Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Table of Contents

1.	Optimization	S 2
2.	Additional reaction examples	S14
3.	Proposed mechanism for thioester reduction	S16
4.	Experimental procedures	S18
5.	Stern–Volmer emission quenching	S77
6.	Differential pulse voltammetry	S79
7.	HPLC profiles of ZnTPP before/after the reaction	S 80
8.	UV-vis spectra of ZnTPP and Ru(bpy) ₃ Cl ₂	S 81
9.	Computational methods	S82
10.	¹ H and ¹³ C NMR spectra of new compounds	S 87

1. Optimization

Table S1: Summary of optimization for red light-mediated Barton decarboxylation.

		<i>t</i> -DodSH (4 eq.) ZnTPP (0.1 mol%)	_	Ì	\frown	н	
CbzHN''	1a	MeCN (0.2 M) red LEDs, 25 °C	Cb	zHN ^{```^l 2a}	a		
entry	difference from entimized conditions		yield (%)				
entry					18	1a	
1	(no	one)	91	ND	ND	ND	
2 ^[a,b,c]	<i>t</i> -BuSH as hy	83	5	ND	ND		
3 ^[a,b,c]	<i>n</i> -Bu₃SnH as h	46	13	ND	ND		
4 ^[a,b,c]	PhSH as hy	54	ND	ND	ND		
5 ^[a,b,c]	Hantzsch ester a	trace	41	ND	ND		
6 ^[a,b]	DMA as	s solvent	88	ND	ND	ND	
7 ^[a,b]	DMF as	s solvent	87	ND	ND	ND	
8 ^[a,b]	CH ₂ Cl ₂	as solvent	80	ND	ND	ND	
9 ^[a,b]	EtOAc a	is solvent	60	ND	ND	36	
10 ^[a,b]	benzene	as solvent	44	ND	ND	52	
11 ^[a,b]	EtOH a	s solvent	64	ND	ND	ND	
12 ^[a]	0.	1 M	89	ND	ND	ND	
13 ^[a]	1.	0 M	36	ND	10	30	
14	no ZnTPP, no irra	adiation, 50 °C, 6 h	73	ND	ND	ND	
15	TEMPC	(4.0 eq.)	ND	ND	ND	78	

10 mg scale and 15 min unless otherwise noted. ND = not detected.

[a] Chlorophyll a instead of ZnTPP. [b] 0.05 M.

[c] DMSO as solvent. 3 mol% catalyst. 5 h.

		reagent ZnTPP ((3.0 eq.) 3 mol%)	- Ph	CI
Ph [°] ~	3 3	solvent red LED	(conc.) s, 25 °C		4a
ontru	roagont	solvont	conc (M)	yield	d (%)
entry	reagent	Solveni		4a	S2
1	NCS	toluene	0.05	ND	ND
2	TMSCI	toluene	0.05	ND	ND
3	CCl ₄	toluene	0.05	ND	37
4	PhSCI	toluene	0.05	ND	ND
5	hexachloroethane	toluene	0.05	ND	34
6	_	CCl ₄	0.05	51	16
7	-	CCl ₄	0.025	47	11
8	-	CCl ₄	0.1	42	16
9	-	CCl ₄	0.2	20	15
10	-	$CI_2HCCHCI_2$	0.05	ND	_[a]
11	hexachloroethane	CCl ₄	0.05	73	12
12	hexachloroethane ^[b]	CCl ₄	0.05	69	8

Table S2: Summary of optimization for red light-mediated Barton decarboxylative chlorination.

20 mg scale and 1 h.

[a] obtained as inseparable mixture with an unidentified byproduct. Ph

[b] 6.0 eq. was used.

S

Table S3: Summary of optimization	for red light-mediated Barto	n decarboxylative
bromination.		

			reagen ZnTPP (t (X eq.) (3 mol%)			-	_	
Ph			solvent red LED	solvent (0.05 M) red LEDs, 25 °C		Ph Br 4b			
-	optru	roogoat	V og	aalvaat	yield (%)				
	entry	reagent	∧ eq.	solvent	4b	S2	S3	3	
-	1	NBS	4.0	DMSO	ND	ND	ND	ND	
	2	NBA	4.0	DMSO	ND	58	ND	ND	
	3	TMSBr	4.0	DMSO	ND	20	ND	ND	
	4	CH ₂ BrCl	4.0	DMSO	ND	30	ND	6	
	5	CBr ₄	4.0	DMSO	23	50	ND	ND	
	6	CBrCl ₃	4.0	DMSO	44 ^[a]	36 ^[a]	ND	ND	
	7	CBrCl ₃	3.0	DMSO	50	14	20	ND	
	8	CBrCl ₃	2.0	DMSO	43	ND	20	ND	
	9	CBrCl ₃	1.0	DMSO	44	ND	20	ND	
	10	CBrCl ₃	3.0	DMF	28	ND	19	ND	
	11	CBrCl ₃	3.0	CH ₃ CN	39	ND	trace	ND	
	12	CBrCl ₃	3.0	EtOH	ND	ND	7	ND	
	13	CBrCl ₃	3.0	CH_2CI_2	53	ND	14	ND	
	14	CBrCl ₃	3.0	toluene	55	ND	14	ND	

10 mg scale and 1 h. [a] contains small amount of chlorinated compound **4a**.

Table S4: Summary of optimization for red light-mediated Barton decarboxylative iodination.

o ^S ≷	hydroge Zn	en source (TPP (3 mol	9.0 eq.) %)		
3	sol red LEI then	M) 30 min ; t, 2 h	Ph 4d	On	
entry	hydrogen source	X eq.	solvent	yield (%)	-
1	<i>t</i> -BuSH	0.05	toluene	38	-
2	<i>t</i> -BuSH	0.05	CH_2CI_2	21	
2 <i>t</i> -Bu 3 <i>t</i> -Bu		0.05	CH ₃ CN	15	
4	<i>t</i> -BuSH	0.05	DMF	19	
5	<i>t</i> -BuSH	0.05	EtOH	75	
6	<i>t</i> -BuSH	0.1	EtOH	64	
7	<i>t</i> -BuSH	0.025	EtOH	27	
8	PhSH	0.05	EtOH	35	
9	<i>t</i> -DodSH	0.05	EtOH	42	
10	TTMSS	0.05	EtOH	59	
11	Et ₃ SiH	0.05	EtOH	51	
12	Ph_2SiH_2	0.05	EtOH	54	
13	<i>n</i> -Bu₃SnH	0.05	EtOH	39	
14 ^[a]	<i>t</i> -BuSH	0.05	EtOH	57	
	3 entry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ^[a]	$\begin{array}{c} \begin{array}{c} & & & \\ & & & \end{array} \\ \hline 0 \\ \hline \bigg $ \\ \hline \bigg \\ \hline 0 \\ 0 \\	$ \begin{array}{c} \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \end{array} \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \hline 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{aligned} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{aligned} \\ \hline \end{array} \\ \hline \end{aligned} \\ \hline \end{array} \\ \end{aligned} \\ \hline \end{aligned} \\ \hline \end{array} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \end{aligned}	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} & \end{array} \\ & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

 Table S5: Summary of optimization for red light-mediated Barton decarboxylative
 oxygenation.

10 mg scale. [a] 4.0 eq. of *t-*BuSH.

	N	Ph ₃ CSNO (1.0 eq.) ZnTPP (3 mol%)		
3		solvent (0.2 M) red LEDs, 25 °C		4e ⊕ √2
	entry	solvent	yield (%)	_
	1	CH ₃ CN	31	_
	2	DMSO	14	
	3	DMF	30	
	4	THF	19	
	5	toluene	51	
	6	CH_2CI_2	39	
	7	DMF/toluene (2:1)	37	
	8	CH ₂ Cl ₂ /toluene (2:1)	50	
	9 ^[a]	CH ₂ Cl ₂ /toluene (2:1)	34	
	10 ^[b]	CH ₂ Cl ₂ /toluene (2:1)	49	
	11 ^[b,c]	CH ₂ Cl ₂ /toluene (2:1)	53	
	12 ^[b,d]	CH ₂ Cl ₂ /toluene (2:1)	61	

Table S6: Summary of optimization for red light-mediated Barton decarboxylative nitrosation.

10 mg scale and 1.5 h unless otherwise noted. ND = not detected. In this optimization, solubility of Ph_3CSNO to various solvent was problematic. This is why the CH_2Cl_2 /toluene mixed solvent was chosen as optimum solvent. [a] 2.0 eq. of Ph_3CSNO was used. [b] solution of 1z and Ph_3CSNO was slowly added. [c] 0.1 M. [d] 0.05 M.

	\sim	o ^S h	DEAD ydrogen s ZnTPP	(1.0 eq.) source (X eq.) (3 mol%)	C N	O₂Et `N ^{∠CO₂Et}	
Pn	3	0 0	solver red LE	nt (conc.) Ds, 25 °C	⊓ 4f		
	entry	hydrogen source	X eq.	solvent	conc. (M)	yield (%)	
-	1	Ph ₃ CSH	4.0	CH ₂ Cl ₂ /toluene (2:1)	0.05	ND	
	2	TTMSS	4.0	CH ₂ Cl ₂ /toluene (2:1)	0.05	16	
	3	TTMSS	4.0	toluene	0.05	35	
	4	TTMSS	4.0	CH_2CI_2	0.05	31	
	5	TTMSS	4.0	CH ₃ CN	0.05	27	
	6	TTMSS	4.0	DMF	0.05	23	
	7	TTMSS	4.0	EtOH	0.05	25	
	8	TTMSS	4.0	toluene	0.1	57	
	9	TTMSS	4.0	toluene	0.2	49	
	10 ^[a]	TTMSS	4.0	toluene	0.1	55	
	11 ^[b]	TTMSS	4.0	toluene	0.1	40	
	12	Et ₃ SiH	4.0	toluene	0.1	17	
	13	Ph_2SiH_2	4.0	toluene	0.1	28	
	14	TTMSS	2.0	toluene	0.1	24	
	15	TTMSS	1.0	toluene	0.1	20	
	16	TTMSS	8.0	toluene	0.1	45	

Table S7: Full optimization for red light-mediated Barton decarboxylative hydrazination.

10 mg scale and 1.5 h unless otherwise noted. ND = not detected. [a] 1.5 eq. of DEAD was used. [b] 2.0 eq. of DEAD was used.

			PhSSPh (X ZnTPP (3 m	. eq.) ìol%) ────► P	Ph		
Ph' ~	∽ 0 3	~	solvent (co red LEDs, 2	nc.) 25 °C	4g		
-	entry	X eq.	solvent	conc. (M)	yield (%)	-	
-	1	2.0	DMSO	0.05	84	-	
	2	2.0	DMF	0.05	62		
	3	2.0	CH₃CN	0.05	29		
	4	2.0	CH_2CI_2	0.05	15		
	5	2.0	toluene	0.05	23		
	6	2.0	EtOH	0.05	16		
	7	2.0	DMSO	0.1	64		
	8	2.0	DMSO	0.2	67		
	9	1.5	DMSO	0.05	66		
	10	1.0	DMSO	0.05	61		
	11	4.0	DMSO	0.05	50		

Table S8: Full optimization for red light-mediated Barton decarboxylative sulfidation.

10 mg scale and 1.5 h.

Table S9: Summary of optimization for red light-mediated Barton decarboxylative selenidation.

	o ^S	N.	rea ado ZnT	igent (X ditive (Y PP (3 m	eq.) eq.) nol%)	pinacol (4.0 c Et ₃ N	eq.)	~		
Ph' ~	∽ 0 3	~	sol red	vent (co LEDs, 2	onc.) 25 °C	rt, 1 h		Ph 4i		
entry	reagent	X ea	additive	Y eq	solvent	conc. (M)		yield	l (%)	
Chity	reagent	71 0 9.	additive	r oq.	Solvent	()	4i	S2	S4	S5
1 ^[a]	$B_2 pin_2$	4.0	none	_	DMF	0.05	ND	44	ND	ND
2 ^[a]	$B_2 pin_2$	4.0	Et ₃ N	4.0	DMF	0.05	ND	25	ND	ND
3 ^[a]	$B_2 pin_2$	4.0	pyridine	4.0	DMF	0.05	ND	23	ND	ND
4 ^[a]	$B_2 pin_2$	4.0	<i>t</i> -BuOK	4.0	DMF	0.05	ND	54	ND	ND
5 ^[a]	$B_2 pin_2$	4.0	CsF	4.0	DMF	0.05	ND	34	ND	ND
6	B ₂ (OH) ₂	4.0	none	_	DMF	0.2	15	2	ND	5
7	B ₂ cat ₂	4.0	none	_	DMF	0.2	28	9	10	ND
8	B ₂ cat ₂	4.0	none	_	DMA	0.2	25	trace	ND	ND
9	B ₂ cat ₂	4.0	none	_	DMSO	0.2	ND	5	ND	ND
10	B ₂ cat ₂	4.0	none	-	CH_3CN	0.2	11	trace	trace	22
11	B ₂ cat ₂	4.0	none	_	EtOAc	0.2	12	trace	31	ND
12	B ₂ cat ₂	4.0	none	-	toluene	0.2	14	trace	7	12
13	B ₂ cat ₂	4.0	none	-	MeOH	0.2	24	trace	ND	ND
14	B ₂ cat ₂	4.0	none	-	THF	0.2	23	trace	trace	ND
15	B ₂ cat ₂	3.0	none	-	DMF	0.2	40	3	ND	ND
16	B ₂ cat ₂	2.0	none	-	DMF	0.2	48	trace	ND	ND
17	B ₂ cat ₂	1.0	none	-	DMF	0.2	8	18	ND	ND
18	B ₂ cat ₂	2.0	pyridine	2.0	DMF	0.2	18	trace	ND	ND
19	B ₂ cat ₂	2.0	Et ₃ N	2.0	DMF	0.2	40	11	ND	ND
20	B ₂ cat ₂	2.0	DABCO	2.0	DMF	0.2	24	21	ND	ND
21	B ₂ cat ₂	2.0	<i>t</i> -BuOK	2.0	DMF	0.2	22	4	ND	ND
22	B ₂ cat ₂	2.0	HMPA	2.0	DMF	0.2	58	3	ND	ND
23	B ₂ cat ₂	2.0	Ph₃P	2.0	DMF	0.2	30	trace	ND	ND
24	B ₂ cat ₂	2.0	H ₂ O	20	DMF	0.2	52	11	ND	ND
25	B ₂ cat ₂	2.0	DMPU	2.0	DMF	0.2	54	ND	ND	ND
26	B ₂ cat ₂	2.0	NMP	2.0	DMF	0.2	51	ND	ND	ND
27	B ₂ cat ₂	2.0	HMPA	10	DMF	0.2	53	ND	ND	ND
28	B ₂ cat ₂	2.0	HMPA	2.0	DMF	0.1	63	ND	ND	ND
29	B ₂ cat ₂	2.0	HMPA	2.0	DMF	0.05	51	ND	ND	ND
30	B ₂ cat ₂	2.0	HMPA	2.0	DMF	0.025	67	ND	ND	ND
31	B ₂ cat ₂	2.0	HMPA	2.0	DMF	0.01	67	ND	ND	ND

 Table S10: Full optimization for red light-mediated Barton decarboxylative borylation.

20 mg scale and 1 h. [a] second reaction was not conducted.

s‴ O	N O	6a ZnTF	O ₂ Me (X eq.) PP (3 mol%)		S N		S
Ph	Ph 5	sol ^y red L	vent (Y M) .EDs, 25 °C	► Ph	Ph 7a	, Ph	Ph 8a
	entry	Xeq	solvent	УM	yield ((%)	
	entry	л еч.	Solvent	1 101	7a	8a	
	1	4.0	DMSO	0.1	35	11	
	2	4.0	DMF	0.1	49	20	
	3	4.0	MeCN	0.1	33	21	
	4	4.0	EtOH	0.1	trace	29	
	5	4.0	CH_2CI_2	0.1	62	30	
	6	4.0	toluene	0.1	70	20	
	7	4.0	toluene	0.05	56	24	
	8	4.0	toluene	0.2	62	20	
	9	2.0	toluene	0.1	53	29	
	10	8.0	toluene	0.1	62	13	

Table S11: Summary of optimization for red light-mediated Barton decarboxylative Giese reaction.

10 mg scale and 1 h.

S N		(Ph <i>i</i> -Pr ₂ [Ir[dF(CF ₃)ppy]	S) ₂ (2.0 e NEt (2.0 ₂ (dtbbpy	eq.) eq.))]PF ₆ (1 mol%)		S	
Ph 🦳	Te CO ₂ Pl	H solv blue	solvent (0.1 M) blue LEDs, time			H 16	'n
_	entry	solvent	time	additive –	yiel	d (%)	_
	onary	Solvent	une		16	7e	
	1	toluene	1 d	_	13	ND	
	2	toluene/H ₂ O (10:1)	1 d	_	36	49	
	3	CH ₃ OH/H ₂ O (10:1)	1 d	-	16	47	
	4	CH ₃ CN/H ₂ O (10:1)	1 d	-	ND	ND	
	5	DMF/H ₂ O (10:1)	2 d	-	61	20	
	6	toluene/H ₂ O (10:1)	2 d	-	66	20	
	7	toluene/H ₂ O (10:1)	3 d	-	60	ND	
	8	toluene/H ₂ O (10:1)	3 d	TBAI	92	ND	
	9	toluene/H ₂ O (10:1)	1 d	TBAI	95	ND	

Table S12: Summary of optimization for blue light-mediated decarboxylation of 7e.

		/ield (%)	y	V	Var	o o tra				
	7e	8	16	Y MOI%	x eq.	entry				
s N	92 ^b	10	ND	3	4.0	1 ^a	_			
	40	11	13	3	4.0	2				
8 8	trace	10	64	3	3.0	3				
	ND	15	67	3	2.5	4				
Ş ^{_∕} N [∕]	ND	18	60	3	2.0	5				
CO₂H	8	26	38	3	1.0	6				
	ND	15	49	1	2.5	7				
7e	45	11	19	10	2.5	8				

a) with 4.0 eq. of *i*-Pr₂NEt

b) with inseparable impurities

Ph 🔨	S N CO ₂ H Ph 7e	O [Ir[di tolu	₂ , base, TBAI, a F(CF ₃)ppy] ₂ (dtb ene/H ₂ O (0.02 blue LEDs, 1 then NaBH ₂	base, TBAI, additive CF ₃)ppy] ₂ (dtbbpy)]PF ₆ ne/H ₂ O (0.02 M, 10:1) blue LEDs, 1 d ; then NaBH ₄		`OH ∕─Ph	H Ph S6
	entry	base	additive	NaBH.	yield	l (%)	
-	entry	Dase	additive	Nabrią	17	S6	
	1	Na ₂ CO ₃	-	_	ND	17	
	2	Na ₂ CO ₃	-	0	46	ND	
	3	Na ₂ CO ₃	PPh_3	0	64	ND	
	4	Na ₂ CO ₃	P(OPh) ₃	0	80	ND	
	5	K ₂ CO ₃	P(OPh) ₃	0	63	ND	
	6	NaOH	P(OPh) ₃	0	32	ND	
	7	K ₂ HPO ₄	P(OPh) ₃	0	66	ND	
	8	<i>i</i> -Pr ₂ NEt	P(OPh) ₃	0	52	ND	

 Table S14: Summary of optimization for decarboxylative generation of alcohol 17 from 7e.

2. Additional reaction examples

 Table S15: Examples for Barton decarboxylative selenidation.

10 mg scale and 1 h.

Scheme S1: Examples for one-pot Barton decarboxylative reaction/blue light-mediated reactions.

3. Proposed mechanism for thioester reduction

Scheme S2: Proposed reaction mechanism for decarboxylative generation of aldehyde from 7e. (A) Decarboxylation of 7e to generate thioester. (B) Reduction of thioester to aldehyde.

Scheme S3: Proposed reaction mechanism for decarboxylative generation of aldehyde from 7e in the presence of phosphine.

4. Experimental procedures

General methods. Melting points are uncorrected. Specific rotations were measured in a 100 mm cell. ¹H HMR spectra were recorded at 400 MHz or 500 MHz with tetramethylsilane (0 ppm), residual chloroform (7.26 ppm) or residual dimethyl sulfoxide (2.54 ppm) as an internal standard on a JEOL JNM-ECS400 (400 MHz), JEOL JNM-ECZ400 (400 MHz) or JEOL JNM-ECA500 (500 MHz) spectrometer. ¹³C NMR spectra were recorded at 100 MHz or 125 MHz, and referenced to residual chloroform (77 ppm) or residual dimethyl sulfoxide (39.5 ppm). High-resolution mass spectra (HRMS) were measured by the ESI mode on a Waters LCT premier XE spectrometer. The diffuse reflectance UV-vis spectra were measured by Shimadzu UV-3600Plus with wavelength range between 400 nm and 800 nm. Fluorescence spectra were measured by Shimadzu RF-6000. Gas chromatography (GC) analysis was performed using a CBP-10 capillary column (25 m \times 0.22 mm, film thickness 0.25 μ m). HPLC analysis was performed with Daicel Chiralcel OD-H 0.46 cm $\Phi \times 25$ cm column. Thin-layer chromatography (TLC) was performed on Merck Kieselgel 60 F_{254} plates. The crude reaction mixtures and extracted materials were purified by chromatography on silica gel (Fuji Silysia, PSQ-100B) or PTLC (Merck). Combined organic extracts were dried over anhydrous Na₂SO₄. Solvents were removed from the reaction mixture and the combined organic extracts by concentration under reduced pressure using an evaporator with bath at 35-45 °C. Yields are isolated yields unless otherwise noted.

Light-mediated reaction setup. A strip of red LEDs (4W) was purchased from akibaLED PIKARIKAN, Japan. The strip was coiled and pasted inside a plastic cup of 8 cm diameter (Figure S1a). The reaction flask equipped with a magnetic stir bar was placed at the center of the cup and covered with aluminum foil. The reaction mixture was irradiated by red LEDs from 2.5 cm distance with continuous stirring (Figure S1b, S1c). The plastic cup was cooled by an external water bath when necessary.

For blue light-mediated reactions, a strip of blue LEDs (10W) was used and set up as described above.

Figure S1. Reaction setup. (a, left) a strip of LEDs is coiled on inner face of plastic cup. (b, center) (c, right) the reaction flask is irradiated by red LEDs.

3-[4-(tert-Butyldimethylsilyloxy)phenyl]propionic acid (S16).

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of 3-(4-hydroxyphenyl)propionic acid (**S15**) (201 mg, 1.21 mmol) in DMF (2 mL) were added TBSCl (405 mg, 2.70 mmol) and imidazole (286 mg, 4.20 mmol). After being stirred at room temperature for 1 h, the mixture was diluted with H₂O (10 mL) and extracted with hexane (10 mL×3). The combined extracts were dried and concentrated under reduced pressure to provide crude silyl ester, which was used in the next step without further purification.

To a stirred solution of crude silyl ester obtained above in MeOH/THF (1:1, 2 mL) was added K₂CO₃ (347 mg, 2.50 mmol). After being stirred at room temperature for 14 h, the mixture was quenched with 1 M aqueous HCl (10 mL) and extracted with EtOAc (10 mL×3). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:8) to provide 148 mg (43%) of **S16** as white crystals. mp 59-61 °C. TLC R_f 0.31-0.56 (EtOAc/hexane, 1:1). IR (KBr): 3400-2500, 2950, 1718, 1655 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.06 (d, 2H, *J* =8.3 Hz, H-3, 5 of Ar), 2.89 (t, 2H, *J* =7.6 Hz, H-3, 3'), 2.65 (t, 2H, *J* =7.6 Hz, H-2, 2'), 0.97 (s, 9H, *t*-Bu), 0.18 (s, 6H, -Me). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 178.8, 154.1, 132.8, 129.1 (2C), 120.1 (2C), 35.8, 29.8, 25.7 (3C), 18.2, -4.4 (2C). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₂₅O₃Si 281.1573; Found 281.1572.

