Supporting Information

Table of Contents

1. Optimization S2
2. Additional reaction examples S14
3. Proposed mechanism for thioester reduction S16
4. Experimental procedures S18
5. Stern-Volmer emission quenching S77
6. Differential pulse voltammetry S79
7. HPLC profiles of ZnTPP before/after the reaction S80
8. UV-vis spectra of ZnTPP and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$ S81
9. Computational methods S82
10. $\quad \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds S87

1. Optimization

Table S1: Summary of optimization for red light-mediated Barton decarboxylation.

entry	difference from optimized conditions	yield (\%)			
		2a	S1	18	1a
1	(none)	91	ND	ND	ND
$2^{[a, b, c]}$	t-BuSH as hydrogen source	83	5	ND	ND
$3^{[a, b, c]}$	$n-\mathrm{Bu}_{3} \mathrm{SnH}$ as hydrogen source	46	13	ND	ND
$4^{[a, b, c]}$	PhSH as hydrogen source	54	ND	ND	ND
$5^{[a, b, c]}$	Hantzsch ester as hydrogen source	trace	41	ND	ND
$6^{[a, b]}$	DMA as solvent	88	ND	ND	ND
$7{ }^{[a, b]}$	DMF as solvent	87	ND	ND	ND
$8^{[a, b]}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent	80	ND	ND	ND
$9[a, b]$	EtOAc as solvent	60	ND	ND	36
$10^{[a, b]}$	benzene as solvent	44	ND	ND	52
$11^{[a, b]}$	EtOH as solvent	64	ND	ND	ND
$12^{[a]}$	0.1 M	89	ND	ND	ND
$13^{[a]}$	1.0 M	36	ND	10	30
14	no ZnTPP , no irradiation, $50{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$	73	ND	ND	ND
15	TEMPO (4.0 eq.)	ND	ND	ND	78

10 mg scale and 15 min unless otherwise noted. $\mathrm{ND}=$ not detected.
[a] Chlorophyll a instead of ZnTPP. [b] 0.05 M .
[c] DMSO as solvent. 3 mol\% catalyst. 5 h .

S1

18

Table S2: Summary of optimization for red light-mediated Barton decarboxylative chlorination.

	reagent ZnTPP	(3.0 eq.) (3 mol\%)		Cl
3	solvent red LED	$\begin{aligned} & \text { (conc.) } \\ & \mathrm{s}, 25^{\circ} \mathrm{C} \end{aligned}$		
	solv	conc. (M)		
		conc. (M)	4a	S2
1 NCS	toluene	0.05	ND	ND
2 TMSCI	toluene	0.05	ND	ND
$3 \quad \mathrm{CCl}_{4}$	toluene	0.05	ND	37
$4 \quad \mathrm{PhSCl}$	toluene	0.05	ND	ND
5 hexachloroethane	toluene	0.05	ND	34
6	CCl_{4}	0.05	51	16
7	CCl_{4}	0.025	47	11
8	CCl_{4}	0.1	42	16
9	CCl_{4}	0.2	20	15
10	$\mathrm{Cl}_{2} \mathrm{HCCHCl}_{2}$	0.05	ND	_[a]
11 hexachloroethane	CCl_{4}	0.05	73	12
12 hexachloroethane ${ }^{[b]}$	CCl_{4}	0.05	69	8

20 mg scale and 1 h .
[a] obtained as inseparable mixture with an unidentified byproduct. [b] 6.0 eq. was used.

S2

Table S3: Summary of optimization for red light-mediated Barton decarboxylative bromination.

entry	reagent	X eq.	solvent	yield (\%)			
				4b	S2	S3	3
1	NBS	4.0		ND	ND	ND	ND
2	NBA	4.0		ND	58	ND	ND
3	TMSBr	4.0	DMSO	ND	20	ND	ND
4	$\mathrm{CH}_{2} \mathrm{BrCl}$	4.0	DMSO	ND	30	ND	6
5	CBr_{4}	4.0	DMSO	23	50	ND	ND
6	CBrCl_{3}	4.0	DMSO	$44^{[\text {a] }}$	$36^{[\text {a] }]}$	ND	ND
7	CBrCl_{3}	3.0	DMSO	50	14	20	ND
8	CBrCl_{3}	2.0	DMSO	43	ND	20	ND
9	CBrCl_{3}	1.0	DMSO	44	ND	20	ND
10	CBrCl_{3}	3.0	DMF	28	ND	19	ND
11	CBrCl_{3}	3.0	$\mathrm{CH}_{3} \mathrm{CN}$	39	ND	trace	ND
12	CBrCl_{3}	3.0	EtOH	ND	ND	7	ND
13	CBrCl_{3}	3.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	53	ND	14	ND
14	CBrCl_{3}	3.0	toluene	55	ND	14	ND

10 mg scale and 1 h .
[a] contains small amount of chlorinated compound $\mathbf{4 a}$.

S2

Table S4: Summary of optimization for red light-mediated Barton decarboxylative iodination.

entry	reagent	yield (\%)	
		$\mathbf{4 c}$	$\mathbf{S 2}$
1	NIS	7	3
2	CHI_{3}	23	6
3	$\mathrm{CH}_{2} \mathrm{l}_{2}$	70	trace
4	$\mathrm{CH}_{3} \mathrm{I}$	8	33
5	$\mathrm{CH}_{2} \mathrm{ClI}$	56	8

10 mg scale and 1 h .

S2

Table S5: Summary of optimization for red light-mediated Barton decarboxylative oxygenation.

10 mg scale.
[a] 4.0 eq. of t-BuSH.

Table S6: Summary of optimization for red light-mediated Barton decarboxylative nitrosation.

entry	solvent	yield (\%)
1	$\mathrm{CH}_{3} \mathrm{CN}$	31
2	DMSO	14
3	DMF	30
4	THF	19
5	toluene	51
6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	39
7	$\mathrm{DMF} /$ toluene $(2: 1)_{37}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene $(2: 1)$
8	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene $(2: 1)$	50
$9^{[a]}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene $(2: 1)$	49
$10^{[b]}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene $(2: 1)$	53
$11^{[\mathrm{b}, \mathrm{c}]}$	$2^{[\mathrm{b}, \mathrm{d}]}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene $(2: 1)$

10 mg scale and 1.5 h unless otherwise noted. ND = not detected.
In this optimization, solubility of $\mathrm{Ph}_{3} \mathrm{CSNO}$ to various solvent was problematic.
This is why the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene mixed solvent was chosen as optimum solvent.
[a] 2.0 eq. of $\mathrm{Ph}_{3} \mathrm{CSNO}$ was used. [b] solution of 1 z and $\mathrm{Ph}_{3} \mathrm{CSNO}$ was slowly added. [c] 0.1 M . [d] 0.05 M .

Table S7: Full optimization for red light-mediated Barton decarboxylative hydrazination.

10 mg scale and 1.5 h unless otherwise noted. ND $=$ not detected. [a] 1.5 eq. of DEAD was used. [b] 2.0 eq. of DEAD was used.

Table S8: Full optimization for red light-mediated Barton decarboxylative sulfidation.

10 mg scale and 1.5 h .

Table S9: Summary of optimization for red light-mediated Barton decarboxylative selenidation.

Table S10: Full optimization for red light-mediated Barton decarboxylative borylation.

entry	reagent	X eq.	additive	Y eq.	solvent	conc. (M)	yield (\%)			
							$4 i$	S2	S4	S5
$1^{\text {[a] }}$	$\mathrm{B}_{2} \mathrm{pin}_{2}$	4.0	none	-	DMF	0.05	ND	44	ND	ND
$2^{[a]}$	$\mathrm{B}_{2} \mathrm{pin}_{2}$	4.0	$\mathrm{Et}_{3} \mathrm{~N}$	4.0	DMF	0.05	ND	25	ND	ND
$3^{[a]}$	$\mathrm{B}_{2} \mathrm{pin}_{2}$	4.0	pyridine	4.0	DMF	0.05	ND	23	ND	ND
$4^{[a]}$	$\mathrm{B}_{2} \mathrm{pin}_{2}$	4.0	t-BuOK	4.0	DMF	0.05	ND	54	ND	ND
$5{ }^{[a]}$	$\mathrm{B}_{2} \mathrm{pin}_{2}$	4.0	CsF	4.0	DMF	0.05	ND	34	ND	ND
6	$\mathrm{B}_{2}(\mathrm{OH})_{2}$	4.0	none	-	DMF	0.2	15	2	ND	5
7	$\mathrm{B}_{2} \mathrm{cat}_{2}$	4.0	none	-	DMF	0.2	28	9	10	ND
8	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	4.0	none	-	DMA	0.2	25	trace	ND	ND
9	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	4.0	none	-	DMSO	0.2	ND	5	ND	ND
10	$\mathrm{B}_{2} \mathrm{cat}_{2}$	4.0	none	-	$\mathrm{CH}_{3} \mathrm{CN}$	0.2	11	trace	trace	22
11	$\mathrm{B}_{2} \mathrm{cat}_{2}$	4.0	none	-	EtoAc	0.2	12	trace	31	ND
12	$\mathrm{B}_{2} \mathrm{cat}_{2}$	4.0	none	-	toluene	0.2	14	trace	7	12
13	$\mathrm{B}_{2} \mathrm{cat}_{2}$	4.0	none	-	MeOH	0.2	24	trace	ND	ND
14	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	4.0	none	-	THF	0.2	23	trace	trace	ND
15	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	3.0	none	-	DMF	0.2	40	3	ND	ND
16	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	none	-	DMF	0.2	48	trace	ND	ND
17	$\mathrm{B}_{2} \mathrm{cat}_{2}$	1.0	none	-	DMF	0.2	8	18	ND	ND
18	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	2.0	pyridine	2.0	DMF	0.2	18	trace	ND	ND
19	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	2.0	$\mathrm{Et}_{3} \mathrm{~N}$	2.0	DMF	0.2	40	11	ND	ND
20	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	DABCO	2.0	DMF	0.2	24	21	ND	ND
21	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	t-BuOK	2.0	DMF	0.2	22	4	ND	ND
22	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	HMPA	2.0	DMF	0.2	58	3	ND	ND
23	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	$\mathrm{Ph}_{3} \mathrm{P}$	2.0	DMF	0.2	30	trace	ND	ND
24	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	$\mathrm{H}_{2} \mathrm{O}$	20	DMF	0.2	52	11	ND	ND
25	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	DMPU	2.0	DMF	0.2	54	ND	ND	ND
26	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	2.0	NMP	2.0	DMF	0.2	51	ND	ND	ND
27	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	HMPA	10	DMF	0.2	53	ND	ND	ND
28	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	HMPA	2.0	DMF	0.1	63	ND	ND	ND
29	$\mathrm{B}_{2} \mathrm{cat}_{2}$	2.0	HMPA	2.0	DMF	0.05	51	ND	ND	ND
30	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	2.0	HMPA	2.0	DMF	0.025	67	ND	ND	ND
31	$\mathrm{B}_{2} \mathrm{Cat}_{2}$	2.0	HMPA	2.0	DMF	0.01	67	ND	ND	ND

20 mg scale and 1 h .
[a] second reaction was not conducted.

Table S11: Summary of optimization for red light-mediated Barton decarboxylative Giese reaction.

entry	X eq.	solvent	YM	yield (\%)	
				$\mathbf{8 a}$	
1	4.0	DMSO	0.1	35	11
2	4.0	DMF	0.1	49	20
3	4.0	MeCN	0.1	33	21
4	4.0	EtOH^{2}	0.1	trace	29
5	4.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.1	62	30
6	4.0	toluene	0.1	70	20
7	4.0	toluene	0.05	56	24
8	4.0	toluene	0.2	62	20
9	2.0	toluene	0.1	53	29
10	8.0	toluene	0.1	62	13

10 mg scale and 1 h .

Table S12: Summary of optimization for blue light-mediated decarboxylation of 7e.
solvent (0.1 M)
blue LEDs, time

Table S13: Summary of optimization for one-pot Giese reaction/decarboxylation of 5 .

entry	Xeq.	Y mol\%	yield (\%)		
			$\mathbf{8}$	$\mathbf{7 e}$	
1^{a}	4.0	3	ND	10	9^{b}
2	4.0	3	13	11	40
3	3.0	3	64	10	trace
4	2.5	3	67	15	ND
5	2.0	3	60	18	ND
6	1.0	3	38	26	8
7	2.5	1	49	15	ND
8	2.5	10	19	11	45

a) with 4.0 eq. of $i-\mathrm{Pr}_{2} \mathrm{NEt}$
b) with inseparable impurities

Table S14: Summary of optimization for decarboxylative generation of alcohol $\mathbf{1 7}$ from $\mathbf{7 e}$.

O_{2}, base, TBAI, additive $\left[\mathrm{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}\right.$ (dtbbpy) $] \mathrm{PF}_{6}$
toluene $/ \mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{M}, 10: 1)$ blue LEDs, 1 d ;
then NaBH_{4}

entry	base	additive	NaBH_{4}	yield (\%)	
				ND	S 6
1	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	-	46	ND
2	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	0	64	ND
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	PPh_{3}	0	80	ND
4	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{P}(\mathrm{OPh})_{3}$	\circ	63	ND
5	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	$\mathrm{P}(\mathrm{OPh})_{3}$	\circ	32	ND
6	NaOH^{2}	$\mathrm{P}(\mathrm{OPh})_{3}$	\circ	66	ND
7	$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	$\mathrm{P}(\mathrm{OPh})_{3}$	\circ	52	ND
8	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	$\mathrm{P}(\mathrm{OPh})_{3}$	\circ	5	

2. Additional reaction examples

Table S15: Examples for Barton decarboxylative selenidation.

entry

10 mg scale and 1 h .

Scheme S1: Examples for one-pot Barton decarboxylative reaction/blue light-mediated reactions.

3. Proposed mechanism for thioester reduction

Scheme S2: Proposed reaction mechanism for decarboxylative generation of aldehyde from
7e. (A) Decarboxylation of 7e to generate thioester. (B) Reduction of thioester to aldehyde.

(B)

Scheme S3: Proposed reaction mechanism for decarboxylative generation of aldehyde from $7 \mathbf{e}$ in the presence of phosphine.

4. Experimental procedures

General methods. Melting points are uncorrected. Specific rotations were measured in a 100 mm cell. ${ }^{1} \mathrm{H}$ HMR spectra were recorded at 400 MHz or 500 MHz with tetramethylsilane (0 ppm), residual chloroform (7.26 ppm) or residual dimethyl sulfoxide (2.54 ppm) as an internal standard on a JEOL JNMECS400 (400 MHz), JEOL JNM-ECZ400 (400 MHz) or JEOL JNM-ECA500 (500 MHz) spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz or 125 MHz , and referenced to residual chloroform (77 ppm) or residual dimethyl sulfoxide (39.5 ppm). High-resolution mass spectra (HRMS) were measured by the ESI mode on a Waters LCT premier XE spectrometer. The diffuse reflectance UV-vis spectra were measured by Shimadzu UV-3600Plus with wavelength range between 400 nm and 800 nm . Fluorescence spectra were measured by Shimadzu RF-6000. Gas chromatography (GC) analysis was performed using a CBP-10 capillary column ($25 \mathrm{~m} \times 0.22 \mathrm{~mm}$, film thickness $0.25 \mu \mathrm{~m}$). HPLC analysis was performed with Daicel Chiralcel OD-H $0.46 \mathrm{~cm} \mathrm{\Phi} \times 25 \mathrm{~cm}$ column. Thin-layer chromatography (TLC) was performed on Merck Kieselgel $60 \mathrm{~F}_{254}$ plates. The crude reaction mixtures and extracted materials were purified by chromatography on silica gel (Fuji Silysia, PSQ-100B) or PTLC (Merck). Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed from the reaction mixture and the combined organic extracts by concentration under reduced pressure using an evaporator with bath at $35-45^{\circ} \mathrm{C}$. Yields are isolated yields unless otherwise noted.

Light-mediated reaction setup. A strip of red LEDs (4W) was purchased from akibaLED PIKARIKAN, Japan. The strip was coiled and pasted inside a plastic cup of 8 cm diameter (Figure S1a). The reaction flask equipped with a magnetic stir bar was placed at the center of the cup and covered with aluminum foil. The reaction mixture was irradiated by red LEDs from 2.5 cm distance with continuous stirring (Figure S1b, S1c). The plastic cup was cooled by an external water bath when necessary.

For blue light-mediated reactions, a strip of blue LEDs (10W) was used and set up as described above.

Figure S1. Reaction setup. (a, left) a strip of LEDs is coiled on inner face of plastic cup. (b, center) (c, right) the reaction flask is irradiated by red LEDs.

3-[4-(tert-Butyldimethylsilyloxy)phenyl]propionic acid (S16).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of 3-(4hydroxyphenyl)propionic acid (S15) ($201 \mathrm{mg}, 1.21 \mathrm{mmol}$) in DMF (2 mL) were added TBSCl ($405 \mathrm{mg}, 2.70 \mathrm{mmol}$) and imidazole ($286 \mathrm{mg}, 4.20 \mathrm{mmol}$). After being stirred at room temperature for 1 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with hexane (10 $\mathrm{mL} \times 3$). The combined extracts were dried and concentrated under reduced pressure to provide crude silyl ester, which was used in the next step without further purification.
To a stirred solution of crude silyl ester obtained above in $\mathrm{MeOH} / \mathrm{THF}(1: 1,2 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($347 \mathrm{mg}, 2.50 \mathrm{mmol}$). After being stirred at room temperature for 14 h , the mixture was quenched with 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ and extracted with $\operatorname{EtOAc}(10 \mathrm{~mL} \times 3)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:8) to provide 148 mg (43%) of S16 as white crystals. mp 59-61 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.31-0.56$ (EtOAc/hexane, 1:1). IR (KBr): 3400-2500, 2950, 1718, $1655 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.06(\mathrm{~d}, 2 \mathrm{H}, J=8.3$ $\mathrm{Hz}, \mathrm{H}-2,6$ of Ar), 6.76 (d, 2H, $J=8.3 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $2.89(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3,3$ '), 2.65 (t, 2H, J=7.6 Hz, H-2, 2'), 0.97 (s, 9H, $t-\mathrm{Bu}), 0.18(\mathrm{~s}, 6 \mathrm{H},-\mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , CDCl_{3}): $\delta 178.8,154.1,132.8,129.1$ (2C), 120.1 (2C), 35.8, 29.8, 25.7 (3C), 18.2, -4.4 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}$ 281.1573; Found 281.1572.

3-[4-(Pivaloyloxy)phenyl]propionic acid (S17).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of 3-(4hydroxyphenyl)propionic acid (S15) ($202 \mathrm{mg}, 1.21 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ were added $\operatorname{PivCl}(0.293 \mathrm{~mL}, 2.41 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.334 \mathrm{~mL}, 2.41 \mathrm{mmol})$, and DMAP $(14.9 \mathrm{mg}, 0.122$ $\mathrm{mmol})$. After being stirred at room temperature for 2 d , the mixture was quenched with 1 M aqueous $\mathrm{HCl}(1 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/toluene, 1:1) to provide $208 \mathrm{mg}(69 \%)$ of $\mathbf{S 1 7}$ as white crystals. $\mathrm{mp} 88-91^{\circ} \mathrm{C}$. TLC R_{f} 0-0.40 (EtOAc/toluene, 1:1). IR (KBr): 3500-2500, 2975, 1752, 1716, $1695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar$), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 2.95 (t, 2H, $\left.J=7.8 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.67\left(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 1.35(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.5,177.2,149.5,137.4,129.2$ (2C), 121.5 (2C), 39.0, 35.5, 29.9, 27.1 (3C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na} 273.1103$;

3-[4-(Methanesulfonyloxy)phenyl]propionic acid (S18).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of 3-(4hydroxyphenyl)propionic acid (S15) ($200 \mathrm{mg}, 1.20 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ were added NaOH ($181 \mathrm{mg}, 4.52 \mathrm{mmol}$) and $\mathrm{MsCl}(0.116 \mathrm{~mL}, 1.50 \mathrm{mmol})$. After being stirred at room temperature for 18 h , the mixture was quenched with 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$. The insoluble solids were collected by filtration and washed well with $\mathrm{H}_{2} \mathrm{O}$. The solids were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:1) to provide $130 \mathrm{mg}(44 \%)$ of $\mathbf{S 1 8}$ as white crystals. mp 98-101 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0-0.27$ (EtOAc/hexane, 4:1). IR (KBr): $3500-2500,3067,1709 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, $\mathrm{H}-2,6$ of Ar), 7.10 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 3.14 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{Me}$), $2.97(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{H}-3,3^{\prime}\right), 2.69\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.7,147.7$, 139.6, 129.9 (2C), 122.1 (2C), 37.3, 35.2, 29.8. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{KO}_{5} \mathrm{~S}$ 283.0043; Found 283.0046.

3-[4-(Benzyloxy)phenyl]propionic acid (S19).

The following reaction was carried out under Ar. To a stirred solution of 3-(4hydroxyphenyl)propionic acid (S15) ($202 \mathrm{mg}, 1.22 \mathrm{mmol}$) in THF (6 mL) were added BnBr $(0.150 \mathrm{~mL}, 1.27 \mathrm{mmol}), \mathrm{KOH}(169 \mathrm{mg}, 3.01 \mathrm{mmol})$, and $\mathrm{NaI}(3.6 \mathrm{mg}, 0.024 \mathrm{mmol})$. The mixture was refluxed for 18 h , and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added. After being refluxed for 2 h , the mixture was quenched with 3 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/toluene, 1:10) to provide $157 \mathrm{mg}(51 \%)$ of $\mathbf{S 1 9}$ as white crystals. $\mathrm{mp} 90-93{ }^{\circ} \mathrm{C}$. TLC R_{f} 0.38-0.53 (EtOAc/hexane, 1:1). IR (KBr): 3500-2500, 3030, $1696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (d, 2H, $J=7.3 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ph), 7.39 (t, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ph), $7.33(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-4$ of Ph$), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}, \mathrm{H}-3,5$ of Ar), 5.05 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Bn}$), 2.91 (t, 2H, $J=7.9 \mathrm{~Hz}, \mathrm{H}-3,3$ '), 2.66 (t, 2H, $J=7.9 \mathrm{~Hz}, \mathrm{H}-$

2, 2^{\prime}). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.6,157.4,137.1,132.5,129.2$ (2C), 128.6 (2C), 127.9, 127.4 (2C), 114.9 (2C), 70.0, 35.8, 29.7. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3} 279.0997$; Found 279.1003.

3-[4-(p-Methoxybenzyloxy)phenyl]propionic acid (S20).

The following reaction was carried out under Ar. To a stirred solution of 3-(4hydroxyphenyl)propionic acid (S15) ($99.8 \mathrm{mg}, 0.601 \mathrm{mmol}$) in DMF (1 mL) were added $\operatorname{PMBCl}(0.330 \mathrm{~mL}, 2.42 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(333 \mathrm{mg}, 2.41 \mathrm{mmol})$, and $\mathrm{KI}(24.8 \mathrm{mg}, 0.149 \mathrm{mmol})$. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 2 h , and $20 \mathrm{wt} \%$ aqueous $\mathrm{NaOH}(1.2 \mathrm{~mL})$ was added. After being stirred at $60^{\circ} \mathrm{C}$ for 2 h , the mixture was quenched with 1 M aqueous $\mathrm{HCl}(15 \mathrm{~mL})$ and extracted with toluene (50 mL). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} \times 4)$ and saturated brine (20 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by recrystallization from toluene to provide 57.2 $\mathrm{mg}(33 \%)$ of S20 as white crystals. mp 131-134 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.21-0.44$ (EtOAc/toluene, 1:1). IR (KBr): 3200-2500, 2932, $1710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}, \mathrm{H}-2,6$ of Ar), 7.11 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of PMB), 6.92 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 6.88 (d, 2H, J = $8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of PMB), 4.95 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Bn}$), 3.74 (s, 3H, -Me), 2.72 (t, 2H, $\left.J=7.6 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.48\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): δ $173.9,158.9,156.7,132.9,129.5$ (2C), 129.2 (2C), 129.1, 114.6 (2C), 113.8 (2C), 68.9, 55.1, 35.6, 29.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{34}$ 287.1283; Found 287.1291.

3-[4-(o-Nitrobenzyloxy)phenyl]propionic acid (S21).

The following reaction was carried out under Ar. To a stirred solution of 3-(4hydroxyphenyl)propionic acid (S15) ($202 \mathrm{mg}, 1.22 \mathrm{mmol}$) in DMF (2 mL) were added o$\mathrm{NO}_{2} \mathrm{BnBr}(986 \mathrm{mg}, 4.56 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(675 \mathrm{mg}, 4.89 \mathrm{mmol})$, and $\mathrm{KI}(39.4 \mathrm{mg}, 0.237 \mathrm{mmol})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h , and $20 \mathrm{wt} \%$ aqueous $\mathrm{NaOH}(2.4 \mathrm{~mL})$ was added. After being stirred at $60^{\circ} \mathrm{C}$ for 1 h , the mixture was quenched with 1 M aqueous $\mathrm{HCl}(30 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 3)$. The combined extracts were extracted with 0.1 M aqueous $\mathrm{NaOH}(10 \mathrm{~mL} \times 2$). The combined aqueous layers were acidified with 1 M aqueous $\mathrm{HCl}(6 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The organic layer was washed with saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/toluene, 1:10) to provide $263 \mathrm{mg}(72 \%)$ of $\mathbf{S 2 1}$
as yellow crystals. mp $124-126^{\circ} \mathrm{C}$. TLC $R_{f} 0-0.33$ (EtOAc/toluene, 1:4). IR (KBr): 3500-2500, 2919, $1708 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 8.11\left(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3\right.$ of $\left.o-\mathrm{NO}_{2} \mathrm{Bn}\right)$, $7.77\left(\mathrm{~s}, 1 \mathrm{H}, o-\mathrm{NO}_{2} \mathrm{Bn}\right), 7.76\left(\mathrm{~s}, 1 \mathrm{H}, o-\mathrm{NO}_{2} \mathrm{Bn}\right), 7.65\left(\mathrm{~m}, 1 \mathrm{H}, o-\mathrm{NO}_{2} \mathrm{Bn}\right), 7.19(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}, \mathrm{H}-2,6$ of Ar), $6.95\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5\right.$ of Ar), $5.46\left(\mathrm{~s}, 2 \mathrm{H}, o-\mathrm{NO}_{2} \mathrm{Bn}\right), 2.79(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=7.5 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.52\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta$ $173.9,156.2,147.5,134.0,133.6,132.7,129.4$ (2C), 129.2, 129.1, 124.8, 114.6 (2C), 66.3, 35.5, 29.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{5}$ 302.1028; Found 302.1029.
tert-Butyl 3-(4-hydroxyphenyl)propionate (S22).

