hyperparameters and optimization ranges.

Training parameter Value Optimization range
Batch size 2500 [2000, 3000]

Initial learning rate of the encoder 0.0001 [0.0001, 0.01]
Initial learning rate of the decoder 0.0001 [0.0001, 0.01]

S1.4 Gaussian process regression (GPR) surrogate models

In our present application, we seek to identify immunomodulators capable of enhancing

or suppressing the immune activity of a certain pathway when the pathway is activated

by a certain agonist. This leads to our optimization in maximizing or minimizing the im-

munomodulation values as fold changes. To guide our search in the chemical design space
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Figure S2: VAE training curves over the augmented ZINC training library. (a)
VAE loss function (Equation S1). (b) KLD component of VAE loss (Equation S3). The
dashed vertical lines in each panel denote the epochs at which the KLD loss coefficient α
was tuned from an initial value of 10−2 to 10−3 then 10−4. (c) Exact reconstruction accuracy
reporting the fraction of molecules in the training data whose SELFIES representations are
exactly reconstructed by the trained network.

towards profitable regions, we train a surrogate model to predict the fitness of immunomod-

ulator candidates that have not been experimentally tested. We include an uncertainty

measure that reflects our confidence in the predictions, enabling us to select points in the

space that balance both high predicted fitness (exploitation) and high uncertainty (explo-

ration). For this supervised regression task, we use Gaussian Process Regression (GPR) as

our surrogate model, as it is a non-parametric Bayesian regression technique that provides

built-in uncertainty estimates.19 We have chosen to use the radial basis function (RBF) ker-

nel (also known as the squared exponential kernel) as the covariance function within the

GPR implementation in scikit-learn,20

k(xi, xj) = σ2 exp

(
−|xi − xj|

2

2`2

)
, (S4)

where xi and xj are input data points, σ2 is the signal variance, ` is the length scale of

the kernel, and | · | represents the Euclidean distance between two points. To account

for uncertainties associated with each experimental measurement σn, we adopt Tikhonov

regularization21 such that an uncertainty vector σ = [σ1, σ2, . . . , σn]T is added to the diagonal

of the kernel matrix K during fitting. Although in each experiment, the standard deviation
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for each sample being tested was different, we took the average of the experimental errors

of all samples σ = 1
n

∑n
i=1 σi and fed into the GPR models as the uncertainty vector σ =

[σ, σ, . . . , σ]T .

As we were seeking immunomodulators with various capabilities – different kinds of

immunomodulation (enhancement, suppression), different pathways (NF-κB, IRF), and dif-

ferent agonists (LPS, MPLA, CpG, cGAMP) – we pursue a multi-objective optimization.

As such, we constructed multiple GPR models, with each GPR corresponding to enhance-

ment/suppression with a specific agonist on a specific pathway. In addition to specialists

– immunomodulators that induce large changes in enhancement or suppression when co-

delivered with one particular agonist – we also sought to identify generalists – immunomod-

ulators that lead to large effects when co-delivered with any one of a group of agonists. We

constructed GPR models for generalists using the arithmetic mean of the immunomodula-

tion fold change values of corresponding specialist objectives. For example, as one of the

objectives for enhancers of the NF-κB response, the immunomodulation of generalist over

LPS, MPLA and CpG agonists can be expressed as

MNF-κB Enhancer
generalist(LPS, MPLA, CpG) =

1

3

(
MNF-κB Enhancer

LPS +MNF-κB Enhancer
MPLA +MNF-κB Enhancer

CpG

)
, (S5)

whereMNF-κB Enhancer
LPS ,MNF-κB Enhancer

MPLA andMNF-κB Enhancer
CpG are immunomodulation fold change

values for modulator specialist with agonist LPS, MPLA and CpG, respectively. We initially

have 14 objectives, each representing a GPR model: (1) Enhancers of the NF-κB response