3-[4-(Pivaloyloxy)phenyl]propionic acid (S17).

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of 3-(4-hydroxyphenyl)propionic acid (**S15**) (202 mg, 1.21 mmol) in CH₂Cl₂ (4 mL) were added PivCl (0.293 mL, 2.41 mmol), Et₃N (0.334 mL, 2.41 mmol), and DMAP (14.9 mg, 0.122 mmol). After being stirred at room temperature for 2 d, the mixture was quenched with 1 M aqueous HCl (1 mL), diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (10 mL×3). The combined extracts were washed with saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/toluene, 1:1) to provide 208 mg (69%) of **S17** as white crystals. mp 88-91 °C. TLC *R_f* 0-0.40 (EtOAc/toluene, 1:1). IR (KBr): 3500-2500, 2975, 1752, 1716, 1695 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 6.80 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 2.95 (t, 2H, *J* =7.8 Hz, H-3, 3'), 2.67 (t, 2H, *J* =7.8 Hz, H-2, 2'), 1.35 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 178.5, 177.2, 149.5, 137.4, 129.2 (2C), 121.5 (2C), 39.0, 35.5, 29.9, 27.1 (3C). HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₈O₄Na 273.1103;

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of 3-(4-hydroxyphenyl)propionic acid (**S15**) (200 mg, 1.20 mmol) in H₂O (12 mL) were added NaOH (181 mg, 4.52 mmol) and MsCl (0.116 mL, 1.50 mmol). After being stirred at room temperature for 18 h, the mixture was quenched with 1 M aqueous HCl (10 mL). The insoluble solids were collected by filtration and washed well with H₂O. The solids were dissolved in CH₂Cl₂ (20 mL) and washed with H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:1) to provide 130 mg (44%) of **S18** as white crystals. mp 98-101 °C. TLC *R*^{*f*} 0-0.27 (EtOAc/hexane, 4:1). IR (KBr): 3500-2500, 3067, 1709 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.26 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 7.10 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 3.14 (s, 3H, -Me), 2.97 (t, 2H, *J* =7.5 Hz, H-3, 3'), 2.69 (t, 2H, *J* =7.5 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 177.7, 147.7, 139.6, 129.9 (2C), 122.1 (2C), 37.3, 35.2, 29.8. HRMS (ESI-TOF) *m/z*: [M + K]⁺ Calcd for C₁₀H₁₂KO₅S 283.0043; Found 283.0046.

3-[4-(Benzyloxy)phenyl]propionic acid (S19).

The following reaction was carried out under Ar. To a stirred solution of 3-(4-hydroxyphenyl)propionic acid (**S15**) (202 mg, 1.22 mmol) in THF (6 mL) were added BnBr (0.150 mL, 1.27 mmol), KOH (169 mg, 3.01 mmol), and NaI (3.6 mg, 0.024 mmol). The mixture was refluxed for 18 h, and H₂O (6 mL) was added. After being refluxed for 2 h, the mixture was quenched with 3 M aqueous HCl (10 mL) and extracted with CH₂Cl₂ (10 mL×3). The combined extracts were washed with saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/toluene, 1:10) to provide 157 mg (51%) of **S19** as white crystals. mp 90-93 °C. TLC *R*_f 0.38-0.53 (EtOAc/hexane, 1:1). IR (KBr): 3500-2500, 3030, 1696 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, 2H, *J* =7.3 Hz, H-2, 6 of Ph), 7.39 (t, 2H, *J* =7.3 Hz, H-3, 5 of Ph), 7.33 (t, 1H, *J* =7.3 Hz, H-4 of Ph), 7.13 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 6.92 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 5.05 (s, 2H, Bn), 2.91 (t, 2H, *J* =7.9 Hz, H-3, 3'), 2.66 (t, 2H, *J* =7.9 Hz, H-3, 5')

2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 178.6, 157.4, 137.1, 132.5, 129.2 (2C), 128.6 (2C), 127.9, 127.4 (2C), 114.9 (2C), 70.0, 35.8, 29.7. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₁₆H₁₆NaO₃ 279.0997; Found 279.1003.

The following reaction was carried out under Ar. To a stirred solution of 3-(4-hydroxyphenyl)propionic acid (**S15**) (99.8 mg, 0.601 mmol) in DMF (1 mL) were added PMBCl (0.330 mL, 2.42 mmol), K₂CO₃ (333 mg, 2.41 mmol), and KI (24.8 mg, 0.149 mmol). The mixture was stirred at 60 °C for 2 h, and 20wt% aqueous NaOH (1.2 mL) was added. After being stirred at 60 °C for 2 h, the mixture was quenched with 1 M aqueous HCl (15 mL) and extracted with toluene (50 mL). The organic layer was washed with H₂O (30 mL×4) and saturated brine (20 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by recrystallization from toluene to provide 57.2 mg (33%) of **S20** as white crystals. mp 131-134 °C. TLC *R*_f 0.21-0.44 (EtOAc/toluene, 1:1). IR (KBr): 3200-2500, 2932, 1710 cm⁻¹. ¹H NMR (500 MHz, (CD₃)₂SO): δ 7.35 (d, 2H, *J* =8.8 Hz, H-2, 6 of Ar), 7.11 (d, 2H, *J* =8.8 Hz, H-2, 6 of PMB), 6.92 (d, 2H, *J* =8.8 Hz, H-3, 5 of Ar), 6.88 (d, 2H, *J* =8.8 Hz, H-3, 5 of PMB), 4.95 (s, 2H, Bn), 3.74 (s, 3H, -Me), 2.72 (t, 2H, *J* =7.6 Hz, H-3, 3'), 2.48 (t, 2H, *J* =7.6 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 173.9, 158.9, 156.7, 132.9, 129.5 (2C), 129.2 (2C), 129.1, 114.6 (2C), 113.8 (2C), 68.9, 55.1, 35.6, 29.5. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₇H₁₉O₃₄ 287.1283; Found 287.1291.

The following reaction was carried out under Ar. To a stirred solution of 3-(4-hydroxyphenyl)propionic acid (**S15**) (202 mg, 1.22 mmol) in DMF (2 mL) were added *o*-NO₂BnBr (986 mg, 4.56 mmol), K₂CO₃ (675 mg, 4.89 mmol), and KI (39.4 mg, 0.237 mmol). The mixture was stirred at 60 °C for 3 h, and 20wt% aqueous NaOH (2.4 mL) was added. After being stirred at 60 °C for 1 h, the mixture was quenched with 1 M aqueous HCl (30 mL) and extracted with CHCl₃ (10 mL×3). The combined extracts were extracted with 0.1 M aqueous NaOH (10 mL×2). The combined aqueous layers were acidified with 1 M aqueous HCl (6 mL) and extracted with CHCl₃ (30 mL). The organic layer was washed with saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/toluene, 1:10) to provide 263 mg (72%) of **S21**

as yellow crystals. mp 124-126 °C. TLC R_f 0-0.33 (EtOAc/toluene, 1:4). IR (KBr): 3500-2500, 2919, 1708 cm⁻¹. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.11 (d, 1H, *J* =8.5 Hz, H-3 of *o*-NO₂Bn), 7.77 (s, 1H, *o*-NO₂Bn), 7.76 (s, 1H, *o*-NO₂Bn), 7.65 (m, 1H, *o*-NO₂Bn), 7.19 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 6.95 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 5.46 (s, 2H, *o*-NO₂Bn), 2.79 (t, 2H, *J* =7.5 Hz, H-3, 3'), 2.52 (t, 2H, *J* =7.5 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 173.9, 156.2, 147.5, 134.0, 133.6, 132.7, 129.4 (2C), 129.2, 129.1, 124.8, 114.6 (2C), 66.3, 35.5, 29.5. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₆H₁₆NO₅ 302.1028; Found 302.1029.

tert-Butyl 3-(4-hydroxyphenyl)propionate (S22).

The following reaction was carried out under Ar. To a stirred solution of 3-(4-hydroxyphenyl)propionic acid (**S15**) (3.00 g, 18.1 mmol) in DMF (18 mL) was added CDI (3.53 g, 21.8 mmol). The mixture was stirred at 40 °C for 7 h, and dry *tert*-butyl alcohol (5.15mL, 54.1 mmol) and DBU (5.40 mL, 36.1 mmol) were added. After being stirred at 80 °C for 18 h, the mixture was diluted with H₂O (100 mL) and extracted with Et₂O (20 mL×10). The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:8) to provide 2.50 g (62%) of **S22** as colorless crystals. mp 38-42 °C. TLC *R_f* 0.72 (EtOAc/hexane, 1:2). IR (KBr): 3362, 2977, 1690 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.04 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 6.73 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 5.52 (br s, 1H, -OH), 2.83 (t, 2H, *J* =7.8 Hz, H-3, 3'), 2.51 (t, 2H, *J* =7.8 Hz, H-2, 2'), 1.42 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.8, 154.1, 132.6, 129.4 (2C), 115.2 (2C), 80.6, 37.4, 30.3, 28.0 (3C). HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₃H₁₉O₃ 223.1334; Found 223.1338.

tert-Butyl 3-[4-(2-methoxyethoxymethoxy)phenyl]propionate (S23).

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of **S22** (99.8 mg, 0.449 mmol) in THF (7 mL) was added NaH (60% in oil, 53.7 mg, 1.34 mmol). The mixture was stirred at 0 °C for 30 min, and MEMCl (0.130 mL, 1.14 mmol) was added at 0 °C. After being stirred at room temperature for 14 h, the mixture was diluted with saturated aqueous NaHCO₃ (20 mL) and extracted with CH₂Cl₂ (10 mL×3). The combined extracts were washed with H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column

chromatography on silica gel (EtOAc/hexane, 1:10) to provide 117 mg (84%) of **S23** as a colorless oil. TLC R_f 0.56 (EtOAc/hexane, 1:4). IR (neat): 2977, 1729 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, 2H, *J* =8.8 Hz, H-2, 6 of Ar), 6.96 (d, 2H, *J* =8.8 Hz, H-3, 5 of Ar), 5.24 (s, 2H, -OCH₂O-), 3.81 (t, 2H, *J* =4.8 Hz, -OCH₂CH₂O-), 3.55 (t, 2H, *J* =4.8 Hz, -OCH₂CH₂O-), 3.37 (s, 3H, -OCH₃), 2.84 (t, 2H, *J* =7.6 Hz, H-3, 3'), 2.50 (t, 2H, *J* =7.6 Hz, H-2, 2'), 1.41 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.3, 155.6, 134.2, 129.2 (2C), 116.2 (2C), 93.6, 80.3, 76.7, 67.5, 59.0, 37.3, 30.3, 28.0 (3C). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₂₇O₅ 311.1858; Found 311.1854.

3-[4-(2-Methoxyethoxymethoxy)phenyl]propionic acid (S24).

The following reaction was carried out under Ar. To a stirred solution of **S23** (117 mg, 0.378 mmol) in MeOH/H₂O (5:2, 6 mL) was added NaOH (95.5 mg, 2.39 mmol). After being stirred at room temperature for 15 h, the mixture was quenched with 1 M aqueous HCl (3 mL) and extracted with CHCl₃ (10 mL×3). The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:1) to provide 92.0 mg (96%) of **S24** as a colorless oil. TLC *R*_f 0-0.34 (EtOAc/hexane, 2:1). IR (neat): 3600-2500, 2926, 1711 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.12 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 6.98 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 5.24 (s, 2H, -OCH₂O-), 3.82 (t, 2H, *J* =4.6 Hz, -OCH₂CH₂O-), 3.56 (t, 2H, *J* =4.6 Hz, -OCH₂CH₂O-), 3.37 (s, 3H, -OCH₃), 2.90 (t, 2H, *J* =7.8 Hz, H-3, 3'), 2.64 (t, 2H, *J* =7.8 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 178.3, 155.8, 133.6, 129.2 (2C), 116.4 (2C), 93.5, 76.7, 67.5, 59.0, 35.7, 29.8. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₃H₁₈O₅Na 277.1052; Found 277.1046.

tert-Butyl 3-[4-(4-pentenyloxy)phenyl]propionate (S25).

The following reaction was carried out under Ar. To a stirred solution of **S22** (257 mg, 1.15 mmol) in DMF (2 mL) were added K₂CO₃ (667 mg, 4.83 mmol), KI (40.4 mg, 0.243 mmol), and 5-bromo-1-pentene (0.550 mL, 4.65 mmol). After being stirred at 60 °C for 17 h, the mixture was diluted with H₂O (10 mL) and extracted with Et₂O (10 mL×3). The combined extracts were washed saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 309 mg (92%) of **S25** as a colorless oil. TLC R_f 0.69 (EtOAc/hexane, 1:4). IR (neat):

3500-2500, 2977, 1730 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, 2H, *J* =8.8 Hz, H-2, 6 of Ar), 6.82 (d, 2H, *J* =8.8 Hz, H-3, 5 of Ar), 5.85 (m, 1H, H-4 of 4-pentenyloxy), 5.06 (d, 1H, *J* =17.0 Hz, H-5 of 4-pentenyloxy), 5.00 (d, 1H, *J* =10.6 Hz, H-5' of 4-pentenyloxy), 3.94 (t, 2H, *J* =6.8 Hz, H-1, 1' of 4-pentenyloxy), 2.85 (t, 2H, *J* =7.9 Hz, H-3, 3'), 2.50 (t, 2H, *J* =7.9 Hz, H-2, 2'), 2.23 (q, 2H, *J* =6.8 Hz, H-3, 3' of 4-pentenyloxy), 1.87 (quin, 2H, *J* =6.8 Hz, H-2, 2' of 4-pentenyloxy), 1.42 (s, 9H, *t*-Bu). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃): δ 172.3, 157.4, 137.8, 132.7, 129.2 (2C), 115.1, 114.4 (2C), 80.2, 67.1, 37.4, 30.2, 30.1, 28.4, 28.0 (3C). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₇O₃ 291.1960; Found 291.1969.

3-[4-(4-Pentenyloxy)phenyl]propionic acid (S26).

To a stirred solution of **S25** (196 mg, 0.673 mmol) in MeOH/H₂O (2:1, 2 mL) was added NaOH (95.5 mg, 2.46 mmol). After being refluxed for 2 h, the mixture was quenched with 1 M aqueous HCl (4 mL), diluted with H₂O (10 mL) and extracted with CHCl₃ (10 mL×3). The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:4) to provide 158 mg (quant.) of **S26** as white crystals. mp 68-69 °C. TLC R_f 0-0.25 (EtOAc/hexane, 1:4). IR (KBr): 2949, 1721 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, 2H, *J* =8.8 Hz, H-2, 6 of Ar), 6.83 (d, 2H, *J* =8.8 Hz, H-3, 5 of Ar), 5.85 (m, 1H, H-4 of 4-pentenyloxy), 5.06 (d, 1H, *J* =17.2 Hz, H-5 of 4-pentenyloxy), 4.99 (d, 1H, *J* =10.2 Hz, H-5' of 4-pentenyloxy), 3.94 (t, 2H, *J* =6.8 Hz, H-1, 1' of 4-pentenyloxy), 2.90 (t, 2H, *J* =7.7 Hz, H-3, 3'), 2.65 (t, 2H, *J* =7.7 Hz, H-2, 2'), 2.23 (q, 2H, *J* =6.8 Hz, H-3, 3' of 4-pentenyloxy), 1.87 (quin, 2H, *J* =6.8 Hz, H-2, 2' of 4-pentenyloxy). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 178.7, 157.6, 137.8, 132.1, 129.2 (2C), 115.1, 114.5 (2C), 67.2, 35.8, 30.1, 29.7, 28.4. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₉O₃ 235.1334; Found 235.1325.

tert-Butyl 3-[4-(3-phenylpropioloxy)phenyl]propionate (S27).

The following reaction was carried out under Ar. To a stirred solution of **S22** (227 mg, 1.02 mmol) in CH₂Cl₂ (1 mL) were added phenylpropiolic acid (157 mg, 1.07 mmol), EDCI·HCl (363 mg, 1.89 mmol), and DMAP (12.3 mg, 0.101 mmol). After being stirred at room temperature for 2 h, the mixture was diluted with CH₂Cl₂ (10 mL) and washed with 5wt% aqueous NaHCO₃ (10 mL×3), H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The

organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 155 mg (43%) of **S27** as white crystals. mp 65-69 °C. TLC R_f 0.59 (EtOAc/hexane, 1:2). IR (KBr): 2970, 2234, 1720 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, 2H, *J* =7.6 Hz, H-2, 6 of Ph), 7.49 (t, 1H, *J* =7.6 Hz, H-4 of Ph), 7.41 (t, 2H, *J* =7.6 Hz, H-3, 5 of Ph), 7.24 (d, 2H, *J* =8.8 Hz, H-2, 6 of Ar), 7.10 (d, 2H, *J* =8.8 Hz, H-3, 5 of Ar), 2.92 (t, 2H, *J* =7.8 Hz, H-3, 3'), 2.54 (t, 2H, *J* =7.8 Hz, H-2, 2'), 1.42 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.1, 152.5, 148.4, 139.0, 133.2 (2C), 131.0, 129.5 (2C), 128.7 (2C), 121.3 (2C), 119.3, 88.6, 80.5, 80.3, 36.9, 30.5, 28.1 (3C). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₃O₄ 351.1596; Found 351.1595.

3-[4-(3-Phenylpropioloxy)phenyl]propionic acid (S28).

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of **S27** (151 mg, 0.430 mmol) in CH₂Cl₂ (1 mL) was added TFA (1 mL). After being stirred at room temperature for 2 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:2) to provide 122 mg (97%) of **S28** as white crystals. mp 93-96 °C. TLC R_f 0-0.30 (EtOAc/hexane, 1:2). IR (KBr): 3200-2500, 2937, 2223, 1726, 1702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, 2H, *J* =7.3 Hz, H-2, 6 of Ph), 7.49 (t, 1H, *J* =7.3 Hz, H-4 of Ph), 7.41 (t, 2H, *J* =7.3 Hz, H-3, 5 of Ph), 7.26 (d, 2H, *J* =8.6 Hz, H-2, 6 of Ar), 7.12 (d, 2H, *J* =8.6 Hz, H-3, 5 of Ar), 2.98 (t, 2H, *J* =7.7 Hz, H-3, 3') , 2.70 (t, 2H, *J* =7.7 Hz, H-2, 2'). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.7, 152.5, 148.6, 138.4, 133.2 (2C), 131.0, 129.4 (2C), 128.7 (2C), 121.5 (2C), 119.2, 88.7, 80.2, 35.3, 29.9. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₈H₁₅O₄ 295.0970; Found 295.0968.

tert-Butyl 3-[4-(5-carboxylpentyloxy)phenyl]propionate (S29).

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of **S22** (668 mg, 3.01 mmol) in DMF (9 mL) was added NaH (60% in oil, 300 mg, 7.50 mmol). The mixture was stirred at 0 °C for 1 h, and a solution of 6-bromohexanoic acid (586 mg, 3.00 mmol) in DMF (6 mL) was added at 0 °C. After being stirred at room temperature for 2 d, the mixture was acidified with 1 M aqueous HCl (6 mL) to pH2, diluted with EtOAc (20 mL) and

washed with H₂O (20 mL×3). The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:8) to provide 865 mg (86%) of **S29** as white crystals. mp 39-42 °C. TLC R_f 0-0.40 (EtOAc/hexane, 1:2). IR (KBr): 3500-2500, 2942, 1725, 1713 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.09 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 6.80 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 3.93 (t, 2H, *J* =6.8 Hz, H-1, 1' of pentyloxy), 2.84 (t, 2H, *J* =7.8 Hz, H-3, 3'), 2.50 (t, 2H, *J* =7.8 Hz, H-2, 2'), 2.39 (t, 2H, *J* =7.6 Hz, H-5, 5' of pentyloxy), 1.79 (quin, 2H, *J* =6.8 Hz, H-2, 2' of pentyloxy), 1.71 (quin, 2H, *J* =7.6 Hz, H-4, 4' of pentyloxy), 1.57-1.48 (m, 2H, H-3, 3' of pentyloxy), 1.42 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 179.4, 172.4, 157.4, 132.8, 129.2 (2C), 114.4 (2C), 80.3, 67.6. 37.4, 33.9, 30.3, 28.9, 28.1 (3C), 25.6, 24.4. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₉O₅ 337.2015; Found 337.2016.

The following reaction was carried out under Ar. To a stirred solution of S29 (1.92 g, 5.71 mmol) in CH₂Cl₂ (12 mL) were added N-hydroxyphthalimide (1.12 g, 6.87 mmol) and EDCI·HCl (1.64 g, 8.56 mmol). After being stirred at room temperature for 16 h, the mixture was diluted with CH_2Cl_2 (50 mL) and washed with saturated aqueous NaHCO₃ (20 mL×3), H₂O (20 mL×3) and saturated brine (20 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:5) to provide 2.58 g (94%) of **S30** as white crystals. mp 58-60 °C. TLC R_f 0.59 (EtOAc/hexane, 1:2). IR (KBr): 2943, 1819, 1787, 1741, 1698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.92-7.86 (m, 2H, H-3, 6 of phthalimidyl), 7.82-7.77 (m, 2H, H-4, 5 of phthalimidyl), 7.10 (d, 2H, J = 8.8 Hz, H-2, 6 of Ar), 6.82 (d, 2H, J = 8.8 Hz, H-3, 5 of Ar), 3.96 (t, 2H, J =6.3 Hz, H-1, 1' of pentyloxy), 2.84 (t, 2H, J =7.9 Hz, H-3, 3'), 2.71 (t, 2H, J =7.5 Hz, H-5, 5' of pentyloxy), 2.50 (t, 2H, J =7.9 Hz, H-2, 2'), 1.91-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.67-1.60 (m, 2H, H-3, 3' of pentyloxy), 1.42 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): § 172.4, 169.5, 162.0 (2C), 157.4, 134.7 (2C), 132.8, 129.2 (2C), 128.9 (2C), 124.0 (2C), 114.4 (2C), 80.2, 67.5, 37.4, 30.9, 30.3, 28.7, 28.1 (3C), 25.4, 24.4. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₇H₃₂NO₇ 482.2179; Found 482.2175.

3-[4-(5-(Phthalimidyloxycarbonyl)pentyloxy)phenyl]propionic acid (S31).

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of S30

(2.58 g, 5.36 mmol) in CH₂Cl₂ (13 mL) was added TFA (13 mL). After being stirred at room temperature for 2 h, the mixture was concentrated under reduced pressure. The residue was purified by recrystallization from CH₂Cl₂/hexane to provide 2.12 g (93%) of **S31** as white crystals. mp 100-103 °C. TLC R_f 0-0.34 (EtOAc/hexane, 2:1). IR (KBr): 3400-2500, 2941, 1821, 1788, 1746 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.92-7.86 (m, 2H, H-3, 6 of phthalimidyl), 7.82-7.76 (m, 2H, H-4, 5 of phthalimidyl), 7.11 (d, 2H, *J* =8.4 Hz, H-2, 6 of Ar), 6.83 (d, 2H, *J* =8.4 Hz, H-3, 5 of Ar), 3.97 (t, 2H, *J* =6.4 Hz, H-1, 1' of pentyloxy), 2.90 (t, 2H, *J* =7.8 Hz, H-3, 3'), 2.71 (t, 2H, *J* =7.4 Hz, H-5, 5' of pentyloxy), 2.65 (t, 2H, *J* =7.8 Hz, H-2, 2'), 1.92-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.69-1.58 (m, 2H, H-3, 3' of pentyloxy). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 178.5, 169.5, 162.0 (2C), 157.5, 134.7 (2C), 132.1, 129.2 (2C), 128.9 (2C), 123.9 (2C), 114.6 (2C), 67.5, 35.8, 30.9, 29.8, 28.8, 25.4, 24.4. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄NO₇ 426.1553; Found 426.1546.

tert-Butyl 3-[4-(5-(3,4,5,6-

tetrachlorophthalimidyloxycarbonyl)pentyloxy)phenyl]propionate (S32).