S15
S22
The following reaction was carried out under Ar. To a stirred solution of 3-(4hydroxyphenyl)propionic acid (S15) ($3.00 \mathrm{~g}, 18.1 \mathrm{mmol}$) in DMF (18 mL) was added CDI $(3.53 \mathrm{~g}, 21.8 \mathrm{mmol})$. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 7 h , and dry tert-butyl alcohol $(5.15 \mathrm{~mL}, 54.1 \mathrm{mmol})$ and DBU ($5.40 \mathrm{~mL}, 36.1 \mathrm{mmol}$) were added. After being stirred at $80{ }^{\circ} \mathrm{C}$ for 18 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(20$ $\mathrm{mL} \times 10$). The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:8) to provide 2.50 g (62%) of $\mathbf{S 2 2}$ as colorless crystals. mp 38$42{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.72$ (EtOAc/hexane, 1:2). IR (KBr): 3362, 2977, $1690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.04(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.73(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 5.52 (br s, 1H, -OH), 2.83 (t, 2H, $J=7.8 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}$), 2.51 (t, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}$), 1.42 (s, $9 \mathrm{H}, t-\mathrm{Bu}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,154.1,132.6,129.4$ (2C), 115.2 (2C), 80.6, 37.4, 30.3, 28.0 (3C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} 223.1334$; Found 223.1338.
tert-Butyl 3-[4-(2-methoxyethoxymethoxy)phenyl]propionate (S23).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{S 2 2}$ ($99.8 \mathrm{mg}, 0.449 \mathrm{mmol}$) in THF (7 mL) was added $\mathrm{NaH}(60 \%$ in oil, $53.7 \mathrm{mg}, 1.34 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and $\mathrm{MEMCl}(0.130 \mathrm{~mL}, 1.14 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 14 h , the mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine $(10 \mathrm{~mL})$, sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column
chromatography on silica gel (EtOAc/hexane, 1:10) to provide $117 \mathrm{mg}(84 \%)$ of $\mathbf{S 2 3}$ as a colorless oil. TLC $R_{f} 0.56$ (EtOAc/hexane, 1:4). IR (neat): 2977, $1729 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10$ (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 6.96 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $5.24\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}-\right), 3.81\left(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.55(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.84\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.50(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{H}-2,2^{\prime}\right), 1.41(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.3,155.6,134.2,129.2$ (2C), 116.2 (2C), 93.6, 80.3, 76.7, 67.5, 59.0, 37.3, 30.3, 28.0 (3C). HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{5} 311.1858$; Found 311.1854

3-[4-(2-Methoxyethoxymethoxy)phenyl]propionic acid (S24).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{S 2 3}$ ($117 \mathrm{mg}, 0.378$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(5: 2,6 \mathrm{~mL})$ was added $\mathrm{NaOH}(95.5 \mathrm{mg}, 2.39 \mathrm{mmol})$. After being stirred at room temperature for 15 h , the mixture was quenched with 1 M aqueous $\mathrm{HCl}(3 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:1) to provide $92.0 \mathrm{mg}(96 \%)$ of $\mathbf{S 2 4}$ as a colorless oil. TLC $R_{f} 0-0.34$ (EtOAc/hexane, 2:1). IR (neat): $3600-2500,2926,1711 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12$ (d, 2H, $J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 6.98 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, $\mathrm{H}-3,5$ of Ar), $5.24\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}-\right), 3.82\left(\mathrm{t}, 2 \mathrm{H}, J=4.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.56(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=4.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.90(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-3,3$) $), 2.64(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=7.8 \mathrm{~Hz}, \mathrm{H}-2,2{ }^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 178.3,155.8,133.6,129.2$ (2C), 116.4 (2C), 93.5, 76.7, 67.5, 59.0, 35.7, 29.8. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na} 277.1052$; Found 277.1046.
tert-Butyl 3-[4-(4-pentenyloxy)phenyl]propionate (S25).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{S 2 2}$ ($257 \mathrm{mg}, 1.15$ $\mathrm{mmol})$ in DMF (2 mL) were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($667 \mathrm{mg}, 4.83 \mathrm{mmol}$), $\mathrm{KI}(40.4 \mathrm{mg}, 0.243 \mathrm{mmol}$), and 5-bromo-1-pentene ($0.550 \mathrm{~mL}, 4.65 \mathrm{mmol}$). After being stirred at $60{ }^{\circ} \mathrm{C}$ for 17 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 309 mg (92%) of $\mathbf{S 2 5}$ as a colorless oil. TLC $R_{f} 0.69$ (EtOAc/hexane, 1:4). IR (neat):
$3500-2500,2977,1730 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.82(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 5.85 (m, 1H, H-4 of 4-pentenyloxy), 5.06 (d, 1H, J $=17.0 \mathrm{~Hz}, \mathrm{H}-5$ of 4-pentenyloxy), $5.00\left(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right.$ of 4-pentenyloxy), 3.94 (t , $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}$ ' of 4-pentenyloxy), $2.85\left(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.50(\mathrm{t}, 2 \mathrm{H}, J=7.9$ $\mathrm{Hz}, \mathrm{H}-2,2^{\prime}$), 2.23 (q, 2H, $J=6.8 \mathrm{~Hz}, \mathrm{H}-3,3$ ' of 4-pentenyloxy), 1.87 (quin, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-$ 2, 2' of 4-pentenyloxy), 1.42 (s, 9H, t-Bu). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.3,157.4$, 137.8, 132.7, 129.2 (2C), 115.1, 114.4 (2C), 80.2, 67.1, 37.4, 30.2, 30.1, 28.4, 28.0 (3C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3}$ 291.1960; Found 291.1969.

3-[4-(4-Pentenyloxy)phenyl]propionic acid (S26).

To a stirred solution of $\mathbf{S 2 5}(196 \mathrm{mg}, 0.673 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2: 1,2 \mathrm{~mL})$ was added $\mathrm{NaOH}(95.5 \mathrm{mg}, 2.46 \mathrm{mmol})$. After being refluxed for 2 h , the mixture was quenched with 1 M aqueous $\mathrm{HCl}(4 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:4) to provide 158 mg (quant.) of $\mathbf{S 2 6}$ as white crystals. $\mathrm{mp} 68-69^{\circ} \mathrm{C}$. TLC $R_{f} 0-0.25$ (EtOAc/hexane, 1:4). IR (KBr): 2949, $1721 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.83(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $5.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4$ of 4-pentenyloxy), 5.06 (d, 1H, $J=17.2 \mathrm{~Hz}, \mathrm{H}-5$ of 4-pentenyloxy), 4.99 (d, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}$, H-5' of 4-pentenyloxy), $3.94\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right.$ ' of 4-pentenyloxy), $2.90(\mathrm{t}, 2 \mathrm{H}, J=7.7$ $\left.\mathrm{Hz}, \mathrm{H}-3,3^{\prime}\right), 2.65\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 2.23$ ($\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-3,3$ ' of $4-$ pentenyloxy), 1.87 (quin, $2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-2,2$ ' of 4-pentenyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta 178.7,157.6,137.8,132.1,129.2$ (2C), 115.1, 114.5 (2C), 67.2, 35.8, 30.1, 29.7, 28.4. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3} 235.1334$; Found 235.1325.
tert-Butyl 3-[4-(3-phenylpropioloxy)phenyl]propionate (S27).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{S 2 2}$ ($227 \mathrm{mg}, 1.02$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added phenylpropiolic acid ($157 \mathrm{mg}, 1.07 \mathrm{mmol}$), EDCI $\cdot \mathrm{HCl}$ $(363 \mathrm{mg}, 1.89 \mathrm{mmol})$, and DMAP $(12.3 \mathrm{mg}, 0.101 \mathrm{mmol})$. After being stirred at room temperature for 2 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $5 \mathrm{wt} \%$ aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL} \times 3), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine $(10 \mathrm{~mL})$, sequentially. The
organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 155 mg (43%) of $\mathbf{S 2 7}$ as white crystals. $\mathrm{mp} 65-69^{\circ} \mathrm{C}$. TLC $R_{f} 0.59$ (EtOAc/hexane, 1:2). IR (KBr): 2970, 2234, $1720 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ph$), 7.49(\mathrm{t}, 1 \mathrm{H}$, $J=7.6 \mathrm{~Hz}, \mathrm{H}-4$ of Ph$), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ph$), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $7.10\left(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5\right.$ of Ar), $2.92\left(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.54(\mathrm{t}, 2 \mathrm{H}, J=7.8$ $\left.\mathrm{Hz}, \mathrm{H}-2,2^{\prime}\right), 1.42(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.1,152.5,148.4$, 139.0, 133.2 (2C), 131.0, 129.5 (2C), 128.7 (2C), 121.3 (2C), 119.3, 88.6, 80.5, 80.3, 36.9, 30.5, 28.1 (3C). HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{4} 351.1596$; Found 351.1595 .

3-[4-(3-Phenylpropioloxy)phenyl]propionic acid (S28).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{S 2 7}$ ($151 \mathrm{mg}, 0.430 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added TFA (1 mL). After being stirred at room temperature for 2 h , the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:2) to provide 122 mg (97%) of $\mathbf{S 2 8}$ as white crystals. mp 93-96 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0-0.30$ (EtOAc/hexane, 1:2). IR (KBr): $3200-2500,2937,2223,1726,1702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~d}, 2 \mathrm{H}, J=7.3$ $\mathrm{Hz}, \mathrm{H}-2,6$ of Ph$), 7.49(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-4$ of Ph$), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ph$)$, $7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 7.12 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 2.98 (t, 2H, J $\left.=7.7 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.70\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 177.7, 152.5, 148.6, 138.4, 133.2 (2C), 131.0, 129.4 (2C), 128.7 (2C), 121.5 (2C), 119.2, 88.7, 80.2, 35.3, 29.9. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}$ 295.0970; Found 295.0968.

tert-Butyl 3-[4-(5-carboxylpentyloxy)phenyl]propionate (S29).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{S 2 2}$ ($668 \mathrm{mg}, 3.01 \mathrm{mmol}$) in DMF (9 mL) was added $\mathrm{NaH}(60 \%$ in oil, $300 \mathrm{mg}, 7.50 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and a solution of 6 -bromohexanoic acid ($586 \mathrm{mg}, 3.00$ $\mathrm{mmol})$ in DMF (6 mL) was added at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature for 2 d , the mixture was acidified with 1 M aqueous $\mathrm{HCl}(6 \mathrm{~mL})$ to pH 2 , diluted with $\mathrm{EtOAc}(20 \mathrm{~mL})$ and
washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:8) to provide $865 \mathrm{mg}(86 \%)$ of $\mathbf{S 2 9}$ as white crystals. $\mathrm{mp} 39-42{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0-0.40$ (EtOAc/hexane, 1:2). IR (KBr): 3500-2500, 2942, 1725, $1713 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.09(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.80(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 3.93 (t, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}$ of pentyloxy), $2.84\left(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.50(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$, $\mathrm{H}-2,2^{\prime}$), 2.39 (t, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}$ of pentyloxy), 1.79 (quin, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}$ of pentyloxy), 1.71 (quin, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-4,4^{\prime}$ of pentyloxy), $1.57-1.48$ (m, $2 \mathrm{H}, \mathrm{H}-3,3$ ' of pentyloxy), 1.42 (s, $9 \mathrm{H}, t$ - Bu). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.4,172.4,157.4$, 132.8, 129.2 (2C), 114.4 (2C), 80.3, 67.6. 37.4, 33.9, 30.3, 28.9, 28.1 (3C), 25.6, 24.4. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5}$ 337.2015; Found 337.2016.
tert-Butyl 3-[4-(5-(phthalimidyloxycarbonyl)pentyloxy)phenyl]propionate (S30).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{S 2 9}$ ($1.92 \mathrm{~g}, 5.71$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ were added N-hydroxyphthalimide ($1.12 \mathrm{~g}, 6.87 \mathrm{mmol}$) and EDCI $\cdot \mathrm{HCl}(1.64 \mathrm{~g}, 8.56 \mathrm{mmol})$. After being stirred at room temperature for 16 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL} \times 3)$, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$ and saturated brine (20 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:5) to provide $2.58 \mathrm{~g}(94 \%)$ of $\mathbf{S 3 0}$ as white crystals. $\mathrm{mp} 58-60^{\circ} \mathrm{C}$. TLC $R_{f} 0.59$ (EtOAc/hexane, 1:2). IR (KBr): 2943, 1819, 1787, 1741, $1698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92-7.86$ (m, 2H, H-3, 6 of phthalimidyl), 7.82-7.77 (m, 2H, H-4, 5 of phthalimidyl), 7.10 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 6.82 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $3.96\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right.$ of pentyloxy), $2.84(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}-3,3$ '), 2.71 ($\mathrm{t}, 2 \mathrm{H}, J$ $=7.5 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}$ of pentyloxy), $2.50\left(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 1.91-1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2,2^{\prime}, 4\right.$, 4^{\prime} of pentyloxy), 1.67-1.60 (m, 2H, H-3, 3' of pentyloxy), $1.42(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,169.5,162.0$ (2C), 157.4, 134.7 (2C), 132.8, 129.2 (2C), 128.9 (2C), 124.0 (2C), 114.4 (2C), 80.2, 67.5, 37.4, 30.9, 30.3, 28.7, 28.1 (3C), 25.4, 24.4. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{7} 482.2179$; Found 482.2175 .

3-[4-(5-(Phthalimidyloxycarbonyl)pentyloxy)phenyl]propionic acid (S31).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{S 3 0}$
($2.58 \mathrm{~g}, 5.36 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL}$) was added TFA (13 mL). After being stirred at room temperature for 2 h , the mixture was concentrated under reduced pressure. The residue was purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to provide $2.12 \mathrm{~g}(93 \%)$ of $\mathbf{S 3 1}$ as white crystals. mp 100-103 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0-0.34$ (EtOAc/hexane, 2:1). IR (KBr): 3400-2500, 2941, 1821, 1788, $1746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92-7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3,6$ of phthalimidyl), 7.82-7.76 (m, 2H, H-4, 5 of phthalimidyl), 7.11 (d, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.83\left(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-3,5\right.$ of Ar), $3.97\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right.$, of pentyloxy), 2.90 (t, 2H, $J=7.8 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}$), $2.71\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}\right.$ of pentyloxy), $2.65(\mathrm{t}, 2 \mathrm{H}, J=7.8$ $\mathrm{Hz}, \mathrm{H}-2,2^{\prime}$), 1.92-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.69-1.58 (m, 2H, H-3, 3' of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.5,169.5,162.0(2 \mathrm{C}), 157.5,134.7$ (2C), 132.1, 129.2 (2C), 128.9 (2C), 123.9 (2C), 114.6 (2C), 67.5, 35.8, 30.9, 29.8, 28.8, 25.4, 24.4.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{7} 426.1553$; Found 426.1546.

tert-Butyl 3-[4-(5-(3,4,5,6-

tetrachlorophthalimidyloxycarbonyl)pentyloxy)phenyl]propionate (S32).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{S 2 9}(363 \mathrm{mg}, 1.08$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added N-hydroxytetrachlorophthalimide ($300 \mathrm{mg}, 0.998$ $\mathrm{mmol})$ and $\mathrm{EDCI} \cdot \mathrm{HCl}(313 \mathrm{mg}, 1.63 \mathrm{mmol})$. After being stirred at room temperature for 14 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 5)$ and saturated brine (20 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 360 mg (58%) of $\mathbf{S 3 2}$ as white solids. TLC $R_{f} 0.80$ (EtOAc/hexane, 1:2). IR (KBr): 2932, 1821, 1794, 1749, $1727 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}, \mathrm{H}-2,6$ of Ar), 6.81 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 3.96 (t, 2H, $J=6.5 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), 2.84 (t, 2H, $J=7.6 \mathrm{~Hz}, \mathrm{H}-3,3$ '), 2.71 (t, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-5,5$ ' of pentyloxy), $2.50\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 1.91-1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2,2^{\prime}, 4,4^{\prime}\right.$ of pentyloxy), 1.67-1.59 (m, $2 \mathrm{H}, \mathrm{H}-3,3^{\prime}$ of pentyloxy), 1.42 (s, $\left.9 \mathrm{H}, t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4$, 169.0, 157.6 (2C), 157.3, 141.0 (2C), 132.8, 130.5 (2C), 129.2 (2C), 124.7 (2C), 114.4 (2C), 80.3, 67.4, 37.4, 30.8, 30.3, 28.8, 28.1 (3C), 25.4, 24.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{Cl}_{4} \mathrm{NO}_{7}$ 618.0620; Found 618.0620.

3-[4-(5-(3,4,5,6-Tetrachlorophthalimidyloxycarbonyl)pentyloxy)phenyl]propionic acid (S33).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{S 3 2}$ ($346 \mathrm{mg}, 0.559 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}$) was added TFA (1 mL). After being stirred at room temperature for 2 h , the mixture was concentrated under reduced pressure. The residue was purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to provide 272 mg (86%) of $\mathbf{S 3 3}$ as yellow crystals. mp 124-127 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0-0.33$ (EtOAc/hexane, 1:2). IR (KBr): 3500-2500, 2949, 1822, 1794, 1747, $1708 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.83(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $3.96(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), $2.90\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.71\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}\right.$ of pentyloxy), $2.65(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=7.7 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 1.92-1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2,2^{\prime}, 4,4^{\prime}\right.$ of pentyloxy), 1.69-1.58 (m, 2H, H-3, 3' of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.7,169.0,157.6$ (3C), 141.0 (2C), 132.2, 130.5 (2C), 129.2 (2C), 124.7 (2C), 114.5 (2C), 67.4, 35.7, 30.8, 29.8, 28.8, 25.4, 24.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{NO}_{7} 561.9994$; Found 561.9995.

3-O-Benzoyl-lithocholic acid (S35).

The following reaction was carried out under Ar. To a stirred solution of lithocholic acid ($202 \mathrm{mg}, 0.536 \mathrm{mmol}$) in THF (8 mL) were added benzoyl chloride ($55.0 \mu \mathrm{~L}, 0.473 \mathrm{mmol}$) and pyridine ($106 \mu \mathrm{~L}, 1.32 \mathrm{mmol}$). After being stirred at $70{ }^{\circ} \mathrm{C}$ for 13 h , the mixture was acidified with 1 M aqueous HCl to pH 2 , diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide $90.4 \mathrm{mg}(40 \%)$ of $\mathbf{S 3 5}$ as white solids. TLC R_{f} 0.32-0.65 (EtOAc/hexane, 1:1). IR (KBr): 3600-2500, 2939, $1715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 8.05$ (d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Bz), $7.54(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-4$ of Bz), 7.43 (t , $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Bz), $4.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.93(\mathrm{~m}$, $2 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H})$, $1.31-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 5 \mathrm{H}) 0.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}$, $\mathrm{H}-21$), 0.66 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.1,166.2,132.7,130.9$, 129.5 (2C), 128.2 (2C), $75.0,56.5,56.0,42.7,41.9,40.5,40.1,35.8,35.3,35.1,34.6,32.3$, $31.0,30.8,28.2,27.0,26.7,26.3,24.2,23.4,20.9,18.2,12.0$. HRMS (ESI-TOF) $m / z:[M+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{4}$ 481.3318; Found 481.3329.

O-Acetyl-mycophenolic acid (S37).

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of mycophenolic acid ($200 \mathrm{mg}, 0.624 \mathrm{mmol}$) in pyridine (1 mL) were added $\mathrm{Ac}_{2} \mathrm{O}(0.588 \mathrm{~mL}$, $6.24 \mathrm{mmol})$ and DMAP ($1.3 \mathrm{mg}, 0.011 \mathrm{mmol}$). After being stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , the mixture was poured onto crushed ice (12 g), acidified with 1 M aqueous $\mathrm{HCl}(15 \mathrm{~mL})$ to pH 2 and extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined extracts were washed with saturated brine $(15 \mathrm{~mL})$, dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane/AcOH, 100:100:1) to provide $196 \mathrm{mg}(87 \%)$ of S37 as white crystals. mp $124-126{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.63$ (EtOAc/hexane, 2:1). IR (KBr): 34002500, 2896, 1765, $1723 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.17-5.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CH}$, $\mathrm{CO}_{2} \mathrm{CH}_{2}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.35\left(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right), 2.44-2.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}-\right.$ CH_{2}), 2.39 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), $2.29\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.78$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.0,169.1,168.3,162.6,146.2$, 145.9, 134.2, 129.1, 123.1, 122.4, 113.5, 68.4, 61.2, 34.1, 32.4, 23.5, 20.5, 16.2, 11.8. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{7} 363.1444$; Found 363.1435.

2,7-Di- O-acetyl-gibberellic acid (S39).

S38

S39

The following reaction was carried out under Ar. To a stirred solution of gibberellic acid $(199 \mathrm{mg}, 0.576 \mathrm{mmol})$ in pyridine $(0.9 \mathrm{~mL})$ were added $\mathrm{Ac}_{2} \mathrm{O}(0.544 \mathrm{~mL}, 5.77 \mathrm{mmol})$ and DMAP ($2.2 \mathrm{mg}, 0.018 \mathrm{mmol}$). After being stirred at room temperature for 16 h , the mixture was acidified with 1 M aqueous $\mathrm{HCl}(2 \mathrm{~mL})$ to pH 2 , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with 1 M aqueous $\mathrm{HCl}(2 \mathrm{~mL} \times 3)$. The organic layer was washed with saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane/AcOH, 100:100:1) to provide $196 \mathrm{mg}(79 \%)$ of S39 as white crystals. mp $168-170{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0-0.63$ (EtOAc/hexane, 2:1). $[\alpha]^{26}{ }_{\mathrm{D}}+157(c$ $1.00, \mathrm{CHCl}_{3}$). IR (KBr): $3700-2900,2941,1781,1741 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 6.37 (d, 1H, $J=9.8 \mathrm{~Hz}, \mathrm{H}-4), 5.87$ (dd, 1H, $J=9.8,3.8 \mathrm{~Hz}, \mathrm{H}-3$), 5.33 (d, $1 \mathrm{H}, J=3.8 \mathrm{~Hz}, \mathrm{H}-2$), 5.17 (s, 1H, H-12), 5.02 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-12$ '), 3.27 (d, 1H, $J=11.0 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}$), 2.81 (d, 1H, $J=11.0$ $\mathrm{Hz}, \mathrm{H}-10), 2.50-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 2.20(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 2.13(\mathrm{~s}, 3 \mathrm{H}$,
$\mathrm{OAc}), 2.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.02-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-14)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.9,176.1,170.1$ (2C), 153.2, 134.1, 129.2, 108.4, 89.9, 84.1, 70.2, 53.1, 52.1, 51.0, 50.8, 50.1, 42.4, 39.5, 36.4, 22.0, 20.8, 16.8, 14.4. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{8} 431.1706$; Found 431.1715.

trans-4-Benzyloxycarbonylaminocyclohexanecarboxylic acid, 2-thioxopyridinyl ester

 (1a).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 8}(1.17 \mathrm{~g}, 4.23$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ were added oxalyl chloride $(0.402 \mathrm{~mL}, 4.66 \mathrm{mmol})$ and DMF (0.02 $\mathrm{mL}, 0.3 \mathrm{mmol}$). The mixture was stirred at room temperature for 30 min , and the flask was protected from light with aluminum foil. Then 2-mercaptopyridine N-oxide sodium salt (698 $\mathrm{mg}, 4.68 \mathrm{mmol}$) was added. After being stirred at room temperature for 1 h , the mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 4:1) to provide $682 \mathrm{mg}(42 \%)$ of $\mathbf{1 a}$ as yellow crystals. mp 132-136 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.72$ (EtOAc/hexane, 4:1). IR (KBr): 3311, 2926, $1781,1685 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-6$ of 2thioxopyridinyl), 7.53 (d, 1H, $J=7.1 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.39-7.30 (m, 5H, -Ph of Cbz), 7.20 (dd, 1H, $J=8.7,7.1 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), 6.63 (t, 1H, $J=7.1 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), 5.09 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}$ - of Cbz), $4.65(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{NH}-), 3.56(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4), 2.69(\mathrm{t}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}, \mathrm{H}-1), 2.31\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, J=12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}-2,6\right.$), 2.18 (br d, $2 \mathrm{H}, J=$ $\left.12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}-3,5\right), 1.76\left(\mathrm{q}, 2 \mathrm{H}, J=12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-2,6\right), 1.23\left(\mathrm{q}, 2 \mathrm{H}, J=12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-3,5\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,170.6,155.5,137.5$ (2C), 136.4, 133.5, 128.5 (3C), 128.1 (2C), 112.6, 66.7, 49.1, 40.3, 32.1 (2C), 27.6 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ 387.1379; Found 387.1366.

3-[4-(tert-Butyldimethylsilyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1b).

The following reaction was carried out under Ar and in the flask protected from light with aluminum foil. To a stirred solution of 2-mercaptopyridine N-oxide ($45.9 \mathrm{mg}, 0.361 \mathrm{mmol}$) and EDCI $\cdot \mathrm{HCl}(81.1 \mathrm{mg}, 0.423 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added a solution of $\mathbf{S 1 6}$ (59.8 $\mathrm{mg}, 0.213 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$. After being stirred at room temperature for 1 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $5 \mathrm{wt} \%$ aqueous $\mathrm{NaHCO}_{3}(10$
$\mathrm{mL} \times 3), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:4) to provide $53.1 \mathrm{mg}(64 \%)$ of $\mathbf{1 b}$ as a yellow oil. TLC $R_{f} 0.67$ (EtOAc/hexane, 1:1). IR (neat): 2955, 2930, $1809 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (d, 1H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.39 (d, 1H, $J=6.7$ $\mathrm{Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.20 (dd, $1 \mathrm{H}, J=8.8,6.7 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), 7.11 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.79(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $6.61(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-$ 4 of 2-thioxopyridinyl), 3.10-2.98 (m, 4H, H-2, 2', 3, 3^{\prime}), 0.98 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.19 ($\mathrm{s}, 6 \mathrm{H},-\mathrm{Me}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,168.3,154.3,137.6,137.4,133.5,131.9,129.3$ (2C), 120.2 (2C), 112.6, 33.6, 29.6, 25.7 (3C), 18.2, -4.4 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{SSi} 390.1559$; Found 390.1562.