(4 objectives): specialist for LPS agonist, specialist for MPLA agonist, specialist for CpG

agonist, and generalist over LPS, MPLA, and CpG agonists; (2) Inhibitors of the NF-κB

response (4 objectives): specialist for LPS agonist, specialist for MPLA agonist, special-

ist for CpG agonist, and generalist over LPS, MPLA, and CpG agonists; (3) Enhancers of

the IRF response (6 objectives): specialist for LPS agonist, specialist for MPLA agonist,

specialist for CpG agonist, specialist for cGAMP agonist, generalist over LPS, MPLA, and
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CpG agonists, and generalist over LPS, MPLA, CpG and cGAMP agonists. We did not

seek to identify inhibitors of the IRF response because of limited clinical significance of such

immunomodulation. We did not optimize for enhancers or inhibitors of the NF-κB response

for specialist for cGAMP agonist because we knew from prior work that cGAMP does not

strongly stimulate the NF-κB pathway.22 Following our screening experiment, we found that

the specific CpG agonist we were using (CpG ODN 1826) demonstrated minimal IRF stimu-

lation, as can be seen in Figure S7. As a result, we only report specialist for CpG agonist as

enhancers and inhibitors of the NF-κB response, and the 14 initial objectives were reduced

to the 12 objectives as shown in Figure 1E.

S1.5 Multi-objective Bayesian optimization (BO)

After building GPR surrogate models to predict various forms of immunomodulation for

every compound, our objective is to explore the design space by iteratively querying new

compounds to experimentally test. This involves striking a balance between selecting the

most promising candidates with high expected performance (exploitation) and potentially

valuable candidates with high uncertainty associated with their prediction (exploration). To

achieve this balance, we utilize Bayesian optimization (BO), which is a powerful black-box

optimization technique that utilizes the posterior mean and uncertainties derived from GPR

predictions to identify the most promising candidates for testing.23 BO can optimize costly

black-box functions by optimizing the surrogate objectives that are defined by GPR. An

acquisition function is needed to determine the next best candidate for evaluation. To meet

our goal of discovering more effective immunomodulators, we have chosen the Expected

Improvement (EI) acquisition function acquisition function.24 This function guides the se-

lection of candidates that are predicted to result in maximum expected gains in fitness. The
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EI acquisition function can be expressed as,

EI(x) =


(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z), if σ(x) > 0,

0, otherwise
(S6)

where x is the input point, µ(x) and σ(x) are the mean and standard deviation of the

surrogate model prediction at x, f(x+) is the best function value observed so far, ξ is a trade-

off parameter that balances exploration and exploitation, Φ and φ are the standard normal

cumulative distribution function and probability density function, and Z = µ(x)−f(x+)−ξ
σ(x)

is

the standard normal random variable. We select the next best candidate point x∗ with the

highest value of the acquisition function from the set of available candidates xk that have not

yet been sampled, i.e., x∗ = argmaxkEI(xk;xk /∈ {x1,x2, . . . ,xn}). In this work, we employ

ξ = 0.01 as a good general purpose choice commonly employed in the literature.24,25

Traditional multi-objective Bayesian optimization (MOBO) strategies typically aim to

balance multiple objectives to efficiently map out Pareto optimal solutions.26,27 In this work,

this would be valuable in identifying potent generalists, but may sacrifice the discovery of

potent specialists that reside at the “corners” of the Pareto frontier. Furthermore, some of

our objectives are mutually incompatible, such as seeking to find enhancers and inhibitors

for the same pathway with the same agonist. Accordingly, we adopted an alternative MOBO

strategy in which we polled each of our 12 GPR models independently to collect the best

candidates recommended by each model under the EI acquisition function and eliminated

duplicates. To make efficient use of the experimental assay, we followed a batched sam-

pling Kriging believer approach28,29 wherein we asked each model for its next top-ranked

candidates until we had collected a batch of 720 molecules for experimental testing. Under

this protocol, we temporarily augment the training data with the molecules selected by the

GPRs annotated with the GPR activity predictions, the GPR models are retrained on this

augmented data, and the models polled again for their next top-ranked prediction under the
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EI acquisition function. This process is repeated until a batch of 720 molecules has been

collated for experimental testing. This batched sampling approach sacrifices efficiency from

an information theoretic perspective – each model is asked to choose a series of candidates

without first receiving back experimental information on the previously selected candidates

– but increases temporal efficiency by testing multiple molecules in an experimental batch.