The following reaction was carried out under Ar. To a stirred solution of **S29** (363 mg, 1.08 mmol) in CH₂Cl₂ (2 mL) were added *N*-hydroxytetrachlorophthalimide (300 mg, 0.998 mmol) and EDCI-HCl (313 mg, 1.63 mmol). After being stirred at room temperature for 14 h, the mixture was diluted with CH₂Cl₂ (30 mL) and washed with H₂O (20 mL×5) and saturated brine (20 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 360 mg (58%) of **S32** as white solids. TLC *R_f* 0.80 (EtOAc/hexane, 1:2). IR (KBr): 2932, 1821, 1794, 1749, 1727 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, 2H, *J* =8.8 Hz, H-2, 6 of Ar), 6.81 (d, 2H, *J* =8.8 Hz, H-3, 5 of Ar), 3.96 (t, 2H, *J* =6.5 Hz, H-1, 1' of pentyloxy), 2.84 (t, 2H, *J* =7.6 Hz, H-3, 3'), 2.71 (t, 2H, *J* =7.5 Hz, H-5, 5' of pentyloxy), 2.50 (t, 2H, *J* =7.6 Hz, H-2, 2'), 1.91-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.67-1.59 (m, 2H, H-3, 3' of pentyloxy), 1.42 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.4, 169.0, 157.6 (2C), 157.3, 141.0 (2C), 132.8, 130.5 (2C), 129.2 (2C), 124.7 (2C), 114.4 (2C), 80.3, 67.4, 37.4, 30.8, 30.3, 28.8, 28.1 (3C), 25.4, 24.5. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₇H₂₈Cl₄NO₇ 618.0620; Found 618.0620.

3-[4-(5-(3,4,5,6-Tetrachlorophthalimidyloxycarbonyl)pentyloxy)phenyl]propionic acid (S33).

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of **S32** (346 mg, 0.559 mmol) in CH₂Cl₂ (1 mL) was added TFA (1 mL). After being stirred at room temperature for 2 h, the mixture was concentrated under reduced pressure. The residue was purified by recrystallization from CH₂Cl₂/hexane to provide 272 mg (86%) of **S33** as yellow crystals. mp 124-127 °C. TLC R_f 0-0.33 (EtOAc/hexane, 1:2). IR (KBr): 3500-2500, 2949, 1822, 1794, 1747, 1708 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, 2H, *J* =8.4 Hz, H-2, 6 of Ar), 6.83 (d, 2H, *J* =8.4 Hz, H-3, 5 of Ar), 3.96 (t, 2H, *J* =6.2 Hz, H-1, 1' of pentyloxy), 2.90 (t, 2H, *J* =7.7 Hz, H-3, 3'), 2.71 (t, 2H, *J* =7.4 Hz, H-5, 5' of pentyloxy), 2.65 (t, 2H, *J* =7.7 Hz, H-2, 2'), 1.92-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.69-1.58 (m, 2H, H-3, 3' of pentyloxy). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.7, 169.0, 157.6 (3C), 141.0 (2C), 132.2, 130.5 (2C), 129.2 (2C), 124.7 (2C), 114.5 (2C), 67.4, 35.7, 30.8, 29.8, 28.8, 25.4, 24.5. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₃H₂₀Cl₄NO₇ 561.9994; Found 561.9995.

3-O-Benzoyl-lithocholic acid (S35).

The following reaction was carried out under Ar. To a stirred solution of lithocholic acid (202 mg, 0.536 mmol) in THF (8 mL) were added benzoyl chloride (55.0 µL, 0.473 mmol) and pyridine (106 µL, 1.32 mmol). After being stirred at 70 °C for 13 h, the mixture was acidified with 1 M aqueous HCl to pH2, diluted with H₂O (20 mL) and extracted with EtOAc (20 mL \times 2). The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 90.4 mg (40%) of S35 as white solids. TLC R_f 0.32-0.65 (EtOAc/hexane, 1:1). IR (KBr): 3600-2500, 2939, 1715 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, 2H, J = 7.8 Hz, H-2, 6 of Bz), 7.54 (t, 1H, J = 7.8 Hz, H-4 of Bz), 7.43 (t, 2H, J =7.8 Hz, H-3, 5 of Bz), 4.97 (m, 1H, H-3), 2.40 (m, 1H), 2.26 (m, 1H), 2.03-1.93 (m, 2H), 1.92-1.76 (m, 5H), 1.68 (m, 1H), 1.63-1.50 (m, 3H) , 1.49-1.39 (m, 5H), 1.35 (m, 1H), 1.31-1.25 (m, 3H), 1.19 (m, 1H), 1.15-1.04 (m, 5H) 0.96 (s, 3H, H-19), 0.93 (d, 3H, J = 6.5 Hz, H-21), 0.66 (s, 3H, H-18). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 180.1, 166.2, 132.7, 130.9, 129.5 (2C), 128.2 (2C), 75.0, 56.5, 56.0, 42.7, 41.9, 40.5, 40.1, 35.8, 35.3, 35.1, 34.6, 32.3, 31.0, 30.8, 28.2, 27.0, 26.7, 26.3, 24.2, 23.4, 20.9, 18.2, 12.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₄₅O₄ 481.3318; Found 481.3329.

O-Acetyl-mycophenolic acid (S37).

The following reaction was carried out under Ar. To a cooled (0 °C) stirred solution of mycophenolic acid (200 mg, 0.624 mmol) in pyridine (1 mL) were added Ac₂O (0.588 mL, 6.24 mmol) and DMAP (1.3 mg, 0.011 mmol). After being stirred at 0 °C for 2 h, the mixture was poured onto crushed ice (12 g), acidified with 1 M aqueous HCl (15 mL) to pH2 and extracted with EtOAc (15 mL×3). The combined extracts were washed with saturated brine (15 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane/AcOH, 100:100:1) to provide 196 mg (87%) of **S37** as white crystals. mp 124-126 °C. TLC R_f 0.63 (EtOAc/hexane, 2:1). IR (KBr): 3400-2500, 2896, 1765, 1723 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 5.17-5.09 (m, 3H, C=CH, CO₂CH₂), 3.78 (s, 3H, OMe), 3.35 (d, 2H, *J* =6.0 Hz, C=CH-CH₂), 2.44-2.37 (m, 2H, CO₂H-CH₂), 2.39 (s, 3H, OAc), 2.29 (t, 2H, *J* =7.0 Hz, CO₂H-CH₂-CH₂), 2.22 (s, 3H, Ar-CH₃), 1.78 (s, 3H, CH₃-C=CH). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 178.0, 169.1, 168.3, 162.6, 146.2, 145.9, 134.2, 129.1, 123.1, 122.4, 113.5, 68.4, 61.2, 34.1, 32.4, 23.5, 20.5, 16.2, 11.8. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₃O₇ 363.1444; Found 363.1435.

2,7-Di-O-acetyl-gibberellic acid (S39).

The following reaction was carried out under Ar. To a stirred solution of gibberellic acid (199 mg, 0.576 mmol) in pyridine (0.9 mL) were added Ac₂O (0.544 mL, 5.77 mmol) and DMAP (2.2 mg, 0.018 mmol). After being stirred at room temperature for 16 h, the mixture was acidified with 1 M aqueous HCl (2 mL) to pH2, diluted with CH₂Cl₂ (10 mL) and washed with 1 M aqueous HCl (2 mL×3). The organic layer was washed with saturated brine (10 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane/AcOH, 100:100:1) to provide 196 mg (79%) of **S39** as white crystals. mp 168-170 °C. TLC *R*_f 0-0.63 (EtOAc/hexane, 2:1). $[\alpha]^{26}_{D}$ +157 (*c* 1.00, CHCl₃). IR (KBr): 3700-2900, 2941, 1781, 1741 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.37 (d, 1H, *J* =9.8 Hz, H-4), 5.87 (dd, 1H, *J* =9.8, 3.8 Hz, H-3), 5.33 (d, 1H, *J* =3.8 Hz, H-2), 5.17 (s, 1H, H-12), 5.02 (s, 1H, H-12'), 3.27 (d, 1H, *J* =11.0 Hz, H-10a), 2.81 (d, 1H, *J* =11.0 Hz, H-10), 2.50-2.34 (m, 3H), 2.28 (d, 1H, *J* =10.8 Hz), 2.20 (d, 1H, *J* =10.8 Hz), 2.13 (s, 3H,

OAc), 2.03 (s, 3H, OAc), 2.02-1.91 (m, 2H), 1.81 (m, 1H), 1.71 (m, 1H), 1.19 (s, 3H, H-14). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 176.9, 176.1, 170.1 (2C), 153.2, 134.1, 129.2, 108.4, 89.9, 84.1, 70.2, 53.1, 52.1, 51.0, 50.8, 50.1, 42.4, 39.5, 36.4, 22.0, 20.8, 16.8, 14.4. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₃H₂₇O₈ 431.1706; Found 431.1715.

trans-4-Benzyloxycarbonylaminocyclohexanecarboxylic acid, 2-thioxopyridinyl ester (1a).

The following reaction was carried out under Ar. To a stirred solution of 18 (1.17 g, 4.23 mmol) in CH₂Cl₂ (14 mL) were added oxalyl chloride (0.402 mL, 4.66 mmol) and DMF (0.02 mL, 0.3 mmol). The mixture was stirred at room temperature for 30 min, and the flask was protected from light with aluminum foil. Then 2-mercaptopyridine N-oxide sodium salt (698 mg, 4.68 mmol) was added. After being stirred at room temperature for 1 h, the mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 4:1) to provide 682 mg (42%) of 1a as yellow crystals. mp 132-136 °C. TLC Rf 0.72 (EtOAc/hexane, 4:1). IR (KBr): 3311, 2926, 1781, 1685 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, 1H, J =8.7 Hz, H-6 of 2thioxopyridinyl), 7.53 (d, 1H, J = 7.1 Hz, H-3 of 2-thioxopyridinyl), 7.39-7.30 (m, 5H, -Ph of Cbz), 7.20 (dd, 1H, J = 8.7, 7.1 Hz, H-5 of 2-thioxopyridinyl), 6.63 (t, 1H, J = 7.1 Hz, H-4 of 2-thioxopyridinyl), 5.09 (s, 2H, -CH₂- of Cbz), 4.65 (d, 1H, J = 7.2 Hz, -NH-), 3.56 (m, 1H, H-4), 2.69 (t, 1H, J = 12.6 Hz, H-1), 2.31 (br d, 2H, J = 12.6 Hz, H_{eq} -2, 6), 2.18 (br d, 2H, J = 12.6 Hz, H_{eq} -2, 8), 2.18 (br d, 2H, J = 12.6 Hz, H_{eq} -2, 8), 2.18 (br d, 2H, J = 12.6 Hz, H_{eq} -2, 8), 2.18 (br d, 2H, J = 12.6 Hz, 12.6 Hz, H_{eq} -3, 5), 1.76 (q, 2H, J = 12.6 Hz, H_{ax} -2, 6), 1.23 (q, 2H, J = 12.6 Hz, H_{ax} -3, 5). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.8, 170.6, 155.5, 137.5 (2C), 136.4, 133.5, 128.5 (3C), 128.1 (2C), 112.6, 66.7, 49.1, 40.3, 32.1 (2C), 27.6 (2C). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₃N₂O₄S 387.1379; Found 387.1366.

3-[4-(tert-Butyldimethylsilyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1b).

The following reaction was carried out under Ar and in the flask protected from light with aluminum foil. To a stirred solution of 2-mercaptopyridine *N*-oxide (45.9 mg, 0.361 mmol) and EDCI-HCl (81.1 mg, 0.423 mmol) in CH₂Cl₂ (0.4 mL) was added a solution of **S16** (59.8 mg, 0.213 mmol) in CH₂Cl₂ (0.6 mL). After being stirred at room temperature for 1 h, the mixture was diluted with CH₂Cl₂ (10 mL) and washed with 5wt% aqueous NaHCO₃ (10

mL×3), H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:4) to provide 53.1 mg (64%) of **1b** as a yellow oil. TLC R_f 0.67 (EtOAc/hexane, 1:1). IR (neat): 2955, 2930, 1809 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, 1H, J =8.8 Hz, H-6 of 2-thioxopyridinyl), 7.39 (d, 1H, J =6.7 Hz, H-3 of 2-thioxopyridinyl), 7.20 (dd, 1H, J =8.8, 6.7 Hz, H-5 of 2-thioxopyridinyl), 7.11 (d, 2H, J =8.2 Hz, H-2, 6 of Ar), 6.79 (d, 2H, J =8.2 Hz, H-3, 5 of Ar), 6.61 (t, 1H, J = 6.7 Hz, H-4 of 2-thioxopyridinyl), 3.10-2.98 (m, 4H, H-2, 2', 3, 3'), 0.98 (s, 9H, *t*-Bu), 0.19 (s, 6H, -Me). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.8, 168.3, 154.3, 137.6, 137.4, 133.5, 131.9, 129.3 (2C), 120.2 (2C), 112.6, 33.6, 29.6, 25.7 (3C), 18.2, -4.4 (2C). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₈NO₃SSi 390.1559; Found 390.1562.

3-[4-(Pivaloyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1c).

As described for the preparation of **1b**, compound **S17** (49.8 mg, 0.199 mmol) was converted to 34.9 mg (49%) of **1c**. Compound **1c** was obtained as a yellow oil. TLC R_f 0.67 (EtOAc/hexane, 1:1). IR (neat): 3026, 1808, 1745 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.68 (dd, 1H, J =8.6, 1.7 Hz, H-6 of 2-thioxopyridinyl), 7.35 (dd, 1H, J =6.9, 1.6 Hz, H-3 of 2-thioxopyridinyl), 7.28 (d, 2H, J =8.8 Hz, H-2, 6 of Ar), 7.19 (ddd, 1H, J =8.6, 6.9, 1.6 Hz, H-5 of 2-thioxopyridinyl), 7.00 (d, 2H, J =8.8 Hz, H-3, 5 of Ar), 6.61 (td, 1H, J = 6.9, 1.7 Hz, H-4 of 2-thioxopyridinyl), 3.14 (t, 2H, J =7.4 Hz, H-3, 3'), 3.04 (t, 2H, J =7.4 Hz, H-2, 2'), 1.35 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 177.2, 175.8, 168.0, 149.8, 137.7, 137.3, 136.5, 133.6, 129.4 (2C), 121.7 (2C), 112.7, 39.0, 33.3, 29.8, 27.1 (3C). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₂₂NO₄S 360.1270; Found 360.1261.

3-[4-(2-Methoxyethoxyphenyl]propionic acid, 2-thioxopyridinyl ester (1d).

As described for the preparation of **1b**, compound **S24** (43.6 mg, 0.171 mmol) was converted to 48.3 mg (78%) of **1d**. Compound **1d** was obtained as a yellow oil. TLC R_f 0.25 (EtOAc/hexane, 3:1). IR (neat): 2928, 1808 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.69 (dd, 1H, J =9.0, 1.8 Hz, H-6 of 2-thioxopyridinyl), 7.44 (dd, 1H, J =7.2, 1.8 Hz, H-3 of 2-thioxopyridinyl), 7.22-7.16 (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), 7.01 (d, 2H, J

=8.5 Hz, H-3, 5 of Ar), 6.61 (td, 1H, *J* = 7.2, 1.8 Hz, H-4 of 2-thioxopyridinyl), 5.26 (s, 2H, -OCH₂O-), 3.84-3.80 (m, 2H, -OCH₂CH₂O-), 3.58-3.54 (m, 2H, -OCH₂CH₂O-), 3.38 (s, 3H, -OCH₃), 3.09 (t, 2H, *J* =7.0 Hz, H-3, 3'), 3.01 (t, 2H, *J* =7.0 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.8, 168.3, 156.0, 137.6, 137.4, 133.5, 132.7, 129.4 (2C), 116.5 (2C), 112.6, 93.6, 71.6, 67.6, 59.0, 33.5, 29.5. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₈H₂₂NO₅S₂ 364.1219; Found 364.1215.

3-[4-(Methanesulfonyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1e).

As described for the preparation of **1b**, compound **S18** (49.6 mg, 0.203 mmol) was converted to 55.1 mg (76%) of **1e**. Compound **1e** was obtained as yellow crystals. mp 64-68 °C. TLC R_f 0.52 (EtOAc/hexane, 4:1). IR (KBr): 2931, 1807 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, 1H, J =9.0, 1.6 Hz, H-6 of 2-thioxopyridinyl), 7.44 (dd, 1H, J =7.2, 1.2 Hz, H-3 of 2-thioxopyridinyl), 7.32 (d, 2H, J =8.8 Hz, H-2, 6 of Ar), 7.25-7.18 (m, 3H, H-5 of 2-thioxopyridinyl, H-3, 5 of Ar), 6.61 (td, 1H, J = 7.2, 1.6 Hz, H-4 of 2-thioxopyridinyl), 3.18-3.12 (m, 2H, H-3, 3'), 3.15 (s, 3H, -Me), 2.69 (t, 2H, J =7.4 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.7, 168.0, 147.9, 138.7, 137.5, 137.3, 133.6, 130.1 (2C), 122.3 (2C), 112.7, 37.4, 33.1, 29.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NO₅S₂ 354.0470; Found 354.0461.

3-[4-(Benzyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1f).

As described for the preparation of **1b**, compound **S19** (49.6 mg, 0.194 mmol) was converted to 36.7 mg (52%) of **1f**. Compound **1f** was obtained as yellow crystals. mp 101-104 °C. TLC R_f 0.47 (EtOAc/hexane, 1:1). IR (KBr): 3068, 1806 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.68 (dd, 1H, J =8.5, 1.9 Hz, H-6 of 2-thioxopyridinyl), 7.43 (d, 2H, J =7.4 Hz, H-2, 6 of Ph), 7.42-7.36 (m, 3H, H-3 of 2-thioxopyridinyl, H-3, 5 of Ph), 7.33 (t, 1H, J =7.4 Hz, H-4 of Ph), 7.21-7.16 (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), 6.94 (d, 2H, J =9.0 Hz, H-3, 5 of Ar), 6.59 (td, 1H, J = 6.9, 1.9 Hz, H-4 of 2-thioxopyridinyl), 5.06 (s, 2H, Bn), 3.08 (t, 2H, J =6.9 Hz, H-3, 3'), 3.01 (t, 2H, J =6.9 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.8, 168.3, 157.6, 137.6, 137.4, 137.0, 133.5, 131.6, 129.4 (2C), 128.6 (2C), 127.9, 127.4 (2C), 115.0 (2C), 112.5, 70.0, 33.6, 29.5. HRMS (ESI-TOF) m/z: [M + H]⁺

Calcd for C₂₁H₂₀NO₃S 366.1164; Found 366.1168.

3-[4-(p-Methoxybenzyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1g).

As described for the preparation of **1b**, compound **S20** (85.5 mg, 0.299 mmol) was converted to 52.2 mg (44%) of **1g**. Compound **1g** was obtained as yellow crystals. mp 105-109 °C. TLC R_f 0.45 (EtOAc/hexane, 1:1). IR (KBr): 2931, 1808 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.68 (dd, 1H, J =8.5, 1.9 Hz, H-6 of 2-thioxopyridinyl), 7.40 (dd, 1H, J =7.1, 1.8 Hz, H-3 of 2-thioxopyridinyl), 7.36 (d, 2H, J =9.0 Hz, H-2, 6 of PMB), 7.22-7.16 (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), 6.94-6.90 (m, 4H, H-3, 5 of Ar, H-3, 5 of PMB), 6.59 (td, 1H, J = 6.1, 1.9 Hz, H-4 of 2-thioxopyridinyl), 4.98 (s, 2H, PMB), 3.82 (s, 3H, -OMe), 3.08 (t, 2H, J =7.6 Hz, H-3, 3'), 3.01 (t, 2H, J =7.6 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.8, 168.3, 159.4, 157.6, 137.6, 137.4, 133.5, 131.5, 129.4 (2C), 129.2 (2C), 129.0, 115.0 (2C), 114.0 (2C), 112.6, 69.8, 55.3, 33.6, 29.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₂NO₄S 396.1270; Found 396.1276.

3-[4-(o-Nitrobenzyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1h).

As described for the preparation of **1b**, compound **S21** (50.4 mg, 0.167 mmol) was converted to 51.7 mg (76%) of **1h**. Compound **1h** was obtained as yellow crystals. mp 99-101 °C. TLC R_f 0.55 (EtOAc/hexane, 1:1). IR (KBr): 3025, 1807 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.17 (d, 1H, J =8.0 Hz, H-3 of o-NO₂Bn), 7.89 (d, 1H, J =8.0 Hz, H-6 of o-NO₂Bn), 7.1-7.66 (m, 2H, H-6 of 2-thioxopyridinyl, H-5 of o-NO₂Bn), 7.49 (t, 1H, J =8.0 Hz, H-4 of o-NO₂Bn), 7.43 (dd, 1H, J =7.1, 1.3 Hz, H-3 of 2-thioxopyridinyl), 7.22-7.16 (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), 6.94 (d, 2H, J =8.5 Hz, H-3, 5 of Ar), 6.59 (td, 1H, J =7.1, 1.8 Hz, H-4 of 2-thioxopyridinyl), 5.47 (s, 2H, o-NO₂Bn), 3.09 (t, 2H, J =7.1 Hz, H-3, 3'), 3.01 (t, 2H, J =7.1 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.8, 168.3, 156.9, 146.9, 137.6, 137.4, 134.0, 133.8, 133.5, 132.3, 129.6 (2C), 128.6, 128.3, 125.0, 115.1 (2C), 112.6, 66.9, 33.5, 29.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₉N₂O₅S 411.1015; Found 411.1002.

3-[4-(4-Pentenyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1i).

As described for the preparation of **1b**, compound **S26** (97.9 mg, 0.418 mmol) was converted to 124 mg (87%) of **1i**. Compound **1i** was obtained as yellow crystals. mp 68-71 °C. TLC R_f 0.50 (EtOAc/hexane, 1:1). IR (KBr): 2940, 1809 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (dd, 1H, J =8.8, 1.8 Hz, H-6 of 2-thioxopyridinyl), 7.14 (dd, 1H, J =7.0, 1.8 Hz, H-3 of 2-thioxopyridinyl), 7.22-7.15 (m, 3H, H-5 of 2-thioxopyridinyl, H-2, 6 of Ar), 6.85 (d, 2H, J =8.8 Hz, H-3, 5 of Ar), 6.60 (td, 1H, J =7.0, 1.8 Hz, H-4 of 2-thioxopyridinyl), 5.85 (m, 1H, H-4 of 4-pentenyloxy), 5.08-4.97 (m, 2H, H-5, 5' of 4-pentenyloxy), 3.96 (t, 2H, J =6.9 Hz, H-1, 1' of 4-pentenyloxy), 3.11-2.97 (m, 4H, H-2, 2', 3, 3'), 2.23 (q, 2H, J =6.9 Hz, H-3, 3' of 4-pentenyloxy), 1.87 (quin, 2H, J =6.9 Hz, H-2, 2' of 4-pentenyloxy). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.8, 168.3, 157.8, 137.8, 137.6, 137.4, 133.5, 131.2, 129.4 (2C), 115.2, 114.6 (2C), 112.6, 67.2, 33.6, 30.1, 29.5, 28.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₂₂NO₃S 344.1320; Found 344.1327.

3-[4-(3-Phenylpropioloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (1j).