3-[4-(Pivaloyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1c).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 1 7}$ ($49.8 \mathrm{mg}, 0.199 \mathrm{mmol}$) was converted to $34.9 \mathrm{mg}(49 \%)$ of $\mathbf{1 c}$. Compound $\mathbf{1 c}$ was obtained as a yellow oil. TLC $R_{f} 0.67$ (EtOAc/hexane, 1:1). IR (neat): 3026, 1808, $1745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68$ (dd, $1 \mathrm{H}, J=8.6,1.7 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.35 (dd, $1 \mathrm{H}, J=6.9,1.6 \mathrm{~Hz}, \mathrm{H}-3$ of 2thioxopyridinyl), 7.28 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 7.19 (ddd, $1 \mathrm{H}, J=8.6,6.9,1.6 \mathrm{~Hz}, \mathrm{H}-$ 5 of 2-thioxopyridinyl), $7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $6.61(\mathrm{td}, 1 \mathrm{H}, J=6.9,1.7 \mathrm{~Hz}, \mathrm{H}-$ 4 of 2-thioxopyridinyl), $3.14\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 3.04\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 1.35$ (s, $9 \mathrm{H}, t$-Bu). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.2,175.8,168.0,149.8,137.7,137.3$, 136.5, 133.6, 129.4 (2C), 121.7 (2C), 112.7, 39.0, 33.3, 29.8, 27.1 (3C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$ 360.1270; Found 360.1261.

3-[4-(2-Methoxyethoxymethoxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1d).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S} 24$ ($43.6 \mathrm{mg}, 0.171 \mathrm{mmol}$) was converted to $48.3 \mathrm{mg}(78 \%)$ of $\mathbf{1 d}$. Compound $\mathbf{1 d}$ was obtained as a yellow oil. TLC $R_{f} 0.25$ (EtOAc/hexane, 3:1). IR (neat): 2928, $1808 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (dd, 1 H , $J=9.0,1.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.44 (dd, $1 \mathrm{H}, J=7.2,1.8 \mathrm{~Hz}, \mathrm{H}-3$ of 2thioxopyridinyl), 7.22-7.16 (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), 7.01 (d, 2H, J
$=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar$), 6.61(\mathrm{td}, 1 \mathrm{H}, J=7.2,1.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $5.26(\mathrm{~s}, 2 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{O}-\right), 3.84-3.80\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.58-3.54\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.38(\mathrm{~s}, 3 \mathrm{H},-$ OCH_{3}), $3.09\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 3.01\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,168.3,156.0,137.6,137.4,133.5,132.7,129.4$ (2C), 116.5 (2C), 112.6, 93.6, 71.6, 67.6, 59.0, 33.5, 29.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}_{2}$ 364.1219; Found 364.1215.

3-[4-(Methanesulfonyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1e).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 1 8}$ ($49.6 \mathrm{mg}, 0.203 \mathrm{mmol}$) was converted to $55.1 \mathrm{mg}(76 \%)$ of $\mathbf{1 e}$. Compound $\mathbf{1 e}$ was obtained as yellow crystals. mp 64$68{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.52$ (EtOAc/hexane, 4:1). IR (KBr): 2931, $1807 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.68$ (dd, $1 \mathrm{H}, J=9.0,1.6 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.44 (dd, $1 \mathrm{H}, J=7.2,1.2$ $\mathrm{Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.32 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 7.25-7.18 (m, 3H, H-5 of 2-thioxopyridinyl, $\mathrm{H}-3,5$ of Ar), $6.61(\mathrm{td}, 1 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), 3.18-3.12 (m, 2H, H-3, 3'), 3.15 (s, 3H, -Me), $2.69\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-2,2{ }^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.7,168.0,147.9,138.7,137.5,137.3,133.6,130.1$ (2C), 122.3 (2C), 112.7, 37.4, 33.1, 29.6. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S}_{2} 354.0470$; Found 354.0461.

3-[4-(Benzyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1f).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 1 9}$ ($49.6 \mathrm{mg}, 0.194 \mathrm{mmol}$) was converted to 36.7 mg (52%) of $\mathbf{1 f}$. Compound $\mathbf{1 f}$ was obtained as yellow crystals. mp 101$104{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.47$ (EtOAc/hexane, 1:1). IR (KBr): 3068, $1806 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.68$ (dd, $1 \mathrm{H}, J=8.5,1.9 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.43 (d, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-$ 2, 6 of Ph), 7.42-7.36 (m, 3H, H-3 of 2-thioxopyridinyl, H-3, 5 of Ph), $7.33(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $\mathrm{H}-4$ of Ph), 7.21-7.16 (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), $6.94(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}$, $\mathrm{H}-3,5$ of Ar), 6.59 (td, 1H, $J=6.9,1.9 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), 5.06 (s, 2H, Bn), 3.08 (t, 2H, J = 6.9 Hz, H-3, 3'), $3.01\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , CDCl_{3}): $\delta 175.8,168.3,157.6,137.6,137.4,137.0,133.5,131.6,129.4$ (2C), 128.6 (2C), 127.9, 127.4 (2C), 115.0 (2C), 112.5, 70.0, 33.6, 29.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$

3-[4-(p-Methoxybenzyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1g).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 2 0}$ ($85.5 \mathrm{mg}, 0.299 \mathrm{mmol}$) was converted to $52.2 \mathrm{mg}(44 \%)$ of $\mathbf{1 g}$. Compound $\mathbf{1 g}$ was obtained as yellow crystals. mp 105$109{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.45$ (EtOAc/hexane, 1:1). IR (KBr): 2931, $1808 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.68(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.9 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), $7.40(\mathrm{dd}, 1 \mathrm{H}, J=7.1,1.8$ $\mathrm{Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.36 (d, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-2,6$ of PMB), $7.22-7.16$ (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), 6.94-6.90 (m, 4H, H-3, 5 of Ar, H-3, 5 of PMB), 6.59 (td, $1 \mathrm{H}, J=6.1,1.9 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $4.98(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PMB}), 3.82(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 3.08(\mathrm{t}$, $\left.2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 3.01\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $175.8,168.3,159.4,157.6,137.6,137.4,133.5,131.5,129.4$ (2C), 129.2 (2C), 129.0, 115.0 (2C), 114.0 (2C), 112.6, 69.8, 55.3, 33.6, 29.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S} 396.1270$; Found 396.1276.

3-[4-(o-Nitrobenzyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1h).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S} 21(50.4 \mathrm{mg}, 0.167 \mathrm{mmol}$) was converted to $51.7 \mathrm{mg}(76 \%)$ of $\mathbf{1 h}$. Compound $\mathbf{1 h}$ was obtained as yellow crystals. mp 99$101{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.55$ (EtOAc/hexane, 1:1). IR (KBr): 3025, $1807 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 8.17\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3\right.$ of $\left.o-\mathrm{NO}_{2} \mathrm{Bn}\right), 7.89\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6\right.$ of $\left.o-\mathrm{NO}_{2} \mathrm{Bn}\right)$, 7.71-7.66 (m, 2H, H-6 of 2-thioxopyridinyl, $\mathrm{H}-5$ of $\left.o-\mathrm{NO}_{2} \mathrm{Bn}\right), 7.49(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-4$ of $\left.o-\mathrm{NO}_{2} \mathrm{Bn}\right), 7.43$ (dd, $1 \mathrm{H}, J=7.1,1.3 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), $7.22-7.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5$ of 2-thioxopyridinyl, $\mathrm{H}-2,6$ of Ar), $6.94(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar$), 6.59(\mathrm{td}, 1 \mathrm{H}, J=7.1$, $1.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), 5.47 ($\mathrm{s}, 2 \mathrm{H}, o-\mathrm{NO}_{2} \mathrm{Bn}$), $3.09\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right)$, $3.01\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,168.3,156.9$, $146.9,137.6,137.4,134.0,133.8,133.5,132.3,129.6$ (2C), 128.6, 128.3, 125.0, 115.1 (2C), 112.6, 66.9, 33.5, 29.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 411.1015$; Found 411.1002.

3-[4-(4-Pentenyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1i).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 2 6}(97.9 \mathrm{mg}, 0.418 \mathrm{mmol}$) was converted to $124 \mathrm{mg}(87 \%)$ of $\mathbf{1 i}$. Compound $\mathbf{1 i}$ was obtained as yellow crystals. $\mathrm{mp} 68-71{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.50$ (EtOAc/hexane, 1:1). IR (KBr): 2940, $1809 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.69 (dd, 1H, $J=8.8,1.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.14 (dd, 1H, $J=7.0,1.8 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.22-7.15 (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), 6.85 (d, 2H, J $=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 6.60 (td, $1 \mathrm{H}, J=7.0,1.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $5.85(\mathrm{~m}, 1 \mathrm{H}$, H-4 of 4-pentenyloxy), 5.08-4.97 (m, 2H, H-5, 5' of 4-pentenyloxy), 3.96 (t, 2H, J = 6.9 Hz , $\mathrm{H}-1,1^{\prime}$ of 4-pentenyloxy), 3.11-2.97 (m, 4H, H-2, 2', 3, 3'), 2.23 (q, 2H, $J=6.9 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}$ of 4-pentenyloxy), 1.87 (quin, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-2,2$ ' of 4-pentenyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,168.3,157.8,137.8,137.6,137.4,133.5,131.2,129.4$ (2C), 115.2, 114.6 (2C), 112.6, 67.2, 33.6, 30.1, 29.5, 28.4. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ 344.1320; Found 344.1327.

3-[4-(3-Phenylpropioloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1j).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 2 8}(78.9 \mathrm{mg}, 0.268 \mathrm{mmol}$) was converted to $74.5 \mathrm{mg}(69 \%)$ of $\mathbf{1} \mathbf{j}$. Compound $\mathbf{1} \mathbf{j}$ was obtained as yellow crystals. mp 85$88{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.55$ (EtOAc/hexane, 2:1). IR (KBr): 3098, 2205, 1808, $1722 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (dd, $1 \mathrm{H}, J=8.8,1.9 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.64 (d, $2 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ph$), 7.50(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-4$ of Ph$), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-3,5$ of $\mathrm{Ph}), 7.37$ (dd, $1 \mathrm{H}, J=6.9,1.6 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.32 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 7.20 (ddd, $1 \mathrm{H}, J=8.8,6.9,1.6 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), 7.15 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-3$, 5 of Ar), 6.62 (td, 1H, $J=6.9,1.9 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $3.16(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-3$, 3^{\prime}), 3.06 (t, $\left.2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.7,168.0,152.4$, 148.8, 137.6, 137.5, 137.3, 133.6, 133.2 (2C), 131.1, 129.7 (2C), 128.7 (2C), 121.7 (2C), 119.1, 112.7, 88.8, 80.1, 33.2, 29.7. HRMS (ESI-TOF) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}$ 404.0957; Found 404.0950.

3,3-Diphenylpropionic acid, 2-thioxopyridinyl ester (1k).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 4 0}(100 \mathrm{mg}, 0.442 \mathrm{mmol})$ was converted to $88.2 \mathrm{mg}(59 \%)$ of $\mathbf{1 k}$. Compound $\mathbf{1 k}$ was obtained as yellow crystals. $\mathrm{mp} 108-111^{\circ} \mathrm{C}$. TLC $R_{f} 0.43$ (EtOAc/hexane, 1:1). IR (KBr): 3023, $1795 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63$ (dd, $1 \mathrm{H}, J=8.7,1.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), $7.35-7.22$ (m, 10H, -Ph), 7.14 (ddd, $1 \mathrm{H}, J$ $=8.7,6.9,1.8 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), $6.94(\mathrm{dd}, 1 \mathrm{H}, J=6.9,1.8 \mathrm{~Hz}, \mathrm{H}-3$ of 2thioxopyridinyl), 6.49 (td, $1 \mathrm{H}, J=6.9,1.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $4.67(\mathrm{t}, 1 \mathrm{H}, J=8.2$ $\mathrm{Hz}, \mathrm{H}-3), 3.50\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8$, 167.3, 142.3 (2C), 137.4, 137.3, 133.4, 128.8 (4C), 127.7 (4C), 127.0 (2C), 112.5, 46.7, 38.2. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S} 336.1058$; Found 336.1058.

Gemfibrozil, 2-thioxopyridinyl ester (11).

As described for the preparation of $\mathbf{1 b}$, gemfibrozil ($\mathbf{S 4 1}$) ($102 \mathrm{mg}, 0.406 \mathrm{mmol}$) was converted to 101 mg (69%) of $\mathbf{1 1}$. Compound $\mathbf{1 1}$ was obtained as yellow crystals. $\mathrm{mp} 66-69{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.67$ (EtOAc/hexane, 1:1). IR (KBr): 2924, $1793 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.68 (dd, 1H, $J=8.8,1.6 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.34 (dd, 1H, $J=6.9,1.5 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.17 (ddd, $1 \mathrm{H}, J=8.8,6.9,1.5 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), 7.00 (d, 1H, $J=7.5 \mathrm{~Hz}, \mathrm{H}-3$ of dimethylphenoxy), 6.67 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-4$ of dimethylphenoxy), 6.63 (s, 1H, H-6 of dimethylphenoxy), 6.57 (td, $1 \mathrm{H}, J=6.9,1.6 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $4.00\left(\mathrm{t}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of dimethylphenoxy), $2.18\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of dimethylphenoxy), 2.01-1.89 (m, 4H, H-3, 3', 4, 4'), 1.49 (s, 6H, $-\mathrm{CH}_{3} \times 2$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.1,173.0,156.7,137.6$ (2C), 136.5, 133.3, 130.4, 123.6, 120.8, $112.5,112.0,67.5,42.3,37.0,25.1$ (2C), 25.0, 21.4, 15.8. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 360.1633$; Found 360.1631.

Ketoprofen, 2-thioxopyridinyl ester (1m).

As described for the preparation of 1b, ketoprofen (S42) ($101 \mathrm{mg}, 0.397 \mathrm{mmol}$) was converted to $56.8 \mathbf{m g}(39 \%)$ of $\mathbf{1 m}$. Compound $\mathbf{1 m}$ was obtained as a yellow oil. TLC $R_{f} 0.44$ (EtOAc/hexane, 1:1). IR (neat): 3028, 1800, $1734 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ (s, 1H, H-2 of 3-benzoylphenyl), 7.81 (d, 2H, $J=7.0 \mathrm{~Hz}, \mathrm{H}-2,6$ of Bz), 7.74 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\mathrm{H}-4$ of 3-benzoylphenyl), 7.70-7.66 (m, 2H, H-6 of 2-thioxopyridinyl, H-6 of 3benzoylphenyl), 7.60 ($\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-4$ of Bz), 7.53-7.47 (m, 3H, H-3, 5 of Bz, H-5 of 3benzoylphenyl), 7.45 (dd, $1 \mathrm{H}, J=7.1,1.6 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.19 (ddd, $1 \mathrm{H}, J=$ $8.9,7.1,1.6 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), $6.61(\mathrm{td}, 1 \mathrm{H}, J=7.1,1.7 \mathrm{~Hz}, \mathrm{H}-4$ of 2thioxopyridinyl), $4.25(\mathrm{q}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-2), 1.77\left(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.2,175.5,169.8,138.5,138.2,137.4,137.3,137.2,133.4,132.7$, 131.9, 130.1 (2C), 129.7, 129.2, 128.9, 128.4 (2C), 112.6, 43.5, 18.7. HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}$ 364.1007; Found 364.1019.

3-(3,4,5,6-Tetrachlorophthalimidyloxycarbonyl)adamantanecarboxylic acid, 2thioxopyridinyl ester (1n).

The following reaction was carried out under Ar and in the flask protected from light with aluminum foil. To a stirred solution of N -hydroxytetrachlorophthalimide ($205 \mathrm{mg}, 0.680$ $\mathrm{mmol})$ and $\mathrm{EDCI} \cdot \mathrm{HCl}(232 \mathrm{mg}, 1.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added a solution of $\mathbf{S 4 3}$ ($205 \mathrm{mg}, 0.666 \mathrm{mmol}$) in DMF (3 mL). The mixture was stirred at room temperature for 1 h . The precipitated solids were removed by filtration through a pad of Celite and washed well with EtOAc. The combined filtrate and washings were concentrated under reduced pressure. The residue was diluted with EtOAc (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$ and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure to provide crude tetrachlorophthalimidyl ester $\mathbf{S 4 4}$, which was used in the next step without further purification.
To a stirred solution of crude tetrachlorophthalimidyl ester $\mathbf{S 4 4}$ obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added 2-mercaptopyridine N -oxide ($73.4 \mathrm{mg}, 0.577 \mathrm{mmol}$) and EDCI• HCl (162 mg , $0.845 \mathrm{mmol})$. After being stirred at room temperature for 1 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $5 \mathrm{wt} \%$ aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL} \times 3), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under
reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide $72.2 \mathrm{mg}(18 \%)$ of $\mathbf{1 n}$ as yellow crystals. $\mathrm{mp} 115-120{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.50$ (EtOAc/hexane, 1:1). IR (KBr): 2860, 1787, $1747 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68$ (dd, $1 \mathrm{H}, J=8.8,1.6 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.56 (dd, $1 \mathrm{H}, J=6.8,1.5 \mathrm{~Hz}, \mathrm{H}-3$ of 2thioxopyridinyl), 7.19 (ddd, $1 \mathrm{H}, J=8.8,6.8,1.5 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), 6.61 (td, 1 H , $J=6.8,1.6 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $2.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2,2^{\prime}\right.$ of adamantane), $2.34(\mathrm{~s}, 2 \mathrm{H})$, 2.30-2.11 (m, 6H), $1.83(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,171.7,171.4$, 157.6 (2C), 141.0 (2C), 137.6, 137.5, 133.4 (2C), 130.4, 124.7 (2C), 112.6, 41.0, 40.7, 38.6, 37.5 (2C), 37.4 (2C), 34.7, 27.3 (2C). HRMS (ESI-TOF) $m / z:[M+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ 614.9718; Found 614.9731.

3-[4-(5-(Phthalimidyloxycarbonyl)pentyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (10).

As described for the preparation of $\mathbf{1 a}$, compound $\mathbf{S 3 1}(256 \mathrm{mg}, 0.603 \mathrm{mmol})$ was converted to $204 \mathrm{mg}(63 \%)$ of $\mathbf{1 0}$. Compound $\mathbf{1 0}$ was obtained as yellow crystals. mp $108-110{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.49$ (EtOAc/hexane, 2:1). IR (KBr): 2936, 1811, 1788, $1738 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.91-7.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3,6$ of phthalimidyl), 7.82-7.77 (m, $2 \mathrm{H}, \mathrm{H}-4,5$ of phthalimidyl), 7.68 (dd, $1 \mathrm{H}, J=8.8,1.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.41 (dd, $1 \mathrm{H}, J=7.0$, $1.0 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.21-7.15 (m, 3H, H-2, 6 of Ar, H-5 of 2-thioxopyridinyl), 6.86 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 6.60 (td, $1 \mathrm{H}, J=7.0,1.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $3.98\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right.$ of pentyloxy), $3.08\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 3.01(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=7.4 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 2.71\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}\right.$ of pentyloxy), 1.91-1.81(m, 4H, H-2, 2', 4, 4^{\prime} of pentyloxy), $1.68-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3,3\right.$ ' of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.9,169.5,168.3,162.0(2 \mathrm{C}), 157.8,137.6,137.4,134.8$ (2C), 133.5, 131.2, 129.4 (2C), 128.9 (2C), 124.0 (2C), 114.7 (2C), 112.5, 67.5, 33.6, 30.9, 29.5, 28.8, 25.4, 24.4. HRMS (ESI-TOF) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$ 535.1539; Found 535.1538.

3-[4-(5-(3,4,5,6-Tetrachlorophthalimidyloxycarbonyl)pentyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1p).

As described for the preparation of $\mathbf{1 a}$, compound $\mathbf{S 3 3}(150 \mathrm{mg}, 0.267 \mathrm{mmol})$ was converted to $62.3 \mathrm{mg}(35 \%)$ of $\mathbf{1 p}$. Compound $\mathbf{1 p}$ was obtained as a yellow oil. TLC $R_{f} 0.72$
(EtOAc/hexane, 2:1). IR (neat): 2934, 1815, 1793, $1748 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.67 (d, 1H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.41 (d, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-3$ of 2thioxopyridinyl), $7.22-7.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2,6$ of Ar, $\mathrm{H}-5$ of 2-thioxopyridinyl), $6.84(\mathrm{~d}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $6.60(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $3.97(\mathrm{t}, 2 \mathrm{H}, J=6.0$ $\mathrm{Hz}, \mathrm{H}-1,1^{\prime}$ of pentyloxy), 3.07 ($\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}$), $3.00\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right)$, 2.71 (t, 2H, J =7.2 Hz, H-5, 5' of pentyloxy), 1.92-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.68-1.58 (m, 2H, H-3, 3' of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8$, 169.0, $168.3,157.7,157.5$ (2C), 141.0 (2C), 137.6, 137.4, 133.5 (2C), 131.2, 130.4, 129.4 (2C), 124.6 (2C), 114.6 (2C), $112.6,67.4,33.6,30.8,29.5,28.7,25.3,24.4$. HRMS (ESI-TOF) $m / z:$ $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$ 670.9980; Found 670.9955.

Abietic acid, 2-thioxopyridinyl ester (1q).

As described for the preparation of $\mathbf{1 b}$, abietic acid ($\mathbf{S 4 5}$) ($99.4 \mathrm{mg}, 0.329 \mathrm{mmol}$) was converted to $71.1 \mathrm{mg}(53 \%)$ of $\mathbf{1 q}$. Compound $\mathbf{1 q}$ was obtained as yellow crystals. TLC R_{f} 0.67 (EtOAc/hexane, 1:1). $[\alpha]^{25}{ }_{\mathrm{D}}-193\left(c 0.615, \mathrm{CHCl}_{3}\right.$). IR (neat): $2930,1786 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (dd, $1 \mathrm{H}, J=8.9,1.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.41 (dd, $1 \mathrm{H}, J$ $=6.9,1.5 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.17 (ddd, $1 \mathrm{H}, J=8.9,6.9,1.5 \mathrm{~Hz}, \mathrm{H}-5$ of $2-$ thioxopyridinyl), 6.57 (td, $1 \mathrm{H}, J=6.9,1.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $5.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$, $5.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 2.27-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 5 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}$, $1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.50\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.32-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $4.5 \mathrm{~Hz}, i-\mathrm{Pr}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=4.5 \mathrm{~Hz}, i-\mathrm{Pr}), 0.88\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125 \mathrm{MHz}$, CDCl_{3}): $\delta 176.1,173.8,145.6,137.6$ (2C), 135.6, 133.3, 122.2, 119.9, 112.6, 50.8, 46.9, 45.1, 37.9, 37.4, 34.8, 34.7, 27.3, 25.9, 22.4, 21.4, 20.8, 17.8, 17.0, 14.2. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S} 412.2310$; Found 412.2295.

3-O-Benzoyl-lithocholic acid, 2-thioxopyridinyl ester (1r).

As described for the preparation of $\mathbf{1 b}, \mathbf{S 3 5}(50.8 \mathrm{mg}, 0.354 \mathrm{mmol})$ was converted to 42.6 $\mathrm{mg}(69 \%)$ of $\mathbf{1 r}$. Compound $\mathbf{1 r}$ was obtained as yellow crystals. mp 70-73 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.60$
(EtOAc/hexane, 1:1). $[\alpha]^{26}{ }_{\mathrm{D}}+105$ (c 1.25, CHCl_{3}). IR (KBr): 2937, 1808, $1713 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05$ (d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Bz), 7.69 (dd, $1 \mathrm{H}, J=8.5,1.6$ $\mathrm{Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.58-7.52 (m, 2H, H-4 of Bz, H-3 of 2-thioxopyridinyl), 7.43 (t, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Bz), 7.20 (ddd, $1 \mathrm{H}, J=8.5,6.9,1.5 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), 6.63 (td, 1H, J=6.9, 1.6 Hz, H-4 of 2-thioxopyridinyl), 4.97 (m, 1H, H-3), 2.76 (m, 1H), 2.63 $(\mathrm{m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.39$ $(\mathrm{m}, 4 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.04(\mathrm{~m}, 5 \mathrm{H}), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{H}-21), 0.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 19), 0.67 (s, $3 \mathrm{H}, \mathrm{H}-18$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.9,169.6,166.1,137.6$, 137.4, 133.4, 132.6, 130.9, 129.5 (2C), 128.2 (2C), 112.5, 75.0, 56.4, 55.8, 42.8, 41.9, 40.4, 40.1, 35.8, 35.2, 35.0, 34.6, 32.3, 30.3, 28.6, 28.2, 27.0, 26.7, 26.3, 24.1, 23.3, 20.8, 18.3, 12.1. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{~S} 590.3304$; Found 590.3297.

Linoleic acid, 2-thioxopyridinyl ester (1s).

As described for the preparation of $\mathbf{1 b}$, linoleic acid (S46) ($0.110 \mathrm{~mL}, 0.354 \mathrm{mmol}$) was converted to $121 \mathrm{mg}(88 \%)$ of $\mathbf{1 s}$. Compound $\mathbf{1 s}$ was obtained as a yellow oil. TLC $R_{f} 0.72$ (EtOAc/hexane, 1:1). IR (neat): 2927, $1808 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68$ (dd, 1H, $J=9.1,1.6 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), $7.55(\mathrm{dd}, 1 \mathrm{H}, J=7.0,1.5 \mathrm{~Hz}, \mathrm{H}-3$ of 2thioxopyridinyl), 7.17 (ddd, $1 \mathrm{H}, J=9.1,7.0,1.5 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), 6.57 (td, 1 H , $J=7.0,1.6 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $5.41-5.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-9,10,12,13), 2.77(\mathrm{t}, 2 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}, \mathrm{H}-11,11^{\prime}$), 2.71 (t, 2H, $\left.J=7.4 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 2.08-1.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-8,8^{\prime}, 14,14^{\prime}\right), 1.81$ (quin, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}$), 1.46-1.40 (m, 2H), 1.39-1.24 (m, 12H), $0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.9,169.0,137.6,137.4,133.5,130.2,130.0$, 128.1, 127.9, 112.5, 31.6, 31.5, 29.5, 29.3, 29.0 (2C), 28.9, 27.2, 27.1, 25.6, 24.3, 22.5, 14.1. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{~S} 390.2467$; Found 390.2471.