Importantly, all selected molecules, regardless of their source GPR models, were subjected

to comprehensive experimental testing to evaluate their immunomodulatory profiles across

all agonist types and activation of both NF-κB and IRF pathways. As such, once the experi-

ments are complete, the activity entries in the augmented training data that were completed

with the GPR activity predictions in service of the Kriging believer batching are corrected

with the measured activities, and these data used to retrain all GPR model. In this manner,

molecules selected by one GPR model are not only used to retrain that particular GPR

model, but also used to retrain all other models.

S1.6 VAE-GPR surrogate model ablation test

Our choice of constructing a low-dimensional embedding using VAE and training a GPR

surrogate model was motivated, in part, by our previous experience in the success of the

VAE+GPR+BO paradigm in a number of recent applications in our lab30–35 and others.36–39

The GPR paradigm is also a natural fit for BO due to its intrinsic uncertainty estimates.

There are, however, a number of other surrogate modeling approaches that do not require

learning low-dimensional embeddings, but rather can operate directly on molecular featur-

izations,40–42 and that may employ simpler regression models such as linear regression or

support vector regression. To test the value of the learned low-dimensional embedding and

nonlinear and and nonparametric nature of the GPR in elevating the predictive performance,

we conducted a simple ablation test in which we evaluated model performance upon replacing

the learned VAE featurization with a simple and popular 2048-bit Morgan topological fin-

gerprints (FP) ECFP443 computed using RDKit,44 and replacing the GPR regression model

13



with a simple linear regression (LR). Considering these two ablations either independently

or in combination results in four possible models: (1) VAE-GPR; (2) VAE-LR; (3) FP-GPR;

and (4) FP-LR. We use the MAE calculated from a 5-fold cross-validation using each QSAR

model over six immunological functional goals to compare model performance.

The performance comparison is presented in Figure S3. It is immediately apparent that

the performance of the FP-LR model is significantly poorer than the other three. Between

the remaining three, the VAE-LR tends to perform marginally less well than the VAE-GPR

and FP-GPR. These results indicate that the simple featurization combined with the simple

regression strategy (FP-LR) is outperformed by both the learned featurization employing

the simple regression strategy (VAE-LR) and the simple featurization employing the sophis-

ticated regression strategy (FP-GPR). Interestingly, the performance of the FP-GPR is on

par with the VAE-GPR, suggesting that the sophisticated GPR regression model performs

equally well under a simple (FP) or learned (VAE) featurization. The VAE featurization,

however, possesses two significant advantages over the Morgan fingerprint featurizations.

First, the 100D VAE embedding has a relatively modest dimensionality compared to the

2048D Morgan fingerprints. The relatively poor scaling of GPR models with dimensionality,

means that this results in a ∼3× slowdown in training and deployment of the FP-GPR

model relative to the VAE-GPR. Second, the VAE embeddings are invertible in the sense

that molecules can be generated from VAE vectors, whereas it is not generally considered

possible to straightforwardly invert Morgan fingerprints into molecular structures.43,45 Al-

though we do not use the generative capacity of the VAE in this work, in future work we wish

to use the model to generate new synthetic molecular candidates with potentially superior

performance than those contained in the current screening libraries.