As described for the preparation of **1b**, compound **S28** (78.9 mg, 0.268 mmol) was converted to 74.5 mg (69%) of **1j**. Compound **1j** was obtained as yellow crystals. mp 85-88 °C. TLC R_f 0.55 (EtOAc/hexane, 2:1). IR (KBr): 3098, 2205, 1808, 1722 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (dd, 1H, J =8.8, 1.9 Hz, H-6 of 2-thioxopyridinyl), 7.64 (d, 2H, J =7.2 Hz, H-2, 6 of Ph), 7.50 (t, 1H, J =7.2 Hz, H-4 of Ph), 7.41 (t, 2H, J =7.2 Hz, H-3, 5 of Ph), 7.37 (dd, 1H, J =6.9, 1.6 Hz, H-3 of 2-thioxopyridinyl), 7.15 (d, 2H, J =8.2 Hz, H-2, 6 of Ar), 7.20 (ddd, 1H, J =6.9, 1.6 Hz, H-4 of 2-thioxopyridinyl), 7.15 (d, 2H, J =8.2 Hz, H-3, 5 of Ar), 6.62 (td, 1H, J =6.9, 1.9 Hz, H-4 of 2-thioxopyridinyl), 3.16 (t, 2H, J =7.1 Hz, H-3, 3'), 3.06 (t, 2H, J =7.1 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.7, 168.0, 152.4, 148.8, 137.6, 137.5, 137.3, 133.6, 133.2 (2C), 131.1, 129.7 (2C), 128.7 (2C), 121.7 (2C), 119.1, 112.7, 88.8, 80.1, 33.2, 29.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₁₈NO4S 404.0957; Found 404.0950.

3,3-Diphenylpropionic acid, 2-thioxopyridinyl ester (1k).

As described for the preparation of **1b**, compound **S40** (100 mg, 0.442 mmol) was converted to 88.2 mg (59%) of **1k**. Compound **1k** was obtained as yellow crystals. mp 108-111 °C. TLC R_f 0.43 (EtOAc/hexane, 1:1). IR (KBr): 3023, 1795 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.63 (dd, 1H, J =8.7, 1.8 Hz, H-6 of 2-thioxopyridinyl), 7.35-7.22 (m, 10H, -Ph), 7.14 (ddd, 1H, J =8.7, 6.9, 1.8 Hz, H-5 of 2-thioxopyridinyl), 6.94 (dd, 1H, J = 6.9, 1.8 Hz, H-3 of 2-thioxopyridinyl), 6.49 (td, 1H, J =6.9, 1.8 Hz, H-4 of 2-thioxopyridinyl), 4.67 (t, 1H, J = 8.2 Hz, H-3), 3.50 (d, 2H, J = 8.2 Hz, H-2, 2'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.8, 167.3, 142.3 (2C), 137.4, 137.3, 133.4, 128.8 (4C), 127.7 (4C), 127.0 (2C), 112.5, 46.7, 38.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₈NO₂S 336.1058; Found 336.1058.

Gemfibrozil, 2-thioxopyridinyl ester (11).

As described for the preparation of **1b**, gemfibrozil (**S41**) (102 mg, 0.406 mmol) was converted to 101 mg (69%) of **1l**. Compound **1l** was obtained as yellow crystals. mp 66-69 °C. TLC R_f 0.67 (EtOAc/hexane, 1:1). IR (KBr): 2924, 1793 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.68 (dd, 1H, J =8.8, 1.6 Hz, H-6 of 2-thioxopyridinyl), 7.34 (dd, 1H, J =6.9, 1.5 Hz, H-3 of 2-thioxopyridinyl), 7.17 (ddd, 1H, J = 8.8, 6.9, 1.5 Hz, H-5 of 2-thioxopyridinyl), 7.00 (d, 1H, J = 7.5 Hz, H-3 of dimethylphenoxy), 6.67 (d, 1H, J = 6.9, 1.6 Hz, H-4 of dimethylphenoxy), 6.63 (s, 1H, H-6 of dimethylphenoxy), 6.57 (td, 1H, J = 6.9, 1.6 Hz, H-4 of 2-thioxopyridinyl), 4.00 (t, 2H, J = 5.8 Hz, H-5, 5'), 2.31 (s, 3H, -CH₃ of dimethylphenoxy), 2.18 (s, 3H, -CH₃ of dimethylphenoxy), 2.01-1.89 (m, 4H, H-3, 3', 4, 4'), 1.49 (s, 6H, -CH₃×2). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 176.1, 173.0, 156.7, 137.6 (2C), 136.5, 133.3, 130.4, 123.6, 120.8, 112.5, 112.0, 67.5, 42.3, 37.0, 25.1 (2C), 25.0, 21.4, 15.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₆NO₃S 360.1633; Found 360.1631.

Ketoprofen, 2-thioxopyridinyl ester (1m).

As described for the preparation of **1b**, ketoprofen (**S42**) (101 mg, 0.397 mmol) was converted to 56.8 mg (39%) of **1m**. Compound **1m** was obtained as a yellow oil. TLC R_f 0.44 (EtOAc/hexane, 1:1). IR (neat): 3028, 1800, 1734 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.85 (s, 1H, H-2 of 3-benzoylphenyl), 7.81 (d, 2H, J =7.0 Hz, H-2, 6 of Bz), 7.74 (d, 1H, J =7.5 Hz, H-4 of 3-benzoylphenyl), 7.70-7.66 (m, 2H, H-6 of 2-thioxopyridinyl, H-6 of 3-benzoylphenyl), 7.60 (t, 1H, J =7.3 Hz, H-4 of Bz), 7.53-7.47 (m, 3H, H-3, 5 of Bz, H-5 of 3-benzoylphenyl), 7.45 (dd, 1H, J =7.1, 1.6 Hz, H-3 of 2-thioxopyridinyl), 7.19 (ddd, 1H, J = 8.9, 7.1, 1.6 Hz, H-5 of 2-thioxopyridinyl), 6.61 (td, 1H, J = 7.1, 1.7 Hz, H-4 of 2-thioxopyridinyl), 4.25 (q, 1H, J = 7.4 Hz, H-2), 1.77 (d, 3H, J = 7.4 Hz, -CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 196.2, 175.5, 169.8, 138.5, 138.2, 137.4, 137.3, 137.2, 133.4, 132.7, 131.9, 130.1 (2C), 129.7, 129.2, 128.9, 128.4 (2C), 112.6, 43.5, 18.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO₃S 364.1007; Found 364.1019.

3-(3,4,5,6-Tetrachlorophthalimidyloxycarbonyl)adamantanecarboxylic acid, 2thioxopyridinyl ester (1n).

The following reaction was carried out under Ar and in the flask protected from light with aluminum foil. To a stirred solution of *N*-hydroxytetrachlorophthalimide (205 mg, 0.680 mmol) and EDCI·HCl (232 mg, 1.21 mmol) in CH₂Cl₂ (0.4 mL) was added a solution of **S43** (205 mg, 0.666 mmol) in DMF (3 mL). The mixture was stirred at room temperature for 1 h. The precipitated solids were removed by filtration through a pad of Celite and washed well with EtOAc. The combined filtrate and washings were concentrated under reduced pressure. The residue was diluted with EtOAc (20 mL) and washed with H₂O (20 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure to provide crude tetrachlorophthalimidyl ester **S44**, which was used in the next step without further purification.

To a stirred solution of crude tetrachlorophthalimidyl ester **S44** obtained above in CH₂Cl₂ (5 mL) was added 2-mercaptopyridine *N*-oxide (73.4 mg, 0.577 mmol) and EDCI·HCl (162 mg, 0.845 mmol). After being stirred at room temperature for 1 h, the mixture was diluted with CH₂Cl₂ (20 mL) and washed with 5wt% aqueous NaHCO₃ (10 mL×3), H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under
reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂) to provide 72.2 mg (18%) of **1n** as yellow crystals. mp 115-120 °C. TLC R_f 0.50 (EtOAc/hexane, 1:1). IR (KBr): 2860, 1787, 1747 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.68 (dd, 1H, J =8.8, 1.6 Hz, H-6 of 2-thioxopyridinyl), 7.56 (dd, 1H, J =6.8, 1.5 Hz, H-3 of 2-thioxopyridinyl), 7.19 (ddd, 1H, J = 8.8, 6.8, 1.5 Hz, H-5 of 2-thioxopyridinyl), 6.61 (td, 1H, J = 6.8, 1.6 Hz, H-4 of 2-thioxopyridinyl), 2.51 (s, 2H, H-2, 2' of adamantane), 2.34 (s, 2H), 2.30-2.11 (m, 6H), 1.83 (s, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.8, 171.7, 171.4, 157.6 (2C), 141.0 (2C), 137.6, 137.5, 133.4 (2C), 130.4, 124.7 (2C), 112.6, 41.0, 40.7, 38.6, 37.5 (2C), 37.4 (2C), 34.7, 27.3 (2C). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₁₈Cl₄N₂O₆S 614.9718; Found 614.9731.

3-[4-(5-(Phthalimidyloxycarbonyl)pentyloxy)phenyl]propionic acid, 2-thioxopyridinyl ester (10).

As described for the preparation of **1a**, compound **S31** (256 mg, 0. 603 mmol) was converted to 204 mg (63%) of **1o**. Compound **1o** was obtained as yellow crystals. mp 108-110 °C. TLC R_f 0.49 (EtOAc/hexane, 2:1). IR (KBr): 2936, 1811, 1788, 1738 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.91-7.87 (m, 2H, H-3, 6 of phthalimidyl), 7.82-7.77 (m, 2H, H-4, 5 of phthalimidyl), 7.68 (dd, 1H, *J* =8.8, 1.8 Hz, H-6 of 2-thioxopyridinyl), 7.41 (dd, 1H, *J* =7.0, 1.0 Hz, H-3 of 2-thioxopyridinyl), 7.21-7.15 (m, 3H, H-2, 6 of Ar, H-5 of 2-thioxopyridinyl), 6.86 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 6.60 (td, 1H, *J* = 7.0, 1.8 Hz, H-4 of 2-thioxopyridinyl), 3.98 (t, 2H, *J* =6.3 Hz, H-1, 1' of pentyloxy), 3.08 (t, 2H, *J* =7.4 Hz, H-3, 3'), 3.01 (t, 2H, *J* =7.4 Hz, H-2, 2'), 2.71 (t, 2H, *J* =7.4 Hz, H-5, 5' of pentyloxy), 1.91-1.81 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.68-1.60 (m, 2H, H-3, 3' of pentyloxy). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.9, 169.5, 168.3, 162.0 (2C), 157.8, 137.6, 137.4, 134.8 (2C), 133.5, 131.2, 129.4 (2C), 128.9 (2C), 124.0 (2C), 114.7 (2C), 112.5, 67.5, 33.6, 30.9, 29.5, 28.8, 25.4, 24.4. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₈H₂₇N₂O₇S 535.1539; Found 535.1538.

3-[4-(5-(3,4,5,6-Tetrachlorophthalimidyloxycarbonyl)pentyloxy)phenyl]propionic acid, **2-thioxopyridinyl ester (1p).**

As described for the preparation of 1a, compound S33 (150 mg, 0.267 mmol) was converted to 62.3 mg (35%) of 1p. Compound 1p was obtained as a yellow oil. TLC R_f 0.72

(EtOAc/hexane, 2:1). IR (neat): 2934, 1815, 1793, 1748 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, 1H, *J* =8.8 Hz, H-6 of 2-thioxopyridinyl), 7.41 (d, 1H, *J* =6.8 Hz, H-3 of 2-thioxopyridinyl), 7.22-7.13 (m, 3H, H-2, 6 of Ar, H-5 of 2-thioxopyridinyl), 6.84 (d, 2H, *J* =7.6 Hz, H-3, 5 of Ar), 6.60 (t, 1H, *J* = 6.8 Hz, H-4 of 2-thioxopyridinyl), 3.97 (t, 2H, *J* =6.0 Hz, H-1, 1' of pentyloxy), 3.07 (t, 2H, *J* =7.1 Hz, H-3, 3'), 3.00 (t, 2H, *J* =7.1 Hz, H-2, 2'), 2.71 (t, 2H, *J* =7.2 Hz, H-5, 5' of pentyloxy), 1.92-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.68-1.58 (m, 2H, H-3, 3' of pentyloxy). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.8, 169.0, 168.3, 157.7, 157.5 (2C), 141.0 (2C), 137.6, 137.4, 133.5 (2C), 131.2, 130.4, 129.4 (2C), 124.6 (2C), 114.6 (2C), 112.6, 67.4, 33.6, 30.8, 29.5, 28.7, 25.3, 24.4. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₈H₂₃Cl₄N₂O₇S 670.9980; Found 670.9955.

Abietic acid, 2-thioxopyridinyl ester (1q).

As described for the preparation of **1b**, abietic acid (**S45**) (99.4 mg, 0.329 mmol) was converted to 71.1 mg (53%) of **1q**. Compound **1q** was obtained as yellow crystals. TLC R_f 0.67 (EtOAc/hexane, 1:1). [α]²⁵_D -193 (*c* 0.615, CHCl₃). IR (neat): 2930, 1786 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.67 (dd, 1H, *J* =8.9, 1.8 Hz, H-6 of 2-thioxopyridinyl), 7.41 (dd, 1H, *J* =6.9, 1.5 Hz, H-3 of 2-thioxopyridinyl), 7.17 (ddd, 1H, *J* = 8.9, 6.9, 1.5 Hz, H-5 of 2-thioxopyridinyl), 6.57 (td, 1H, *J* = 6.9, 1.8 Hz, H-4 of 2-thioxopyridinyl), 5.78 (s, 1H, H-8), 5.40 (m, 1H, H-9), 2.27-2.21 (m, 2H), 2.18 (m, 1H), 2.11-2.02 (m, 5H), 1.98 (m, 1H), 1.92 (m, 1H), 1.83 (m, 1H), 1.69-1.62 (m, 2H), 1.50 (s, 3H, -CH₃), 1.32-1.16 (m, 3H), 1.20 (d, 3H, *J* = 4.5 Hz, *i*-Pr), 0.88 (s, 3H, -CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 176.1, 173.8, 145.6, 137.6 (2C), 135.6, 133.3, 122.2, 119.9, 112.6, 50.8, 46.9, 45.1, 37.9, 37.4, 34.8, 34.7, 27.3, 25.9, 22.4, 21.4, 20.8, 17.8, 17.0, 14.2. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₅H₃₄NO₂S 412.2310; Found 412.2295.

3-O-Benzoyl-lithocholic acid, 2-thioxopyridinyl ester (1r).

As described for the preparation of **1b**, **S35** (50.8 mg, 0.354 mmol) was converted to 42.6 mg (69%) of **1r**. Compound **1r** was obtained as yellow crystals. mp 70-73 °C. TLC R_f 0.60

(EtOAc/hexane, 1:1). $[\alpha]^{26}_{D}$ +105 (*c* 1.25, CHCl₃). IR (KBr): 2937, 1808, 1713 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, 2H, *J* =7.8 Hz, H-2, 6 of Bz), 7.69 (dd, 1H, *J* =8.5, 1.6 Hz, H-6 of 2-thioxopyridinyl), 7.58-7.52 (m, 2H, H-4 of Bz, H-3 of 2-thioxopyridinyl), 7.43 (t, 2H, *J* =7.8 Hz, H-3, 5 of Bz), 7.20 (ddd, 1H, *J* =8.5, 6.9, 1.5 Hz, H-5 of 2-thioxopyridinyl), 6.63 (td, 1H, *J* =6.9, 1.6 Hz, H-4 of 2-thioxopyridinyl), 4.97 (m, 1H, H-3), 2.76 (m, 1H), 2.63 (m, 1H), 2.03-1.95 (m, 3H), 1.92-1.79 (m, 4H), 1.67 (m, 1H), 1.63-1.50 (m, 5H) , 1.49-1.39 (m, 4H), 1.35-1.20 (m, 4H), 1.19-1.04 (m, 5H), 0.98 (d, 3H, *J* =6.5 Hz, H-21), 0.96 (s, 3H, H-19), 0.67 (s, 3H, H-18). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.9, 169.6, 166.1, 137.6, 137.4, 133.4, 132.6, 130.9, 129.5 (2C), 128.2 (2C), 112.5, 75.0, 56.4, 55.8, 42.8, 41.9, 40.4, 40.1, 35.8, 35.2, 35.0, 34.6, 32.3, 30.3, 28.6, 28.2, 27.0, 26.7, 26.3, 24.1, 23.3, 20.8, 18.3, 12.1. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₃₆H₄₈NO₄S 590.3304; Found 590.3297.

Linoleic acid, 2-thioxopyridinyl ester (1s).

As described for the preparation of **1b**, linoleic acid (**S46**) (0.110 mL, 0.354 mmol) was converted to 121 mg (88%) of **1s**. Compound **1s** was obtained as a yellow oil. TLC R_f 0.72 (EtOAc/hexane, 1:1). IR (neat): 2927, 1808 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.68 (dd, 1H, J = 9.1, 1.6 Hz, H-6 of 2-thioxopyridinyl), 7.55 (dd, 1H, J = 7.0, 1.5 Hz, H-3 of 2-thioxopyridinyl), 7.17 (ddd, 1H, J = 9.1, 7.0, 1.5 Hz, H-5 of 2-thioxopyridinyl), 6.57 (td, 1H, J = 7.0, 1.6 Hz, H-4 of 2-thioxopyridinyl), 5.41-5.29 (m, 4H, H-9, 10, 12, 13), 2.77 (t, 2H, J = 6.8 Hz, H-11, 11'), 2.71 (t, 2H, J = 7.4 Hz, H-2, 2'), 2.08-1.98 (m, 4H, H-8, 8', 14, 14'), 1.81 (quin, 2H, J = 7.4 Hz, H-3, 3'), 1.46-1.40 (m, 2H), 1.39-1.24 (m, 12H), 0.88 (t, 3H, J = 7.0 Hz, -CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.9, 169.0, 137.6, 137.4, 133.5, 130.2, 130.0, 128.1, 127.9, 112.5, 31.6, 31.5, 29.5, 29.3, 29.0 (2C), 28.9, 27.2, 27.1, 25.6, 24.3, 22.5, 14.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₃₆NO₂S 390.2467; Found 390.2471.

O-Acetyl-mycophenolic acid, 2-thioxopyridinyl ester (1t).

As described for the preparation of **1b**, compound **S37** (70.2 mg, 0.194 mmol) was converted to 65.2 mg (71%) of **1t**. Compound **1t** was obtained as yellow crystals. mp 48-50 °C. TLC R_f 0.43 (EtOAc/hexane, 1:1). IR (KBr): 2937, 1809, 1760 cm⁻¹. ¹H NMR (500

MHz, CDCl₃): δ 7.66 (dd, 1H, *J* =8.7, 1.8 Hz, H-6 of 2-thioxopyridinyl), 7.56 (dd, 1H, *J* =6.9, 1.5 Hz, H-3 of 2-thioxopyridinyl), 7.19 (ddd, 1H, *J* = 8.7, 6.9, 1.5 Hz, H-5 of 2-thioxopyridinyl), 6.61 (td, 1H, *J* = 6.9, 1.8 Hz, H-4 of 2-thioxopyridinyl), 5.20-5.13 (m, 3H, C=CH, CO₂CH₂), 3.80 (s, 3H, OMe), 3.38 (d, 2H, *J* =7.0 Hz, C=CH-CH₂), 2.81 (t, 2H, *J* = 7.5 Hz, -C=O-CH₂), 2.48 (t, 2H, *J* =7.5 Hz, -C=O-CH₂-CH₂), 2.39 (s, 3H, OAc), 2.23 (s, 3H, Ar-CH₃), 1.84 (s, 3H, CH₃-C=CH).¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.8, 169.0, 168.4, 168.3, 162.6, 146.3, 145.9, 137.8, 137.3, 133.6 (2C), 129.1, 123.1, 122.9, 113.5, 112.6, 68.4, 61.3, 33.3, 30.1, 23.5, 20.6, 16.4, 11.8. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₄H₂₆NO₇S 472.1430; Found 472.1417.

2,7-Di-O-acetyl-gibberellic acid, 2-thioxopyridinyl ester (1u).

As described for the preparation of **1b**, compound **S39** (80.3 mg, 0.187 mmol) was converted to 53.9 mg (54%) of **1u**. Compound **1u** was obtained as yellow solids. TLC R_f 0.43 (EtOAc/hexane, 1:1). $[\alpha]^{24}_{D}$ +284 (*c* 1.18, CHCl₃). IR (KBr): 2939, 1780, 1738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, 1H, *J* =8.8, 1.8 Hz, H-6 of 2-thioxopyridinyl), 7.56 (dd, 1H, *J* =6.8, 1.4 Hz, H-3 of 2-thioxopyridinyl), 7.21 (ddd, 1H, *J* = 8.8, 6.8, 1.4 Hz, H-5 of 2-thioxopyridinyl), 6.66 (td, 1H, *J* = 6.8, 1.8 Hz, H-4 of 2-thioxopyridinyl), 6.38 (d, 1H, *J* =9.1 Hz, H-4), 5.87 (dd, 1H, *J* =9.1, 3.9 Hz, H-3), 5.36 (d, 1H, *J* =3.9 Hz, H-2), 5.18 (d, 1H, *J* =2.2 Hz, H-12'), 3.44 (d, 1H, *J* =10.4 Hz, H-10a), 3.21 (d, 1H, *J* =10.4 Hz, H-10), 2.76-2.64 (m, 2H), 2.40-2.23 (m, 3H), 2.10 (s, 3H, OAc), 2.07-2.00 (m, 2H) 2.03 (s, 3H, OAc), 1.90-1.73 (m, 2H), 1.41 (s, 3H, H-14). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 176.5 (2C), 170.0 (3C), 152.3, 137.6, 137.2, 133.8, 133.4, 129.5, 113.0, 108.6, 89.6, 83.8, 70.3, 54.1, 52.2, 51.8, 50.8, 47.8, 43.1, 39.4, 36.6, 22.0, 20.8, 16.8, 15.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₀NO₈S 540.1692; Found 540.1696.

Zaltoprofen, 2-thioxopyridinyl ester (1z).

As described for the preparation of **1b**, zaltoprofen (**S47**) (100 mg, 0.336 mmol) was converted to 69.0 mg (50%) of **1z**. Compound **1z** was obtained as yellow crystals. mp 85-

89 °C. TLC *R_f* 0.41 (EtOAc/hexane, 1:1). IR (KBr): 2977, 1799, 1729, 1671 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.20 (dd, 1H, *J* =7.8, 1.6 Hz, H-9 of dihydrodibenzo[b,f]thiepin), 7.68 (dd, 1H, *J* =8.7, 1.9 Hz, H-6 of 2-thioxopyridinyl), 7.66 (d, 1H, *J* =8.1 Hz, H-4 of dihydrodibenzo[b,f]thiepin), 7.61 (dd, 1H, *J* =7.8, 1.4 Hz, H-6 of dihydrodibenzo[b,f]thiepin), 7.49 (d, 1H, *J* =1.8 Hz, H-1 of dihydrodibenzo[b,f]thiepin), 7.45 (td, 1H, *J* =7.8, 1.6 Hz, H-7 of dihydrodibenzo[b,f]thiepin), 7.40 (dd, 1H, *J* =6.9, 1.4 Hz, H-3 of 2-thioxopyridinyl), 7.33 (td, 1H, *J* =7.8, 1.4 Hz, H-8 of dihydrodibenzo[b,f]thiepin), 7.29 (dd, 1H, *J* =8.1, 1.8 Hz, H-3 of dihydrodibenzo[b,f]thiepin), 7.18 (ddd, 1H, *J* = 8.7, 6.9, 1.4 Hz, H-5 of 2-thioxopyridinyl), 6.58 (td, 1H, *J* = 6.9, 1.9 Hz, H-4 of 2-thioxopyridinyl), 4.39 (s, 2H, -CH₂-), 4.17 (q, 1H, *J* = 7.2 Hz, H-2), 1.72 (d, 3H, *J* = 7.2 Hz, -CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 191.2, 175.5, 169.7, 140.2, 139.9, 138.4, 137.3 (2C), 136.1, 134.2, 133.4, 132.6, 131.8, 131.5, 130.9, 128.7, 126.9, 126.8, 112.6, 51.0, 43.3, 18.7. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₁₈NO₃S₂ 408.0728; Found 408.0726.

Xanthene-9-carboxylic acid, 2-thioxopyridinyl ester (1aa).