O-Acetyl-mycophenolic acid, 2-thioxopyridinyl ester (1t).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 3 7}$ ($70.2 \mathrm{mg}, 0.194 \mathrm{mmol}$) was converted to $65.2 \mathrm{mg}(71 \%)$ of $\mathbf{1 t}$. Compound $\mathbf{1 t}$ was obtained as yellow crystals. mp 48$50{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.43$ (EtOAc/hexane, 1:1). IR (KBr): 2937, 1809, $1760 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66$ (dd, $1 \mathrm{H}, J=8.7,1.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.56 (dd, $1 \mathrm{H}, J=6.9$, $1.5 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.19 (ddd, $1 \mathrm{H}, J=8.7,6.9,1.5 \mathrm{~Hz}, \mathrm{H}-5$ of $2-$ thioxopyridinyl), 6.61 (td, $1 \mathrm{H}, J=6.9,1.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $5.20-5.13(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.38\left(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right), 2.81(\mathrm{t}, 2 \mathrm{H}, J=$ $7.5 \mathrm{~Hz},-\mathrm{C}=\mathrm{O}-\mathrm{CH}_{2}$), $2.48\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz},-\mathrm{C}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$), 2.39 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), $2.23(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Ar}-\mathrm{CH}_{3}$), 1.84 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,169.0$, 168.4, $168.3,162.6,146.3,145.9,137.8,137.3,133.6$ (2C), 129.1, 123.1, 122.9, 113.5, 112.6, 68.4, $61.3,33.3,30.1,23.5,20.6,16.4,11.8$. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{7} \mathrm{~S} 472.1430$; Found 472.1417.

2,7-Di- O-acetyl-gibberellic acid, 2-thioxopyridinyl ester (1u).

S39

1u

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 3 9}$ ($80.3 \mathrm{mg}, 0.187 \mathrm{mmol}$) was converted to $53.9 \mathrm{mg}(54 \%)$ of $\mathbf{1 u}$. Compound $\mathbf{1 u}$ was obtained as yellow solids. TLC $R_{f} 0.43$ (EtOAc/hexane, 1:1). $[\alpha]^{24}{ }_{\mathrm{D}}+284$ (c 1.18, CHCl_{3}). IR (KBr): 2939, 1780, $1738 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68$ (dd, $1 \mathrm{H}, J=8.8,1.8 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.56 (dd, $1 \mathrm{H}, J=6.8,1.4 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.21 (ddd, $1 \mathrm{H}, J=8.8,6.8,1.4 \mathrm{~Hz}, \mathrm{H}-5$ of 2thioxopyridinyl), 6.66 (td, $1 \mathrm{H}, J=6.8,1.8 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), 6.38 (d, 1H, $J=9.1$ $\mathrm{Hz}, \mathrm{H}-4), 5.87$ (dd, 1H, $J=9.1,3.9 \mathrm{~Hz}, \mathrm{H}-3$), $5.36(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{H}-2), 5.18(\mathrm{~d}, 1 \mathrm{H}, J=2.2$ $\mathrm{Hz}, \mathrm{H}-12), 5.02$ (d, 1H, $J=2.2 \mathrm{~Hz}, \mathrm{H}-12$ '), 3.44 (d, $1 \mathrm{H}, J=10.4 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}$), 3.21 (d, 1H, J $=10.4 \mathrm{~Hz}, \mathrm{H}-10), 2.76-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H})$ 2.03 (s, 3H, OAc), $1.90-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-14) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.5$ (2C), 170.0 (3C), 152.3, 137.6, 137.2, 133.8, 133.4, 129.5, 113.0, 108.6, 89.6, 83.8, 70.3, 54.1, 52.2, 51.8, 50.8, 47.8, 43.1, 39.4, 36.6, 22.0, 20.8, 16.8, 15.3. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{8} \mathrm{~S} 540.1692$; Found 540.1696.

Zaltoprofen, 2-thioxopyridinyl ester (1z).

As described for the preparation of $\mathbf{1 b}$, zaltoprofen ($\mathbf{S 4 7}$) ($100 \mathrm{mg}, 0.336 \mathrm{mmol}$) was converted to $69.0 \mathrm{mg}(50 \%)$ of $\mathbf{1 z}$. Compound $\mathbf{1 z}$ was obtained as yellow crystals. mp 85 -
$89^{\circ} \mathrm{C}$. TLC $R_{f} 0.41$ (EtOAc/hexane, 1:1). IR (KBr): 2977, 1799, 1729, $1671 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20$ (dd, $1 \mathrm{H}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{H}-9$ of dihydrodibenzo[b,f]thiepin), 7.68 (dd, 1H, $J=8.7,1.9 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.66 (d, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-4$ of dihydrodibenzo[b,f]thiepin), 7.61 (dd, $1 \mathrm{H}, J=7.8,1.4 \mathrm{~Hz}, \mathrm{H}-6$ of dihydrodibenzo[b,f]thiepin), $7.49(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{H}-1$ of dihydrodibenzo[b,f]thiepin), $7.45(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{H}-7$ of dihydrodibenzo[b,f]thiepin), 7.40 (dd, $1 \mathrm{H}, J=6.9,1.4 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.33 (td, $1 \mathrm{H}, J=7.8,1.4 \mathrm{~Hz}, \mathrm{H}-8$ of dihydrodibenzo[b,f]thiepin), $7.29(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.8 \mathrm{~Hz}, \mathrm{H}-3$ of dihydrodibenzo[b,f]thiepin), 7.18 (ddd, $1 \mathrm{H}, J=8.7,6.9,1.4 \mathrm{~Hz}, \mathrm{H}-5$ of 2-thioxopyridinyl), 6.58 (td, 1H, $J=6.9,1.9 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), $4.39\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 4.17(\mathrm{q}, 1 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}, \mathrm{H}-2), 1.72\left(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.2$, 175.5, 169.7, 140.2, 139.9, 138.4, 137.3 (2C), 136.1, 134.2, 133.4, 132.6, 131.8, 131.5, 130.9, 128.7, 126.9, 126.8, 112.6, 51.0, 43.3, 18.7. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}_{2} 408.0728$; Found 408.0726.

Xanthene-9-carboxylic acid, 2-thioxopyridinyl ester (1aa).

S48

1 aa

As described for the preparation of $\mathbf{1 a}$, compound $\mathbf{S 4 8}(101 \mathrm{mg}, 0.444 \mathrm{mmol})$ was converted to $29.2 \mathrm{mg}(20 \%)$ of $\mathbf{1 a a}$. Compound $\mathbf{1 a a}$ was obtained as yellow crystals. $\mathrm{mp} 112-116{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.44$ (EtOAc/hexane, 1:1). IR (KBr): 3017, 1799, $1713 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.66$ (dd, $1 \mathrm{H}, J=9.0,1.7 \mathrm{~Hz}, \mathrm{H}-6$ of 2-thioxopyridinyl), 7.59 (dd, $2 \mathrm{H}, J=7.9,1.3$ $\mathrm{Hz}, \mathrm{H}-1,8$ of xanthene), 7.41 (dd, $1 \mathrm{H}, J=7.0,1.0 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), 7.36 (td, 2 H , $J=7.9,1.3 \mathrm{~Hz}, \mathrm{H}-3,6$ of xanthene), 7.20-7.13 (m, 5H, H-2, 4, 5, 7 of xanthene, H-5 of 2thioxopyridinyl), 6.56 (td, 1H, J = 7.0, $1.7 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl), 5.51 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-9$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.3,168.2,151.5$ (2C), 137.4, 137.0, 133.1, 129.9 (4C), 123.7 (2C), 117.2 (2C), 116.0 (2C), 113.0, 43.6. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S} 336.0694$; Found 336.0707.

4-Phenoxybenzoic acid, 2-thioxopyridinyl ester (1ac).

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 4 9}(103 \mathrm{mg}, 0.480 \mathrm{mmol})$ was converted
to $10.0 \mathrm{mg}(6 \%)$ of $\mathbf{1 a c}$. Compound 1ac was obtained as yellow solids. TLC $R_{f} 0.33$ (EtOAc/hexane, 1:2). IR (neat): 3066, 1772, $1716 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of 4-phenoxyphenyl), 7.73 (dd, $1 \mathrm{H}, J=8.8,1.9 \mathrm{~Hz}, \mathrm{H}-6$ of 2thioxopyridinyl), 7.68 (dd, 1H, $J=7.1,1.6 \mathrm{~Hz}, \mathrm{H}-3$ of 2-thioxopyridinyl), $7.43(\mathrm{t}, 2 \mathrm{H}, J=7.8$ $\mathrm{Hz}, \mathrm{H}-3,5$ of Ph), 7.26-7.20 (m, 2H, H-4 of Ph, H-5 of 2-thioxopyridinyl), $7.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ph), 7.06 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of 4-phenoxyphenyl), $6.61(\mathrm{td}, 1 \mathrm{H}, J=$ 7.1, $1.9 \mathrm{~Hz}, \mathrm{H}-4$ of 2-thioxopyridinyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.1,163.7$, $154.9,138.1,137.4,133.5,133.1$ (2C), 132.8, 130.2 (2C), 125.1, 120.5 (2C), 119.3, 117.4 (2C), 112.6. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}$ 324.0694; Found 324.0679 .

Benzyloxycarbonylaminocyclohexane (2a).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 a}$ ($250 \mathrm{mg}, 0.648$ mmol) and zinc(II) tetraphenylporphyrin ($0.4 \mathrm{mg}, 0.6 \mu \mathrm{~mol}$) in $\mathrm{MeCN}(3 \mathrm{~mL})$ was added tertdodecanethiol ($610 \mu \mathrm{~L}, 2.59 \mathrm{mmol})$. The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 15 min , and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 124 mg (82%) of 2a as white crystals. mp 88-90 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.83$ (EtOAc/hexane, 1:4). IR (KBr): 3320, 2932, $1687 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.29\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{Ph}\right.$ of Cbz), 5.08 (s, $2 \mathrm{H},-\mathrm{CH}_{2}-$ of Cbz), 4.63 (br s, 1H, $-\mathrm{NH}-$), 3.51 (br s, 1H, H-1), 1.98-1.89 (m, 2H, Heq-2, 6), 1.73-1.66 (m, 2H, $\left.\mathrm{H}_{\mathrm{eq}}-3,5\right), 1.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-4\right), 1.40-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-2,6\right), 1.21-0.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-3,4,5\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5,136.7,128.5$ (2C), 128.1 (3C), 66.5, 49.9, 33.4 (2C), 25.5, 24.8 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}$ 234.1494; Found 234.1505.

1-(tert-Butyldimethylsilyloxy)-4-ethylbenzene (2b).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 b}(10.0 \mathrm{mg}, 25.7 \mu \mathrm{~mol})$ was converted to $5.4 \mathrm{mg}(89 \%)$ of $\mathbf{2 b}$. Compound $\mathbf{2 b}$ was obtained as a colorless oil. TLC $R_{f} 0.36$ (hexane). IR (neat): 2961, $1609 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.04$ (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $6.75\left(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}-2,6\right.$ of Ar), $2.58\left(\mathrm{q}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz},-\mathrm{CH}_{2}\right.$ - of ethyl), $1.20(\mathrm{t}, 3 \mathrm{H}, J$ $=7.8 \mathrm{~Hz},-\mathrm{CH}_{3}$ of ethyl), $0.98(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.18(\mathrm{~s}, 6 \mathrm{H},-\mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz ,
CDCl_{3}): $\delta 153.4,136.9,128.6$ (2C), 119.8 (2C), 28.0, 25.7 (3C), 18.2, 15.7, -4.4 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{OSi} 237.1675$; Found 237.1673.

1-Ethyl-4-(pivaloyloxy)benzene (2c).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 c}(10.0 \mathrm{mg}, 27.8 \mu \mathrm{~mol})$ was converted to $4.6 \mathrm{mg}(82 \%)$ of 2c. Compound 2c was obtained as a colorless oil. TLC $R_{f} 0.38$ (EtOAc/hexane, 1:20). IR (neat): 2967, $1754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18$ (d, 2H, $J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 6.96 (d, 2H, $J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $2.62\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{2}-\right.$ of ethyl), $1.35(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.20\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta 177.3,149.0,141.5,128.7$ (2C), 121.2 (2C), 39.0, 28.3, 27.1 (3C), 15.6. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}$ 207.1385; Found 207.1389.

1-Ethyl-4-(2-methoxyethoxymethoxy)benzene (2d).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 d}(10.0 \mathrm{mg}, 27.5 \mu \mathrm{~mol})$ was converted to $5.3 \mathrm{mg}(92 \%)$ of $\mathbf{2 d}$. Compound $\mathbf{2 d}$ was obtained as a colorless oil. TLC $R_{f} 0.72$ (EtOAc/hexane, 1:2). IR (neat): $2963 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10(\mathrm{~d}, 2 \mathrm{H}, J=7.3$ $\mathrm{Hz}, \mathrm{H}-2,6$ of Ar), 6.98 (d, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 5.24 (s, $2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}-$), 3.85-3.78 (m, $\left.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.60-3.52\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.59(\mathrm{q}, 2 \mathrm{H}, J$ $=7.5 \mathrm{~Hz},-\mathrm{CH}_{2}$ - of ethyl), $1.21\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , CDCl_{3}): $\delta 155.3,137.7,128.7$ (2C), 116.2 (2C), 93.7, 71.6, 67.5, 59.0, 28.0, 15.8. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3} 211.1334$; Found 211.1341.

1-Ethyl-4-(methanesulfonyloxy)benzene (2e).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 e}(10.0 \mathrm{mg}, 28.3 \mu \mathrm{~mol})$ was converted to $5.0 \mathrm{mg}(88 \%)$ of $\mathbf{2 e}$. Compound $\mathbf{2 e}$ was obtained as a colorless oil. TLC $R_{f} 0.51$ (EtOAc/hexane, 1:4). IR (neat): $2968 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22$ (d, $2 \mathrm{H}, J=8.5$ $\mathrm{Hz}, \mathrm{H}-2,6$ of Ar), 7.19 (d, 2H, $J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 3.12 (s, $3 \mathrm{H},-\mathrm{Me}$), 2.66 ($\mathrm{q}, 2 \mathrm{H}, J=7.6$ $\mathrm{Hz},-\mathrm{CH}_{2}$ - of ethyl), $1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 147.2,143.6,129.3$ (2C), 121.8 (2C), 37.2, 28.3, 15.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{K}]^{+}$ Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{KO}_{3} \mathrm{~S}$ 239.0144; Found 239.0150.

1-(Benzyloxy)-4-ethylbenzene (2f).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 f}(11.9 \mathrm{mg}, 32.6 \mu \mathrm{~mol})$ was converted to $4.8 \mathrm{mg}(70 \%)$ of $\mathbf{2 f}$. Compound $\mathbf{2 f}$ was obtained as a colorless oil. TLC $R_{f} 0.77$ (EtOAc/hexane, 1:4). IR (neat): 2963, $1724 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44$ (d, 2H, $J=7.4 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ph), $7.38(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ph$), 7.31(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-4$ of $\mathrm{Ph}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $6.91(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), 5.05 (s, 2H, $\mathrm{Bn}), 2.60\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{2}\right.$ - of ethyl), $1.21\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.8,137.3,136.7,128.7$ (2C), 128.5 (2C), 127.9, 127.5 (2C), 114.7 (2C), 70.1, 28.0, 15.8. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}$ 213.1279; Found 213.1270.

1-Ethyl-4-(p-methoxybenzyloxy)benzene (2g).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 g}(13.4 \mathrm{mg}, 33.9 \mu \mathrm{~mol})$ was converted to $5.0 \mathrm{mg}(61 \%)$ of $\mathbf{2 g}$. Compound $\mathbf{2 g}$ was obtained as white crystals. mp $68-71^{\circ} \mathrm{C}$. TLC $R_{f} 0.65$ (toluene). IR (KBr): $2930 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35$ (d, 2H, J=9.0 Hz, H-2, 6 of PMB), $7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.93-6.88(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3,5$ of Ar and $\mathrm{H}-3,5$ of PMB), 4.97 (s, 2H, Bn), 3.82 (s, $3 \mathrm{H},-\mathrm{Me}$), $2.59\left(\mathrm{q}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz},-\mathrm{CH}_{2}\right.$ - of ethyl), 1.21 (t, 3H, $J=7.7 \mathrm{~Hz},-\mathrm{CH}_{3}$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,156.9,136.6,129.3$, 129.2 (2C), 128.7 (2C), 114.7 (2C), 114.0 (2C), 69.8, 55.3, 28.0, 15.9. HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}$ 248.1385; Found 248.1389.

1-Ethyl-4-(o-nitrobenzyloxy)benzene (2h).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 h}(9.9 \mathrm{mg}, 24 \mu \mathrm{~mol})$ was converted to $5.2 \mathrm{mg}(84 \%)$ of $\mathbf{2 h}$. Compound $\mathbf{2 h}$ was obtained as a beige oil. TLC $R_{f} 0.78$ (toluene). IR
(neat): $3032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17$ (d, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-3$ of $o-\mathrm{NO}_{2} \mathrm{Bn}$), $7.91\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-6\right.$ of $\left.o-\mathrm{NO}_{2} \mathrm{Bn}\right), 7.68\left(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-5\right.$ of $\left.o-\mathrm{NO}_{2} \mathrm{Bn}\right)$, $7.48(\mathrm{t}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-4$ of $\left.o-\mathrm{NO}_{2} \mathrm{Bn}\right), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.91(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}, \mathrm{H}-3,5$ of Ar$), 5.48\left(\mathrm{~s}, 2 \mathrm{H}, o-\mathrm{NO}_{2} \mathrm{Bn}\right), 2.60\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{2}\right.$ - of ethyl), $1.21(\mathrm{t}, 3 \mathrm{H}$, $J=7.6 \mathrm{~Hz},-\mathrm{CH}_{3}$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1,146.9,137.3,134.3$, 134.0, 128.9 (2C), 128.5, 128.2, 124.9, 114.7 (2C), 66.9, 28.0, 15.8. HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}$ 258.1130; Found 258.1131.

1-Ethyl-4-(4-pentenyloxy)benzene (2i).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 i}(29.9 \mathrm{mg}, 87.0 \mu \mathrm{~mol})$ was converted with $0.5 \mathrm{~mol} \%$ of the catalyst to $14.2 \mathrm{mg}(86 \%)$ of $\mathbf{2 i}$. Compound $\mathbf{2 i}$ was obtained as a colorless oil. TLC $R_{f} 0.48$ (EtOAc/hexane, 1:4). IR (neat): $2928 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.82(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 5.86 (m, 1H, H-4 of 4-pentenyloxy), 5.09-4.98 (m, 2H, H-5, 5' of 4-pentenyloxy), 3.95 (t, 2H, J $=6.9 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}$ of 4-pentenyloxy), $2.59\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{2}\right.$ - of ethyl), $2.24(\mathrm{q}, 2 \mathrm{H}, J$ $=6.9 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}$ of 4-pentenyloxy), 1.87 (quin, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-2,2$ ' of 4-pentenyloxy), $1.21\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.1,137.9$, 136.3, 128.6 (2C), 115.1, 114.4 (2C), 67.2, 30.1, 28.5, 28.0, 15.9. HRMS (ESI-TOF) $m / z:$ [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}$ 191.1436; Found 191.1442.

1-Ethyl-4-(3-phenylpropioloxy)benzene (2j).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 j}(28.4 \mathrm{mg}, 70.4 \mu \mathrm{~mol})$ was converted to 15.2 mg (86%) of $\mathbf{2} \mathbf{j}$. Compound $\mathbf{2} \mathbf{j}$ was obtained as a colorless oil. TLC $R_{f} 0.71$ (toluene). IR (neat): 2921, 2234, 1808, $1722 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63$ (d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}$, $\mathrm{H}-2,6$ of Ph), $7.49(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-4$ of Ph$), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-3,5 \mathrm{of} \mathrm{Ph}), 7.24$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $2.67(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz},-$ CH_{2} - of ethyl), $1.25\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $152.6,148.0,142.4,133.2$ (2C), 131.0, 128.9 (2C), 128.7 (2C), 121.2 (2C), 119.3, 88.5, 80.5, 28.3, 15.5. HRMS (ESI-TOF) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}$ 251.1072; Found 251.1080.

1,1-Diphenylethane (2k).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 k}(9.9 \mathrm{mg}, 30 \mu \mathrm{~mol})$ was converted to $5.0 \mathrm{mg}(93 \%)$ of $\mathbf{2 k}$. Compound $\mathbf{2 k}$ was obtained as a colorless oil. TLC $R_{f} 0.52$ (hexane). IR (neat): $2967 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{t}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-3,5 \mathrm{of} \mathrm{Ph}), 7.24$ (d, 4H, J=7.3 Hz, H-2, 6 of Ph), 7.20 (t, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-4$ of Ph), 4.17 (q, 1H, $J=7.4 \mathrm{~Hz}$, $\mathrm{H}-1), 1.66\left(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.3(2 \mathrm{C}), 128.3$ (4C), 127.6 (4C), 126.0 (2C), 44.7, 21.8. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{15}$ 183.1174; Found 183.1174.

1,4-Dimethyl-2-(4-methylpentyloxy)benzene (21).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 1}(10.0 \mathrm{mg}, 27.8 \mu \mathrm{~mol})$ was converted to $4.1 \mathrm{mg}(71 \%)$ of $\mathbf{2 l}$. Compound $\mathbf{2 l}$ was obtained as a colorless oil. TLC $R_{f} 0.88$ (EtOAc/hexane, 1:6). IR (KBr): $2955 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.01(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}, \mathrm{H}-6), 6.66$ (d, 1H, J = 7.5 Hz, H-5), 6.64 (s, 1H, H-3), 3.93 (t, 2H, J = $6.8 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}$ of 4-methylpentyloxy), 2.32 (s, $3 \mathrm{H},-\mathrm{CH}_{3}$ of dimethylphenoxy), 2.19 (s, $3 \mathrm{H},-\mathrm{CH}_{3}$ of dimethylphenoxy), 1.84-1.77 (m, 2H, H-2, 2' of 4-methylpentyloxy), 1.63 (m, 1H, H-4 of 4methylpentyloxy), 1.40-1.34 (m, 2H, H-3, 3^{\prime} of 4-methylpentyloxy), 0.93 (d, $6 \mathrm{H}, J=6.5 \mathrm{~Hz},-$ $\mathrm{CH}_{3} \times 2$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.1,136.4,130.2,123.6,120.5,112.0,68.2$, 35.3, 27.8, 27.3, 22.6 (2C), 21.4, 15.8. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}$ 207.1749; Found 207.1756.

3-Ethylbenzophenone (2m).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 m}(31.2 \mathrm{mg}, 85.9 \mu \mathrm{~mol})$ was converted to $8.8 \mathrm{mg}(49 \%)$ of $\mathbf{2 m}$. Compound $\mathbf{2 m}$ was obtained as a colorless oil. TLC $R_{f} 0.79$
(EtOAc/hexane, 1:4). IR (KBr): 2965, $1660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (d, 2 H , $J=8.1 \mathrm{~Hz}, \mathrm{H}-2,6$ of Bz), 7.66 (s, 1H, H-2 of 3-benzoylphenyl), 7.61-7.57 (m, 2H, H-4 of Bz, H-4 of 3-benzoylphenyl), $7.48(\mathrm{t}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-3,5$ of Bz), $7.43(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-6$ of 3-benzoylphenyl), 7.39 (t, 1H, J=7.8 Hz, H-5 of 3-benzoylphenyl), 2.72 (q, $2 \mathrm{H}, J=7.7 \mathrm{~Hz},-$ CH_{2} - of ethyl), $1.27\left(\mathrm{t}, 3 \mathrm{H}, J=7.7 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 197.0, 144.5, 137.8, 137.7, 132.3, 132.0, 130.0 (2C), 129.3, 128.2 (2C), 128.1, 127.6, 28.7, 15.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}$ 211.1123; Found 211.1129.
(3,4,5,6-Tetrachlorophthalimidyloxycarbonyl)adamantane (2n).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 n}(38.6 \mathrm{mg}, 62.6 \mu \mathrm{~mol})$ was converted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ instead of MeCN to 16.7 mg (58%) of $\mathbf{2 n}$. Compound $\mathbf{2 n}$ was obtained as white crystals. mp 198-201 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.65$ (EtOAc/hexane, 1:4). IR (KBr): 2914, 1809, 1783, $1747 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.12(\mathrm{~s}, 9 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,157.8$ (2C), 140.9 (2C), 130.3 (2C), 124.8 (2C), 40.5, 38.4 (3C), 36.1 (3C), 27.6 (3C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{4} \mathrm{NNaO}_{4} 483.9653$; Found 483.9672.

1-Ethyl-4-[5-(phthalimidyloxycarbonyl)pentyloxy]benzene (20).