S1.7 Inference of chemical design rules using LASSO regression

A comprehensive list of descriptors that RDKit is able to compute is available at https://

www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors,

14

https://www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors
https://www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors


VAE-GPR
VAE-LR

FP-GPR
FP-LR

0.0

0.2

0.4

NF
-

B 
Re

sp
on

se
M

AE
 o

f l
og

2 F
ol

d 
Ch

an
ge

LPS Specialist

VAE-GPR
VAE-LR

FP-GPR
FP-LR

0.0

0.1

0.2

0.3

0.4
MPLA Specialist

VAE-GPR
VAE-LR

FP-GPR
FP-LR

0.0

0.2

0.4

0.6
CpG Specialist

VAE-GPR
VAE-LR

FP-GPR
FP-LR

0.0

0.2

0.4

0.6

IR
F 

Re
sp

on
se

M
AE

 o
f l

og
2 F

ol
d 

Ch
an

ge

LPS Specialist

VAE-GPR
VAE-LR

FP-GPR
FP-LR

0.0

0.2

0.4

MPLA Specialist

VAE-GPR
VAE-LR

FP-GPR
FP-LR

0.0

0.2

0.4

0.6

0.8

cGAMP Specialist

Figure S3: Analysis of the influence of featurization and regression model upon
predictive performance of the surrogate model. We compare all combinations of
featurizations – VAE and Morgan fingerprints (FP) – and regression model – GPR and linear
regression (LR): (1) VAE-GPR; (2) VAE-LR; (3) FP-GPR; and (4) FP-LR. Performance is
compared based on the MAE in the log2-fold change in six immunomogical functional goals.
The mean MAE is shown as the bars and the standard deviation of the MAE computed from
5-fold cross validation is shown as the error bars. The simplest model, FP-LR, has a poor
MAE compared to the other three. The three remaining model combinations exhibit similar
performance.

which includes a total of 208 2D descriptors. We elected not to include descriptors since 3D

molecular structures were not readily available for most of the compounds in our study.

Although RDKit is able to generate 3D conformers,44 we judged for the purposes of an in-

terpretable LASSO model that the 208 2D descriptors were sufficient. We selected those 85

descriptors denoting the occurrence of chemical groups for better interpretability. During

feature selection, eight irrelevant descriptors were removed because they are invariant across

all 3560 viable compounds in our study. To eliminate redundant descriptors, we looked at
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the 13 descriptors with Pearson correlation coefficients higher than 0.95 with any other de-

scriptors. We then used clustering analysis to group highly correlated descriptors together

into larger families or categories (Figure S4). In each group of highly correlated descrip-

tors, we selected one descriptor as representative of the group. In this way, seven additional

descriptors were marked redundant and removed. In sum, we retained 70 (= 85 − 8 − 7)

effective descriptors that were kept for further analysis. A CSV file listing all 85 descriptors

is provided in the the Supporting Information, within which we designate them as “Irrel-

evant” or “Redundant” if they were eliminated in the corresponding feature selection step,

and “Effective” if they were retained in further investigations.

Having defined the featurization for each immunomodulator, we construct a straightfor-

ward and interpretable model to predict the log2-fold change in immunomodulatory activity

log2M as a linear function of the k = 70 standardized features Fk,

log2Mpredicted =
1

N

3560∑
N=1

log2Mexp +
70∑
k=1

θkFk, (S7)

where 1
N

∑3560
N=1 log2Mexp is the arithmetic mean of the log fold change in immunomodulatory

activity over all N = 3560 experimental measurements and θ ∈ R70 is a vector regression

coefficients assigning weights to the different features. The coefficients θ are learned by

minimizing the LASSO regression loss between the predicted and experimentally measured

log2-fold change in immunomodulatory activities,

LLASSO(θ;αL) =
1

2
‖log2Mpredicted − log2Mexp‖22 + αL‖θ‖1. (S8)