As described for the preparation of **1a**, compound **S48** (101 mg, 0.444 mmol) was converted to 29.2 mg (20%) of **1aa**. Compound **1aa** was obtained as yellow crystals. mp 112-116 °C. TLC R_f 0.44 (EtOAc/hexane, 1:1). IR (KBr): 3017, 1799, 1713 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.66 (dd, 1H, J =9.0, 1.7 Hz, H-6 of 2-thioxopyridinyl), 7.59 (dd, 2H, J =7.9, 1.3 Hz, H-1, 8 of xanthene), 7.41 (dd, 1H, J =7.0, 1.0 Hz, H-3 of 2-thioxopyridinyl), 7.36 (td, 2H, J =7.9, 1.3 Hz, H-3, 6 of xanthene), 7.20-7.13 (m, 5H, H-2, 4, 5, 7 of xanthene, H-5 of 2-thioxopyridinyl), 6.56 (td, 1H, J = 7.0, 1.7 Hz, H-4 of 2-thioxopyridinyl), 5.51 (s, 1H, H-9). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 174.3, 168.2, 151.5 (2C), 137.4, 137.0, 133.1, 129.9 (4C), 123.7 (2C), 117.2 (2C), 116.0 (2C), 113.0, 43.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₁₄NO₃S 336.0694; Found 336.0707.

4-Phenoxybenzoic acid, 2-thioxopyridinyl ester (1ac).

As described for the preparation of 1b, compound S49 (103 mg, 0.480 mmol) was converted

to 10.0 mg (6%) of **1ac**. Compound **1ac** was obtained as yellow solids. TLC R_f 0.33 (EtOAc/hexane, 1:2). IR (neat): 3066, 1772, 1716 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.21 (d, 2H, J = 8.8 Hz, H-2, 6 of 4-phenoxyphenyl), 7.73 (dd, 1H, J = 8.8, 1.9 Hz, H-6 of 2-thioxopyridinyl), 7.68 (dd, 1H, J = 7.1, 1.6 Hz, H-3 of 2-thioxopyridinyl), 7.43 (t, 2H, J = 7.8 Hz, H-3, 5 of Ph), 7.26-7.20 (m, 2H, H-4 of Ph, H-5 of 2-thioxopyridinyl), 7.10 (d, 2H, J = 7.8 Hz, H-2, 6 of Ph), 7.06 (d, 2H, J = 8.8 Hz, H-3, 5 of 4-phenoxyphenyl), 6.61 (td, 1H, J = 7.1, 1.9 Hz, H-4 of 2-thioxopyridinyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 176.1, 163.7, 154.9, 138.1, 137.4, 133.5, 133.1 (2C), 132.8, 130.2 (2C), 125.1, 120.5 (2C), 119.3, 117.4 (2C), 112.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₁₄NO₃S 324.0694; Found 324.0679.

Benzyloxycarbonylaminocyclohexane (2a).

The following reaction was carried out under Ar. To a stirred solution of **1a** (250 mg, 0.648 mmol) and zinc(II) tetraphenylporphyrin (0.4 mg, 0.6 μ mol) in MeCN (3 mL) was added *tert*-dodecanethiol (610 μ L, 2.59 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 15 min, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 124 mg (82%) of **2a** as white crystals. mp 88-90 °C. TLC *R_f* 0.83 (EtOAc/hexane, 1:4). IR (KBr): 3320, 2932, 1687 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.29 (m, 5H, -Ph of Cbz), 5.08 (s, 2H, -CH₂- of Cbz), 4.63 (br s, 1H, -NH-), 3.51 (br s, 1H, H-1), 1.98-1.89 (m, 2H, H_{eq}-2, 6), 1.73-1.66 (m, 2H, H_{eq}-3, 5), 1.59 (m, 1H, H_{eq}-4), 1.40-1.30 (m, 2H, H_{ax}-2, 6), 1.21-0.99 (m, 3H, H_{ax}-3, 4, 5). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 155.5, 136.7, 128.5 (2C), 128.1 (3C), 66.5, 49.9, 33.4 (2C), 25.5, 24.8 (2C). HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₄H₂₀NO₂ 234.1494; Found 234.1505.

1-(tert-Butyldimethylsilyloxy)-4-ethylbenzene (2b).

As described for the preparation of **2a**, compound **1b** (10.0 mg, 25.7 µmol) was converted to 5.4 mg (89%) of **2b**. Compound **2b** was obtained as a colorless oil. TLC R_f 0.36 (hexane). IR (neat): 2961, 1609 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.04 (d, 2H, *J* =8.3 Hz, H-3, 5 of Ar), 6.75 (d, 2H, *J* =8.3 Hz, H-2, 6 of Ar), 2.58 (q, 2H, *J* =7.8 Hz, -CH₂- of ethyl), 1.20 (t, 3H, *J* =7.8 Hz, -CH₃ of ethyl), 0.98 (s, 9H, *t*-Bu), 0.18 (s, 6H, -Me). ¹³C{¹H} NMR (125 MHz,

CDCl₃): δ 153.4, 136.9, 128.6 (2C), 119.8 (2C), 28.0, 25.7 (3C), 18.2, 15.7, -4.4 (2C). HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₄H₂₅OSi 237.1675; Found 237.1673.

1-Ethyl-4-(pivaloyloxy)benzene (2c).

As described for the preparation of **2a**, compound **1c** (10.0 mg, 27.8 µmol) was converted to 4.6 mg (82%) of **2c**. Compound **2c** was obtained as a colorless oil. TLC R_f 0.38 (EtOAc/hexane, 1:20). IR (neat): 2967, 1754 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.18 (d, 2H, J = 8.5 Hz, H-2, 6 of Ar), 6.96 (d, 2H, J = 8.5 Hz, H-3, 5 of Ar), 2.62 (q, 2H, J = 7.6 Hz, -CH₂- of ethyl), 1.35 (s, 9H, *t*-Bu), 1.20 (t, 3H, J = 7.6 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 177.3, 149.0, 141.5, 128.7 (2C), 121.2 (2C), 39.0, 28.3, 27.1 (3C), 15.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₉O₂ 207.1385; Found 207.1389.

1-Ethyl-4-(2-methoxyethoxymethoxy)benzene (2d).

As described for the preparation of **2a**, compound **1d** (10.0 mg, 27.5 µmol) was converted to 5.3 mg (92%) of **2d**. Compound **2d** was obtained as a colorless oil. TLC R_f 0.72 (EtOAc/hexane, 1:2). IR (neat): 2963 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, 2H, *J* =7.3 Hz, H-2, 6 of Ar), 6.98 (d, 2H, *J* =7.3 Hz, H-3, 5 of Ar), 5.24 (s, 2H, -OCH₂O-), 3.85-3.78 (m, 2H, -OCH₂CH₂O-), 3.60-3.52 (m, 2H, -OCH₂CH₂O-), 3.39 (s, 3H, -OCH₃), 2.59 (q, 2H, *J* =7.5 Hz, -CH₂- of ethyl), 1.21 (t, 3H, *J* =7.5 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 155.3, 137.7, 128.7 (2C), 116.2 (2C), 93.7, 71.6, 67.5, 59.0, 28.0, 15.8. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₉O₃ 211.1334; Found 211.1341.

1-Ethyl-4-(methanesulfonyloxy)benzene (2e).

As described for the preparation of **2a**, compound **1e** (10.0 mg, 28.3 µmol) was converted to 5.0 mg (88%) of **2e**. Compound **2e** was obtained as a colorless oil. TLC R_f 0.51 (EtOAc/hexane, 1:4). IR (neat): 2968 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.22 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 7.19 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 3.12 (s, 3H, -Me), 2.66 (q, 2H, *J* =7.6 Hz, -CH₂- of ethyl), 1.24 (t, 3H, *J* =7.6 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃):

δ 147.2, 143.6, 129.3 (2C), 121.8 (2C), 37.2, 28.3, 15.5. HRMS (ESI-TOF) m/z: [M + K]⁺ Calcd for C₉H₁₂KO₃S 239.0144; Found 239.0150.

1-(Benzyloxy)-4-ethylbenzene (2f).

As described for the preparation of **2a**, compound **1f** (11.9 mg, 32.6 µmol) was converted to 4.8 mg (70%) of **2f**. Compound **2f** was obtained as a colorless oil. TLC R_f 0.77 (EtOAc/hexane, 1:4). IR (neat): 2963, 1724 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.44 (d, 2H, J =7.4 Hz, H-2, 6 of Ph), 7.38 (t, 2H, J =7.4 Hz, H-3, 5 of Ph), 7.31 (t, 1H, J =7.4 Hz, H-4 of Ph), 7.12 (d, 2H, J =8.5 Hz, H-3, 5 of Ar), 6.91 (d, 2H, J =8.5 Hz, H-2, 6 of Ar), 5.05 (s, 2H, Bn), 2.60 (q, 2H, J =7.6 Hz, -CH₂- of ethyl), 1.21 (t, 3H, J =7.6 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 156.8, 137.3, 136.7, 128.7 (2C), 128.5 (2C), 127.9, 127.5 (2C), 114.7 (2C), 70.1, 28.0, 15.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₇O 213.1279; Found 213.1270.

1-Ethyl-4-(*p*-methoxybenzyloxy)benzene (2g).

As described for the preparation of **2a**, compound **1g** (13.4 mg, 33.9 µmol) was converted to 5.0 mg (61%) of **2g**. Compound **2g** was obtained as white crystals. mp 68-71 °C. TLC R_f 0.65 (toluene). IR (KBr): 2930 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.35 (d, 2H, *J* =9.0 Hz, H-2, 6 of PMB), 7.11 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 6.93-6.88 (m, 4H, H-3, 5 of Ar and H-3, 5 of PMB), 4.97 (s, 2H, Bn), 3.82 (s, 3H, -Me), 2.59 (q, 2H, *J* =7.7 Hz, -CH₂- of ethyl), 1.21 (t, 3H, *J* =7.7 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.4, 156.9, 136.6, 129.3, 129.2 (2C), 128.7 (2C), 114.7 (2C), 114.0 (2C), 69.8, 55.3, 28.0, 15.9. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₉O₂ 248.1385; Found 248.1389.

1-Ethyl-4-(o-nitrobenzyloxy)benzene (2h).

As described for the preparation of **2a**, compound **1h** (9.9 mg, 24 μ mol) was converted to 5.2 mg (84%) of **2h**. Compound **2h** was obtained as a beige oil. TLC R_f 0.78 (toluene). IR

(neat): 3032 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, 1H, *J* =7.8 Hz, H-3 of *o*-NO₂Bn), 7.91 (d, 1H, *J* =7.8 Hz, H-6 of *o*-NO₂Bn), 7.68 (t, 1H, *J* =7.8 Hz, H-5 of *o*-NO₂Bn), 7.48 (t, 1H, *J* =7.8 Hz, H-4 of *o*-NO₂Bn), 7.13 (d, 2H, *J* =8.4 Hz, H-2, 6 of Ar), 6.91 (d, 2H, *J* =8.4 Hz, H-3, 5 of Ar), 5.48 (s, 2H, *o*-NO₂Bn), 2.60 (q, 2H, *J* =7.6 Hz, -CH₂- of ethyl), 1.21 (t, 3H, *J* =7.6 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 156.1, 146.9, 137.3, 134.3, 134.0, 128.9 (2C), 128.5, 128.2, 124.9, 114.7 (2C), 66.9, 28.0, 15.8. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₆NO₃ 258.1130; Found 258.1131.

1-Ethyl-4-(4-pentenyloxy)benzene (2i).

As described for the preparation of **2a**, compound **1i** (29.9 mg, 87.0 µmol) was converted with 0.5 mol% of the catalyst to 14.2 mg (86%) of **2i**. Compound **2i** was obtained as a colorless oil. TLC R_f 0.48 (EtOAc/hexane, 1:4). IR (neat): 2928 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, 2H, *J* =8.5 Hz, H-2, 6 of Ar), 6.82 (d, 2H, *J* =8.5 Hz, H-3, 5 of Ar), 5.86 (m, 1H, H-4 of 4-pentenyloxy), 5.09-4.98 (m, 2H, H-5, 5' of 4-pentenyloxy), 3.95 (t, 2H, *J* =6.9 Hz, H-1, 1' of 4-pentenyloxy), 2.59 (q, 2H, *J* =7.6 Hz, -CH₂- of ethyl), 2.24 (q, 2H, *J* =6.9 Hz, H-3, 3' of 4-pentenyloxy), 1.87 (quin, 2H, *J* =6.9 Hz, H-2, 2' of 4-pentenyloxy), 1.21 (t, 3H, *J* =7.6 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.1, 137.9, 136.3, 128.6 (2C), 115.1, 114.4 (2C), 67.2, 30.1, 28.5, 28.0, 15.9. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₃H₁₉O 191.1436; Found 191.1442.

1-Ethyl-4-(3-phenylpropioloxy)benzene (2j).

As described for the preparation of **2a**, compound **1j** (28.4 mg, 70.4 µmol) was converted to 15.2 mg (86%) of **2j**. Compound **2j** was obtained as a colorless oil. TLC R_f 0.71 (toluene). IR (neat): 2921, 2234, 1808, 1722 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.63 (d, 2H, *J* =7.8 Hz, H-2, 6 of Ph), 7.49 (t, 1H, *J* =7.8 Hz, H-4 of Ph), 7.41 (t, 2H, *J* =7.8 Hz, H-3, 5 of Ph), 7.24 (d, 2H, *J* =8.8 Hz, H-2, 6 of Ar), 7.10 (d, 2H, *J* =8.8 Hz, H-3, 5 of Ar), 2.67 (q, 2H, *J* =7.6 Hz, - CH₂- of ethyl), 1.25 (t, 3H, *J* =7.6 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 152.6, 148.0, 142.4, 133.2 (2C), 131.0, 128.9 (2C), 128.7 (2C), 121.2 (2C), 119.3, 88.5, 80.5, 28.3, 15.5. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₇H₁₅O₂ 251.1072; Found 251.1080.

1,1-Diphenylethane (2k).

As described for the preparation of **2a**, compound **1k** (9.9 mg, 30 µmol) was converted to 5.0 mg (93%) of **2k**. Compound **2k** was obtained as a colorless oil. TLC R_f 0.52 (hexane). IR (neat): 2967 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.30 (t, 4H, *J* =7.3 Hz, H-3, 5 of Ph), 7.24 (d, 4H, *J* =7.3 Hz, H-2, 6 of Ph), 7.20 (t, 2H, *J* =7.3 Hz, H-4 of Ph), 4.17 (q, 1H, *J* =7.4 Hz, H-1), 1.66 (d, 3H, *J* =7.4 Hz, -CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 146.3 (2C), 128.3 (4C), 127.6 (4C), 126.0 (2C), 44.7, 21.8. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₄H₁₅ 183.1174; Found 183.1174.

1,4-Dimethyl-2-(4-methylpentyloxy)benzene (2l).

As described for the preparation of **2a**, compound **1l** (10.0 mg, 27.8 µmol) was converted to 4.1 mg (71%) of **2l**. Compound **2l** was obtained as a colorless oil. TLC R_f 0.88 (EtOAc/hexane, 1:6). IR (KBr): 2955 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.01 (d, 1H, J = 7.5 Hz, H-6), 6.66 (d, 1H, J = 7.5 Hz, H-5), 6.64 (s, 1H, H-3), 3.93 (t, 2H, J = 6.8 Hz, H-1, 1' of 4-methylpentyloxy), 2.32 (s, 3H, -CH₃ of dimethylphenoxy), 2.19 (s, 3H, -CH₃ of dimethylphenoxy), 1.84-1.77 (m, 2H, H-2, 2' of 4-methylpentyloxy), 1.63 (m, 1H, H-4 of 4-methylpentyloxy), 1.40-1.34 (m, 2H, H-3, 3' of 4-methylpentyloxy), 0.93 (d, 6H, J = 6.5 Hz, -CH₃×2). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.1, 136.4, 130.2, 123.6, 120.5, 112.0, 68.2, 35.3, 27.8, 27.3, 22.6 (2C), 21.4, 15.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₂₃O 207.1749; Found 207.1756.

3-Ethylbenzophenone (2m).

As described for the preparation of 2a, compound 1m (31.2 mg, 85.9 μ mol) was converted to 8.8 mg (49%) of 2m. Compound 2m was obtained as a colorless oil. TLC R_f 0.79

(EtOAc/hexane, 1:4). IR (KBr): 2965, 1660 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, 2H, J = 8.1 Hz, H-2, 6 of Bz), 7.66 (s, 1H, H-2 of 3-benzoylphenyl), 7.61-7.57 (m, 2H, H-4 of Bz, H-4 of 3-benzoylphenyl), 7.48 (t, 2H, J = 8.1 Hz, H-3, 5 of Bz), 7.43 (d, 1H, J = 7.8 Hz, H-6 of 3-benzoylphenyl), 7.39 (t, 1H, J = 7.8 Hz, H-5 of 3-benzoylphenyl), 2.72 (q, 2H, J = 7.7 Hz, -CH₂- of ethyl), 1.27 (t, 3H, J = 7.7 Hz, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 197.0, 144.5, 137.8, 137.7, 132.3, 132.0, 130.0 (2C), 129.3, 128.2 (2C), 128.1, 127.6, 28.7, 15.5. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₅H₁₅O 211.1123; Found 211.1129.

(3,4,5,6-Tetrachlorophthalimidyloxycarbonyl)adamantane (2n).

As described for the preparation of **2a**, compound **1n** (38.6 mg, 62.6 µmol) was converted using CH₂Cl₂ instead of MeCN to 16.7 mg (58%) of **2n**. Compound **2n** was obtained as white crystals. mp 198-201 °C. TLC R_f 0.65 (EtOAc/hexane, 1:4). IR (KBr): 2914, 1809, 1783, 1747 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 2.12 (s, 9H), 1.78 (s, 6H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.7, 157.8 (2C), 140.9 (2C), 130.3 (2C), 124.8 (2C), 40.5, 38.4 (3C), 36.1 (3C), 27.6 (3C). HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₁₅Cl₄NNaO₄ 483.9653; Found 483.9672.

1-Ethyl-4-[5-(phthalimidyloxycarbonyl)pentyloxy]benzene (20).

As described for the preparation of **2a**, compound **1o** (89.7 mg, 0.168 mmol) was converted to 45.7 mg (71%) of **2o**. Compound **2o** was obtained as a colorless oil. TLC R_f 0.39 (EtOAc/hexane, 1:4). IR (neat): 2931, 1816, 1789, 1745 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.91-7.87 (m, 2H, H-3, 6 of phthalimidyl), 7.81-7.78 (m, 2H, H-4, 5 of phthalimidyl), 7.10 (d, 2H, *J* =8.8 Hz, H-2, 6), 6.83 (d, 2H, *J* =8.8 Hz, H-3, 5), 3.97 (t, 2H, *J* =6.3 Hz, H-1, 1' of pentyloxy), 2.71 (t, 2H, *J* =7.3 Hz, H-5, 5' of pentyloxy), 2.58 (q, *J* =7.8 Hz, 2H, -CH₂- of ethyl), 1.91-1.80 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.68-1.60 (m, 2H, H-3, 3' of pentyloxy), 1.21 (t, *J* =7.8 Hz, 3H, -CH₃ of ethyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 169.5, 162.0 (2C), 157.0, 136.3, 134.7 (2C), 128.9 (2C), 128.7 (2C), 124.0 (2C), 114.4 (2C), 67.5, 30.9, 28.8, 28.0, 25.4, 24.5, 15.9. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₂H₂₄NO₅ 382.1666;

1-Ethyl-4-[5-(3,4,5,6-tetrachlorophthalimidyloxycarbonyl)pentyloxy]benzene (2p).

As described for the preparation of **2a**, compound **1p** (62.3 mg, 92.7 µmol) was converted to 25.5 mg (53%) of **2p**. Compound **2p** was obtained as white crystals. mp 89-93 °C. TLC R_f 0.63 (EtOAc/hexane, 1:4). IR (KBr): 2934, 1816, 1790, 1748 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.10 (d, 2H, *J* =8.8 Hz, H-2, 6 of Ar), 6.82 (d, 2H, *J* =8.8 Hz, H-3, 5 of Ar), 3.96 (t, 2H, *J* =6.4 Hz, H-1, 1' of pentyloxy), 2.71 (t, 2H, *J* =7.6 Hz, H-5, 5' of pentyloxy), 2.58 (q, *J* =7.6 Hz, 2H, -CH₂- of ethyl), 1.92-1.79 (m, 4H, H-2, 2', 4, 4' of pentyloxy), 1.68-1.59 (m, 2H, H-3, 3' of pentyloxy), 1.21 (t, *J* =7.6 Hz, 3H, -CH₃ of ethyl). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.6, 169.9 (2C), 154.9, 134.7, 128.9, 106.9, 91.6, 84.9, 70.4, 52.3, 51.0, 50.4, 48.2, 46.7, 39.8, 36.8, 34.9, 22.1, 20.8, 16.5, 14.6. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₀Cl₄NO₅ 518.0096; Found 518.0092.

(1R,4aS,4bR,10aS)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthrene (2qA) and (1S,4aS,4bR,10aS)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthrene (2qB).

As described for the preparation of **2a**, compound **1q** (10.0 mg, 26.6 µmol) was converted to a mixture of **2qA** and **2qB** (5.0 mg, 80%, dr = 3:2). A mixture of **2qA** and **2qB** was obtained as a colorless oil. TLC R_f 0.88 (hexane). IR (neat): 2923 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 5.78 (s, 1H, H-8), 5.44 (m, 1H×3/5, H-9), 5.40 (m, 1H×2/5, H-9), 2.30-2.12 (m, 2H), 2.11-2.04 (m, 2H), 1.89-1.76 (m, 4H), 1.68-1.40 (m, 5H), 1.39-1.12 (m, 2H), 1.03-0.99 (m, 7H), 0.98 (d, 3H×3/5, *J* = 7.5 Hz, -CH₃), 0.83 (d, 3H×2/5, *J* = 6.5 Hz, -CH₃), 0.78 (s, 3H×3/5, -CH₃), 0.72 (s, 3H×2/5, -CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃) for major isomer: δ 145.1, 135.7, 122.6, 121.5, 50.4, 48.2, 44.0, 39.2, 34.9, 33.8, 32.1, 28.3, 27.5, 22.4, 21.4, 20.8, 17.4, 15.5, 14.4. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₉H₃₁ 259.2426; Found 259.2419.

(3*R*,5*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3-Benzoyloxy-17-[(2*R*)-2-butyl)]-10,13-dimethyl-hexadecahydro-1*H*-cyclopenta[*a*]phenanthrene (2*r*).

As described for the preparation of **2a**, compound **1r** (10.2 mg, 17.3 µmol) was converted using benzene instead of MeCN to 5.6 mg (74%) of **2r**. Compound **2r** was obtained as white solids. TLC R_f 0.61 (EtOAc/hexane, 1:8). $[\alpha]^{25}_{D}$ +62.7 (*c* 0.665, CHCl₃). IR (neat): 2936, 1716 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, 2H, *J* =7.5 Hz, H-2, 6 of Bz), 7.54 (t, 1H, *J* =7.5 Hz, H-4 of Bz), 7.43 (t, 2H, *J* =7.5 Hz, H-3, 5 of Bz), 4.98 (m, 1H, H-3), 2.02-1.96 (m, 2H), 1.92-1.77 (m, 4H), 1.68 (m, 1H), 1.61-1.38 (m, 8H) 1.35-1.18 (m, 5H), 1.16-1.00 (m, 6H), 0.96 (s, 3H, H-19), 0.90 (d, 3H, *J* =6.5 Hz, H-21), 0.82 (t, 3H, *J* =6.5 Hz, -CH₂CH₃), 0.66 (s, 3H, H-18). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 166.1, 132.7, 130.9, 129.5 (2C), 128.2 (2C), 75.0, 56.5, 55.8, 42.6, 42.0, 40.5, 40.2, 37.0, 35.8, 35.1, 34.6, 32.4, 28.3, 28.2, 27.1, 26.7, 26.4, 24.2, 23.4, 20.9, 18.0, 12.0, 10.3. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₃₀H₄₅O₂ 437.3420; Found 437.3424.