As described for the preparation of 2a, compound $\mathbf{1 0}(89.7 \mathrm{mg}, 0.168 \mathrm{mmol})$ was converted to $45.7 \mathrm{mg}(71 \%)$ of $\mathbf{2 0}$. Compound $\mathbf{2 o}$ was obtained as a colorless oil. TLC $R_{f} 0.39$ (EtOAc/hexane, 1:4). IR (neat): 2931, 1816, 1789, $1745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.91-7.87 (m, 2H, H-3, 6 of phthalimidyl), 7.81-7.78 (m, 2H, H-4, 5 of phthalimidyl), 7.10 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$), 6.83 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$), 3.97 (t, $2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}$ of pentyloxy), 2.71 (t, 2H, $J=7.3 \mathrm{~Hz}, \mathrm{H}-5,5$ ' of pentyloxy), 2.58 ($\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}$ - of ethyl), 1.91-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.68-1.60 (m, 2H, H-3, 3' of pentyloxy), $1.21\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.5,162.0$ (2C), $157.0,136.3,134.7$ (2C), 128.9 (2C), 128.7 (2C), 124.0 (2C), 114.4 (2C), 67.5, 30.9, 28.8, 28.0, 25.4, 24.5, 15.9. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{5} 382.1666$;

1-Ethyl-4-[5-(3,4,5,6-tetrachlorophthalimidyloxycarbonyl)pentyloxy]benzene (2p).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 p}(62.3 \mathrm{mg}, 92.7 \mu \mathrm{~mol})$ was converted to $25.5 \mathrm{mg}(53 \%)$ of $\mathbf{2 p}$. Compound $\mathbf{2 p}$ was obtained as white crystals. mp $89-93{ }^{\circ} \mathrm{C}$. TLC R_{f} 0.63 (EtOAc/hexane, 1:4). IR (KBr): 2934, 1816, 1790, $1748 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.82(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 3.96 (t, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), $2.71\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}\right.$ of pentyloxy), 2.58 (q, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}$ - of ethyl), 1.92-1.79 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.68-1.59 (m, 2H, $\mathrm{H}-3,3$ ' of pentyloxy), 1.21 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}$ of ethyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 177.6,169.9$ (2C), 154.9, 134.7, 128.9, 106.9, 91.6, 84.9, 70.4, 52.3, 51.0, 50.4, 48.2, 46.7, 39.8, 36.8, 34.9, 22.1, 20.8, 16.5, 14.6. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{NO}_{5} 518.0096$; Found 518.0092.
(1R,4aS,4bR,10aS)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10adecahydrophenanthrene (2qA) and (1S,4aS,4bR,10aS)-7-Isopropyl-1,4a-dimethyl$\mathbf{1 , 2 , 3}, 4,4 a, 4 b, 5,6,10,10 a-d e c a h y d r o p h e n a n t h r e n e ~(2 q B) . ~$

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 q}(10.0 \mathrm{mg}, 26.6 \mu \mathrm{~mol})$ was converted to a mixture of $\mathbf{2 q A}$ and $\mathbf{2 q B}(5.0 \mathrm{mg}, 80 \%, \mathrm{dr}=3: 2)$. A mixture of $\mathbf{2 q A}$ and $\mathbf{2 q B}$ was obtained as a colorless oil. TLC $R_{f} 0.88$ (hexane). IR (neat): $2923 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 5.78 (s, 1H, H-8), 5.44 (m, 1H×3/5, H-9), $5.40(\mathrm{~m}, 1 \mathrm{H} \times 2 / 5, \mathrm{H}-9), 2.30-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.11-$ $2.04(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.99(\mathrm{~m}, 7 \mathrm{H})$, $0.98\left(\mathrm{~d}, 3 \mathrm{H} \times 3 / 5, J=7.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.83\left(\mathrm{~d}, 3 \mathrm{H} \times 2 / 5, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.78(\mathrm{~s}, 3 \mathrm{H} \times 3 / 5$, $\left.\mathrm{CH}_{3}\right), 0.72\left(\mathrm{~s}, 3 \mathrm{H} \times 2 / 5,-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for major isomer: $\delta 145.1$, 135.7, 122.6, 121.5, 50.4, 48.2, 44.0, 39.2, 34.9, 33.8, 32.1, 28.3, 27.5, 22.4, 21.4, 20.8, 17.4, 15.5, 14.4. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{31}$ 259.2426; Found 259.2419.
(3R,5R,8R,9S,10S,13R,14S,17R)-3-Benzoyloxy-17-[(2R)-2-butyl)]-10,13-dimethyl-hexadecahydro-1H-cyclopenta $[a]$ phenanthrene (2r).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 r}(10.2 \mathrm{mg}, 17.3 \mu \mathrm{~mol})$ was converted using benzene instead of MeCN to $5.6 \mathrm{mg}(74 \%)$ of $\mathbf{2 r}$. Compound $\mathbf{2 r}$ was obtained as white solids. TLC $R_{f} 0.61$ (EtOAc/hexane, 1:8). $[\alpha]^{25} \mathrm{D}+62.7$ (c 0.665, CHCl_{3}). IR (neat): 2936, $1716 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-2,6$ of Bz), $7.54(\mathrm{t}, 1 \mathrm{H}$, $J=7.5 \mathrm{~Hz}, \mathrm{H}-4$ of Bz), 7.43 (t, 2H, $J=7.5 \mathrm{~Hz}, \mathrm{H}-3,5 \mathrm{of} \mathrm{Bz}), 4.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.02-1.96(\mathrm{~m}$, $2 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.38(\mathrm{~m}, 8 \mathrm{H}) 1.35-1.18(\mathrm{~m}, 5 \mathrm{H}), 1.16-1.00(\mathrm{~m}$, $6 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{H}-21), 0.82\left(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 0.66 (s, 3H, H-18). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.1,132.7,130.9,129.5$ (2C), 128.2 (2C), 75.0, 56.5, 55.8, 42.6, 42.0, 40.5, 40.2, 37.0, 35.8, 35.1, 34.6, 32.4, 28.3, 28.2, 27.1, 26.7, 26.4, 24.2, 23.4, 20.9, 18.0, 12.0, 10.3. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{2} 437.3420$; Found 437.3424.
(6Z,9Z)-6,9-Heptadecadiene (2s).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 s}(10.0 \mathrm{mg}, 26.6 \mu \mathrm{~mol})$ was converted to $4.8 \mathrm{mg}(81 \%)$ of $\mathbf{2 s}$. Compound $\mathbf{2 s}$ was obtained as a colorless oil. TLC $R_{f} 0.85$ (hexane). IR (KBr): $2926 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.42-5.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6,7,9,10), 2.78(\mathrm{t}$, $\left.2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-8,8^{\prime}\right), 2.05\left(\mathrm{q}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}, 11,11^{\prime}\right), 1.39-1.24(\mathrm{~m}, 16 \mathrm{H}), 0.92-$ $0.86\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 130.2(2 \mathrm{C}), 127.9(2 \mathrm{C}), 31.9,31.5$, 29.7, 29.4, 29.3, 29.2, 27.2 (2C), 25.6, 22.7, 22.6, 14.1 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{33}$ 237.2582; Found 237.2580.

7-Acetoxy-5-methoxy-4-methyl-6-[(2E)-3-methylpent-2-enyl]isobenzofuran-1(3H)-one

 (2t).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 t}(15.8 \mathrm{mg}, 33.5 \mu \mathrm{~mol})$ was converted to $7.7 \mathrm{mg}(72 \%)$ of $\mathbf{2 t}$. Compound $\mathbf{2 t}$ was obtained as white crystals. $\mathrm{mp} 97-100^{\circ} \mathrm{C}$. TLC $R_{f} 0.38$ (EtOAc/hexane, 1:3). IR (KBr): 2966, 1777, $1762 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.15$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-3,3$ '), 5.05 (t, 1H, J=6.5 Hz, C=CH), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.36 (d, 2H, J=6.5 Hz, $\left.\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-4\right), 1.97\left(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, $1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}\right), 0.95\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta 169.0,168.3,162.7,146.0,138.0,129.6,122.9,120.0(2 \mathrm{C}), 113.5,68.3,61.2,32.2$, 23.5, 20.5, 16.1, 12.5, 11.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{5} 319.1545$; Found 319.1538.
(1S,2S,4aR,4bR,7S,9aR,10aR)-2,7-Diacetoxy-1-methyl-8-methylene-13-oxo-
$\mathbf{1 , 2 , 4 , 4 b , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 0 a - d e c a h y d r o - 4 a , 1 - (e p o x y m e t h a n o) - 7 , 9 a - m e t h a n o b e n z o [a] a z u l e n e ~}$ (2u).

As described for the preparation of $\mathbf{2 a}$, compound $\mathbf{1 u}(19.8 \mathrm{mg}, 36.7 \mu \mathrm{~mol})$ was converted with $0.5 \mathrm{~mol} \%$ of the catalyst to $7.6 \mathrm{mg}(54 \%)$ of $\mathbf{2 u}$. Compound $\mathbf{2 u}$ was obtained as white crystals. mp 155-159 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.48$ (EtOAc/hexane, $1: 1$). $[\alpha]^{25} \mathrm{D}+157\left(c 0.500, \mathrm{CHCl}_{3}\right)$. IR (KBr): 2935, 1777, $1739 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.38$ (d, $1 \mathrm{H}, J=9.4 \mathrm{~Hz}, \mathrm{H}-4$), 5.84 (dd, 1H, J =9.4, $3.7 \mathrm{~Hz}, \mathrm{H}-3$), 5.33 (d, 1H, J=3.7 Hz, H-2), 5.11 (s, 1H, H-12), 4.95 (s, $1 \mathrm{H}, \mathrm{H}-12$ '), 2.83 (dd, $1 \mathrm{H}, J=11.0,8.0 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}$), 2.52 (dt, $1 \mathrm{H}, J=15.6,3.0 \mathrm{~Hz}$), 2.36 (dd, $1 \mathrm{H}, J=12.5,8.0 \mathrm{~Hz}), 2.28(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 2.18(\mathrm{dd}, 1 \mathrm{H}, J=10.8,2.3 \mathrm{~Hz}), 2.12(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.95(\mathrm{dd}, 2 \mathrm{H}, J=13.8,7.3 \mathrm{~Hz}), 1.82-1.74(\mathrm{~m}$, $2 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-14) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.6,169.9$ (2C), 154.9, 134.7, 128.9, 106.9, 91.6, 84.9, 70.4, 52.3, 51.0, 50.4, 48.2, 46.7, 39.8, 36.8, 34.9, 22.1, 20.8, 16.5, 14.6. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{6} 387.1808$; Found 387.1803.

The following reaction was carried out under Ar and in the flask protected from light with aluminum foil. To a stirred solution of 2-mercaptopyridine N-oxide ($20.7 \mathrm{mg}, 0.163 \mathrm{mmol}$) and EDCI $\cdot \mathrm{HCl}(31.2 \mathrm{mg}, 0.163 \mathrm{mmol})$ in DMF $(0.6 \mathrm{~mL})$ was added $\mathbf{S 5 0}(29.3 \mathrm{mg}, 0.120$ $\mathrm{mmol})$. The mixture was stirred at room temperature for 1 h , and zinc(II) tetraphenylporphyrin ($0.1 \mathrm{mg}, 0.1 \mu \mathrm{~mol}$) and tert-dodecanethiol ($116 \mu \mathrm{~L}, 0.491 \mathrm{mmol}$) were added. After being stirred at $25^{\circ} \mathrm{C}$ and irradiated by red LEDs for 30 min , the mixture was purified by column chromatography on silica gel $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 20\right)$ to provide 11.7 mg (49\%) of $\mathbf{2 v}$ as white crystals. mp $190-194{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.27\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 12\right) .[\alpha]^{26} \mathrm{D}$ +66.7 (c 0.435, CHCl_{3}). IR (KBr): $3264,2955,1710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 5.15 (br s, 1H, -NH-), 5.08 (br s, 1H, -NH-), 4.51 (m, 1H, H-3a), 4.31 (m, 1H, H-6a), 3.17 (m, $1 \mathrm{H}, \mathrm{H}-4), 2.92$ (dd, 1H, $J=12.8,5.2 \mathrm{~Hz}, \mathrm{H}-6$), 2.73 (d, 1H, $J=12.8 \mathrm{~Hz}, \mathrm{H}-6$ '), 1.72-1.62 (m, $2 \mathrm{H}, \mathrm{H}-1,1$ ' of butyl), 1.46-1.30 (m, 4H, H-2, 2', 3, 3' of butyl), 0.91 (t, 3H, J=7.0 Hz, -CH3). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.1,61.9,60.1,55.5,40.6,31.2,28.3,22.6,13.9$. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}$ 201.1062; Found 201.1070.

N-[(9H-Fluoren-9-yl)methoxycarbonyl]pyrrolidine (2w).

The following reaction was carried out under Ar and in the flask protected from light with aluminum foil. To a stirred solution of 2-mercaptopyridine N-oxide ($21.5 \mathrm{mg}, 0.169 \mathrm{mmol}$) and EDCI $\cdot \mathrm{HCl}(32.0 \mathrm{mg}, 0.167 \mathrm{mmol})$ in DMF $(0.7 \mathrm{~mL})$ was added $\mathbf{S 5 2}(50.1 \mathrm{mg}, 0.142$ mmol). The mixture was stirred at room temperature for 1 h , and $\operatorname{zinc}(\mathrm{II})$ tetraphenylporphyrin ($0.1 \mathrm{mg}, 0.1 \mu \mathrm{~mol}$) and tert-dodecanethiol ($133 \mu \mathrm{~L}, 0.566 \mathrm{mmol}$) were added. After being stirred at $25^{\circ} \mathrm{C}$ and irradiated by red LEDs for 30 min , the mixture was diluted with EtOAc (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide $35.6 \mathrm{mg}(86 \%)$ of $\mathbf{2 w}$ as white crystals. $\mathrm{mp} 71-74{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.74$ ($\mathrm{EtOAc} / \mathrm{hexane}$, 2:1). IR (KBr): 2875, 1710, $1694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77$ (d, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\mathrm{H}-4,5$ of Fmoc), 7.62 (d, 2H, $J=7.5 \mathrm{~Hz}, \mathrm{H}-1,8$ of Fmoc), 7.40 (t, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-3,6$ of Fmoc), 7.32 (t, 2H, $J=7.5 \mathrm{~Hz}, \mathrm{H}-2,7$ of Fmoc), 4.38 (d, 2H, $J=7.1 \mathrm{~Hz},-\mathrm{CH}_{2}$ - of Fmoc), 4.25 (t, 1H, J=7.1 Hz, H-9 of Fmoc), 3.43 (t, 4H, $J=6.5 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}, 5,5$ '), 1.96-1.84 (m, 4H, H-3,
$\left.3^{\prime}, 4,4^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,144.2$ (2C), 141.3 (2C), 127.6 (2C), 127.0 (2C), 125.1 (2C), 119.9 (2C), 67.0, 47.4, 46.2, 45.8, 25.8, 24.9. HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ 294.1494; Found 294.1484.
tert-Butyl (9H-fluoren-9-yl)methyl pentane-1,5-diyldicarbamate (2x).

As described for the preparation of $\mathbf{2 w}$, compound $\mathbf{S 5 4}$ ($59.2 \mathrm{mg}, 0.126 \mathrm{mmol}$) was converted to $43.7 \mathrm{mg}(82 \%)$ of $\mathbf{2 x}$. Compound $\mathbf{2 x}$ was obtained as white crystals. mp 110$112{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.35$ (EtOAc/hexane, 1:2). IR (KBr): 2963, 1695, $1682 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77$ (d, 2H, $J=7.6 \mathrm{~Hz}, \mathrm{H}-4,5$ of Fmoc), $7.59(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1,8$ of Fmoc), 7.40 ($\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3,6$ of Fmoc), 7.31 (t, 2H, $J=7.6 \mathrm{~Hz}, \mathrm{H}-2,7$ of Fmoc), 4.79 (br s, $1 \mathrm{H},-\mathrm{NH}-$), 4.53 (br s, $1 \mathrm{H},-\mathrm{NH}-$), $4.40\left(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{2}\right.$ - of Fmoc), $4.21(\mathrm{t}, 1 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}, \mathrm{H}-9$ of Fmoc), 3.19 (t, 2H, $\left.J=6.5 \mathrm{~Hz}, \mathrm{H}-5,5^{\prime}\right)$, 3.15-3.00 (m, 2H, H-1, 1'), 1.57-1.46 (m, 4H, H-2, 2', 4, 4'), 1.44 (s, 9H, t - Bu), 1.39-1.30 (m, 2H, H-3, 3'). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.6,156.2,144.1$ (2C), 141.4 (2C), 127.7 (2C), 127.1 (2C), 125.1 (2C), 120.1 (2C), 79.2, 66.6, 47.4, 40.9, 40.4, 29.8, 29.7, 28.5 (3C), 23.9. HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} 425.2440$; Found 425.2444.
tert-Butyl 3-[(9H-fluoren-9-yl)methoxycarbonylamino]propanoate (2y).

As described for the preparation of $\mathbf{2 w}$, compound $\mathbf{S 5 6}$ ($59.3 \mathrm{mg}, 0.144 \mathrm{mmol}$) was converted to 45.3 mg (85%) of $\mathbf{2 y}$. Compound $\mathbf{2 y}$ was obtained as white crystals. mp 39 $42{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.53$ (EtOAc/hexane, 1:9). IR (KBr): 2977, 1731, $1692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76$ (d, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-4,5$ of Fmoc), $7.59(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-1,8$ of Fmoc), 7.40 (t, 2H, $J=7.5 \mathrm{~Hz}, \mathrm{H}-3,6$ of Fmoc), 7.31 (t, 2H, $J=7.5 \mathrm{~Hz}, \mathrm{H}-2,7$ of Fmoc), 5.32 (br s, 1H, -NH-), 4.38 (d, 2H, J =7.1 Hz, -CH2- of Fmoc), $4.22(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-9$ of Fmoc), 3.44 (t, 2H, $\left.J=6.0 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime}\right), 2.47\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 1.47$ (s, 9H, t - Bu). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8,156.3,143.9$ (2C), 141.3 (2C), 127.6 (2C), 127.0 (2C), 125.0 (2C), 119.9 (2C), 81.1, 66.7, 47.2, 36.7, 35.5, 28.1 (3C). HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4}$ 368.1862; Found 368.1871.

2-thioxopyridin-1(2H)-yl 5-phenylpentanoate (3).

As described for the preparation of $\mathbf{1 b}$, valeric acid $\mathbf{S 3}(507 \mathrm{mg}, 2.81 \mathrm{mmol})$ was converted to $619 \mathrm{mg}(77 \%)$ of $\mathbf{3}$. Compound $\mathbf{3}$ was obtained as a yellow oil. TLC $R_{f} 0.24$ (EtOAc/hexane, 1:2). IR (neat): 2942, 2847, $1800 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (dd, $1 \mathrm{H}, J=8.8$, $1.3 \mathrm{~Hz}, \mathrm{H}-6$ of 2-pyridinethione), 7.53 (dd, $1 \mathrm{H}, J=6.8,1.3, \mathrm{H}-3$ of 2-pyridinethione), 7.31$7.26(\mathrm{~m}, 2 \mathrm{H}$, phenyl), $7.23-7.16(\mathrm{~m}, 4 \mathrm{H}$, phenyl, H-5 of 2-pyridinethione), $6.62(\mathrm{td}, 1 \mathrm{H}, J=$ $6.8,1.3 \mathrm{~Hz}, \mathrm{H}-4$ of 2-pyridinethione), $2.74\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}\right), 2.68(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, H-5, 5'), 1.91-1.74 (m, 4H, H-3, 3', 4, 4'). ${ }^{13} \mathrm{C}^{\prime}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.7$, 168.8, 141.7, 137.6, 137.2, 133.5, 128.3 (4C), 125.8, 112.5, 35.3, 31.3, 30.5, 23.8. HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}$ 288.1057; Found 288.1058.

(4-Chlorobutyl)benzene (4a).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}(20.0 \mathrm{mg}, 0.0696$ mmol), zinc(II) tetraphenylporphyrin ($1.4 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) in carbon tetrachloride (1.4 mL) was added hexachloroethane $(49.4 \mathrm{mg}, 0.208 \mathrm{mmol})$. The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h , the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:10) to provide 8.5 mg (73%) of $\mathbf{4 a}$ as a colorless oil. TLC $R_{f} 0.78$ (EtOAc/hexane, 1:10). IR (neat): $2939 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.31-7.25 (m, 2H, -Ph), 7.22-7.16 (m, 3H, -Ph), $3.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-4,4$ ' of butyl), 2.65 (t, 2H, $J=8.0 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}$ of butyl), 1.86-1.73 (m, 4H, H-2, 2', 3, 3' of butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.8,128.4$ (4C), 125.9, 44.9, 35.1, 32.1, 28.5. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Cl}$ 169.0784; Found 169.0781.

(4-Bromobuty)benzene (4b).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}(20.0 \mathrm{mg}, 0.0696$ $\mathrm{mmol})$, zinc(II) tetraphenylporphyrin ($1.4 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) in toluene (1.4 mL) was added bromotrichloromethane ($21 \mathrm{~mL}, 0.21 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h , the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, $1: 10$) to provide $8.1 \mathrm{mg}(55 \%)$ of $\mathbf{4 b}$ as a yellow oil. TLC $R_{f} 0.78$ (EtOAc/hexane, 1:10). IR (neat): $2936 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{Ph}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ph}), 3.42\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-4,4^{\prime}\right.$ of butyl $), 2.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}$,
$\mathrm{H}-1,1^{\prime}$ of butyl), 1.94-1.73 (m, 4H, H-2, 2', 3, 3' of butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , CDCl_{3}): $\delta 142.9,128.4(2 \mathrm{C}), 128.2$ (2C), 125.5, 82.9, 35.8, 34.2, 24.8, 23.8. HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br} 213.0279$; Found 213.0275.

(4-Iodobutyl)benzene (4c).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}(20.0 \mathrm{mg}, 0.0696$ $\mathrm{mmol})$, zinc(II) tetraphenylporphyrin ($1.4 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) in toluene (1.4 mL) was added diiodomethane ($17 \mathrm{~mL}, 0.21 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1 h , the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:10) to provide $12.6 \mathrm{mg}(70 \%)$ of $\mathbf{4 c}$ as a yellow oil. TLC $R_{f} 0.78$ (EtOAc/hexane, 1:10). IR (neat): $2933 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{Ph}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ph}), 3.20\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-4,4^{\prime}\right.$ of butyl), $2.64(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, $\mathrm{H}-1,1^{\prime}$ of butyl), 1.89-1.71 (m, 4H, H-2, 2', 3, 3' of butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , CDCl_{3}): $\delta 141.8,128.4$ (4C), 125.9, 34.7, 32.9, 32.2, 6.7. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{10} \mathrm{H}_{14 \mathrm{I}}$ 261.0140; Found 261.0152.

4-Phenyl-1-butanol (4d).

The following reaction was carried out under O_{2}. To a stirred solution of $\mathbf{3}$ ($10.2 \mathrm{mg}, 0.0355$ $\mathrm{mmol})$ in ethanol (0.7 mL) was added zinc(II) tetraphenylporphyrin ($0.71 \mathrm{mg}, 0.001 \mathrm{mmol}$) and t-butyl mercaptan ($35 \mu \mathrm{~L}, 0.31 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 30 min . The reaction flask was replaced to Ar , and trimethyl phosphite $(9 \mu \mathrm{~L}, 0.076$ mmol) was added and stirred for additional 2 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide $4.0 \mathrm{mg}(75 \%)$ of $\mathbf{4 d}$ as a yellow oil. TLC $R_{f} 0.40$ (EtOAc/hexane, $1: 2$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H},-\mathrm{Ph}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ph}), 3.66\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right)$, $2.64\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-4,4^{\prime}\right), 1.74-1.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2,2^{\prime}, 3,3^{\prime}\right) .4 \mathrm{~d}$ is a commercially available compound.

Dimer of (1-nitroso-4-phenylbutane) (4e).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}(10.1 \mathrm{mg}, 0.0352$ mmol), zinc(II) tetraphenylporphyrin ($0.71 \mathrm{mg}, 0.001 \mu \mathrm{~mol}$) in dichloromethane/toluene ($2: 1$, 0.7 mL) was added S-trityl nitrothioite ($17 \mathrm{~mL}, 0.21 \mathrm{mmol}) .{ }^{S 1}$ The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1.5 h , The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:4) to provide $3.5 \mathrm{mg}(61 \%)$ of $\mathbf{4 e}$ as a yellow oil. TLC $R_{f} 0.20$ (EtOAc/hexane, 1:4). IR (neat): 2927, 1454, $1221 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.14(\mathrm{~m}, 10 \mathrm{H},-\mathrm{Ph} \times 2), 4.27(\mathrm{t}, 4 \mathrm{H}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{H}-1,1^{\prime} \times 2\right), 2.66\left(\mathrm{t}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-4,4^{\prime} \times 2\right), 1.91\left(\mathrm{tt}, 4 \mathrm{H}, J=7.2,7.2 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime} \times\right.$ 2), $1.70\left(\mathrm{tt}, 4 \mathrm{H}, J=7.6,7.2 \mathrm{~Hz}, \mathrm{H}-3,3^{\prime} \times 2\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.5$ (2C), 128.40 (4C), 128.37 (4C), 126.0 (2C), 58.6 (2C), 35.2(2C), 28.3 (2C), 24.7 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2}$ 349.1892; Found 349.1885.

Diethyl 1-(4-phenylbutyl)hydrazine-1,2-dicarboxylate (4f).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}$ ($10.5 \mathrm{mg}, 0.0365$ mmol), zinc(II) tetraphenylporphyrin ($0.71 \mathrm{mg}, 0.001 \mu \mathrm{~mol}$) in toluene (0.35 mL) was added diethyl azodicarboxylate in toluene ($16 \mu \mathrm{~L}, 0.035 \mathrm{mmol}$) and tris(trimethylsilyl) silane ($43 \mu \mathrm{~L}$, 0.035 mmol). The stirred mixture was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1.5 h , The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide $6.4 \mathrm{mg}(57 \%)$ of $\mathbf{4 f}$ as a yellow oil. TLC $R_{f} 0.40$ (EtOAc/hexane, 1:2). IR (neat): 2936, $1712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.25$ (m, 2H, -Ph), 7.20-7.15 (m, 3H, -Ph), $6.44(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.22-4.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\mathrm{CO}_{2} \mathrm{Et} \times 2$), 3.52 (br s, 2H, H-1, 1'), 2.63 (t, 2H, $J=6.8 \mathrm{~Hz}, \mathrm{H}-4,4^{\prime}$), 1.64-1.60 (m, 4H, H-2, 2', 3, 3'), 1.29-1.23 (m, 6H, CH ${ }_{3}$ of $\mathrm{CO}_{2} \mathrm{Et} \times 2$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.3$ (br, 2C), 142.1, 128.4 (2C), 128.3 (2C), $125.8,62.4,62.0,49.7$ (br), 35.5, 28.3, 26.9, 14.5, 14.4. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4}$ 331.1634; Found 331.1628.

Phenyl(4-phenylbutyl)sulfane (4g)

[^0]

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}$ ($11.0 \mathrm{mg}, 0.0383$ mmol) in DMSO (0.8 mL) were added zinc(II) tetraphenylporphyrin ($0.78 \mathrm{mg}, 0.001 \mathrm{mmol}$) and diphenyl disulfide $(17.0 \mathrm{mg}, 0.0779 \mathrm{mmol})$. The stirred mixture was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1.5 h , diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \mathrm{~mL} \times 3)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAC/hexane, 1:40) to provide 7.7 mg (84%) of $\mathbf{4 g}$ as a colorless oil. TLC $R_{f} 0.38$ (EtOAc/hexane, 1:40). IR (neat): 2933, $1480 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): § 7.32-7.23 (m, 6H, phenyl), 7.20-7.14 (m, 4H, phenyl), $2.93\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right), 2.62$ (t, 2H, $\left.J=7.2 \mathrm{~Hz}, \mathrm{H}-4,4^{\prime}\right), 1.81-1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2,2^{\prime}, 3,3^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.1,136.8,129.0$ (2C), 128.8 (2C), 128.4 (2C), 128.3 (2C), 125.8, 125.7, 35.4, 33.5, 30.4, 28.6. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaS}$ 265.1027; Found 265.1028.
(4-Phenylbutyl)seleno benzene (4h)

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}$ ($20.0 \mathrm{mg}, 0.0696$ $\mathrm{mmol})$, zinc(II) tetraphenylporphyrin ($1.4 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ was added diphenyl diselenide ($21.7 \mathrm{mg}, 0.0696 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h , the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, $1: 8$) to provide $18.3 \mathrm{mg}(91 \%)$ of $\mathbf{4 h}$ as a yellow oil. TLC $R_{f} 0.75$ (toluene/hexane, 1:3). IR (neat): $2999 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{Ph}), 7.30-7.21(\mathrm{~m}, 5 \mathrm{H},-\mathrm{Ph}), 7.20-7.12(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ph}), 2.92(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-4,4$ ' of butyl), $2.61\left(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right.$ of butyl), $1.80-1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2,2\right.$, 3,3 ' of butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.1,132.5$ (2C), 130.5, 129.0 (2C), 128.4 (2C), 128.3 (2C), 126.7, 125.7, 35.3, 31.4, 29.6, 27.7. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Se}$ 291.0652; Found 291.0642.