The first term on the right side of the equation is the mean squared error between the

predicted and experimental immunomodulation values, and the second term is the L1 reg-

ularization penalty term with hyperparameter αL. The ‖ · ‖2 and ‖ · ‖1 represent the L2

and L1 norms, respectively. The L1 regularization penalty term encourages the model to

have fewer non-zero coefficients or parameters, thereby promoting a sparse model that can
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Figure S4: Correlation heatmap and cluster dendrogram of highly correlated de-
scriptors. We selected 13 descriptors that had a Pearson correlation coefficient greater
than 0.95 with at least one other descriptor. Clustering analyses were conducted to organize
highly correlated descriptors into larger groups/families. In this way, we identified six de-
scriptor groups with high correlation (red blocks shown in the clustered heat map). For each
of the six descriptor groups, we select one representative descriptor. Thus, we retained six
descriptors, namely “fr_Al_OH”, “fr_Ar_OH”, “ ‘fr_phos_acid”, “fr_Ar_NH”, “fr_COO”,
“fr_nitro”.
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offer a more concise and interpretable representation of the data. The optimal value for the

hyperparameter αL is chosen using cross-validation, and the resulting non-zero coefficients in

θ can be interpreted as the most critical features for immunomodulation, as shown in Figure

S5.

The linear nature of Equation S7 makes it easy to interpret the sign of the learned coef-

ficients: large negative weights θk < 0 indicate features that are negatively correlated with

immunomodulation, while large positive weights θk > 0 indicate features that are positively

correlated with immunomodulation. As shown in Figure S6, by examining the rank-ordering

of the coefficients with the largest absolute values, we can identify structural fragments that

are most informative for predicting immunomodulation. There were, in total, 33 chemical

fragment descriptors that were retained by at least one of the LASSO models for different

immunological objectives. In addition, our trained LASSO model can be used to predict

immunomodulation for larger molecules and/or molecules not contained within the training

data. A CSV file showing the code names and the corresponding chemical interpretations of

these 33 chemical fragment descriptors is provided in the Supporting Information.
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Figure S5: The performance of LASSO regression models evaluated with respect
to sparsity regularization parameter αL. The plot presents the number of molecular
descriptors that have non-zero learned coefficient values, which were identified by training
the model using a range of αL values (displayed on the left y-axis in orange). Additionally,
the plot shows the 5-fold cross-validation mean absolute error (MAE) score of the LASSO
regression model in the log2-fold change at each corresponding αL value (displayed on the
right y-axis in purple). The optimal αL is shown in red points where the corresponding MAE
is the lowest. The title of each plot denotes the corresponding immune signaling pathway and
agonist used for stimulation. The MAE of the model with the optimal αL is reported in the
upper-right corner of each panel with error bars estimated by 5-fold cross validation. In all
cases, the MAE of the LASSO regression models are poorer than those for the corresponding
GPR (cf. Figure 2), but the performance differential is at most only 32.3%.
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Figure S6: Full accounting of non-zero learned coefficient weights θk associated
with substructure features ranked by their magnitudes of weights in units of
log2-fold change. For each molecule n, we generate a standardized feature vector over all
70 features k, and collect these within a feature matrix Fn,k. Using this feature matrix, we
apply LASSO regression to predict the calculated immunomodulation acquired from high
throughput screening experiments and identifying the learned non-zero coefficient weights
θk with the highest magnitude from the reduced feature set retained by the LASSO model.
The features with positive weights are displayed in black text, while the ones with negative
weights are displayed in red text. Positive weights imply that there is a positive correlation
between the feature values and enhanced immunomodulation, while negative weights indicate
a positive correlation between the feature values and inhibitory immunomodulation.
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S2 Supplementary Experimental Methods and Results

S2.1 High throughput screening experiments

S2.1.1 Immonomodulators delivered alone do not affect immune responses of

NF-κB and IRF pathways

The raw data captured by the plate reader in our high throughput screening (HTS) experi-

ments, which reflects the magnitude of the immune response induced by each agonist or the

combination of an agonist and an immunomodulator, is presented in Figure S7. LPS, MPLA

and CpG are generally good NF-κB agonists while cGAMP struggles in activating NF-κB

pathway. LPS, MPLA and cGAMP are typically effective in activating the IRF pathway,

while CpG faces difficulties in initiating the IRF pathway. Most candidate immunomodula-

tors do not stimulate an immune response on their own, without the presence of agonists.