(6Z,9Z)-6,9-Heptadecadiene (2s).

As described for the preparation of **2a**, compound **1s** (10.0 mg, 26.6 µmol) was converted to 4.8 mg (81%) of **2s**. Compound **2s** was obtained as a colorless oil. TLC R_f 0.85 (hexane). IR (KBr): 2926 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 5.42-5.30 (m, 4H, H-6, 7, 9, 10), 2.78 (t, 2H, J = 6.8 Hz, H-8, 8'), 2.05 (q, 4H, J = 7.0 Hz, H-5, 5', 11, 11'), 1.39-1.24 (m, 16H), 0.92-0.86 (m, 6H, -CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 130.2 (2C), 127.9 (2C), 31.9, 31.5, 29.7, 29.4, 29.3, 29.2, 27.2 (2C), 25.6, 22.7, 22.6, 14.1 (2C). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₃₃ 237.2582; Found 237.2580.

7-Acetoxy-5-methoxy-4-methyl-6-[(2*E*)-3-methylpent-2-enyl]isobenzofuran-1(3*H*)-one (2t).

As described for the preparation of **2a**, compound **1t** (15.8 mg, 33.5 µmol) was converted to 7.7 mg (72%) of **2t**. Compound **2t** was obtained as white crystals. mp 97-100 °C. TLC R_f 0.38 (EtOAc/hexane, 1:3). IR (KBr): 2966, 1777, 1762 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 5.15 (s, 2H, H-3, 3'), 5.05 (t, 1H, *J* =6.5 Hz, C=C*H*), 3.79 (s, 3H, OMe), 3.36 (d, 2H, *J* =6.5 Hz, C=CH-C*H*₂), 2.39 (s, 3H, OAc), 2.22 (s, 3H, C*H*₃ at C-4), 1.97 (q, 2H, *J* =7.3 Hz, -C*H*₂-CH₃), 1.77 (s, 3H, C*H*₃-C=CH), 0.95 (t, 3H, *J* =7.3 Hz, -CH₂-CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 169.0, 168.3, 162.7, 146.0, 138.0, 129.6, 122.9, 120.0 (2C), 113.5, 68.3, 61.2, 32.2, 23.5, 20.5, 16.1, 12.5, 11.8. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₃O₅ 319.1545; Found 319.1538.

(1*S*,2*S*,4a*R*,4b*R*,7*S*,9a*R*,10a*R*)-2,7-Diacetoxy-1-methyl-8-methylene-13-oxo-1,2,4,4b,5,6,7,8,9,10,10a-decahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[*a*]azulene (2u).

As described for the preparation of **2a**, compound **1u** (19.8 mg, 36.7 µmol) was converted with 0.5 mol% of the catalyst to 7.6 mg (54%) of **2u**. Compound **2u** was obtained as white crystals. mp 155-159 °C. TLC R_f 0.48 (EtOAc/hexane, 1:1). [α]²⁵_D +157 (*c* 0.500, CHCl₃). IR (KBr): 2935, 1777, 1739 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 6.38 (d, 1H, *J* =9.4 Hz, H-4), 5.84 (dd, 1H, *J* =9.4, 3.7 Hz, H-3), 5.33 (d, 1H, *J* =3.7 Hz, H-2), 5.11 (s, 1H, H-12), 4.95 (s, 1H, H-12'), 2.83 (dd, 1H, *J* =11.0, 8.0 Hz, H-10a), 2.52 (dt, 1H, *J* =15.6, 3.0 Hz), 2.36 (dd, 1H, *J* =12.5, 8.0 Hz), 2.28 (d, 1H, *J* =16.0 Hz), 2.18 (dd, 1H, *J* =10.8, 2.3 Hz), 2.12 (d, 1H, *J* =7.0 Hz), 2.10 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.95 (dd, 2H, *J* =13.8, 7.3 Hz), 1.82-1.74 (m, 2H), 1.71-1.63 (m, 2H), 1.20 (s, 3H, H-14). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 177.6, 169.9 (2C), 154.9, 134.7, 128.9, 106.9, 91.6, 84.9, 70.4, 52.3, 51.0, 50.4, 48.2, 46.7, 39.8, 36.8, 34.9, 22.1, 20.8, 16.5, 14.6. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₂H₂₇O₆ 387.1808; Found 387.1803.

(3aS,4S,6aR)-4-Butyltetrahydro-1H-thieno[3,4-d]imidazol-2(3H)-one (2v).

The following reaction was carried out under Ar and in the flask protected from light with aluminum foil. To a stirred solution of 2-mercaptopyridine *N*-oxide (20.7 mg, 0.163 mmol) and EDCI-HCl (31.2 mg, 0.163 mmol) in DMF (0.6 mL) was added **S50** (29.3 mg, 0.120 mmol). The mixture was stirred at room temperature for 1 h, and zinc(II) tetraphenylporphyrin (0.1 mg, 0.1 µmol) and *tert*-dodecanethiol (116 µL, 0.491 mmol) were added. After being stirred at 25 °C and irradiated by red LEDs for 30 min, the mixture was purified by column chromatography on silica gel (MeOH/CH₂Cl₂, 1:20) to provide 11.7 mg (49%) of **2v** as white crystals. mp 190-194 °C. TLC *R_f* 0.27 (MeOH/CH₂Cl₂, 1:12). $[\alpha]^{26}_{\rm D}$ +66.7 (*c* 0.435, CHCl₃). IR (KBr): 3264, 2955, 1710 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 5.15 (br s, 1H, -NH-), 5.08 (br s, 1H, -NH-), 4.51 (m, 1H, H-3a), 4.31 (m, 1H, H-6a), 3.17 (m, 1H, H-4), 2.92 (dd, 1H, *J* =12.8, 5.2 Hz, H-6), 2.73 (d, 1H, *J* =12.8 Hz, H-6'), 1.72-1.62 (m, 2H, H-1, 1' of butyl), 1.46-1.30 (m, 4H, H-2, 2', 3, 3' of butyl), 0.91 (t, 3H, *J* =7.0 Hz, -CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.1, 61.9, 60.1, 55.5, 40.6, 31.2, 28.3, 22.6, 13.9. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₉H₁₇N₂OS 201.1062; Found 201.1070.

N-[(9H-Fluoren-9-yl)methoxycarbonyl]pyrrolidine (2w).

The following reaction was carried out under Ar and in the flask protected from light with aluminum foil. To a stirred solution of 2-mercaptopyridine *N*-oxide (21.5 mg, 0.169 mmol) and EDCI-HCl (32.0 mg, 0.167 mmol) in DMF (0.7 mL) was added **S52** (50.1 mg, 0.142 mmol). The mixture was stirred at room temperature for 1 h, and zinc(II) tetraphenylporphyrin (0.1 mg, 0.1 µmol) and *tert*-dodecanethiol (133 µL, 0.566 mmol) were added. After being stirred at 25 °C and irradiated by red LEDs for 30 min, the mixture was diluted with EtOAc (20 mL) and washed with H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 35.6 mg (86%) of **2w** as white crystals. mp 71-74 °C. TLC *R_f* 0.74 (EtOAc/hexane, 2:1). IR (KBr): 2875, 1710, 1694 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, 2H, *J* =7.5 Hz, H-4, 5 of Fmoc), 7.62 (d, 2H, *J* =7.5 Hz, H-1, 8 of Fmoc), 7.40 (t, 2H, *J* =7.5 Hz, H-3, 6 of Fmoc), 7.32 (t, 2H, *J* =7.5 Hz, H-2, 7 of Fmoc), 4.38 (d, 2H, *J* =7.1 Hz, -CH₂- of Fmoc), 4.25 (t, 1H, *J* =7.1 Hz, H-9 of Fmoc), 3.43 (t, 4H, *J* =6.5 Hz, H-2, 2', 5, 5'), 1.96-1.84 (m, 4H, H-3,

3', 4, 4'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 154.9, 144.2 (2C), 141.3 (2C), 127.6 (2C), 127.0 (2C), 125.1 (2C), 119.9 (2C), 67.0, 47.4, 46.2, 45.8, 25.8, 24.9. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₀N₂O₂ 294.1494; Found 294.1484.

tert-Butyl (9H-fluoren-9-yl)methyl pentane-1,5-diyldicarbamate (2x).

As described for the preparation of **2w**, compound **S54** (59.2 mg, 0.126 mmol) was converted to 43.7 mg (82%) of **2x**. Compound **2x** was obtained as white crystals. mp 110-112 °C. TLC R_f 0.35 (EtOAc/hexane, 1:2). IR (KBr): 2963, 1695, 1682 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, 2H, *J* =7.6 Hz, H-4, 5 of Fmoc), 7.59 (d, 2H, *J* =7.6 Hz, H-1, 8 of Fmoc), 7.40 (t, 2H, *J* =7.6 Hz, H-3, 6 of Fmoc), 7.31 (t, 2H, *J* =7.6 Hz, H-2, 7 of Fmoc), 4.79 (br s, 1H, -NH-), 4.53 (br s, 1H, -NH-), 4.40 (d, 2H, *J* =6.8 Hz, -CH₂- of Fmoc), 4.21 (t, 1H, *J* =6.8 Hz, H-9 of Fmoc), 3.19 (t, 2H, *J* =6.5 Hz, H-5, 5'), 3.15-3.00 (m, 2H, H-1, 1'), 1.57-1.46 (m, 4H, H-2, 2', 4, 4'), 1.44 (s, 9H, *t*-Bu), 1.39-1.30 (m, 2H, H-3, 3'). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 156.6, 156.2, 144.1 (2C), 141.4 (2C), 127.7 (2C), 127.1 (2C), 125.1 (2C), 120.1 (2C), 79.2, 66.6, 47.4, 40.9, 40.4, 29.8, 29.7, 28.5 (3C), 23.9. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₅H₃₃N₂O₄ 425.2440; Found 425.2444.

tert-Butyl 3-[(9H-fluoren-9-yl)methoxycarbonylamino]propanoate (2y).

As described for the preparation of **2w**, compound **S56** (59.3 mg, 0.144 mmol) was converted to 45.3 mg (85%) of **2y**. Compound **2y** was obtained as white crystals. mp 39-42 °C. TLC R_f 0.53 (EtOAc/hexane, 1:9). IR (KBr): 2977, 1731, 1692 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, 2H, *J* =7.5 Hz, H-4, 5 of Fmoc), 7.59 (d, 2H, *J* =7.5 Hz, H-1, 8 of Fmoc), 7.40 (t, 2H, *J* =7.5 Hz, H-3, 6 of Fmoc), 7.31 (t, 2H, *J* =7.5 Hz, H-2, 7 of Fmoc), 5.32 (br s, 1H, -NH-), 4.38 (d, 2H, *J* =7.1 Hz, -CH₂- of Fmoc), 4.22 (t, 1H, *J* =7.1 Hz, H-9 of Fmoc), 3.44 (t, 2H, *J* =6.0 Hz, H-3, 3'), 2.47 (t, 2H, *J* =6.0 Hz, H-2, 2'), 1.47 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 171.8, 156.3, 143.9 (2C), 141.3 (2C), 127.6 (2C), 127.0 (2C), 125.0 (2C), 119.9 (2C), 81.1, 66.7, 47.2, 36.7, 35.5, 28.1 (3C). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₆NO₄ 368.1862; Found 368.1871.

2-thioxopyridin-1(2H)-yl 5-phenylpentanoate (3).

As described for the preparation of **1b**, valeric acid **S3** (507 mg, 2.81 mmol) was converted to 619 mg (77%) of **3**. Compound **3** was obtained as a yellow oil. TLC R_f 0.24 (EtOAc/hexane, 1:2). IR (neat): 2942, 2847, 1800 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (dd, 1H, J = 8.8, 1.3 Hz, H-6 of 2-pyridinethione), 7.53 (dd, 1H, J = 6.8, 1.3, H-3 of 2-pyridinethione), 7.31-7.26 (m, 2H, phenyl), 7.23-7.16 (m, 4H, phenyl, H-5 of 2-pyridinethione), 6.62 (td, 1H, J = 6.8, 1.3 Hz, H-4 of 2-pyridinethione), 2.74 (t, 2H, J = 8.0 Hz, H-2, 2'), 2.68 (t, 2H, J = 8.0 Hz, H-5, 5'), 1.91-1.74 (m, 4H, H-3, 3', 4, 4'). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.7, 168.8, 141.7, 137.6, 137.2, 133.5, 128.3 (4C), 125.8, 112.5, 35.3, 31.3, 30.5, 23.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₈NO₂S 288.1057; Found 288.1058.

(4-Chlorobutyl)benzene (4a).

The following reaction was carried out under Ar. To a stirred solution of **3** (20.0 mg, 0.0696 mmol), zinc(II) tetraphenylporphyrin (1.4 mg, 2.1 µmol) in carbon tetrachloride (1.4 mL) was added hexachloroethane (49.4 mg, 0.208 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:10) to provide 8.5 mg (73%) of **4a** as a colorless oil. TLC *R_f* 0.78 (EtOAc/hexane, 1:10). IR (neat): 2939 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.25 (m, 2H, -Ph), 7.22-7.16 (m, 3H, -Ph), 3.55 (t, 2H, *J* = 6.4 Hz, H-4, 4' of butyl), 2.65 (t, 2H, *J* = 8.0 Hz, H-1, 1' of butyl), 1.86-1.73 (m, 4H, H-2, 2', 3, 3' of butyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 141.8, 128.4 (4C), 125.9, 44.9, 35.1, 32.1, 28.5. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₄Cl 169.0784; Found 169.0781.

(4-Bromobutyl)benzene (4b).

The following reaction was carried out under Ar. To a stirred solution of **3** (20.0 mg, 0.0696 mmol), zinc(II) tetraphenylporphyrin (1.4 mg, 2.1 µmol) in toluene (1.4 mL) was added bromotrichloromethane (21 mL, 0.21 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:10) to provide 8.1 mg (55%) of **4b** as a yellow oil. TLC R_f 0.78 (EtOAc/hexane, 1:10). IR (neat): 2936 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.26 (m, 2H, -Ph), 7.22-7.16 (m, 3H, -Ph), 3.42 (t, 2H, J = 6.8 Hz, H-4, 4' of butyl), 2.64 (t, 2H, J = 7.6 Hz,

H-1, 1' of butyl), 1.94-1.73 (m, 4H, H-2, 2', 3, 3' of butyl). ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 142.9, 128.4 (2C), 128.2 (2C), 125.5, 82.9, 35.8, 34.2, 24.8, 23.8. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₄Br 213.0279; Found 213.0275.

(4-Iodobutyl)benzene (4c).

The following reaction was carried out under Ar. To a stirred solution of **3** (20.0 mg, 0.0696 mmol), zinc(II) tetraphenylporphyrin (1.4 mg, 2.1 µmol) in toluene (1.4 mL) was added diiodomethane (17 mL, 0.21 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:10) to provide 12.6 mg (70%) of **4c** as a yellow oil. TLC R_f 0.78 (EtOAc/hexane, 1:10). IR (neat): 2933 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.26 (m, 2H, -Ph), 7.21-7.16 (m, 3H, -Ph), 3.20 (t, 2H, *J* = 7.6 Hz, H-4, 4' of butyl), 2.64 (t, 2H, *J* = 8.8 Hz, H-1, 1' of butyl), 1.89-1.71 (m, 4H, H-2, 2', 3, 3' of butyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 141.8, 128.4 (4C), 125.9, 34.7, 32.9, 32.2, 6.7. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₄I 261.0140; Found 261.0152.

4-Phenyl-1-butanol (4d).

The following reaction was carried out under O₂. To a stirred solution of **3** (10.2 mg, 0.0355 mmol) in ethanol (0.7 mL) was added zinc(II) tetraphenylporphyrin (0.71 mg, 0.001 mmol) and *t*-butyl mercaptan (35 μ L, 0.31 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 30 min. The reaction flask was replaced to Ar, and trimethyl phosphite (9 μ L, 0.076 mmol) was added and stirred for additional 2 h. The mixture was diluted with H₂O (10 mL) and extracted with EtOAc (3 mL×3). The combined organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide 4.0 mg (75%) of **4d** as a yellow oil. TLC *R_f* 0.40 (EtOAc/hexane, 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 2H, -Ph), 7.19-7.15 (m, 3H, -Ph), 3.66 (t, 2H, *J* = 6.4 Hz, H-1, 1'), 2.64 (t, 2H, *J* = 7.6 Hz, H-4, 4'), 1.74-1.58 (m, 4H, H-2, 2', 3, 3'). **4d** is a commercially available compound.

Dimer of (1-nitroso-4-phenylbutane) (4e).

The following reaction was carried out under Ar. To a stirred solution of **3** (10.1 mg, 0.0352 mmol), zinc(II) tetraphenylporphyrin (0.71 mg, 0.001 µmol) in dichloromethane/toluene (2:1, 0.7 mL) was added *S*-trityl nitrothioite (17 mL, 0.21 mmol).^{S1} The stirred mixture was irradiated by red LEDs at 25 °C for 1.5 h, The mixture was diluted with H₂O (10 mL) and extracted with EtOAc (3 mL×3). The combined organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:4) to provide 3.5 mg (61%) of **4e** as a yellow oil. TLC *R_f* 0.20 (EtOAc/hexane, 1:4). IR (neat): 2927, 1454,

1221 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.14 (m, 10H, -Ph×2), 4.27 (t, 4H, J = 7.2

Hz, H-1, 1'×2), 2.66 (t, 4H, J = 7.6 Hz, H-4, 4'×2), 1.91 (tt, 4H, J = 7.2, 7.2 Hz, H-2, 2'×

2), 1.70 (tt, 4H, J = 7.6, 7.2 Hz, H-3, 3'×2). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 141.5 (2C), 128.40 (4C), 128.37 (4C), 126.0 (2C), 58.6 (2C), 35.2(2C), 28.3 (2C), 24.7 (2C). HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₂₆N₂NaO₂ 349.1892; Found 349.1885.

Diethyl 1-(4-phenylbutyl)hydrazine-1,2-dicarboxylate (4f).

The following reaction was carried out under Ar. To a stirred solution of **3** (10.5 mg, 0.0365 mmol), zinc(II) tetraphenylporphyrin (0.71 mg, 0.001 µmol) in toluene (0.35 mL) was added diethyl azodicarboxylate in toluene (16 µL, 0.035 mmol) and tris(trimethylsilyl)silane (43 µL, 0.035 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1.5 h, The mixture was diluted with H₂O (10 mL) and extracted with EtOAc (3 mL×3). The combined organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide 6.4 mg (57%) of **4f** as a yellow oil. TLC R_f 0.40 (EtOAc/hexane, 1:2). IR (neat): 2936, 1712 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.25 (m, 2H, -Ph), 7.20-7.15 (m, 3H, -Ph), 6.44 (br, 1H, NH), 4.22-4.14 (m, 4H, CH₂ of CO₂Et×2), 3.52 (br s, 2H, H-1,1'), 2.63 (t, 2H, *J* = 6.8 Hz, H-4, 4'), 1.64-1.60 (m, 4H, H-2, 2', 3, 3'), 1.29-1.23 (m, 6H, CH₃ of CO₂Et×2). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.3 (br, 2C), 142.1, 128.4 (2C), 128.3 (2C), 125.8, 62.4, 62.0, 49.7 (br), 35.5, 28.3, 26.9, 14.5, 14.4. HRMS (ESI-TOF) *m/z*: [M + Na]⁺Calcd for C₁₆H₂₄N₂NaO₄ 331.1634; Found 331.1628.

Phenyl(4-phenylbutyl)sulfane (4g)

^{S1} van Zwet, H.; Kooyman, E. C. Recl. Trav. Chim. Pays-bas 1968, 87, 45-48.

The following reaction was carried out under Ar. To a stirred solution of **3** (11.0 mg, 0.0383 mmol) in DMSO (0.8 mL) were added zinc(II) tetraphenylporphyrin (0.78 mg, 0.001 mmol) and diphenyl disulfide (17.0 mg, 0.0779 mmol). The stirred mixture was irradiated by red

LEDs at 25 °C for 1.5 h, diluted with H₂O (10 mL) and extracted with EtOAc (3 mL \times 3). The

combined extracts were dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAC/hexane, 1:40) to provide 7.7 mg (84%) of **4g** as a colorless oil. TLC R_f 0.38 (EtOAc/hexane, 1:40). IR (neat): 2933, 1480 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.23 (m, 6H, phenyl), 7.20-7.14 (m, 4H, phenyl), 2.93 (t, 2H, J = 7.2 Hz, H-1,1'), 2.62 (t, 2H, J = 7.2 Hz, H-4,4'), 1.81-1.64 (m, 4H, H-2,2',3,3'). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.1, 136.8, 129.0 (2C), 128.8 (2C), 128.4 (2C), 128.3 (2C), 125.8, 125.7, 35.4, 33.5, 30.4, 28.6. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₈NaS 265.1027; Found 265.1028.

(4-Phenylbutyl)seleno benzene (4h)

The following reaction was carried out under Ar. To a stirred solution of **3** (20.0 mg, 0.0696 mmol), zinc(II) tetraphenylporphyrin (1.4 mg, 2.1 µmol) in CH₂Cl₂ (1.4 mL) was added diphenyl diselenide (21.7 mg, 0.0696 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:8) to provide 18.3 mg (91%) of **4h** as a yellow oil. TLC R_f 0.75 (toluene/hexane, 1:3). IR (neat): 2999 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.44 (m, 2H, -Ph), 7.30-7.21 (m, 5H, -Ph), 7.20-7.12 (m, 3H, -Ph), 2.92 (t, 2H, *J* = 8.0 Hz, H-4, 4' of butyl), 2.61 (t, 2H, *J* = 8.8 Hz, H-1, 1' of butyl), 1.80-1.70 (m, 4H, H-2, 2', 3, 3' of butyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 142.1, 132.5 (2C), 130.5, 129.0 (2C), 128.4 (2C), 128.3 (2C), 126.7, 125.7, 35.3, 31.4, 29.6, 27.7. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₆H₁₉Se 291.0652; Found 291.0642.

4,4,5,5-Tetramethyl-2-(4-phenylbutyl)-1,3,2-dioxaborolane (4i)

The following reaction was carried out under Ar. To a stirred solution of **3** (20.0 mg, 0.0696 mmol), zinc(II) tetraphenylporphyrin (1.4 mg, 2.1 μ mol) in DMF (2.8 mL) was added bis(catecholato)diboron (33.1 mg, 0.139 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, and pinacol (32.9

mg, 0.278 mmol) in triethylamine (0.1 mL) were added. After being stirred at room temperature for 1 h, the mixture was diluted with EtOAc (15 mL) and washed with saturated brine (10 mL×2) and H₂O (10 mL×2) saturated brine (10 mL×2), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by columchlomatography (toluene) to provide 12.1 mg (67%) of **4i** as a brown oil. TLC R_f 0.65 (EtOAc/hexane, 1:10). IR (neat): 2928 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.24 (m, 2H, -Ph), 7.20-7.16 (m, 3H, -Ph), 2.60 (t, 2H, J = 9.6 Hz, H-1, 1' of butyl), 1.67-1.57 (m, 2H, H-2, 2' of butyl), 1.52-1.43 (m, 2H, -3, 3' of butyl), 1.24 (s, 12H, -Me×4 of dioxaborolane), 0.81 (t, 2H, J = 8.0 Hz, H-4, 4' of butyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 142.9, 128.4 (2C), 128.2 (2C), 125.5, 82.9 (2C), 35.8, 34.2, 24.8 (4C), 23.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₆BO₂ 261.2026; Found 261.2038.