4,4,5,5-Tetramethyl-2-(4-phenylbutyl)-1,3,2-dioxaborolane (4i)

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}(20.0 \mathrm{mg}, 0.0696 \mathrm{mmol})$, zinc(II) tetraphenylporphyrin ($1.4 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) in DMF (2.8 mL) was added bis(catecholato)diboron ($33.1 \mathrm{mg}, 0.139 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1 h , and pinacol (32.9
$\mathrm{mg}, 0.278 \mathrm{mmol})$ in triethylamine $(0.1 \mathrm{~mL})$ were added. After being stirred at room temperature for 1 h , the mixture was diluted with $\mathrm{EtOAc}(15 \mathrm{~mL})$ and washed with saturated brine $(10 \mathrm{~mL} \times 2)$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$ saturated brine ($10 \mathrm{~mL} \times 2$), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by columchlomatography (toluene) to provide $12.1 \mathrm{mg}(67 \%)$ of $\mathbf{4 i}$ as a brown oil. TLC $R_{f} 0.65$ (EtOAc/hexane, 1:10). IR (neat): $2928 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.29-$ 7.24 (m, 2H, -Ph), 7.20-7.16 (m, 3H, -Ph), 2.60 (t, 2H, J = 9.6 Hz, H-1, 1’ of butyl), 1.67-1.57 (m, 2H, H-2, 2' of butyl), 1.52-1.43 (m, 2H, $-3,3$ ' of butyl), $1.24(\mathrm{~s}, 12 \mathrm{H},-\mathrm{Mex} 4$ of dioxaborolane), $0.81(\mathrm{t}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}, \mathrm{H}-4,4$ ' of butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.9,128.4$ (2C), 128.2 (2C), 125.5, 82.9 (2C), 35.8, 34.2, 24.8 (4C), 23.8. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{BO}_{2}$ 261.2026; Found 261.2038 .

[4-(Methylseleno)butyl]benzene (S7)

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}(20.0 \mathrm{mg}, 0.0696$ mmol), zinc(II) tetraphenylporphyrin ($1.4 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ was added dimetyl diselenide ($7 \mathrm{~mL}, 0.0696 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h , the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:10) to provide 14.1 mg (89%) of $\mathbf{S 7}$ as a yellow oil. TLC $R_{f} 0.71$ (EtOAc/hexane, 1:10). IR (neat): $2925 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{Ph}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ph}), 2.63\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right.$ of butyl), $2.56(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, H-4, 4' of butyl), 1.97 (s, 3H, Me), 1.78-1.67 (m, 4H, H-2, 2', 3, 3' of butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.2,128.4$ (2C), 128.3 (2C), 125.7, 35.4, 31.5, 29.7, 25.2, 4.0. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Se} 229.0495$; Found 229.0497.

1-Chloro-4-[(4-phenylbutyl)seleno]benzene (S8)

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{3}$ ($20.2 \mathrm{mg}, 0.0696$ mmol), zinc(II) tetraphenylporphyrin ($1.4 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ was added bis(4chlorophenyl) diselenide ($26.5 \mathrm{mg}, 0.0696 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h , the mixture concentrated under reduced pressure. The residue was purified by PTLC (toluene/hexane, 1:3) to provide 19.1 mg (85%) of $\mathbf{S 8}$ as a yellow oil. TLC $R_{f} 0.40$ (toluene/hexane, 1:10). IR (neat): $2932 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.36$ (m, 2H, -Ar), 7.30-7.25 (m, 2H, -Ph), 7.24-7.18 (m, 3H, -Ph), 7.17-7.12 (m, 2H, -Ar), 2.89 (t, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}$ of butyl), 2.61 (t, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-4,4$ ' of butyl), 1.77-1.71 (m, 4H,
$\mathrm{H}-2,2^{\prime}, 3,3$ ' of butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.0,134.0$ (2C), 132.9, 129.1 (2C), 128.5, 128.4 (2C), 128.3 (2C), 125.8, 35.4, 31.5, 29.7, 28.3. HRMS (ESI-TOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClSe} 325.0262$; Found 325.0264

2-Thioxopyridin-1(2H)-yl 2-phenethyl-4-phenylbutanoate (5)

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 5 8}^{\mathbf{S 2}}$ ($100 \mathrm{mg}, 0.420 \mathrm{mmol}$) was converted to 113 mg (80%) of $\mathbf{5}$. Compound $\mathbf{5}$ was obtained as a yellow oil. TLC $R_{f} 0.33$ (EtOAc/hexane, 1:2). IR (neat): 1798, 1527, $1448 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70$ (m, 1H, 2-pyridinethione), 7.32-7.25 (m, 4H, 2-pyridinethione, phenyl), 7.24-7.17 (m, 8H, 2pyridinethione, phenyl), $6.59(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione), 2.88-2.76 (m, 5 H$), 2.36-2.25(\mathrm{~m}, 2 \mathrm{H})$, 2.08-1.98 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.0,171.2$, 141.0 (2C), 137.60, 137.56, 133.2, 128.6 (4C), 128.5 (4C), 126.1 (2C), 112.4, 42.2, 33.3 (4C). HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NNaO}_{2} \mathrm{~S} 400.1347$; Found 400.1338.

Methyl 4-phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanoate (7a)

5

7a

The following reaction was carried out under Ar. To a stirred solution of $5(10.4 \mathrm{mg}, 0.0276$ mmol) and zinc(II) tetraphenylporphyrin ($0.6 \mathrm{mg}, 0.9 \mu \mathrm{~mol}$) in toluene (0.3 mL) was added methyl acrylate $\mathbf{6 a}(5.0 \mu \mathrm{~L}, 0.073 \mathrm{mmol})$. The mixture was stirred and irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h , diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAC/hexane, 1:2) to provide 7.7 mg (67%) of 7a as a yellow oil. TLC $R_{f} 0.76$ (EtOAc/hexane, 1:2). IR (neat): 2927, $1736,1454 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{t}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.62(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,157.1,149.4,142.6,142.5,136.1,128.39$ (2C),

[^1]128.35 (2C), 128.32 (2C), 128.29 (2C), 125.7 (2C), 122.2, 119.9, 52.4, 44.2, 36.2, 35.3, 35.1, 35.0, 32.7, 32.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S} 442.1817$; Found 442.1806.
tert-Butyl 4-phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanoate (7b)

As described for the preparation of $\mathbf{7 a}$, compound $\mathbf{5}(10.8 \mathrm{mg}, 0.0286 \mathrm{mmol})$ was converted by using t-butyl acrylate $\mathbf{6 b}$ instead of methyl acrylate to $6.1 \mathrm{mg}(50 \%)$ of 7b. Compound 7b was obtained as a yellow oil. TLC $R_{f} 0.86$ (EtOAc/hexane, 1:2). IR (neat): 2931, 1726, 1146 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.22-$ $7.14(\mathrm{~m}, 7 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.57(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H})$, 1.82-1.66 (m, 5H), $1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7,157.7,149.3$, $142.7,142.6,136.0,128.38$ (2C), 128.36 (2C), 128.33 (2C), 128.30 (2C), 125.7 (2C), 122.4, $119.8,81.3,45.8,36.3,35.4,35.3,35.0,32.8,32.5,27.9$ (3C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+$ $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NNaO}_{2} \mathrm{~S} 484.2286$; Found 484.2275.

5-Phenethyl-7-phenyl-3-(pyridin-2-ylthio)heptan-2-one (7c)

As described for the preparation of $\mathbf{7 a}$, compound $\mathbf{5}(10.4 \mathrm{mg}, 0.0276 \mathrm{mmol})$ was converted by using methyl vinyl ketone $\mathbf{6 c}$ instead of methyl acrylate to 7.2 mg (65%) of $\mathbf{7 c}$. Compound 7c was obtained as a yellow oil. TLC $R_{f} 0.75$ (EtOAc/hexane, 1:2). IR (neat): 2925, 1712, $1453 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H})$, 7.21-7.11 (m, 7H), $7.02(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H})$, 1.85-1.60 (m, 6H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.5,157.1,149.3,142.5$ (2C), 136.2, 128.4 (2C), 128.34 (4C), 128.29 (2C), 125.71, 125.67, 122.3, 120.0, 50.1, 35.5, 35.3, 34.8, 34.2, 32.7 (2C), 27.8. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NNaOS}$ 426.1868; Found 426.1855.

4-Phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanenitrile (7d)

As described for the preparation of $\mathbf{7 a}$, compound $5(10.0 \mathrm{mg}, 0.0265 \mathrm{mmol})$ was converted by using acrylonitrile $\mathbf{6 d}$ instead of methyl acrylate to $5.6 \mathrm{mg}(55 \%)$ of $\mathbf{7 d}$. Compound $\mathbf{7 d}$ was obtained as a yellow oil. TLC $R_{f} 0.76$ (EtOAc/hexane, 1:2). IR (neat): 2926, 2237, $1454 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.14(\mathrm{~m}$, $7 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H})$, 1.84-1.69 (m, 4H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.7,149.7,142.1,142.0,136.6$, 128.5 (2C), 128.4 (2C), 128.34 (2C), 128.32 (2C), 125.90, 125.87, 122.3, 120.7, 119.9, 36.5, 35.4, 35.3, 34.6, 32.8, 32.3, 29.3. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaS}$ 409.1714; Found 409.1702.

4-Phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanoic acid (7e)

As described for the preparation of $\mathbf{7 a}$, compound $\mathbf{5}(100 \mathrm{mg}, 0.265 \mathrm{mmol})$ was converted by using acrylic acid $\mathbf{6 e}$ instead of methyl acrylate to $92.4 \mathrm{mg}(86 \%)$ of $\mathbf{7 e}$. Compound $\mathbf{7 e}$ was obtained as a yellow oil. TLC $R_{f} 0.19$ (EtOAc/hexane, 1:2). IR (neat): 2928, 1729, $1454 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.06(\mathrm{~m}, 11 \mathrm{H})$, $3.90(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.51(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,158.1,147.8,142.34,142.28,138.0,128.34$ (4C), 128.28 (2C), 128.2 (2C), 125.8, 125.7, 124.1, 121.2, 45.8, 35.4, 35.2, 34.3, 33.9, 32.8, 32.4. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{NNaO}_{2} \mathrm{~S} 428.1660$; Found 428.1651.

Methyl 2-methyl-4-phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanoate (7g)

5

79

As described for the preparation of $\mathbf{7 a}$, compound $\mathbf{5}(10.8 \mathrm{mg}, 0.0286 \mathrm{mmol})$ was converted by using methyl methacrylate $\mathbf{6 g}$ instead of methyl acrylate to $4.3 \mathrm{mg}(35 \%)$ of $\mathbf{7 g}$. Compound 7 g was obtained as a yellow oil. TLC $R_{f} 0.76$ (EtOAc/hexane, 1:2). IR (neat): 2930, $1732 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.38(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.24$ (m,
$4 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}$, $1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.46(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.7,149.3$, $142.53,142.51,136.0,128.3$ (8C), 125.7 (2C), 123.8, 120.2, 55.0, 52.4, 42.5, 37.1, 36.7, 33.8, 32.9, 32.7, 24.1. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NNaO}_{2} \mathrm{~S} 456.1973$; Found 456.1960.

Dimethyl 2-(1,5-diphenylpentan-3-yl)-3-(pyridin-2-ylthio)succinate (6i)

As described for the preparation of $\mathbf{7 a}$, compound $\mathbf{5}(9.5 \mathrm{mg}, 0.0252 \mathrm{mmol})$ was converted by using dimethyl fumarate $\mathbf{6 i}$ instead of to methyl acrylate to $6.0 \mathrm{mg}(50 \%$, $\mathrm{dr} 2: 1)$ of $\mathbf{7 i}$. Compound $7 \mathbf{i}$ was obtained as a yellow oil. TLC $R_{f} 0.55$ (EtOAc/hexane, 1:2). IR (neat): 2949, $1733 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.45(\mathrm{~m}, 2 / 3 \mathrm{H}), 8.42(\mathrm{~m}, 1 / 3 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H})$, 7.30-7.09 (m, 10H), 7.07-6.99 (m, 2H), $5.28(\mathrm{~d}, 1 / 3 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.19(\mathrm{~d}, 2 / 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.704(\mathrm{~s}, 3 \times 2 / 3 \mathrm{H}), 3.698(\mathrm{~s}, 3 \times 2 / 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \times 1 / 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \times 1 / 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H})$, $2.89(\mathrm{~m}, 2 / 3 \mathrm{H}), 2.76-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{~m}, 2 / 3 \mathrm{H}), 2.08(\mathrm{~m}, 2 / 3 \mathrm{H}), 2.01-1.67(\mathrm{~m}, 10 / 3 \mathrm{H})$, $1.56(\mathrm{~m}, 2 / 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for major isomer: $\delta 173.1,172.8,155.9$, $149.5,142.4,142.1,136.4,128.5$ (2C), 128.4 (2C), 128.3 (4C), 125.8, 125.7, 122.5, 120.4, 52.7, 51.7, 48.2, 44.8, 36.9, 34.0, 33.6, 33.4, 32.7. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NNaO}_{4} \mathrm{~S} 500.1871$; Found 500.1861.

1-ethyl-4-(hexyloxy)benzene (9).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 0}(19.6 \mathrm{mg}$, 0.0367 mmol) and zinc(II) tetraphenylporphyrin ($0.03 \mathrm{mg}, 0.04 \mu \mathrm{~mol}$) in DMA (0.4 mL) was added tert-butylthiol ($16.9 \mu \mathrm{~L}, 0.150 \mathrm{mmol})$. The stirred mixture was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1 h , and BNAH ($8.2 \mathrm{mg}, 0.038 \mathrm{mmol}$) and $\mathrm{Ru}(b p y){ }_{3} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{mg}, 1.9 \mu \mathrm{~mol})$ were added. After being stirred at $25^{\circ} \mathrm{C}$ and irradiated by blue LEDs for 6 h , the mixture was diluted with EtOAc/hexane (1:3, 10 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine $(10 \mathrm{~mL})$, sequentially. The organic layer was dried and concentrated under reduced pressure.

The residue was purified by PTLC (EtOAc/hexane, 1:8) to provide $5.2 \mathrm{mg}(73 \%)$ of $\mathbf{9}^{53}$ as a colorless oil.

1-[2-(4-Methoxyphenylthio)ethyl]-4-pentyloxybenzene (11).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 0}(14.5 \mathrm{mg}$, 0.0271 mmol) and zinc(II) tetraphenylporphyrin ($0.6 \mathrm{mg}, 0.9 \mu \mathrm{~mol}$) in DMA (0.6 mL) was added bis(4-methoxyphenyl) disulfide ($15.2 \mathrm{mg}, 0.0546 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h , and BNAH ($6.3 \mathrm{mg}, 0.029 \mathrm{mmol}$), tert-butylthiol $(13.0 \mu \mathrm{~L}, 0.115 \mathrm{mmol})$ and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{mg}, 0.9 \mu \mathrm{~mol})$ were added. After being stirred at $25{ }^{\circ} \mathrm{C}$ and irradiated by blue LEDs for 4 h , the mixture was diluted with EtOAc (20 $\mathrm{mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine $(10 \mathrm{~mL})$, sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:12) to provide $6.1 \mathrm{mg}(68 \%)$ of 11 as a colorless oil. TLC $R_{f} 0.70$ (EtOAc/hexane, 1:12). IR (neat): $2930 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36$ (d, 2H, J $=7.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of 4-methoxyphenyl), $7.06(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.86(\mathrm{~d}, 2 \mathrm{H}, J$ $=7.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of 4-methoxyphenyl), $6.81(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $3.92(\mathrm{t}, 2 \mathrm{H}, J$ $=6.7 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), $3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of 4-methoxyphenyl), $3.03(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}$, $\mathrm{H}-2,2$, of 2-(4-methoxyphenylthio)ethyl), $2.80(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-1,1$, of 2-(4methoxyphenylthio)ethyl), 1.77 (quin, $2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-2,2^{\prime}$ of pentyloxy), $1.47-1.33(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-3,3$ ', $4,4^{\prime}$ of pentyloxy), $0.92\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9,157.7,133.2$ (2C), 132.2, 129.4 (2C), 126.4, 114.6 (2C), 114.2 (2C), 68.0, 55.3, 37.5, 35.0, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~S} 331.1732$; Found 331.1731.

1-[4-(Methoxycarbonyl)-4-(pyridinylthio)butyl]-4-pentyloxybenzene (13).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 0}(14.3 \mathrm{mg}$, 0.0267 mmol) and zinc(II) tetraphenylporphyrin ($0.5 \mathrm{mg}, 0.7 \mu \mathrm{~mol}$) in DMA (0.6 mL) was added methyl acrylate ($3.8 \mu \mathrm{~L}, 0.042 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1 h , and BNAH ($6.0 \mathrm{mg}, 0.028 \mathrm{mmol}$), tert-butylthiol ($13.0 \mu \mathrm{~L}, 0.115 \mathrm{mmol}$) and

[^2]$\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mg}, 0.8 \mu \mathrm{~mol})$ were added. After being stirred at $25^{\circ} \mathrm{C}$ and irradiated by blue LEDs for 4 h , the mixture was diluted with EtOAc (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}$ (10 $\mathrm{mL} \times 3$) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:6) to provide 7.4 mg (72%) of $\mathbf{1 3}$ as a colorless oil. TLC $R_{f} 0.69$ (EtOAc/hexane, 1:3). IR (neat): 2952, $1735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$ of pyridinyl), $7.48(\mathrm{td}, 1 \mathrm{H}$, $J=7.6,1.8 \mathrm{~Hz}, \mathrm{H}-4$ of pyridinyl), $7.18(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3$ of pyridinyl), 7.06 (d, $2 \mathrm{H}, J$ $=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $6.99(\mathrm{dd}, 1 \mathrm{H}, J=7.6,4.9 \mathrm{~Hz}, \mathrm{H}-5$ of pyridinyl), $6.80(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, $\mathrm{H}-3,5$ of Ar), $4.62(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-4$ of butyl), $3.92(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.59(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of butyl), 2.06-1.86 (m, 2 H , $\mathrm{H}-3,3^{\prime}$ of butyl), 1.84-1.70 (m, 4H, H-2, 2' of butyl, H-2, 2' of pentyloxy), 1.46-1.33 (m, 4H, $\mathrm{H}-3,3$ ', $4,4^{\prime}$ of pentyloxy), $0.93\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2,157.3$ (2C), 149.4, 136.1, 133.6, 129.2 (2C), 122.2, 119.9, 114.3 (2C), $67.9,52.4,46.1,34.4,31.4,29.1,29.0,28.2,22.5,14.0$. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S} 388.1946$; Found 388.1934.

1-[4-(Methoxycarbonyl)-4-(pyridinylthio)butyl]-4-[5-(phenylthio)pentyloxy]benzene (14).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 0}(14.6 \mathrm{mg}$, 0.0273 mmol) and zinc(II) tetraphenylporphyrin ($0.6 \mathrm{mg}, 0.9 \mu \mathrm{~mol}$) in DMA (0.6 mL) was added methyl acrylate ($3.8 \mu \mathrm{~L}, 0.042 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1 h , and diphenyl disulfide ($24.2 \mathrm{mg}, 0.0281 \mathrm{mmol}$), DIPEA ($10.0 \mu \mathrm{~L}, 0.0574$ $\mathrm{mmol})$ and $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{mg}, 0.9 \mu \mathrm{~mol})$ were added. After being stirred at $25^{\circ} \mathrm{C}$ and irradiated by blue LEDs for 4 h , the mixture was diluted with EtOAc (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:3) to provide 7.2 mg (53%) of $\mathbf{1 4}$ as a colorless oil. TLC $R_{f} 0.69$ (EtOAc/hexane, 1:3). IR (neat): 2937, $1736 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40$ (m, 1H, H-6 of pyridinyl), 7.48 (td, $1 \mathrm{H}, J=7.5,1.7 \mathrm{~Hz}, \mathrm{H}-4$ of pyridinyl), 7.33 (d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-2,6$ of phenyl), 7.27 (t , $2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-3,5$ of phenyl), 7.20-7.14 (m, 2H, H-4 of phenyl, H-3 of pyridinyl), 7.06 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 6.99 (dd, $1 \mathrm{H}, J=7.5,5.0 \mathrm{~Hz}, \mathrm{H}-5$ of pyridinyl), 6.78 (d, $2 \mathrm{H}, J$ $=8.8 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $4.62(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-4$ of butyl), $3.91(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $2.95(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-5,5$ ' of pentyloxy), $2.59(\mathrm{t}, 2 \mathrm{H}, J$ $=7.5 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}$ of butyl), 2.07-1.86 (m, 2H, H-3, 3' of butyl), 1.84-1.68 (m, 6H, H-2, 2' of butyl, $\mathrm{H}-2,2^{\prime}, 4,4^{\prime}$ of pentyloxy), 1.64-1.57 (m, 2H, H-3, 3' of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2,157.2$ (2C), 149.4, 136.7, 136.1, 133.7, 129.2 (2C), 129.0 (2C), 128.8 (2C), 125.8, 122.2, 119.9, 114.3 (2C), 67.6, 52.4, 46.1, 34.4, 33.5, 31.4, 29.1, 28.9 (2C),

Benzyl 8-(4-(5-methoxy-5-oxo-4-(pyridin-2-ylthio)pentyl)phenoxy)octanoate (15).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 0}(14.7 \mathrm{mg}, 0.0275 \mathrm{mmol})$ and zinc(II) tetraphenylporphyrin ($0.6 \mathrm{mg}, 0.9 \mu \mathrm{~mol}$) in DMA $(0.6 \mathrm{~mL})$ was added methyl acrylate ($3.8 \mu \mathrm{~L}$, $0.042 \mathrm{mmol})$. The stirred mixture was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1 h , and benzyl acrylate ($17 \mu \mathrm{~L}$, $0.11 \mathrm{mmol})$, BNAH ($12.1 \mathrm{mg}, 0.0564 \mathrm{mmol}$) and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mg}, 0.7 \mu \mathrm{~mol})$ were added. After being stirred at $25^{\circ} \mathrm{C}$ and irradiated by blue LEDs for 4 h , the mixture was diluted with EtOAc (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and saturated brine $(10 \mathrm{~mL})$, sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:3) to provide $7.6 \mathrm{mg}(50 \%)$ of $\mathbf{1 5}$ as a yellow oil. TLC $R_{f} 0.70$ (EtOAc/hexane, 1:3). IR (neat): 2934, $1736 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$ of pyridinyl), $7.48(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-4$ of pyridinyl), 7.40-7.31 (m, 5H , -Ph), 7.18 (d, 1H, $J=7.8 \mathrm{~Hz}, \mathrm{H}-3$ of pyridinyl), 7.06 (d, 2H, $J=8.6 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), $6.99(\mathrm{dd}, 1 \mathrm{H}, J=7.8,4.9 \mathrm{~Hz}, \mathrm{H}-5$ of pyridinyl), $6.79(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $5.11(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn})$, $4.62\left(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-4\right.$ of butyl), $3.90\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-1,1\right.$ ' of heptyloxy), 3.71 (s, $\left.3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $2.59\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right.$ of butyl), 2.36 (t, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-7,7$ ' of heptyloxy), 2.08-1.84 (m, 2H, H-3, 3' of butyl), 1.83-1.60 (m, 6H, H-2, 2' of butyl, H-2, 2', 6, 6' of heptyloxy), 1.48-1.31 (m, 6H, H-3, 3', 4,4 ', 5,5 ' of heptyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,173.2,157.3$ (2C), 149.4, 136.1 (2C), 133.6, 129.2 (2C), 128.5 (2C), 128.2 (3C), 122.2, 119.9, 114.3 (2C), 67.8, 66.1, 52.4, 46.1, 34.4, 34.3, 31.4, 29.2, 29.1, 29.01, 28.99, 25.9, 24.9. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{~S} 550.2627$; Found 550.2631.

1-Pentyloxy-4-[2-(phenylthio)ethyl]benzene (S10).

The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 0}(14.7 \mathrm{mg}, 0.0275 \mathrm{mmol})$ and $\operatorname{zinc}(\mathrm{II})$ tetraphenylporphyrin $(0.5 \mathrm{mg}, 0.7 \mu \mathrm{~mol})$ and MS $4 \AA$ powder $(26.2 \mathrm{mg})$ in DMA $(0.6 \mathrm{~mL})$ was added $2,2^{\prime}$-dipyridyl disulfide ($13.5 \mathrm{mg}, 0.0613 \mathrm{mmol}$). The stirred mixture was irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h , and BNAH ($6.1 \mathrm{mg}, 0.029 \mathrm{mmol}$), tert-butylthiol ($12.7 \mu \mathrm{~L}, 0.112 \mathrm{mmol}$) and $\mathrm{Ru}(\mathrm{bpy}))_{3} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{mg}, 0.9 \mu \mathrm{~mol})$ were added. After being stirred at $25^{\circ} \mathrm{C}$ and irradiated by blue LEDs for 4 h , the mixture was diluted with $\mathrm{EtOAc}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$ and saturated brine $(10 \mathrm{~mL})$, sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:8) to provide $4.6 \mathrm{mg}(55 \%)$ of $\mathbf{S 1 0}$ as a colorless oil. TLC $R_{f} 0.71$ (EtOAc/hexane, 1:4). IR (neat): $2927 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.45$ (m, 1H, H-6 of pyridinyl),
7.47 (m, 1H, H-4 of pyridinyl), 7.17 (m, 3H, H-3, 5 of Ar, H-3 of pyridinyl), 6.97 (m, 1H, H-5 of pyridinyl), $6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $3.93(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), $3.38(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$, H-2, 2' of 2-(pyridinylthio)ethyl), $2.94(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of 2-(pyridinylthio)ethyl), 1.78 (quin, 2H, $J=6.7 \mathrm{~Hz}, \mathrm{H}-2,2$ ' of pentyloxy), 1.48-1.33 (m, 4H, H-3, 3', 4, 4' of pentyloxy), $0.93(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, CH_{3} of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 159.0,157.7,149.5,135.8,132.4,129.5$ (2C), 122.3, 119.3, 114.4 (2C), 68.0, 34.9, 31.7, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NOS} 302.1579$; Found 302.1574.

1-[5-Oxo-4-(pyridinylthio)hexyl]-4-pentyloxybenzene (S11).