There were only 27/2880 (=0.9%) immunomodualtor candidates with which the samples

show absorbance > 0.5.

S2.2 Low throughput immunomodulation validation experiments

S2.2.1 Assay used for cytokine release profile testing

Monocytes were harvested from 6-week-old C57BL/6 mice and were differentiated into den-

dritic cells (BMDCs) using supplemented culture medium: RPMI 1640 (Life Technologies),

10% HIFBS (Sigma-Aldrich), Recombinant Mouse GM-CSF (carrier-free)(20 ng/ml; BioLe-

gend), 2 mM l-glutamine (Life Technologies), 1% antibiotic- antimycotic (Life Technologies),

and 50µM β-mercaptoethanol (Sigma-Aldrich). After 6 days of culture, BMDCs were plated

at 100,000 cells per well and incubated with modulator (10 µM). After 1 hour, agonist was

added. Cells were incubated for 24 hours at 37◦C and 5% CO2. Supernatant cytokines were

measured using Legendplex Mouse Inflammation Cytokine Kit (Biolegends) or a VeriKine

IFN-β ELISA (PBL Assay Science).
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Figure S7: Results of active learning screen as raw data. NF-κB activity was measured
as absorbance readings at 620 nm, and IRF activity was measured as luminescence readings
in the units of relative light unit (RLU). The higher the absorbance or luminescence, the
stronger the corresponding immune activity. The CpG agonist shows minimal stimulation of
the IRF pathway relative to no agonist present and was dropped from subsequent analyses.

S2.2.2 Immonomodulators delivered alone do not affect cytokine production

For transcription factor activity, modulators alone do not influence the immune responses

(Figure S7). This also applies to cytokine secretion profile in that modulator do not stimulate

cytokine release in the absence of agonist stimulation (Figure S8). It is the combination of

agonist and immunomodulators that allow for significant enhancement and inhibition of both

transcription factor activity and cytokine secretion.

S2.2.3 Comparing PME-4007 and MSA-2

MSA-2 is a recently discovered potent STING agonist that can stimulate STING pathway

and was identified as a chemical inducer of interferon-β secretion46 via a high throughput

screening process which involved ∼2.4M compounds. We subjected our leading IFN-β induc-

ing compound, PME-4007, to additional comparisons of its cytokine profile in the presence

of cGAMP to that of MSA-2. We largely followed the protocol mentioned in Section 2.3
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Figure S8: Modulators (10 µM) alone minimally affects cytokine production 24
hours after addition. Each panel shows the secreted concentration for a specific cytokine
stimulated by PBS (as negative control) and 17 selected top-performing immunomodulator
candidates (without the addition of agonists), addressed for 13 cytokines. The cytokine
production result from the addition of modulators in the absence of agonists is within the
same order of magnitude as that of the PBS negative control, showing that the addition of
immunomodulators alone minimally affects the production of cytokines. Although for IL-6
production, there is one molecule PME-3465 that has much higher IL-6 secretion than PBS
control, the magnitude of the amount of IL-6 being released is still minimal immunologically.
The cytokine production is measured by LegendPlex.

in the main text. To obtain more stringent results for this low throughput comparison, we

used more replicates (N=6). Considering the moderate cytotoxicity exhibited by PME-4007,

we used a lower concentration at 2 µM instead of the generic concentration of 10 µM for

all immunomodulators in all preceding experiments. To measure the cell viability of this

experiment, we utilized the MTT assay. After BMDCs were incubated with or without the

immunomodulator PME-4007 and with the agonist cGAMP or MSA-2 overnight, the cell

supernatant was removed and 70 µL of PBS was added. Cells were incubated with 10 µL of

5 mg/mL (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) for 3 hours at

37◦C. The medium was then removed, and 70 µL of DMSO was added to solubilize formazan

crystals. Plates were then read at 540 nm using a BioTek plate reader. Cell viability was

calculated as a percentage of proliferation versus PBS-treated negative control cells. The

results of MTT assay are shown in Figure S9A. Figure S9B and Figure S9C, as extensions

to Figure 6B in the main text, show that the modulation profile of PME-4007 over cytokine

secretion is not limited to IFN-β and TNF-α.