[4-(Methylseleno)butyl]benzene (S7)

The following reaction was carried out under Ar. To a stirred solution of **3** (20.0 mg, 0.0696 mmol), zinc(II) tetraphenylporphyrin (1.4 mg, 2.1 µmol) in CH₂Cl₂ (1.4 mL) was added dimetyl diselenide (7 mL, 0.0696 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, the mixture concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:10) to provide 14.1 mg (89%) of **S7** as a yellow oil. TLC R_f 0.71 (EtOAc/hexane, 1:10). IR (neat): 2925 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.25 (m, 2H, -Ph), 7.20-7.15 (m, 3H, -Ph), 2.63 (t, 2H, *J* = 7.0 Hz, H-1, 1' of butyl), 2.56 (t, 2H, *J* = 7.0 Hz, H-4, 4' of butyl), 1.97 (s, 3H, Me), 1.78-1.67 (m, 4H, H-2, 2', 3, 3' of butyl). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 142.2, 128.4 (2C), 128.3 (2C), 125.7, 35.4, 31.5, 29.7, 25.2, 4.0. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₁H₁₇Se 229.0495; Found 229.0497.

1-Chloro-4-[(4-phenylbutyl)seleno]benzene (S8)

The following reaction was carried out under Ar. To a stirred solution of **3** (20.2 mg, 0.0696 mmol), zinc(II) tetraphenylporphyrin (1.4 mg, 2.1 µmol) in CH₂Cl₂ (1.4 mL) was added bis(4-chlorophenyl) diselenide (26.5 mg, 0.0696 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, the mixture concentrated under reduced pressure. The residue was purified by PTLC (toluene/hexane, 1:3) to provide 19.1 mg (85%) of **S8** as a yellow oil. TLC R_f 0.40 (toluene/hexane, 1:10). IR (neat): 2932 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.36 (m, 2H, -Ar), 7.30-7.25 (m, 2H, -Ph), 7.24-7.18 (m, 3H, -Ph), 7.17-7.12 (m, 2H, -Ar), 2.89 (t, 2H, *J* = 7.2 Hz, H-1, 1' of butyl), 2.61 (t, 2H, *J* = 7.0 Hz, H-4, 4' of butyl), 1.77-1.71 (m, 4H,

H-2, 2', 3, 3' of butyl). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.0, 134.0 (2C), 132.9, 129.1 (2C), 128.5, 128.4 (2C), 128.3 (2C), 125.8, 35.4, 31.5, 29.7, 28.3. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₈ClSe 325.0262; Found 325.0264.

2-Thioxopyridin-1(2H)-yl 2-phenethyl-4-phenylbutanoate (5)

As described for the preparation of **1b**, compound **S58**^{S2} (100 mg, 0.420 mmol) was converted to 113 mg (80%) of **5**. Compound **5** was obtained as a yellow oil. TLC R_f 0.33 (EtOAc/hexane, 1:2). IR (neat): 1798, 1527, 1448 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (m, 1H, 2-pyridinethione), 7.32-7.25 (m, 4H, 2-pyridinethione, phenyl), 7.24-7.17 (m, 8H, 2-pyridinethione, phenyl), 6.59 (m, 1H, 2-pyridinethione), 2.88-2.76 (m, 5H), 2.36-2.25 (m, 2H), 2.08-1.98 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 176.0, 171.2, 141.0 (2C), 137.60, 137.56, 133.2, 128.6 (4C), 128.5 (4C), 126.1 (2C), 112.4, 42.2, 33.3 (4C). HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₃NNaO₂S 400.1347; Found 400.1338.

Methyl 4-phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanoate (7a)

The following reaction was carried out under Ar. To a stirred solution of **5** (10.4 mg, 0.0276 mmol) and zinc(II) tetraphenylporphyrin (0.6 mg, 0.9 μ mol) in toluene (0.3 mL) was added methyl acrylate **6a** (5.0 μ L, 0.073 mmol). The mixture was stirred and irradiated by red LEDs

at 25 °C for 1 h, diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (5 mL \times 3). The

combined extracts were dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAC/hexane, 1:2) to provide 7.7 mg (67%) of **7a** as a yellow oil. TLC R_f 0.76 (EtOAc/hexane, 1:2). IR (neat): 2927, 1736, 1454 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.39 (m, 1H), 7.49 (m, 1H), 7.30-7.22 (m, 4H), 7.20-7.13 (m, 7H), 7.00 (m, 1H), 4.75 (t, 1H, J = 8.0 Hz), 3.68 (s, 3H), 2.71-2.56 (m, 4H), 2.10 (m, 1H), 1.93 (m, 1H), 1.79-1.62 (m, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.3, 157.1, 149.4, 142.6, 142.5, 136.1, 128.39 (2C),

^{S2} Blankson, G. A.; Parhi, A. K.; Kaul, M.; Pilch, D. S.; LaVoie, E. J. *Bioorg. Med. Chem.* **2019**, *27*, 3254-3278.

128.35 (2C), 128.32 (2C), 128.29 (2C), 125.7 (2C), 122.2, 119.9, 52.4, 44.2, 36.2, 35.3, 35.1, 35.0, 32.7, 32.5. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₉NNaO₂S 442.1817; Found 442.1806.

tert-Butyl 4-phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanoate (7b)

As described for the preparation of **7a**, compound **5** (10.8mg, 0.0286mmol) was converted by using *t*-butyl acrylate **6b** instead of methyl acrylate to 6.1 mg (50%) of **7b**. Compound **7b** was obtained as a yellow oil. TLC R_f 0.86 (EtOAc/hexane, 1:2). IR (neat): 2931, 1726, 1146 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.39 (m, 1H), 7.48 (m, 1H), 7.31-7.24 (m, 4H), 7.22-7.14 (m, 7H), 6.98 (m, 1H), 4.56 (m, 1H), 2.74-2.57 (m, 4H), 2.07 (m, 1H), 1.88 (m, 1H), 1.82-1.66 (m, 5H), 1.39 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.7, 157.7, 149.3, 142.7, 142.6, 136.0, 128.38 (2C), 128.36 (2C), 128.33 (2C), 128.30 (2C), 125.7 (2C), 122.4, 119.8, 81.3, 45.8, 36.3, 35.4, 35.3, 35.0, 32.8, 32.5, 27.9 (3C). HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₉H₃₅NNaO₂S 484.2286; Found 484.2275.

5-Phenethyl-7-phenyl-3-(pyridin-2-ylthio)heptan-2-one (7c)

As described for the preparation of **7a**, compound **5** (10.4mg, 0.0276mmol) was converted by using methyl vinyl ketone **6c** instead of methyl acrylate to 7.2 mg (65%) of **7c**. Compound **7c** was obtained as a yellow oil. TLC R_f 0.75 (EtOAc/hexane, 1:2). IR (neat): 2925, 1712, 1453 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (m, 1H), 7.50 (m, 1H), 7.30-7.22 (m, 4H), 7.21-7.11 (m, 7H), 7.02 (m, 1H), 4.79 (m, 1H), 2.67-2.50 (m, 4H), 2.25 (s, 3H), 2.03 (m, 1H), 1.85-1.60 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 206.5, 157.1, 149.3, 142.5 (2C), 136.2, 128.4 (2C), 128.34 (4C), 128.29 (2C), 125.71, 125.67, 122.3, 120.0, 50.1, 35.5, 35.3, 34.8, 34.2, 32.7 (2C), 27.8. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₆H₂₉NNaOS 426.1868; Found 426.1855.

4-Phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanenitrile (7d)

As described for the preparation of **7a**, compound **5** (10.0 mg, 0.0265 mmol) was converted by using acrylonitrile **6d** instead of methyl acrylate to 5.6 mg (55%) of **7d**. Compound **7d** was obtained as a yellow oil. TLC R_f 0.76 (EtOAc/hexane, 1:2). IR (neat): 2926, 2237, 1454 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.46 (m, 1H), 7.56 (m, 1H), 7.33-7.24 (m, 4H), 7.23-7.14 (m, 7H), 7.08 (m, 1H), 4.96 (m, 1H), 2.74-2.58 (m, 4H), 2.13 (m, 1H), 1.98 (m, 1H), 1.90 (m, 1H), 1.84-1.69 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.7, 149.7, 142.1, 142.0, 136.6, 128.5 (2C), 128.4 (2C), 128.34 (2C), 128.32 (2C), 125.90, 125.87, 122.3, 120.7, 119.9, 36.5, 35.4, 35.3, 34.6, 32.8, 32.3, 29.3. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₅H₂₆N₂NaS 409.1714; Found 409.1702.

4-Phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanoic acid (7e)

As described for the preparation of **7a**, compound **5** (100 mg, 0.265 mmol) was converted by using acrylic acid **6e** instead of methyl acrylate to 92.4 mg (86%) of **7e**. Compound **7e** was obtained as a yellow oil. TLC R_f 0.19 (EtOAc/hexane, 1:2). IR (neat): 2928, 1729, 1454 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.42 (m, 1H), 7.67 (m, 1H), 7.32 (m, 1H), 7.30-7.06 (m, 11H), 3.90 (m, 1H), 2.70-2.51 (m, 4H), 2.21 (m, 1H), 1.83 (m, 1H), 1.78-1.60 (m, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.8, 158.1, 147.8, 142.34, 142.28, 138.0, 128.34 (4C), 128.28 (2C), 128.2 (2C), 125.8, 125.7, 124.1, 121.2, 45.8, 35.4, 35.2, 34.3, 33.9, 32.8, 32.4. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₅H₂₇NNaO₂S 428.1660; Found 428.1651.

Methyl 2-methyl-4-phenethyl-6-phenyl-2-(pyridin-2-ylthio)hexanoate (7g)

As described for the preparation of **7a**, compound **5** (10.8 mg, 0.0286mmol) was converted by using methyl methacrylate **6g** instead of methyl acrylate to 4.3 mg (35%) of **7g**. Compound **7g** was obtained as a yellow oil. TLC R_f 0.76 (EtOAc/hexane, 1:2). IR (neat): 2930, 1732 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.38 (m, 1H), 7.48 (m, 1H), 7.31-7.24 (m, 4H), 7.21-7.11 (m, 7H), 7.00 (m, 1H), 3.64 (s, 3H), 2.63-2.55 (m, 4H), 2.13 (m, 1H), 2.01 (m, 1H), 1.79 (m, 1H), 1.71-1.46 (m, 7H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 174.7, 149.3, 142.53, 142.51, 136.0, 128.3 (8C), 125.7 (2C), 123.8, 120.2, 55.0, 52.4, 42.5, 37.1, 36.7, 33.8, 32.9, 32.7, 24.1. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₂₇H₃₁NNaO₂S 456.1973; Found 456.1960.

Dimethyl 2-(1,5-diphenylpentan-3-yl)-3-(pyridin-2-ylthio)succinate (6i)

As described for the preparation of **7a**, compound **5** (9.5 mg, 0.0252mmol) was converted by using dimethyl fumarate **6i** instead of to methyl acrylate to 6.0 mg (50%, dr 2:1) of **7i**. Compound **7i** was obtained as a yellow oil. TLC R_f 0.55 (EtOAc/hexane, 1:2). IR (neat): 2949, 1733 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.45 (m, 2/3H), 8.42 (m, 1/3H), 7.51 (m, 1H), 7.30-7.09 (m, 10H), 7.07-6.99 (m, 2H), 5.28 (d, 1/3H, J = 8.0 Hz), 5.19 (d, 2/3H, J = 7.6 Hz),

3.704 (s, 3×2/3H), 3.698 (s, 3×2/3H), 3.67 (s, 3×1/3H), 3.61 (s, 3×1/3H), 3.34 (m, 1H),

2.89 (m, 2/3H), 2.76-2.45 (m, 3H), 2.19 (m, 2/3H), 2.08 (m, 2/3H), 2.01-1.67 (m, 10/3H), 1.56 (m, 2/3H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) for major isomer: δ 173.1, 172.8, 155.9, 149.5, 142.4, 142.1, 136.4, 128.5 (2C), 128.4 (2C), 128.3 (4C), 125.8, 125.7, 122.5, 120.4, 52.7, 51.7, 48.2, 44.8, 36.9, 34.0, 33.6, 33.4, 32.7. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₈H₃₁NNaO₄S 500.1871; Found 500.1861.

1-ethyl-4-(hexyloxy)benzene (9).

The following reaction was carried out under Ar. To a stirred solution of **10** (19.6 mg, 0.0367 mmol) and zinc(II) tetraphenylporphyrin (0.03 mg, 0.04 µmol) in DMA (0.4 mL) was added *tert*-butylthiol (16.9 µL, 0.150 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, and BNAH (8.2 mg, 0.038 mmol) and Ru(bpy)₃Cl₂·H₂O (1.4 mg, 1.9 µmol) were added. After being stirred at 25 °C and irradiated by blue LEDs for 6 h, the mixture was diluted with EtOAc/hexane (1:3, 10 mL) and washed with H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure.

The residue was purified by PTLC (EtOAc/hexane, 1:8) to provide 5.2 mg (73%) of 9^{S3} as a colorless oil.

1-[2-(4-Methoxyphenylthio)ethyl]-4-pentyloxybenzene (11).

The following reaction was carried out under Ar. To a stirred solution of **10** (14.5 mg, 0.0271 mmol) and zinc(II) tetraphenylporphyrin (0.6 mg, 0.9 µmol) in DMA (0.6 mL) was added bis(4-methoxyphenyl) disulfide (15.2 mg, 0.0546 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, and BNAH (6.3 mg, 0.029 mmol), tert-butylthiol (13.0 µL, 0.115 mmol) and Ru(bpy)₃Cl₂·H₂O (0.7 mg, 0.9 µmol) were added. After being stirred at 25 °C and irradiated by blue LEDs for 4 h, the mixture was diluted with EtOAc (20 mL) and washed with H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:12) to provide 6.1 mg (68%) of 11 as a colorless oil. TLC R_f 0.70 (EtOAc/hexane, 1:12). IR (neat): 2930 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, 2H, J =7.8 Hz, H-2, 6 of 4-methoxyphenyl), 7.06 (d, 2H, J =8.2 Hz, H-2, 6 of Ar), 6.86 (d, 2H, J =7.8 Hz, H-3, 5 of 4-methoxyphenyl), 6.81 (d, 2H, J =8.2 Hz, H-3, 5 of Ar), 3.92 (t, 2H, J =6.7 Hz, H-1, 1' of pentyloxy), 3.81 (s, 3H, -CH₃ of 4-methoxyphenyl), 3.03 (t, 2H, J =7.7 Hz, H-2, 2' of 2-(4-methoxyphenylthio)ethyl), 2.80 (t, 2H, J =7.7 Hz, H-1, 1' of 2-(4methoxyphenylthio)ethyl), 1.77 (quin, 2H, J = 6.7 Hz, H-2, 2' of pentyloxy), 1.47-1.33 (m, 4H, H-3, 3', 4, 4' of pentyloxy), 0.92 (t, 3H, J = 6.8 Hz, -CH₃ of pentyloxy). ¹³C{¹H} NMR (125) MHz, CDCl₃): δ 158.9, 157.7, 133.2 (2C), 132.2, 129.4 (2C), 126.4, 114.6 (2C), 114.2 (2C), 68.0, 55.3, 37.5, 35.0, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₇O₂S 331.1732; Found 331.1731.

1-[4-(Methoxycarbonyl)-4-(pyridinylthio)butyl]-4-pentyloxybenzene (13).

The following reaction was carried out under Ar. To a stirred solution of **10** (14.3 mg, 0.0267 mmol) and zinc(II) tetraphenylporphyrin (0.5 mg, 0.7 μ mol) in DMA (0.6 mL) was added methyl acrylate (3.8 μ L, 0.042 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, and BNAH (6.0 mg, 0.028 mmol), *tert*-butylthiol (13.0 μ L, 0.115 mmol) and

^{S3} Li, F.; Zhang, G.; Liu, Y.; Zhu, B.; Leng, Y.; Wu, J. Org. Lett. 2020, 22, 8791-8795.

Ru(bpy)₃Cl₂·H₂O (0.6 mg, 0.8 μmol) were added. After being stirred at 25 °C and irradiated by blue LEDs for 4 h, the mixture was diluted with EtOAc (20 mL) and washed with H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:6) to provide 7.4 mg (72%) of **13** as a colorless oil. TLC R_f 0.69 (EtOAc/hexane, 1:3). IR (neat): 2952, 1735 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (m, 1H, H-6 of pyridinyl), 7.48 (td, 1H, J =7.6, 1.8 Hz, H-4 of pyridinyl), 7.18 (d, 1H, J =7.6 Hz, H-3 of pyridinyl), 7.06 (d, 2H, J =8.8 Hz, H-2, 6 of Ar), 6.99 (dd, 1H, J =7.6, 4.9 Hz, H-5 of pyridinyl), 6.80 (d, 2H, J =8.8 Hz, H-3, 5 of Ar), 4.62 (t, 1H, J =7.5 Hz, H-4 of butyl), 3.92 (t, 2H, J =6.5 Hz, H-1, 1' of pentyloxy), 3.71 (s, 3H, CO₂Me), 2.59 (t, 2H, J =7.8 Hz, H-1, 1' of butyl), 2.06-1.86 (m, 2H, H-3, 3' of butyl), 1.84-1.70 (m, 4H, H-2, 2' of butyl, H-2, 2' of pentyloxy), 1.46-1.33 (m, 4H, H-3, 3', 4, 4' of pentyloxy), 0.93 (t, 3H, J =7.3 Hz, -CH₃ of pentyloxy). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 173.2, 157.3 (2C), 149.4, 136.1, 133.6, 129.2 (2C), 122.2, 119.9, 114.3 (2C), 67.9, 52.4, 46.1, 34.4, 31.4, 29.1, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₃₀NO₃S 388.1946; Found 388.1934.

1-[4-(Methoxycarbonyl)-4-(pyridinylthio)butyl]-4-[5-(phenylthio)pentyloxy]benzene (14).

The following reaction was carried out under Ar. To a stirred solution of 10 (14.6 mg, 0.0273 mmol) and zinc(II) tetraphenylporphyrin (0.6 mg, 0.9 µmol) in DMA (0.6 mL) was added methyl acrylate (3.8 µL, 0.042 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, and diphenyl disulfide (24.2 mg, 0.0281 mmol), DIPEA (10.0 µL, 0.0574 mmol) and Ru(bpy)₃Cl₂·H₂O (0.7 mg, 0.9 µmol) were added. After being stirred at 25 °C and irradiated by blue LEDs for 4 h, the mixture was diluted with EtOAc (20 mL) and washed with H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:3) to provide 7.2 mg (53%) of 14 as a colorless oil. TLC R_f 0.69 (EtOAc/hexane, 1:3). IR (neat): 2937, 1736 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (m, 1H, H-6 of pyridinyl), 7.48 (td, 1H, J =7.5, 1.7 Hz, H-4 of pyridinyl), 7.33 (d, 2H, J =8.1 Hz, H-2, 6 of phenyl), 7.27 (t, 2H, J =8.1 Hz, H-3, 5 of phenyl), 7.20-7.14 (m, 2H, H-4 of phenyl, H-3 of pyridinyl), 7.06 (d, 2H, J =8.8 Hz, H-3, 5 of Ar), 6.99 (dd, 1H, J =7.5, 5.0 Hz, H-5 of pyridinyl), 6.78 (d, 2H, J =8.8 Hz, H-2, 6 of Ar), 4.62 (t, 1H, J =7.5 Hz, H-4 of butyl), 3.91 (t, 2H, J =6.5 Hz, H-1, 1' of pentyloxy), 3.71 (s, 3H, CO₂Me), 2.95 (t, 2H, J = 7.3 Hz, H-5, 5' of pentyloxy), 2.59 (t, 2H, J =7.5 Hz, H-1, 1' of butyl), 2.07-1.86 (m, 2H, H-3, 3' of butyl), 1.84-1.68 (m, 6H, H-2, 2' of butyl, H-2, 2', 4, 4' of pentyloxy), 1.64-1.57 (m, 2H, H-3, 3' of pentyloxy). ¹³C{¹H} NMR (125 MHz, CDCl₃): § 173.2, 157.2 (2C), 149.4, 136.7, 136.1, 133.7, 129.2 (2C), 129.0 (2C), 128.8 (2C), 125.8, 122.2, 119.9, 114.3 (2C), 67.6, 52.4, 46.1, 34.4, 33.5, 31.4, 29.1, 28.9 (2C),

Benzyl 8-(4-(5-methoxy-5-oxo-4-(pyridin-2-ylthio)pentyl)phenoxy)octanoate (15).

$$\underbrace{ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

The following reaction was carried out under Ar. To a stirred solution of **10** (14.7 mg, 0.0275 mmol) and zinc(II) tetraphenylporphyrin (0.6 mg, 0.9 μmol) in DMA (0.6 mL) was added methyl acrylate (3.8 μL, 0.042 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, and benzyl acrylate (17 µL, 0.11 mmol), BNAH (12.1 mg, 0.0564 mmol) and Ru(bpy)₃Cl₂·H₂O (0.5 mg, 0.7 µmol) were added. After being stirred at 25 °C and irradiated by blue LEDs for 4 h, the mixture was diluted with EtOAc (20 mL) and washed with H₂O (10 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:3) to provide 7.6 mg (50%) of **15** as a yellow oil. TLC R_f 0.70 (EtOAc/hexane, 1:3). IR (neat): 2934, 1736 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (m, 1H, H-6 of pyridinyl), 7.48 (t, 1H, J = 7.8 Hz, H-4 of pyridinyl), 7.40-7.31 (m, 5H, -Ph), 7.18 (d, 1H, J = 7.8 Hz, H-3 of pyridinyl), 7.06 (d, 2H, J = 8.6 Hz, H-3, 5 of Ar), 6.99 (dd, 1H, J = 7.8, 4.9 Hz, H-5 of pyridinyl), 6.79 (d, 2H, J = 8.6 Hz, H-2, 6 of Ar), 5.11 (s, 2H, Bn), 4.62 (t, 1H, J = 7.2 Hz, H-4 of butyl), 3.90 (t, 2H, J = 6.6 Hz, H-1, 1' of heptyloxy), 3.71 (s, 3H, CO₂Me), 2.59 (t, 2H, J = 7.6 Hz, H-1, 1' of butyl), 2.36 (t, 2H, J = 7.4 Hz, H-7,7' of heptyloxy), 2.08-1.84 (m, 2H, H-3, 3' of butyl), 1.83-1.60 (m, 6H, H-2, 2' of butyl, H-2, 2', 6, 6' of heptyloxy), 1.48-1.31 (m, 6H, H-3, 3', 4, 4', 5, 5' of heptyloxy). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.6, 173.2, 157.3 (2C), 149.4, 136.1 (2C), 133.6, 129.2 (2C), 128.5 (2C), 128.2 (3C), 122.2, 119.9, 114.3 (2C), 67.8, 66.1, 52.4, 46.1, 34.4, 34.3, 31.4, 29.2, 29.1, 29.01, 28.99, 25.9, 24.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{32}H_{40}NO_5S$ 550.2627; Found 550.2631.

1-Pentyloxy-4-[2-(phenylthio)ethyl]benzene (S10).