As described for the preparation of $\mathbf{1 3}$, compound $\mathbf{1 0}(14.3 \mathrm{mg}, 0.0267 \mathrm{mmol})$ was converted using methyl vinyl ketone instead of methyl acrylate to $6.7 \mathrm{mg}(67 \%)$ of $\mathbf{S 1 1}$. Compound $\mathbf{S 1 1}$ was obtained as a colorless oil. TLC $R_{f} 0.62$ (EtOAc/hexane, 1:3). IR (neat): 2930, $1711 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.38$ (m, $1 \mathrm{H}, \mathrm{H}-6$ of pyridinyl), 7.49 (t, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-4$ of pyridinyl), 7.19 (d, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-3$ of pyridinyl), $7.05(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $7.00(\mathrm{dd}, 1 \mathrm{H}, J=7.7,4.9 \mathrm{~Hz}, \mathrm{H}-5$ of pyridinyl), $6.80(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}, \mathrm{H}-3,5$ of Ar), $4.64(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-4$ of hexyl), $3.92(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), 2.652.53 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1$, 1' of hexyl), 2.27 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$ of hexyl), 2.02-1.92 (m, 2H, H-3 of hexyl), 1.85-1.65 (m, 5H, H-2, 2', 3' of hexyl, H-2, 2' of pentyloxy), 1.48-1.33 (m, 4H, H-3, 3', 4, 4' of pentyloxy), 0.92 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $=7.0 \mathrm{~Hz},-\mathrm{CH}_{3}$ of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.6,157.3,157.2,149.3,136.2,133.6$, 129.2 (2C), 122.3, 119.9, 114.4 (2C), 68.0, 52.4, 34.6, 29.6, 29.1, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S} 372.1997$; Found 372.1998.

1-[3,4-Bis(methoxycarbonyl)-4-(pyridinylthio)butyl]-4-pentyloxybenzene (S12).

As described for the preparation of $\mathbf{1 3}$, compound $10(14.3 \mathrm{mg}, 0.0269 \mathrm{mmol})$ was converted using dimethyl fumarate instead of methyl acrylate to $7.9 \mathrm{mg}(66 \%$, $\mathrm{dr}=2: 1$) of $\mathbf{S 1 2}$. Compound $\mathbf{S 1 2}$ was obtained as a colorless oil. TLC $R_{f} 0.47$ (EtOAc/hexane, 1:3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~m}, 1 \mathrm{H}$, H-6 of pyridinyl), $7.50(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-4$ of pyridinyl), 7.21 (m, 1H, H-3 of pyridinyl), 7.04-6.97 (m, $3 \mathrm{H}, \mathrm{H}-2,6$ of Ar, H-5 of pyridinyl), 6.77 (m, $2 \mathrm{H}, \mathrm{H}-3,5$ of Ar), $5.26(\mathrm{~d}, 1 \mathrm{H} \times 2 / 3, J=6.4 \mathrm{~Hz}, \mathrm{H}-4$ of butyl $\times 2 / 3$), $5.11(\mathrm{~d}, 1 \mathrm{H} \times 1 / 3, J=9.6 \mathrm{~Hz}, \mathrm{H}-4$ of butyl $\times 1 / 3$), 3.94-3.86(m,2H, H-1, 1' of pentyloxy), 3.71 (s, $3 \mathrm{H} \times 1 / 3, \mathrm{CO}_{2} \mathrm{Me} \times 1 / 3$), $3.70\left(\mathrm{~s}, 3 \mathrm{H} \times 2 / 3, \mathrm{CO}_{2} \mathrm{Me} \times 2 / 3\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H} \times 1 / 3, \mathrm{CO}_{2} \mathrm{Me} \times 1 / 3\right), 3.69(\mathrm{~s}, 3 \mathrm{H} \times 2 / 3$, $\mathrm{CO}_{2} \mathrm{Me} \times 2 / 3$), $3.20(\mathrm{~m}, 1 \mathrm{H} \times 2 / 3, \mathrm{H}-3$ of butyl $\times 2 / 3$), $3.10(\mathrm{~m}, 1 \mathrm{H} \times 1 / 3, \mathrm{H}-3$ of butyl $\times 1 / 3), 2.71-2.43(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-1,1$ ' of butyl), 2.18-2.07 ($\mathrm{m}, 2 \mathrm{H} \times 2 / 3, \mathrm{H}-2,2$ ' of butyl $\times 2 / 3$), 1.96-1.86 (m, $2 \mathrm{H} \times 1 / 3, \mathrm{H}-2,2$ ' of butyl $\times 1 / 3$), 1.81-1.71 (m, 2H, H-2, 2' of pentyloxy), 1.48-1.32 (m, 4H, H-3, $3^{\prime}, 4,4$ ' of pentyloxy), $0.92(\mathrm{t}, 3 \mathrm{H}, J=7.0$
$\mathrm{Hz},-\mathrm{CH}_{3}$ of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, major isomer: $\delta 173.6,171.8,157.5,156.6$, $149.3,136.2,132.8,129.3$ (2C), 122.3, 120.1, 114.4 (2C), 68.0, 52.8, 52.0, 46.38, 46.36, 32.6, 31.9, 29.0, $28.2,22.5,14.0$. minor isomer: $\delta 174.0,172.1,157.4,156.0,149.4,136.3,133.0,129.3$ (2C), 122.5, 120.3, 114.3 (2C), 68.0, 52.7, 52.0, 46.5, 46.2, 31.9, 31.3, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) $m / z:[M+H]^{+}$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{~S} 446.2001$; Found 446.1995 .

1-Pentyloxy-4-[4-(phenylsulfonyl)-4-(pyridinylthio)butyl]benzene (S13).

As described for the preparation of $\mathbf{1 3}$, compound $\mathbf{1 0}(15.0 \mathrm{mg}, 0.0281 \mathrm{mmol})$ was converted using phenyl vinyl sulfone instead of methyl acrylate to $6.8 \mathrm{mg}(52 \%)$ of $\mathbf{S 1 3}$. Compound $\mathbf{S 1 3}$ was obtained as a colorless oil. TLC $R_{f} 0.41$ (EtOAc/hexane, 1:3). IR (neat): $2926 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20$ (m, 1H, H-6 of pyridinyl), $7.87\left(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-2,6\right.$ of $\left.-\mathrm{SO}_{2} \mathrm{Ph}\right), 7.42(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-4$ of pyridinyl), 7.37-7.28 (m, $3 \mathrm{H}, \mathrm{H}-3,4,5$ of $-\mathrm{SO}_{2} \mathrm{Ph}$), 7.02 (d, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 6.96 (d, $1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}, \mathrm{H}-3$ of pyridinyl), 6.90 (dd, 1H, $J=7.6,5.0 \mathrm{~Hz}, \mathrm{H}-5$ of pyridinyl), 6.77 (d, 2H, J=8.4 Hz, H-2, 6 of Ar), 5.75 (dd, $1 \mathrm{H}, J=6.8,3.2 \mathrm{~Hz}, \mathrm{H}-4$ of butyl), $3.91(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of pentyloxy), 2.69-2.51 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1,1^{\prime}$ of butyl), 2.43 (m, 1H, H-3 of butyl), 2.04-1.72 (m,5H, H-2, 2', 3' of butyl, H-2, 2' of pentyloxy), 1.48-1.32 (m, 4H, H-3, $3^{\prime}, 4,4^{\prime}$ of pentyloxy), $0.92\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$ of pentyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.4,154.7,149.0,137.1,136.2,133.4,133.3,129.6$ (2C), 129.2 (2C), 128.2 (2C), 122.4, 120.4, 114.4 (2C), 68.0, 65.3, 34.2, 29.0, 28.5, 28.2, 26.6, 22.5, 14.0. HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}_{2}$ 470.1824; Found 470.1816. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}_{2} 470.1824$; Found 470.1816.

1-[6,7-Bis(methoxycarbonyl)heptyloxy]-4-[4-(methoxycarbonyl)-4-(pyridinylthio)butyl]benzene (S14).

As described for the preparation of $\mathbf{1 5}$, compound $10(14.6 \mathrm{mg}, 0.0273 \mathrm{mmol})$ was converted using dimethyl fumarate instead of benzyl acrylate to 8.7 mg (60%) of $\mathbf{S 1 4}$. Compound $\mathbf{S 1 4}$ was obtained as yellow solids. TLC $R_{f} 0.42$ (EtOAc/hexane, 1:2). IR (neat): 1732, $2950 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$ of pyridinyl), $7.48(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-4$ of pyridinyl), $7.18(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-3$ of pyridinyl), 7.06 (d, 2H, $J=8.6 \mathrm{~Hz}, \mathrm{H}-3,5$ of Ar), 6.99 (dd, $1 \mathrm{H}, J=7.7,5.1 \mathrm{~Hz}, \mathrm{H}-5$ of pyridinyl), 6.78 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}-2,6$ of Ar), $4.62(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-4$ of butyl), $3.90(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of heptyloxy), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$ of heptyloxy), 2.73 (dd, 1H, $J=16.7,9.4 \mathrm{~Hz}, \mathrm{H}-7$ of heptyloxy), $2.59(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1,1$ ' of butyl), 2.44 (dd, 1H, J=16.7, 5.2 Hz, H-7' of heptyloxy), 2.08-1.85 (m, 2H, H-3, 3' of butyl), 1.83-1.72 (m, 4H, H-2, 2' of butyl, H-2, 2' of heptyloxy), 1.66 (m, 1H, H-5 of heptyloxy), 1.55 (m, 1H, H-5' of heptyloxy), 1.51-1.31
(m, 4H, H-3, $3^{\prime}, 4,4$ ' of heptyloxy). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.4,173.2,172.4,157.3,157.2$, $149.4,136.1,133.7,129.2$ (2C), 122.3, 119.9, 114.3 (2C), 67.7, 52.4, 51.84, 51.78, 46.1, 41.1, 35.8, 34.4, 31.8, 31.4, 29.1 (2C), 26.7, 25.9. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{7} \mathrm{~S} 518.2212$; Found 518.2214.

2-Thioxopyridin-1(2H)-yl 2-methylbutanoate (S60)

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 5 9}$ ($200 \mathrm{mg}, 1.96 \mathrm{mmol}$) was converted to 413 mg (quant.) of $\mathbf{S 6 0} .{ }^{\text {S4 }}$ Compound $\mathbf{S 6 0}$ was obtained as a yellow oil. TLC $R_{f} 0.32$ (EtOAc/hexane, 1:2). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.69$ (m, 1H, 2-pyridinethione), 7.51 (m, 1H, 2-pyridinethione), $7.20(\mathrm{~m}, 1 \mathrm{H}, 2-$ pyridinethione), $6.62(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione), $2.81(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 1.05(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz})$.

2-Thioxopyridin-1(2H)-yl 2-methyl-3-phenylpropanoate (S62)

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 6 1}(50.1 \mathrm{mg}, 0.305 \mathrm{mmol})$ was converted to 58.5 mg (70\%) of S62. Compound S62 was obtained as a yellow oil. TLC $R_{f} 0.35$ (EtOAc/hexane, 1:2). IR (neat): 1801, 1527, $1448 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (m, 1H, 2-pyridinethione), 7.37-7.22 (m, 4H, 2-pyridinethione, phenyl), $7.16(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione), $7.07(\mathrm{~d}, 1 \mathrm{H}$, phenyl, $J=6.8 \mathrm{~Hz}), 6.54(\mathrm{~m}, 1 \mathrm{H}, 2-$ pyridinethione), 3.23-3.13(m, 2H), $2.92(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.8$, 171.3, 138.2, 137.4, 137.3, 133.4, 129.1 (2C), 128.5 (2C), 126.8, 112.5, 39.7, 39.6, 16.7. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{2} \mathrm{~S} 296.0721$; Found 296.0715.

2-Thioxopyridin-1(2H)-yl cyclohexanecarboxylate (S64)

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 6 3}$ ($200 \mathrm{mg}, 1.56 \mathrm{mmol}$) was converted to 368 mg (quant.) of S64. ${ }^{\text {S5 }}$ Compound S64 was obtained as a yellow oil. TLC $R_{f} 0.41(\mathrm{EtOAc} / \mathrm{hexane}, 1: 2) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (m, 1H, 2-pyridinethione), 7.52 (m, 1H, 2-pyridinethione), 7.19 (m, 1H, 2-

[^3]pyridinethione), $6.62(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione $), 2.76(\mathrm{tt}, 1 \mathrm{H}, J=10.8,3.6 \mathrm{~Hz}), 2.22-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.89-$ $1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.24(\mathrm{~m}, 3 \mathrm{H})$.

2-Thioxopyridin-1(2H)-yl cyclobutanecarboxylate (S66)

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 6 5}(200 \mathrm{mg}, 2.00 \mathrm{mmol})$ was converted to 418 mg (quant.) of S66. ${ }^{\text {S6 }}$ Compound $\mathbf{S 6 6}$ was obtained as a yellow oil. TLC $R_{f} 0.25$ (EtOAc/hexane, 1:2). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.70(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione), 7.55 ($\mathrm{m}, 1 \mathrm{H}, 2$-pyridinethione), $7.21(\mathrm{~m}, 1 \mathrm{H}, 2-$ pyridinethione), $6.63(\mathrm{~m}, 1 \mathrm{H}, 2-$ pyridinethione $), 3.52(\mathrm{~m}, 1 \mathrm{H}),, 2.68-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.14-$ 2.01 ($\mathrm{m}, 2 \mathrm{H}$).

1-(tert-Butyl) 4-[2-thioxopyridin-1(2H)-yl] piperidine-1,4-dicarboxylate (S68)

As described for the preparation of $\mathbf{S 6 8}$, compound $\mathbf{S 6 7}(100 \mathrm{mg}, 0.436 \mathrm{mmol})$ was converted to 122 mg (83%) of S68. Compound S68 was obtained as a yellow oil. TLC Rf 0.25 (EtOAc/hexane, 4:1). IR (neat): 2977, $1684 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (m, 1H, 2-pyridinethione), 7.54 ($\mathrm{m}, 1 \mathrm{H}, 2-$ pyridinethione), 7.19 (m, 1H, 2-pyridinethione), 6.62 (m, 1H, 2-pyridinethione), 4.07 (br, 2H), 2.99-2.86 $(\mathrm{m}, 3 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.7$, $169.9,154.5,137.5,137.4,133.5,112.6,79.8,42.5$ (2C, br), 39.2, 28.3 (3C), 27.7 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S} 361.1198$; Found 361.1191.

1-Benzyl 4-[2-thioxopyridin-1(2H)-yl] piperidine-1,4-dicarboxylate (S70)

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 6 9}(100 \mathrm{mg}, 0.380 \mathrm{mmol})$ was converted to 117 mg (83%) of S70. Compound $\mathbf{S 7 0}$ was obtained as a yellow oil. TLC $R_{f} 0.19$ (EtOAc/hexane, 4:1). IR (neat): 2953, 1695, $1449 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (m, 1H, 2-pyridinethione), 7.54 (m, 1H, 2-

[^4]pyridinethione), 7.40-7.29 (m, 5H, phenyl), $7.21(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione), $6.64(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione $)$, 5.13 (s, 2H), 4.18 (br, 2H), 3.11-2.91 (m, 3H), 2.20-2.11 (m, 2H), 1.96-1.84 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.6,169.8,155.0,137.5,137.4,136.5,133.5,128.5$ (2C), 128.0, 127.8 (2C), 112.6, 67.2, 42.8 (2C), 39.0, 27.6 (2C, br). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S} 395.1041$; Found 395.1034.

2-Thioxopyridin-1(2H)-yl 2,2-dimethyl-3-phenylpropanoate (S72)

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S} 71(30.6 \mathrm{mg}, 0.172 \mathrm{mmol})$ was converted to 34.5 mg (70\%) of S72. Compound $\mathbf{S 7 2}$ was obtained as a yellow oil. TLC $R_{f} 0.41$ (EtOAc/hexane, 1:2). IR (neat): 2977, 1791, $1527 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (m, 1H, 2-pyridinethione), 7.36-7.27 (m, 3H, 2-pyridinethione, phenyl), 7.25-7.13 (m, 4H, 2-pyridinethione, phenyl), 6.57 ($\mathrm{m}, 1 \mathrm{H}, 2$-pyridinethione), $3.07(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.9,172.8,137.5137 .4,136.7,133.3$, 130.5 (2C), 128.1 (2C), 126.9, 112.5, 46.1, 43.7, 24.8 (2C). HRMS (ESI-TOF) m/z: [M + Na] Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNaO}_{2} \mathrm{~S}$ 310.0878; Found 310.0872.

2-Thioxopyridin-1(2H)-yl 3-[(benzyloxy)methoxy]- 2,2-dimethylpropanoate (S74)

As described for the preparation of $\mathbf{1 b}$, compound $\mathbf{S 7 3}(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ was converted to 101 mg (69%) of S74. Compound $\mathbf{S 7 4}$ was obtained as a yellow oil. TLC $R_{f} 0.17$ (EtOAc/hexane, 1:2). IR (neat): 2937, 1798, $1528 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (m, 1H, 2-pyridinethione), 7.48 (m, 1H, 2pyridinethione), 7.38-7.28 (m, 5H, phenyl), $7.17(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione), $6.54(\mathrm{~m}, 1 \mathrm{H}, 2$-pyridinethione), $4.81(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.0,171.6$, $137.8,137.4,133.3,128.4$ (2C), 127.8 (2C), 112.4, 95.1, 92.3, 91.2, 74.7, 69.7, 42.7, 22.4 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{~S}$ 370.1089; Found 370.1083.

2-[(3-Phenethyl-5-phenylpentyl)thio]pyridine (16a)

5

16a

The following reaction was carried out under Ar. To a stirred solution of $5(19.8 \mathrm{mg}, 0.0525 \mathrm{mmol})$ and zinc(II) tetraphenylporphyrin $(1.1 \mathrm{mg}, 1.6 \mu \mathrm{~mol})$ in toluene $(0.5 \mathrm{~mL})$ was added acrylic acid $(9.0 \mu \mathrm{~L}, 0.133$ mmol). The mixture was stirred and irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 1 h , and diphenyl disulfide (12.7 $\mathrm{mg}, 0.0580 \mathrm{mmol})$, DIPEA ($32 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$), TBAI ($5.5 \mathrm{mg}, 0.015 \mathrm{mmol}$), $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$ $(0.7 \mathrm{mg}, 0.7 \mu \mathrm{~mol})$, toluene $(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(110 \mu \mathrm{~L})$ were added. After being stirred and irradiated by blue LEDs at $25^{\circ} \mathrm{C}$ for 2 d , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times$ 3). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:12) to provide $12.7 \mathrm{mg}(67 \%)$ of $\mathbf{1 6 a}$ as a colorless oil. TLC $R_{f} 0.58$ (EtOAc/hexane, 1:10). IR (neat): 2925, $1454 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42$ (m, 1H, H-6 of pyridinyl), 7.46 (m, 1H, H-4 of pyridinyl), $7.31-7.25$ (m, 4H, Ar), 7.22-7.16 (m, 6H, Ar), 7.15 (m, 1H, H-3 of pyridinyl), 6.96 (m, 1H, H-5 of pyridinyl), 3.22-3.16 (m, 2H, H-1, 1'), 2.67-2.60 (m, 4H), 1.85-1.78 (m, $2 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.2,149.4,142.8(2 \mathrm{C}), 135.8$, 128.4 (4C), 128.3 (4C), 125.7 (2C), 122.3, 119.2, 36.6, 35.3 (2C), 33.1, 32.9 (2C), 27.4. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NS} 362.1942$; Found 362.1935.

2-[(3-Methylpentyl)thio]pyridine (16b)

S60

16b

As described for the preparation of 16a, compound $\mathbf{S 6 0}(9.6 \mathrm{mg}, 0.0454 \mathrm{mmol})$ was converted to 4.2 mg (45%) of $\mathbf{1 6 b}$. Compound $\mathbf{1 6 b}$ was obtained as a yellow oil. TLC $R_{f} 0.56$ (EtOAc/hexane, 1:10). IR (neat): 2960, 2926, $1579 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~m}$, $1 \mathrm{H}), 3.25-3.08(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.6,149.4,135.8,122.1,119.1,35.9$, 34.0, 29.1, 28.1, 18.9, 11.2. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NS}$ 196.1160; Found 196.1152.

2-[(3-Methyl-4-phenylbutyl)thio]pyridine (16c)

As described for the preparation of 16a, compound $\mathbf{S 6 2}(9.3 \mathrm{mg}, 0.0340 \mathrm{mmol})$ was converted to 3.3 mg (38%) of 16c. Compound 16c was obtained as a yellow oil. TLC $R_{f} 0.54$ (EtOAc/hexane, 1:10). IR (neat): 2925, $1454 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}$, phenyl), 7.20-7.12 (m, 4H), $6.96(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.4,149.4$, 141.0, 135.8, 129.2 (2C), 128.1 (2C), 125.7, 121.9, 119.2, 43.2, 36.0, 34.5, 28.0, 19.1. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaS} 280.1136$; Found 280.1125.

2-[(3-Methyl-4-phenylbutyl)thio]pyridine (16d)

As described for the preparation of $\mathbf{1 6 a}$, compound $\mathbf{S 6 4}(9.3 \mathrm{mg}, 0.0340 \mathrm{mmol})$ was converted to 3.3 mg (38%) of 16d. ${ }^{\text {S7 }}$ Compound 16d was obtained as a yellow oil. TLC $R_{f} 0.54$ (EtOAc/hexane, $1: 10$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}$, phenyl), 7.20-7.12(m, 4H), $6.96(\mathrm{~m}$, $1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H})$, $0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.

2-[(2-Cyclobutylethyl)thio]pyridine (16e)

As described for the preparation of $\mathbf{1 6 a}$, compound $\mathbf{S 6 6}(10.0 \mathrm{mg}, 0.0478 \mathrm{mmol})$ was converted to 4.5 mg (49\%) of 16e. Compound 16e was obtained as a yellow oil. TLC $R_{f} 0.53$ (EtOAc/hexane, 1:10). IR (neat): 2925, $2854 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H})$, 3.08-3.03 (m, 2H), 2.43 (m, 1H), 2.13-2.03 (m, 2H), 1.93-1.75 (m, 4H), 1.71-1.61 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}): $\delta 159.6,149.4,135.8,122.1,119.2,36.3,35.4,28.1$ (2C), 28.0, 18.4. HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NS}$ 194.1003; Found 194.0994 .
tert-Butyl 4-[2-(pyridin-2-ylthio)ethyl]piperidine-1-carboxylate (16f)

As described for the preparation of 16a, compound $\mathbf{S 6 8}(8.6 \mathrm{mg}, 0.0255 \mathrm{mmol})$ was converted to 3.3 mg (40%) of $\mathbf{1 6 f}$. Compound 16 was obtained as a yellow oil. TLC $R_{f} 0.49$ (EtOAc/hexane, 1:2). IR (neat): 2926, $1693 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 1 \mathrm{H})$, 4.20-3.88 (br, $8 / 3 \mathrm{H}$), 3.22-3.17 (m, 4/3H), 3.14-3.04 (m, 2/3H), 2.78-2.57 (br, 4/3H), 2.10-2.02 (br, $2 / 3 \mathrm{H}$), $1.76-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.20-1.07(\mathrm{~m}, 4 / 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ

[^5]
Benzyl 4-[2-(pyridin-2-ylthio)ethyl]piperidine-1-carboxylate (16g)

As described for the preparation of $\mathbf{1 6 a}$, compound $\mathbf{S 7 0}(7.7 \mathrm{mg}, 0.207 \mathrm{mmol})$ was converted to 2.0 mg (27%) of $\mathbf{1 6 g}$. Compound $\mathbf{1 6 g}$ was obtained as a yellow oil. TLC $R_{f} 0.34$ (EtOAc/hexane, 1:2). IR (neat): 2924, $1698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}$, phenyl), $7.16(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.06(\mathrm{br}, 2 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.87-2.70(\mathrm{br}, 2 \mathrm{H})$, 2.07 (br, 1H), 1.81-1.60 (m, 4H), 1.23-1.08 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0,155.3$, $149.4,136.9,135.9,128.5$ (2C), 127.9, 127.8 (2C), 122.3, 119.3, 66.9, 44.1 (2C), 35.8, 35.1, 31.7 (2C, br), 27.2. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S} 379.1456$; Found 379.1447.

2-[(3,3-Dimethyl-4-phenylbutyl)thio]pyridine (16h)

As described for the preparation of $\mathbf{1 6 a}$, compound $\mathbf{S 7 2}(10.0 \mathrm{mg}, 0.0348 \mathrm{mmol})$ was converted to 5.6 mg (59%) of $\mathbf{1 6 h}$. Compound $\mathbf{1 6 h}$ was obtained as a yellow oil. TLC $R_{f} 0.64$ (EtOAc/hexane, 1:10). IR (neat): 2957, 2926, $1578 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.97$ $(\mathrm{m}, 1 \mathrm{H}), 3.24-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 159.4,149.5,138.8,135.8,130.6$ (2C), 127.7 (2C), 125.9, 122.1, 119.2, 48.1, 41.5, 34.8, 26.6 (2C), 25.7. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaS}$ 294.1292; Found 294.1282.

2-\{[4-((Benzyloxy)methoxy)-3,3-dimethylbutyl]thio\}pyridine (16i)

As described for the preparation of 16a, compound $\mathbf{S 7 4}(9.7 \mathrm{mg}, 0.0279 \mathrm{mmol})$ was converted to 5.3 mg (57%) of 16i. Compound 16i was obtained as a yellow oil. TLC $R_{f} 0.38$ (EtOAc/hexane, 1:10). IR (neat): 2926, $1579 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}$, phenyl), $7.16(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 3.18-3.12(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}): $\delta 159.5,149.5,137.9,135.8,128.4$ (2C), 127.9 (2C), 127.7,
$122.0,119.2,94.9,69.3,38.8,34.8,25.5,24.4$ (2C) (one carbon missing due to overlap). HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{~S} 354.1504$; Found 354.1496.

2-\{[6-(2,5-Dimethylphenoxy)-3,3-dimethylhexyl]thio\}pyridine (16j)

As described for the preparation of $\mathbf{1 6 a}$, compound $\mathbf{1 1}(8.8 \mathrm{mg}, 0.0245 \mathrm{mmol})$ was converted to 4.2 mg (53%) of $\mathbf{1 6 j}$. Compound $\mathbf{1 6 j}$ was obtained as a yellow oil. TLC $R_{f} 0.59$ (EtOAc/hexane, 1:10). IR (neat): 2955, $1414 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}, \mathrm{Ar}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.19-3.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,157.1,149.5,136.4,135.8,130.2,123.6,122.1,120.6,119.2$, $111.9,68.5,41.1,37.7,33.2,29.7,27.1,25.5,24.2,21.4,15.8$. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaOS} 366.1868$; Found 366.1859.