S2.3 Safety statement

During all wet lab experiments involved in this work, there were no unexpected or unusually

high safety hazards encountered.
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A B C

Figure S9: PME-4007 induces minimal cytotoxicity while enhancing the secretion
of IL-6 and IL-27 stimulated by cGAMP. (A) MTT Assay indicates that MSA-2,
cGAMP, and the combination of cGAMP and PME-4007 induce minimal cytotoxicity to
the cells as the cell viability is all higher than the cutoff 70%, and close to the level of
negative control resting cells. (B) PME-4007 slightly enhances the secretion of IL-6. MSA-2
strongly stimulates the secretion of IL-6 and is much stronger than the stimulation induced
by cGAMP. (C) PME-4007 significantly enhances the secretion of IL-27 with cGAMP, and
it is close to the level of stimulation induced by MSA-2.
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S3 Supplementary Figures
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Figure S10: Maximum pairwise Tanimoto similarities between the 2674 previously
screened molecules used to train our initial GPR models and the top-performing
candidates capable of >2-fold enhancement/inhibition identified by our active
learning screen. The maximum Tanimoto similarities for each of the molecules identified
in the active learning screen were determined by maxj Tanimoto(xi,xj), where xi denoted
the ith molecule in the active learning screen and xj denoted the jth molecule in the previous
screen. The Tanimoto similarity quantifies the proportion of chemical substructures shared
by a pair of molecules and it is a continuous number between 0 and 1.0, where 1.0 denotes
complete topological identity. The peak near 1.0 indicates that the model samples molecules
with similar structures to known good immunomodulators, but the large support for the
histogram in the 0-0.6 region indicates that the active learning screen is also exploring
molecules that are substantially diverse from the initial training data.
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Figure S11: Top performers identified in the active learning-assisted screen and
their closest analog in the 2674 molecules from our prior screen. The two top-
performing immunomodulator candidates in each of the 12 functional objectives. We present
for each molecule its chemical structure along with their code names. Below each best
performer or second-best performer, we present the chemical structure, code names, and the
Tanimoto similarity score of the closest analog to it. The Tanimoto similarity quantifies the
proportion of chemical substructures shared by a pair of molecules and it is a continuous
number between 0 and 1.0, where 1.0 denotes complete topological identity. Of the twelve
closest analogs to the top performing molecules, 6/12 (50%) possess a Tanimoto similarity
score to the top performer of less than 0.4 and 10/12 (83%) possess a score of less than 0.5,
indicative of a significant level of dissimilarity in the chemical structure.
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Figure S12: High-throughput experimental screening protocol for NF-κB tran-
scription factor levels and IRF activity. We seeded 50,000 RAW-Dual™ macrophages
in 384-well plates in 45 µL of complete media using a MultiDrop™ Combi liquid handler,
then incubated for 1 hour at 37◦C. We transferred immunomodulator compounds from source
plates (10mM dissolved in dimethyl sulfoxide, DMSO) to a final concentration of 10 µM us-
ing a Janus® G3 via pintool, then incubated for another 1 hour at 37◦C. One of the four
PRR agonists was added in 5 µL of media to achieve the desired concentration into cor-
responding wells using a MultiDrop™ Combi liquid handler. For control plates where we
test the effect of modulators in the absence of agonists, we added same volume of media
instead. We incubated the cells overnight. We then add QUANTI-Blue™ and QUANTI-
Luc™ reagents as appropriate, and read the absorbance at 620 nm and the luminescence
using a BioTek Synergy™ Neo2 Hybrid multimode microplate reader, which correspond to
the NF-κB transcription factor levels and the IRF activity levels, after necessary calibration
and standardization. Portions of this figure were created with BioRender.com.
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DMSO negative control

Agonist positive control

Testing modulators

Cell culture media

Figure S13: 384-well plate layout. One column and two rows on edges are not used to test
and filled with cell culture media to avoid error induced by evaporation of water. Portions
of this figure were created with BioRender.com.
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Figure S14: Immunomodulation of 17 selected top-performing candidates over
cytokine release profiles activated by LPS, CpG and cGAMP. The extent of im-
munomodulation is visualized as bar plots with error bars indicating standard errors asso-
ciated with each experiment. The bars are also color-coded by the log2-fold change values
for better clarity in showing those immunomodulation with large extent, representing potent
enhancers or suppressors.
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1.5x 2x 5x 10x
Fold Change Cutoff

NF- B Suppressor (LPS Specialist)

NF- B Suppressor (MPLA Specialist)

NF- B Suppressor (CpG Specialist)

NF- B Suppressor (Generalist)

NF- B Enhancer (LPS Specialist)

NF- B Enhancer (MPLA Specialist)

NF- B Enhancer (CpG Specialist)

NF- B Enhancer (Generalist)

IRF Enhancer (LPS Specialist)

IRF Enhancer (MPLA Specialist)

IRF Enhancer (cGAMP Specialist)

IRF Enhancer (Generalist)

All Functional Goals

53 60 23 25 0 6 0 1

24 37 7 18 1 0 0 0

142 190 76 91 14 32 0 8

36 52 13 15 1 3 0 0

172 22 60 4 7 0 0 0

65 114 22 42 0 1 0 0

48 54 17 13 0 0 0 0

76 51 26 9 0 0 0 0

29 128 10 11 2 2 0 0

35 210 7 27 2 1 0 0

11 16 0 5 0 0 0 0

10 28 6 7 0 0 0 0

382 554 159 167 23 36 0 9

Figure S15: Comparison of the number of immunomodulators with 1.5×, 2×, 5×,
and 10× enhancement or suppression identified in the present work compared to
our prior screen.5 For each immunological functional goal (rows), we present the number
of compounds meeting the fold-change threshold (columns). In each cell, the left number
represents the number of candidates meeting this criterion identified from our prior work,5
and the right number represents the number identified in the present work. In many combi-
nations of functional goals and cutoffs, the active learning-guided screen yielded a significant
increase in the population of immunomodulator candidates, and in five instances identified
candidates with activity levels that were not achieved in our prior screen.
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S4 Supplementary Tables

Table S5: Source library of screened molecules. The table shows (1) the number of
compounds in each chemical screening library, (2) the number of compounds experimented
with HTS in each library, (3) the number of good modulators (with >2-fold modulation)
found in each library and (4) the ratio of the number of good modulators identified within
our screen of that library to the total number of compounds within the library (i.e., the 3rd
column divided by the 1st column). The last three libraries, namely Microsource Spectrum
Collection, Prestwick Chemical Library and Selleckchem FDA-approved Drug Library, pos-
sess relatively higher ratios of good modulators identified. The statistics excluded non-viable
compounds.

Chemical Screening Library # compounds # experimented # good modulators % good modulators
ChemBridge DS550-3 29547 571 52 0.18 %
ChemBridge ES550-2 49584 657 54 0.11 %

Life Chemicals Biologically Active Compound Library 7938 176 27 0.34 %
Life Chemicals Pre-plated Diversity Sets PS4 50233 546 22 0.04 %

Micro Source The Spectrum Collection 1821 350 10 0.55 %
Prestwick Chemical Library 1219 276 9 0.74 %

Selleckchem FDA-approved Drug Library 1499 708 26 1.73 %

Table S6: List of agonists studied and their working concentration.

Agonist Target Concentration (µg/mL) Reference
LPS TLR4 0.1 47

MPLA TLR4 0.25 48

CpG (ODN 1826) TLR9 0.5 49

cGAMP STING 10 22
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