3-Phenethyl-5-phenylpentan-1-ol (17a)

To a stirred solution of $\mathbf{5}(10.0 \mathrm{mg}, 0.0265 \mathrm{mmol})$ and zinc(II) tetraphenylporphyrin ($0.6 \mathrm{mg}, 0.9 \mu \mathrm{~mol})$ in toluene (0.3 mL) was added acrylic acid $(8.0 \mu \mathrm{~L}, 0.012 \mathrm{mmol})$. The mixture was stirred and irradiated by red LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 h under Ar , and $\mathrm{Na}_{2} \mathrm{CO}_{3}(16.9 \mathrm{mg}, 0.159 \mathrm{mmol})$, TBAI ($2.0 \mathrm{mg}, 0.0052 \mathrm{mmol}$), $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(0.3 \mathrm{mg}, 0.3 \mu \mathrm{~mol})$, toluene $(1.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(130 \mu \mathrm{~L})$ were added. The mixture was stirred and irradiated by blue LEDs at $25{ }^{\circ} \mathrm{C}$ for 1 d under O_{2}, and $\mathrm{NaBH}_{4}(20.0 \mathrm{mg}, 0.528$ mmol) was added. After being stirred for 30 min , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide $4.2 \mathrm{mg}(59 \%)$ of $\mathbf{1 7 a}$ as a colorless oil. TLC $R_{f} 0.47$ (EtOAc/hexane, 1:2). IR (neat): $3356,2927 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.26$ (m, 4H, Ar), 7.21-7.15 (m, 6H, Ar), 3.70 (t, 2H, $J=7.2 \mathrm{~Hz}, \mathrm{H}-1,1 '), 2.63(\mathrm{t}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.74-1.61(\mathrm{~m}, 6 \mathrm{H})$, $1.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7,128.4,128.3,125.7,60.9,36.6,35.6$ (2C), 33.6, 32.9 (2C). HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NaO}$ 291.1725; Found 291.1714.

As described for the preparation of $\mathbf{1 7 a}$, compound $\mathbf{S 6 0}(10.0 \mathrm{mg}, 0.0473 \mathrm{mmol})$ was converted to $\mathbf{1 7 b}$. $\mathbf{4 6 \%}$ yield of $\mathbf{1 7 b}$ was calculated according to the GC results. $\mathbf{1 7 b}$ is a commercially available compound.

3-Methyl-4-phenylbutan-1-ol (17c)

As described for the preparation of $\mathbf{1 7 c}$, compound $\mathbf{S 6 2}(6.5 \mathrm{mg}, 0.0238 \mathrm{mmol})$ was converted to 2.1 mg (53\%) of $\mathbf{1 7 c} .{ }^{58}$ Compound $\mathbf{1 7 c}$ was obtained as a yellow oil. TLC $R_{f} 0.65$ ($\mathrm{EtOAc} /$ hexane, $1: 2$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.79-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}$, $1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.

2-Cyclohexylethan-1-ol (17d)

As described for the preparation of $\mathbf{1 7 a}$, compound $\mathbf{S 6 4}(9.8 \mathrm{mg}, 0.0413 \mathrm{mmol})$ was converted to 2.5 mg (46%) of $\mathbf{1 7 d}$. Compound $\mathbf{1 7 d}$ was obtained as a yellow oil. TLC $R_{f} 0.35$ (EtOAc/hexane, 1:2). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.68(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.75-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.32-$ $1.08(\mathrm{~m}, 3 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 2 \mathrm{H}) . \mathbf{1 7 d}$ is a commercially available compound.

tert-Butyl 4-(2-hydroxyethyl)piperidine-1-carboxylate (17f)

As described for the preparation of $\mathbf{1 7 a}$, compound $\mathbf{S 6 8}(9.2 \mathrm{mg}, 0.0272 \mathrm{mmol})$ was converted to 3.0 mg (48%) of $\mathbf{1 7 f} .{ }^{\text {S9 }}$ Compound $\mathbf{1 7 f}$ was obtained as a yellow oil. TLC $R_{f} 0.24$ (EtOAc/hexane, 1:2). ${ }^{1} \mathrm{H}$ NMR

[^6]($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.16-3.98(\mathrm{br}, 2 \mathrm{H}), 3.71(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.78-2.60(\mathrm{br}, 2 \mathrm{H}), 1.71-1.48(\mathrm{~m}, 5 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.18-1.06(\mathrm{~m}, 2 \mathrm{H})$.

Benzyl 4-(2-hydroxyethyl)piperidine-1-carboxylate (17g)

As described for the preparation of $\mathbf{1 7 a}$, compound $\mathbf{S 7 0}(7.2 \mathrm{mg}, 0.0193 \mathrm{mmol})$ was converted to 3.4 mg (66%) of $\mathbf{1 7 g} .{ }^{\text {S10 }}$ Compound $\mathbf{1 7 g}$ was obtained as a yellow oil. TLC $R_{f} 0.12$ (EtOAc/hexane, $1: 2$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}$, phenyl), 4.29-4.04 (br, 2 H), $3.71(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 2.88-2.66 (br, $2 \mathrm{H}), 1.93-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.23-1.06(\mathrm{~m}, 2 \mathrm{H})$.

3,3-Dimethyl-4-phenylbutan-1-ol (17h)

As described for the preparation of $\mathbf{1 7 a}$, compound $\mathbf{S 7 2}(10.0 \mathrm{mg}, 0.0348 \mathrm{mmol})$ was converted to 3.5 mg (56%) of $\mathbf{1 7 h} .{ }^{\text {Sl1 }}$ Compound $\mathbf{1 7 h}$ was obtained as a yellow oil. TLC $R_{f} 0.46$ (EtOAc/hexane, $1: 2$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $2.54(\mathrm{~s}, 2 \mathrm{H}), 1.55(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.91(\mathrm{~s}, 6 \mathrm{H})$.

4-[(Benzyloxy)methoxy]-3,3-dimethylbutan-1-ol (17i)

As described for the preparation of $\mathbf{1 7 a}$, compound $\mathbf{S 7 4}(9.2 \mathrm{mg}, 0.0265 \mathrm{mmol})$ was converted to 3.8 mg (65%) of $\mathbf{1 7 i}$. Compound $\mathbf{1 7 i}$ was obtained as a yellow oil. TLC $R_{f} 0.33$ (EtOAc/hexane, 1:2). IR (neat): 3406, $2927 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}$, phenyl), $4.77(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.70$ $(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 1.61(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 137.7, 128.5 (2C), 127.9 (2C), 127.8, 94.9, 69.5, 59.5, 42.9, 33.8, 25.2 (2C). HRMS (ESI-TOF) $m / z:[M+$ $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{3}$ 261.1467; Found 261.1456.

Tennison Nucl. Med. Biol. 1993, 20, 527.
${ }^{\text {S10 R. Brehm, D. Ohnhäuser, H. Gerlach Helv. Chim. Acta 1987, 70, } 1981 .}$
${ }^{\text {s11 G. L. Goerner J. Org. Chem. 1959, 24, 888-891. }}$

6-(2,5-Dimethylphenoxy)-3,3-dimethylhexan-1-ol (17j)

As described for the preparation of $\mathbf{1 7 a}$, compound $\mathbf{1 1}(10.0 \mathrm{mg}, 0.0278 \mathrm{mmol})$ was converted to 4.3 mg (62%) of $\mathbf{1 7} \mathbf{j}$. Compound $\mathbf{1 7} \mathbf{j}$ was obtained as a yellow oil. TLC $R_{f} 0.47$ (EtOAc/hexane, 1:2). IR (neat): $3375,2955 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.01(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.68-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{t}, 2 \mathrm{H}, J$ $=6.4 \mathrm{~Hz}), 3.73(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}) 1.41-1.36(\mathrm{~m}$, $2 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.0,136.4,130.3,123.5,120.6,111.9,68.4,59.8$, 44.2, 38.6, 32.0, 27.5 (2C), 24.2, 21.4, 15.8. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NaO}_{2}$ 273.1830; Found 273.1818.

5. Stern-Volmer emission quenching

Determination of photon flux:
Photon flux of the reaction equipment was determined by the method described by Brauer. ${ }^{512}$ Briefly, methylene blue $\left(8 \times 10^{-5} \mathrm{M}\right)$ and meso-diphenylhelianthrene ${ }^{513}\left(1 \times 10^{-4} \mathrm{M}\right)$ was dissolved in air-saturated chloroform. The change in absorbance A_{a} was recorded at wavelength $\lambda_{a}=405 \mathrm{~nm}$, and plotted against irradiation time using red light irradiation equipment. The slope of the plot was used to calculate the photon flow I_{λ} according to the following equation:

$$
\frac{\Delta A_{a}}{\Delta t}=\frac{0.96 d Q_{\mathrm{PO}} \Delta \epsilon_{a}}{V} \times I_{\lambda}
$$

Where $d=1 \mathrm{~cm}$ (optical path length), $Q_{\mathrm{PO}} \Delta \varepsilon_{a}=1.930 \times 10^{6} \mathrm{~cm}^{2} \mathrm{M}^{-1}$ (actinometric factor), $V=3.0$ mL (volume). Photon flow $I_{\lambda}=1.03 \times 10^{-7}$ einstein min^{-1} was thus obtained.

Figure S2 UV-vis spectra after red light irradiation.

Figure S3 Absorption at 405 nm as a function of red light irradiation time.

[^7]Determination of quantum yield: $\underline{\underline{S 14}}$
A 4 mL vial was charged with Barton ester 1a ($195 \mathrm{mg}, 0.50 \mathrm{mmol}$), t-dodecanethiol $(0.47 \mathrm{~mL}, 2.0 \mathrm{mmol}), \mathrm{ZnTPP}(0.3 \mathrm{mg}, 0.0045 \mathrm{mmol})$ and $\mathrm{MeCN}(2.5 \mathrm{~mL})$. The resulting mixture was irradiated with red LED equipment shown in Experimental procedure.

The quantum yield ϕ was calculated according to the following equation:

$$
\phi=\frac{n}{I_{\lambda} t\left(1-10^{-A}\right)}
$$

Where $n=9.69 \times 10^{-5} \mathrm{mmol}$ (product obtained), $t=200 \mathrm{~s}$ (reaction time), $A=0.034$ (absorbance at 630 nm of the $\mathrm{ZnTPP}(\mathrm{MeCN})$). The quantum yield $\phi=62$ was thus obtained.

Stern-Volmer emission quenching:

A 4 mL vial was charged with $\mathrm{ZnTPP}, \mathrm{MeCN}$ and indicated concentration of Barton ester 1a or t-dodecanethiol. Fluorescence was measured at excitation wavelength of 630 nm .
Stern-Volmer equation for 1 a is the following:

$$
I_{0} / I=1+k_{\mathrm{q}, 1 \mathrm{a}} \tau_{0}[1 \mathrm{a}]
$$

Where $k_{\mathrm{q}, 1 \mathrm{a}}$ is quencher rate constant for $1 \mathrm{a}, \tau_{0}$ is fluorescence lifetime of ZnTPP in $\mathrm{MeCN}(1.9 \mathrm{~ns}) .{ }^{515} k_{\mathrm{q}, 1 \mathrm{a}}$ is thus calculated to be $1.0 \times 10^{12}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$. Similarly, $k_{\mathrm{q}, \text { thiol }}$ was calculated to be $1.4 \times 10^{9}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$.

Average chain length:
The average chain length can be estimated by calculating $\phi / Q \cdot{ }^{S 14} Q$ is the quenching fraction and is calculated according to the following equation:

$$
Q=\frac{k_{q, \mathbf{1 a}}[\mathbf{1} \mathbf{a}]}{\tau_{0}{ }^{-1}+k_{\mathrm{q}, \mathbf{1 a}}[\mathbf{1 a}]+k_{\mathrm{q}, \text { thiol }}[\text { thiol }]}
$$

Where $k_{\mathrm{q}}=$ quenching rate $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right.$, vide supra), $\tau_{0}=1.9 \mathrm{~ns}$ (life time of excited state of ZnTPP in $\mathrm{MeCN}) .{ }^{515} Q=0.99$ was thus obtained. Average chain length ϕ / Q was calculated to be 63.

[^8]
6. Differential pulse voltammetry

The electrochemical measurements were conducted in an Ar filled glove box with a continuous gas purified system at 298 K using a computerized electrochemical system (HZ-7000, Hokuto Denko). The dried 1a was dissolved in super hydrated acetonitrile containing 0.1 M tetrabutylammonium perchlorate as a supporting electrolyte. Pt was used as a working and counter electrode, respectively. Reference electrode was an Ag wire immersed in acetonitrile containing 0.1 M TBAP and 10 mM AgClO 4 . The inner electrolyte of the reference electrode was separated from the sample electrolyte by a porous glass (Vycor). The middle potential of ferrocene $(\mathrm{Fc}) \mid$ ferrocenium $\left(\mathrm{Fc}^{+}\right)$in acetonitrile was 0.04 V vs. $\mathrm{Ag} \mid \mathrm{Ag}(\mathrm{I})$.

Figure S2 shows the differential pulse voltammogram of a Pt electrode in $10 \mathrm{mM} 1 \mathrm{a} /$ acetonitrile. The cathodic current was observed around -2.01 V vs. $\mathrm{Ag} \mid \mathrm{Ag}(\mathrm{I})$, e.g. -1.76 V vs SCE .

Figure S4 Differential pulse voltammogram of 1a

7. HPLC profiles of ZnTPP before/after the reaction

A stirred solution of $\mathbf{1 a}(30.0 \mathrm{mg})$, tert-dodecanethiol (73.1 $\mu \mathrm{L}$) and zinc(II) tetraphenylporphyrin 1 M solution in $\mathrm{MeCN}(0.388 \mathrm{~mL})$ was irradiated by red LEDs at $25^{\circ} \mathrm{C}$ for 15 min . Aliquots $(0.10 \mathrm{~mL})$ before or after the reaction were taken and diluted with 0.40 mL of $0.025 \mathrm{M} \mathrm{H}_{2} \mathrm{TPP}$ (reference) solution in $\mathrm{MeCN} .10 \mu \mathrm{~L}$ of the resulting mixture was injected to HPLC and eluted with acetone $/ \mathrm{MeCN}=1: 20$ at flow rate of $1 \mathrm{~mL} / \mathrm{min}$.

after irradiation

| Concentration | ZnTPP | 0.02 mM | Peak | tR | Area | Height | Area\% | Height\% | NTP | Resolution Symmetry factor | |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | H 2 TPP | 0.002 mM | 1 | 3.983 | 127555 | 4395 | 21.486 | 26.108 | $\mathrm{~N} / \mathrm{A}$ | N / A | N / A |
| Injection | | $10 \mu \mathrm{~L}$ | 2 | 4.475 | 136250 | 5581 | 22.951 | 33.158 | $\mathrm{~N} / \mathrm{A}$ | N / A | N / A |
| Detection | | 420 nm | 3 | 4.908 | 211447 | 4155 | 35.618 | 24.682 | $\mathrm{~N} / \mathrm{A}$ | N / A | N / A |
| Eluent acetone/MeCN | $1: 20$ | 4 (ZnTPP) | 7.358 | 26482 | 1324 | 4.461 | 7.863 | 3106 | 2.128 | 1.589 | |
| | | | 5 | 9.275 | 91922 | 1378 | 15.484 | 8.188 | 843 | $\mathrm{~N} / \mathrm{A}$ | N / A |

8. UV-vis spectra of $\mathbf{Z n T P P}$ and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathbf{C l}_{2}$

Figure S5 UV-vis spectra of ZnTPP and $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}$

Several mechanistic possibilities can be postulated for 17% conversion of $\mathbf{1 2}$ to $\mathbf{1 3}$ when red-red light was used.
(I) Red-light activation of $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$: We believe this unlikely, because UV-vis spectra of $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$ has little absorption peak in the red light region compared to co-existing ZnTPP, as shown obove.
(II) Partial photoredox reaction by ZnTPP: Activated ZnTPP can convert phthalimidyl ester. However, this process is supposed to be slow, because photoredox is not a chain mechanism (photoredox catalyst requires activation every time for conversion of each substrate molecule), and difference in redox potentials is not so large.
(III) Activation of BNAH-phthalimidyl EDA complex by ZnTPP.
(IV) Reduction of activated ZnTPP by BNAH to form ZnTPP^{-}.

9. Computational methods

Compound 19 was subjected to a conformational search using the OPLS3 force field as implemented in MacroModel. Both singlet and triplet states for each conformers were further optimized using B3LYP/6$311+G(d, p)$ with the CPCM MeCN model in Jaguar. Free energies at B3LYP/6-311+G(3df,3dp) were calculated respectively using Jaguar. The S-T gap was computed as the difference between the two free energies.

Complex of compound 19 and ZnTPP was subjected to a conformational search using the OPLS3 force field as implemented in MacroModel. The obtained structure was further optimized using LANL2TZ for Zn and B3LYP-D3/6-31G(d,p) for other atoms in vacuum in Jaguar. Free energies were also calculated at the same level of theory.

References for computational methods (also, see ref. 72 of the main article)
B3LYP: a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372; b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; c) C. Lee,; W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623; e) J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 2008, 4, 297.

Macromodel: Schrödinger Release 2020-3, Schrödinger, LLC, New York, NY, 2020.
Jaguar: a) Schrödinger Release 2020-3, Schrödinger, LLC, New York, NY, 2020; b) Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A., "Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences," Int. J. Quantum Chem., 2013, 113(18), 2110-2142

Computed coordinates and energies for 19

Coordinates of S_{0} :
C -4.43250-1.95450 0.54360
C -4.63010 -1.99310 -0.85570
C -3.72130 -1.40460-1.70240
C -2.55770 -0.73850-1.22450
$\begin{array}{clll}\mathrm{N} & -2.43520 & -0.76240 & 0.15260\end{array}$
C -3.31880 -1.32520 1.02680
S -1.41000 $0.02420-2.22070$
O -1.37800 $-0.06990 \quad 0.73590$
$\begin{array}{llll}\text { C } & -0.17370 & -0.79780 & 0.81430\end{array}$
C $\begin{array}{llll}0.91990 & 0.09560 & 1.35360\end{array}$
O -0.11190 -1.94870 0.49330
C $1.76110 \quad 0.64640 \quad 0.17970$
C $1.78510-0.68440 \quad 2.35510$
H $-5.13510-2.40480 \quad 1.23380$
H -5.50600 -2.48490 -1.26800

$$
\begin{array}{lccc}
\mathrm{H} & -3.86520 & -1.42170 & -2.77520 \\
\text { H } & -3.06920 & -1.22570 & 2.07710 \\
\text { H } & 0.43780 & 0.93630 & 1.86020 \\
\text { H } & 1.15310 & 1.22830 & -0.51470 \\
\text { H } & 2.54380 & 1.29530 & 0.58140 \\
\text { H } & 2.23860 & -0.16710 & -0.37350 \\
\text { H } & 2.28060 & -1.52830 & 1.86810 \\
\text { H } & 2.55370 & -0.02210 & 2.76160 \\
\text { H } & 1.18870 & -1.06700 & 3.18740
\end{array}
$$

solution phase energy $=-953.170893$ Hartree

Coordinates of T_{1} :
C -3.93460 -3.01390 -0.23670
C -4.88210-2.29470 -0.96130
C - $4.59540-0.98490-1.32860$
C - $3.34900-0.40500-0.95920$
N - $2.45020-1.14140-0.24980$
C $-2.71900-2.38670 \quad 0.09920$
S -2.97920 1.21110-1.40600
O -0.44540-0.05570 0.37320
C $0.43470-0.765000 .99500$
C $1.68500 \quad 0.12400 \quad 1.28200$
O $0.36090-1.94350 \quad 1.32990$
C $2.89560-0.46710 \quad 0.54510$
C $\begin{array}{llll}1.89750 & 0.21910 & 2.79940\end{array}$
H -4.11040 -4.03860 0.07270
H $-5.82960-2.74620-1.23800$
H -5.30020 -0.38650 -1.89510
H -1.95170 -2.90820 0.66190
$\begin{array}{llll}\text { H } & 1.48650 & 1.12450 & 0.88910\end{array}$
H $2.72620-0.50870-0.53440$
H 3.771900 .163800 .72430
H $3.11750-1.47640 \quad 0.90160$
H $2.09010-0.76620 \quad 3.23120$
H 2.759400 .861803 .00430
H 1.028100 .654703 .29940
solution phase energy $=-953.116722$ Hartree
triplet energy $=0.054171$ Hartree $=142.23 \mathrm{~kJ} / \mathrm{mol}$

C 13.41467-1.56237 3.11929
C 14.84358-1.10137 3.21325
C 12.48014-0.41945 3.56886
C 13.21878-2.83768 3.94381
O 15.15513-0.29172 2.07951
O 15.66854-1.33641 4.04594
N 16.394900 .319032 .18849
C 17.44589-0.39775 1.70192
C 16.446931 .573912 .79046
C 18.703960 .124161 .76709
C 17.779742 .105202 .81731
S 15.088852 .333033 .40792
C 18.862671 .411422 .34310
C $16.619692 .25282-0.95121$
N 15.36277 2.24456-0.39160
C 15.04731 3.54104-0.07123
C 13.822783 .995140 .45898
C $16.148484 .40581-0.43860$
C 17.10838 3.61668-0.99649
C 17.32093 1.11960-1.41033
C 12.666943 .213830 .64913
C 13.756275 .438400 .84438
C 11.391793 .719611 .11391
N 12.555261 .867840 .39913
C 11.259281 .503680 .67468
C 10.731790 .199230 .57453
C 10.519522 .673791 .10670
C 9.296540 .002930 .94548
C 11.46008-0.95095 0.19324
N 12.78418-0.98050-0.17661
C 13.12747-2.29815-0.38276
C 14.40644-2.77209-0.74255
C 11.96880-3.13168-0.14444
C 10.94515-2.30411 0.21411
C 15.53145-1.96998-1.03677
С 16.83795-2.47219-1.40477
N 15.56859-0.59483-1.01259

С 16.83445-0.20852-1.38022
C 17.63480-1.38710-1.63317
C $18.698741 .32214-1.94718$
C 14.58514-4.25560-0.81384
C 12.975806 .351170 .12054
C 12.931837 .696250 .48924
C 13.667628 .145831 .58756
C 14.446987 .243142 .31440
C 14.494045 .898291 .94602
C 8.848900 .253772 .25265
C 7.511950 .057902 .59957
C 6.59805-0.39195 1.64458
C 7.03002-0.64245 0.34038
C 8.36710-0.44653-0.00574
C 14.84654-4.89588-2.03481
C 15.01555-6.27975-2.09151
C 14.92568-7.04621-0.92761
C 14.66441-6.42084 0.29344
C 14.49535-5.03726 0.34867
C 19.71118 1.89868-1.16297
C 20.99840 2.07213-1.67102
C 21.29972 1.67243-2.97462
C 20.30210 1.10011-3.76682
C 19.015430 .92697 -3.25744
Zn 14.10742 0.61589-0.14525
H 13.21474-1.76530 2.06583
H 12.633360 .477682 .96712
H 11.44501-0.75217 3.45614
H 12.65939-0.16394 4.61749
H 13.88408-3.63916 3.60758
H 13.42598-2.65324 5.00154
H 12.18615-3.18224 3.84095
H 17.19002 -1.34894 1.25558
H 19.53700-0.43096 1.35687
H 17.886973 .090063 .25456
H 19.852591 .854042 .40358
H 16.16384 5.47841-0.31491
H 18.05094 3.93009-1.41863
H 11.192284 .742791 .39478

Н 9.472422 .690121 .36869
H 11.94195-4.20673-0.24186
H 9.93536-2.58421 0.47396
H 17.10917 -3.51465-1.48187
H 18.67591-1.38644-1.91898
H 12.40862 5.99913-0.73637
H $12.326308 .39295-0.08384$
H 13.633039 .192921 .87535
H 15.016817 .584893 .17412
H 15.084965 .185752 .51461
H 9.558590 .606012 .99471
H 7.185810 .253963 .61714
Н 5.55690-0.54481 1.91405
Н $6.32448-0.98667-0.41061$
H 8.70312-0.63774-1.02057
H 14.91155-4.29846-2.93930
H 15.21271-6.75963-3.04601
H 15.05729-8.12352-0.97193
H 14.59554-7.00928 1.20406
H 14.29188-4.54918 1.29762
H 19.47706 2.20782-0.15059
H 21.76816 2.51738-1.04649
H 22.30222 1.80777-3.37042
Н 20.523840 .79271 -4.78495
H 18.23887 0.48666-3.87540

HOMO energy: - 0.17951 hartrees
LUMO energy: -0.08108 hartrees
10. $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds

X : parts per Million : Proton

X : parts per Million: 1H

[^0]: ${ }^{\text {S1 }}$ van Zwet, H.; Kooyman, E. C. Recl. Trav. Chim. Pays-bas 1968, 87, 45-48.

[^1]: ${ }^{\text {S2 }}$ Blankson, G. A.; Parhi, A. K.; Kaul, M.; Pilch, D. S.; LaVoie, E. J. Bioorg. Med. Chem. 2019, 27, 3254-3278.

[^2]: ${ }^{\text {s3 }}$ Li, F.; Zhang, G.; Liu, Y.; Zhu, B.; Leng, Y.; Wu, J. Org. Lett. 2020, 22, 8791-8795.

[^3]: ${ }^{54}$ D. H. R. Barton, N. Ozbalik, B. Vacher Tetrahedron 1988, 44, 3501-3512.
 ${ }^{55}$ D. H. R. Barton, D. Crich, G. Kretzschmar Tetrahedron Lett. 1984, 25, 1055-1058.

[^4]: ${ }^{\text {S6 }}$ D. H. R. Barton, C. Tachdjian Tetrahedron 1992, 48, 7109-7120.

[^5]: ${ }^{\text {s7 }}$ D. H. R. Barton, H. Togo, S. Z. Zard Tetrahedron Lett. 1985, 26, 6349-6352.

[^6]: ${ }^{58}$ J. V. Braun, G. Kirschbaum Ber. Dtsch. Chem. Ges. 1914, 47, 262.
 ${ }^{\text {s9 S. M. N. Efange, R. H. Michelson, B. Knusel, F. Hefti, R. J. Boudreau, J. R. Thomas, J. R. }}$

[^7]: ${ }^{\text {S }} 12$ H.-J. Adick, R. Schmidt, H.-D. Brauer J. Photochem. Photobiol. A 1989, 49, 311-316.
 ${ }^{\text {S } 13}$ G. Sauvage Ann. Chim. 1947, 2, 844-852.

[^8]: ${ }^{\text {S14 }}$ M. A. Cismesia, T. P. Yoon Chem. Sci. 2015, 6, 5426-5434.
 ${ }^{\text {S15 M. Ghosh, A. K. Mora, S. Nath, A. K. Chandra, A. Hajra, S. Sinha Spectrochim. Acta A 2013, 116, 466-472. }}$