The following reaction was carried out under Ar. To a stirred solution of **1o** (14.7 mg, 0.0275 mmol) and zinc(II) tetraphenylporphyrin (0.5 mg, 0.7 µmol) and MS 4Å powder (26.2 mg) in DMA (0.6 mL) was added 2,2'-dipyridyl disulfide (13.5 mg, 0.0613 mmol). The stirred mixture was irradiated by red LEDs at 25 °C for 1 h, and BNAH (6.1 mg, 0.029 mmol), *tert*-butylthiol (12.7 µL, 0.112 mmol) and Ru(bpy)₃Cl₂·H₂O (0.7 mg, 0.9 µmol) were added. After being stirred at 25 °C and irradiated by blue LEDs for 4 h, the mixture was diluted with EtOAc (20 mL) and washed with H₂O (5 mL×3) and saturated brine (10 mL), sequentially. The organic layer was dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:8) to provide 4.6 mg (55%) of **S10** as a colorless oil. TLC *R_f* 0.71 (EtOAc/hexane, 1:4). IR (neat): 2927 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.45 (m, 1H, H-6 of pyridinyl),

7.47 (m, 1H, H-4 of pyridinyl), 7.17 (m, 3H, H-3, 5 of Ar, H-3 of pyridinyl), 6.97 (m, 1H, H-5 of pyridinyl), 6.84 (d, 2H, J = 8.4 Hz, H-2, 6 of Ar), 3.93 (t, 2H, J = 6.7 Hz, H-1, 1' of pentyloxy), 3.38 (t, 2H, J = 7.8 Hz, H-2, 2' of 2-(pyridinylthio)ethyl), 2.94 (t, 2H, J = 7.8 Hz, H-1, 1' of 2-(pyridinylthio)ethyl), 1.78 (quin, 2H, J = 6.7 Hz, H-2, 2' of pentyloxy), 1.48-1.33 (m, 4H, H-3, 3', 4, 4' of pentyloxy), 0.93 (t, 3H, J = 7.0 Hz, - CH₃ of pentyloxy). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.0, 157.7, 149.5, 135.8, 132.4, 129.5 (2C), 122.3, 119.3, 114.4 (2C), 68.0, 34.9, 31.7, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) *m/z*: [M + H]⁺Calcd for C₁₈H₂₄NOS 302.1579; Found 302.1574.

1-[5-Oxo-4-(pyridinylthio)hexyl]-4-pentyloxybenzene (S11).

As described for the preparation of **13**, compound **10** (14.3 mg, 0.0267 mmol) was converted using methyl vinyl ketone instead of methyl acrylate to 6.7 mg (67%) of **S11**. Compound **S11** was obtained as a colorless oil. TLC R_f 0.62 (EtOAc/hexane, 1:3). IR (neat): 2930, 1711 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.38 (m, 1H, H-6 of pyridinyl), 7.49 (t, 1H, *J* =7.7 Hz, H-4 of pyridinyl), 7.19 (d, 1H, *J* =7.7 Hz, H-3 of pyridinyl), 7.05 (d, 2H, *J* =8.4 Hz, H-2, 6 of Ar), 7.00 (dd, 1H, *J* =7.7, 4.9 Hz, H-5 of pyridinyl), 6.80 (d, 2H, *J* =8.4 Hz, H-3, 5 of Ar), 4.64 (t, 1H, *J* =7.0 Hz, H-4 of hexyl), 3.92 (t, 2H, *J* =6.6 Hz, H-1, 1' of pentyloxy), 2.65-2.53 (m, 2H, H-1, 1' of hexyl), 2.27 (s, 3H, -CH₃ of hexyl), 2.02-1.92 (m, 2H, H-3 of hexyl), 1.85-1.65 (m, 5H, H-2, 2', 3' of hexyl, H-2, 2' of pentyloxy), 1.48-1.33 (m, 4H, H-3, 3', 4, 4' of pentyloxy), 0.92 (t, 3H, *J* =7.0 Hz, -CH₃ of pentyloxy). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 206.6, 157.3, 157.2, 149.3, 136.2, 133.6, 129.2 (2C), 122.3, 119.9, 114.4 (2C), 68.0, 52.4, 34.6, 29.6, 29.1, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₃₀NO₂S 372.1997; Found 372.1998.

1-[3,4-Bis(methoxycarbonyl)-4-(pyridinylthio)butyl]-4-pentyloxybenzene (S12).

As described for the preparation of **13**, compound **10** (14.3 mg, 0.0269 mmol) was converted using dimethyl fumarate instead of methyl acrylate to 7.9 mg (66%, dr = 2:1) of **S12**. Compound **S12** was obtained as a colorless oil. TLC R_f 0.47 (EtOAc/hexane, 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.42 (m, 1H, H-6 of pyridinyl), 7.50 (t, 1H, *J* =7.7 Hz, H-4 of pyridinyl), 7.21 (m, 1H, H-3 of pyridinyl), 7.04-6.97 (m, 3H, H-2, 6 of Ar, H-5 of pyridinyl), 6.77 (m, 2H, H-3, 5 of Ar), 5.26 (d, 1H×2/3, *J* =6.4 Hz, H-4 of butyl×2/3), 5.11 (d, 1H×1/3, *J* =9.6 Hz, H-4 of butyl×1/3), 3.94-3.86 (m, 2H, H-1, 1' of pentyloxy), 3.71 (s, 3H×1/3, CO₂Me×1/3), 3.70 (s, 3H×2/3, CO₂Me×2/3), 3.69 (s, 3H×1/3, CO₂Me×1/3), 3.69 (s, 3H×2/3, CO₂Me×2/3), 3.10 (m, 1H×1/3, H-3 of butyl×1/3), 2.71-2.43 (m, 2H, H-1, 1' of butyl), 2.18-2.07 (m, 2H×2/3, H-2, 2' of butyl×2/3), 1.96-1.86 (m, 2H×1/3, H-2, 2' of butyl×1/3), 1.81-1.71 (m, 2H, H-2, 2' of pentyloxy), 1.48-1.32 (m, 4H, H-3, 3', 4, 4' of pentyloxy), 0.92 (t, 3H, *J* =7.0

Hz, -CH₃ of pentyloxy). ¹³C{¹H} NMR (100 MHz, CDCl₃), major isomer: δ 173.6, 171.8, 157.5, 156.6, 149.3, 136.2, 132.8, 129.3 (2C), 122.3, 120.1, 114.4 (2C), 68.0, 52.8, 52.0, 46.38, 46.36, 32.6, 31.9, 29.0, 28.2, 22.5, 14.0. minor isomer: δ 174.0, 172.1, 157.4, 156.0, 149.4, 136.3, 133.0, 129.3 (2C), 122.5, 120.3, 114.3 (2C), 68.0, 52.7, 52.0, 46.5, 46.2, 31.9, 31.3, 29.0, 28.2, 22.5, 14.0. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₄H₃₂NO₅S 446.2001; Found 446.1995.

1-Pentyloxy-4-[4-(phenylsulfonyl)-4-(pyridinylthio)butyl]benzene (S13).

As described for the preparation of **13**, compound **10** (15.0 mg, 0.0281 mmol) was converted using phenyl vinyl sulfone instead of methyl acrylate to 6.8 mg (52%) of **S13**. Compound **S13** was obtained as a colorless oil. TLC R_f 0.41 (EtOAc/hexane, 1:3). IR (neat): 2926 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.20 (m, 1H, H-6 of pyridinyl), 7.87 (d, 2H, J = 6.4 Hz, H-2, 6 of -SO₂Ph), 7.42 (t, 1H, J = 7.6 Hz, H-4 of pyridinyl), 7.37-7.28 (m, 3H, H-3, 4, 5 of -SO₂Ph), 7.02 (d, 2H, J = 8.4 Hz, H-3, 5 of Ar), 6.96 (d, 1H, J = 7.6 Hz, H-3 of pyridinyl), 6.90 (dd, 1H, J = 7.6, 5.0 Hz, H-5 of pyridinyl), 6.77 (d, 2H, J = 8.4 Hz, H-2, 6 of Ar), 5.75 (dd, 1H, J = 6.8, 3.2 Hz, H-4 of butyl), 3.91 (t, 2H, J = 6.4 Hz, H-1, 1' of pentyloxy), 2.69-2.51 (m, 2H, H-1, 1' of butyl), 2.43 (m, 1H, H-3 of butyl), 2.04-1.72 (m, 5H, H-2, 2', 3' of butyl, H-2, 2' of pentyloxy), 1.48-1.32 (m, 4H, H-3, 3', 4, 4' of pentyloxy), 0.92 (t, 3H, J = 7.0 Hz, -CH₃ of pentyloxy). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.4, 154.7, 149.0, 137.1, 136.2, 133.4, 133.3, 129.6 (2C), 129.2 (2C), 128.2 (2C), 122.4, 120.4, 114.4 (2C), 68.0, 65.3, 34.2, 29.0, 28.5, 28.2, 26.6, 22.5, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₃₂NO₃S₂ 470.1824; Found 470.1816. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₃₂NO₃S₂ 470.1816.

1-[6,7-Bis(methoxycarbonyl)heptyloxy]-4-[4-(methoxycarbonyl)-4-(pyridinylthio)butyl]benzene (S14).

As described for the preparation of **15**, compound **10** (14.6 mg, 0.0273 mmol) was converted using dimethyl fumarate instead of benzyl acrylate to 8.7 mg (60%) of **S14**. Compound **S14** was obtained as yellow solids. TLC R_f 0.42 (EtOAc/hexane, 1:2). IR (neat): 1732, 2950 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (m, 1H, H-6 of pyridinyl), 7.48 (t, 1H, *J* =7.7 Hz, H-4 of pyridinyl), 7.18 (d, 1H, *J* =7.7 Hz, H-3 of pyridinyl), 7.06 (d, 2H, *J* =8.6 Hz, H-3, 5 of Ar), 6.99 (dd, 1H, *J* =7.7, 5.1 Hz, H-5 of pyridinyl), 6.78 (d, 2H, *J* =8.6 Hz, H-2, 6 of Ar), 4.62 (t, 1H, *J* =7.4 Hz, H-4 of butyl), 3.90 (t, 2H, *J* =6.4 Hz, H-1, 1' of heptyloxy), 3.71 (s, 3H, CO₂Me), 3.69 (s, 3H, CO₂Me), 3.67 (s, 3H, CO₂Me), 2.86 (m, 1H, H-6 of heptyloxy), 2.73 (dd, 1H, *J* =16.7, 9.4 Hz, H-7 of heptyloxy), 2.59 (t, 2H, *J* =7.6 Hz, H-1, 1' of butyl), 2.44 (dd, 1H, *J* =16.7, 5.2 Hz, H-7' of heptyloxy), 2.08-1.85 (m, 2H, H-3, 3' of butyl), 1.83-1.72 (m, 4H, H-2, 2' of butyl, H-2, 2' of heptyloxy), 1.66 (m, 1H, H-5 of heptyloxy), 1.55 (m, 1H, H-5' of heptyloxy), 1.51-1.31

(m, 4H, H-3, 3', 4, 4' of heptyloxy). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.4, 173.2, 172.4, 157.3, 157.2, 149.4, 136.1, 133.7, 129.2 (2C), 122.3, 119.9, 114.3 (2C), 67.7, 52.4, 51.84, 51.78, 46.1, 41.1, 35.8, 34.4, 31.8, 31.4, 29.1 (2C), 26.7, 25.9. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₇H₃₆NO₇S 518.2212; Found 518.2214.

2-Thioxopyridin-1(2H)-yl 2-methylbutanoate (S60)

As described for the preparation of **1b**, compound **S59** (200 mg, 1.96 mmol) was converted to 413 mg (quant.) of **S60**.^{S4} Compound **S60** was obtained as a yellow oil. TLC R_f 0.32 (EtOAc/hexane, 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.69 (m, 1H, 2-pyridinethione), 7.51 (m, 1H, 2-pyridinethione), 7.20 (m, 1H, 2-pyridinethione), 6.62 (m, 1H, 2-pyridinethione), 2.81 (m, 1H), 1.95 (m, 1H), 1.70 (m, 1H), 1.40 (d, 3H, J = 7.6 Hz), 1.05 (t, 3H, J = 7.2 Hz).

2-Thioxopyridin-1(2H)-yl 2-methyl-3-phenylpropanoate (S62)

As described for the preparation of **1b**, compound **S61** (50.1 mg, 0.305 mmol) was converted to 58.5 mg (70%) of **S62**. Compound **S62** was obtained as a yellow oil. TLC R_f 0.35 (EtOAc/hexane, 1:2). IR (neat): 1801, 1527, 1448 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.65 (m, 1H, 2-pyridinethione), 7.37-7.22 (m, 4H, 2-pyridinethione, phenyl), 7.16 (m, 1H, 2-pyridinethione), 7.07 (d, 1H, phenyl, J = 6.8 Hz), 6.54 (m, 1H, 2-pyridinethione), 3.23-3.13 (m, 2H), 2.92 (m, 1H), 1.43 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.8, 171.3, 138.2, 137.4, 137.3, 133.4, 129.1 (2C), 128.5 (2C), 126.8, 112.5, 39.7, 39.6, 16.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₅NNaO₂S 296.0721; Found 296.0715.

2-Thioxopyridin-1(2H)-yl cyclohexanecarboxylate (S64)

As described for the preparation of **1b**, compound **S63** (200 mg, 1.56 mmol) was converted to 368 mg (quant.) of **S64**.^{S5} Compound **S64** was obtained as a yellow oil. TLC R_f 0.41(EtOAc/hexane, 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.69 (m, 1H, 2-pyridinethione), 7.52 (m, 1H, 2-pyridinethione), 7.19 (m, 1H, 2-

^{S4} D. H. R. Barton, N. Ozbalik, B. Vacher *Tetrahedron* **1988**, *44*, 3501-3512.

^{S5} D. H. R. Barton, D. Crich, G. Kretzschmar *Tetrahedron Lett.* 1984, 25, 1055-1058.

pyridinethione), 6.62 (m, 1H, 2-pyridinethione), 2.76 (tt, 1H, *J* = 10.8, 3.6 Hz), 2.22-2.14 (m, 2H), 1.89-1.80 (m, 2H), 1.73-1.61 (m, 3H), 1.43-1.24 (m, 3H).

2-Thioxopyridin-1(2H)-yl cyclobutanecarboxylate (S66)

As described for the preparation of **1b**, compound **S65** (200 mg, 2.00 mmol) was converted to 418 mg (quant.) of **S66**.^{S6} Compound **S66** was obtained as a yellow oil. TLC R_f 0.25 (EtOAc/hexane, 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.70 (m, 1H, 2-pyridinethione), 7.55 (m, 1H, 2-pyridinethione), 7.21(m, 1H, 2-pyridinethione), 6.63 (m, 1H, 2-pyridinethione), 3.52 (m, 1H,), 2.68-2.57 (m, 2H), 2.45-2.35 (m, 2H), 2.14-2.01 (m, 2H).

1-(tert-Butyl) 4-[2-thioxopyridin-1(2H)-yl] piperidine-1,4-dicarboxylate (S68)

As described for the preparation of **S68**, compound **S67** (100 mg, 0.436 mmol) was converted to 122 mg (83%) of **S68**. Compound **S68** was obtained as a yellow oil. TLC *Rf* 0.25 (EtOAc/hexane, 4:1). IR (neat): 2977, 1684 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.65 (m, 1H, 2-pyridinethione), 7.54 (m, 1H, 2-pyridinethione), 7.19 (m, 1H, 2-pyridinethione), 6.62 (m, 1H, 2-pyridinethione), 4.07 (br, 2H), 2.99-2.86 (m, 3H), 2.14-2.06 (m, 2H), 1.90-1.78 (m, 2H), 1.44 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.7, 169.9, 154.5, 137.5, 137.4, 133.5, 112.6, 79.8, 42.5 (2C, br), 39.2, 28.3 (3C), 27.7 (2C). HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₂N₂NaO₄S 361.1198; Found 361.1191.

1-Benzyl 4-[2-thioxopyridin-1(2H)-yl] piperidine-1,4-dicarboxylate (S70)

As described for the preparation of **1b**, compound **S69** (100 mg, 0.380 mmol) was converted to 117 mg (83%) of **S70**. Compound **S70** was obtained as a yellow oil. TLC R_f 0.19 (EtOAc/hexane, 4:1). IR (neat): 2953, 1695, 1449 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (m, 1H, 2-pyridinethione), 7.54 (m, 1H, 2-

^{S6} D. H. R. Barton, C. Tachdjian *Tetrahedron* 1992, 48, 7109-7120.

pyridinethione), 7.40-7.29 (m, 5H, phenyl), 7.21 (m, 1H, 2-pyridinethione), 6.64 (m, 1H, 2-pyridinethione), 5.13 (s, 2H), 4.18 (br, 2H), 3.11-2.91 (m, 3H), 2.20-2.11 (m, 2H), 1.96-1.84 (m, 2H). $^{13}C{^1H}$ NMR (100 MHz, CDCl₃): δ 175.6, 169.8, 155.0, 137.5, 137.4, 136.5, 133.5, 128.5 (2C), 128.0, 127.8 (2C), 112.6, 67.2, 42.8 (2C), 39.0, 27.6 (2C, br). HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₁₉H₂₀N₂NaO₄S 395.1041; Found 395.1034.

2-Thioxopyridin-1(2H)-yl 2,2-dimethyl-3-phenylpropanoate (S72)

As described for the preparation of **1b**, compound **S71** (30.6 mg, 0.172 mmol) was converted to 34.5 mg (70%) of **S72**. Compound **S72** was obtained as a yellow oil. TLC R_f 0.41 (EtOAc/hexane, 1:2). IR (neat): 2977, 1791, 1527 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.65 (m, 1H, 2-pyridinethione), 7.36-7.27 (m, 3H, 2-pyridinethione, phenyl), 7.25-7.13 (m, 4H, 2-pyridinethione, phenyl), 6.57 (m, 1H, 2-pyridinethione), 3.07 (s, 2H), 1.47 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.9, 172.8, 137.5 137.4, 136.7, 133.3, 130.5 (2C), 128.1 (2C), 126.9, 112.5, 46.1, 43.7, 24.8 (2C). HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₆H₁₇NNaO₂S 310.0878; Found 310.0872.

2-Thioxopyridin-1(2H)-yl 3-[(benzyloxy)methoxy]- 2,2-dimethylpropanoate (S74)

As described for the preparation of **1b**, compound **S73** (100 mg, 0.420 mmol) was converted to 101 mg (69%) of **S74**. Compound **S74** was obtained as a yellow oil. TLC R_f 0.17 (EtOAc/hexane, 1:2). IR (neat): 2937, 1798, 1528 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (m, 1H, 2-pyridinethione), 7.48 (m, 1H, 2-pyridinethione), 7.38-7.28 (m, 5H, phenyl), 7.17 (m, 1H, 2-pyridinethione), 6.54 (m, 1H, 2-pyridinethione), 4.81 (s, 2H), 4.62 (s, 2H), 3.78 (s, 2H), 1.50 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 176.0, 171.6, 137.8, 137.4, 133.3, 128.4 (2C), 127.8 (2C), 112.4, 95.1, 92.3, 91.2, 74.7, 69.7, 42.7, 22.4 (2C). HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₁₈H₂₁NNaO₄S 370.1089; Found 370.1083.

2-[(3-Phenethyl-5-phenylpentyl)thio]pyridine (16a)

The following reaction was carried out under Ar. To a stirred solution of **5** (19.8mg, 0.0525 mmol) and zinc(II) tetraphenylporphyrin (1.1 mg, 1.6 µmol) in toluene (0.5 mL) was added acrylic acid (9.0 µL, 0.133 mmol). The mixture was stirred and irradiated by red LEDs at 25 °C for 1 h, and diphenyl disulfide (12.7 mg, 0.0580 mmol), DIPEA (32 µL, 0.19 mmol), TBAI (5.5mg, 0.015mmol), [Ir(dF(CF₃)ppy)₂(dtbbpy)] PF₆ (0.7 mg, 0.7 µmol), toluene (0.5 mL) and H₂O (110 µL) were added. After being stirred and irradiated by blue LEDs at 25 °C for 2 d, the mixture was diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (5 mL× 3). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:12) to provide 12.7 mg (67%) of **16a** as a colorless oil. TLC *R_f* 0.58 (EtOAc/hexane, 1:10). IR (neat): 2925, 1454 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.42 (m, 1H, H-6 of pyridinyl), 7.46 (m, 1H, H-4 of pyridinyl), 7.31-7.25 (m, 4H, Ar), 7.22-7.16 (m, 6H, Ar), 7.15 (m, 1H, H-3 of pyridinyl), 6.96 (m, 1H, H-5 of pyridinyl), 3.22-3.16 (m, 2H, H-1, 1'), 2.67-2.60 (m, 4H), 1.85-1.78 (m, 2H), 1.75-1.67 (m, 4H), 1.65 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 149.4, 142.8 (2C), 135.8, 128.4 (4C), 128.3 (4C), 125.7 (2C), 122.3, 119.2, 36.6, 35.3 (2C), 33.1, 32.9 (2C), 27.4. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₈NS 362.1942; Found 362.1935.

2-[(3-Methylpentyl)thio]pyridine (16b)

As described for the preparation of **16a**, compound **S60** (9.6 mg, 0.0454 mmol) was converted to 4.2 mg (45%) of **16b**. Compound **16b** was obtained as a yellow oil. TLC R_f 0.56 (EtOAc/hexane, 1:10). IR (neat): 2960, 2926, 1579 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.42 (m, 1H), 7.46 (m, 1H), 7.16 (m, 1H), 6.96 (m, 1H), 3.25-3.08 (m, 2H), 1.71 (m, 1H), 1.64-1.47 (m, 2H), 1.38 (m, 1H), 1.20 (m, 1H), 0.93 (d, 3H, J = 6.0 Hz), 0.88 (t, 3H, J = 7.2 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.6, 149.4, 135.8, 122.1, 119.1, 35.9, 34.0, 29.1, 28.1, 18.9, 11.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₈NS 196.1160; Found 196.1152.

2-[(3-Methyl-4-phenylbutyl)thio]pyridine (16c)

As described for the preparation of **16a**, compound **S62** (9.3 mg, 0.0340 mmol) was converted to 3.3 mg (38%) of **16c**. Compound **16c** was obtained as a yellow oil. TLC R_f 0.54 (EtOAc/hexane, 1:10). IR (neat): 2925, 1454 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (m, 1H), 7.45 (m, 1H), 7.30-7.23 (m, 2H, phenyl), 7.20-7.12 (m, 4H), 6.96 (m, 1H), 3.28 (m, 1H), 3.15 (m, 1H), 2.71 (m, 1H), 2.42 (m, 1H), 1.94 (m, 1H), 1.77 (m, 1H), 1.59 (m, 1H), 0.93 (d, 3H, J = 6.8 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.4, 149.4, 141.0, 135.8, 129.2 (2C), 128.1 (2C), 125.7, 121.9, 119.2, 43.2, 36.0, 34.5, 28.0, 19.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₉NNaS 280.1136; Found 280.1125.

2-[(3-Methyl-4-phenylbutyl)thio]pyridine (16d)

As described for the preparation of **16a**, compound **S64** (9.3 mg, 0.0340 mmol) was converted to 3.3 mg (38%) of **16d**.^{S7} Compound **16d** was obtained as a yellow oil. TLC R_f 0.54 (EtOAc/hexane, 1:10). ¹H NMR (400 MHz, CDCl₃): δ 8.41 (m, 1H), 7.45 (m, 1H), 7.30-7.23 (m, 2H, phenyl), 7.20-7.12 (m, 4H), 6.96 (m, 1H), 3.28 (m, 1H), 3.14 (m, 1H), 2.70 (m, 1H), 2.42 (m, 1H), 1.94 (m, 1H), 1.77 (m, 1H), 1.60 (m, 1H), 0.93 (d, 3H, J = 6.8 Hz).

2-[(2-Cyclobutylethyl)thio]pyridine (16e)

As described for the preparation of **16a**, compound **S66** (10.0 mg, 0.0478 mmol) was converted to 4.5 mg (49%) of **16e**. Compound **16e** was obtained as a yellow oil. TLC R_f 0.53 (EtOAc/hexane, 1:10). IR (neat): 2925, 2854 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.42 (m, 1H), 7.46 (m, 1H), 7.15 (m, 1H), 6.96 (m, 1H), 3.08-3.03 (m, 2H), 2.43 (m, 1H), 2.13-2.03 (m, 2H), 1.93-1.75 (m, 4H), 1.71-1.61 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.6, 149.4, 135.8, 122.1, 119.2, 36.3, 35.4, 28.1 (2C), 28.0, 18.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₆NS 194.1003; Found 194.0994.

tert-Butyl 4-[2-(pyridin-2-ylthio)ethyl]piperidine-1-carboxylate (16f)

As described for the preparation of **16a**, compound **S68** (8.6 mg, 0.0255 mmol) was converted to 3.3 mg (40%) of **16f**. Compound **16f** was obtained as a yellow oil. TLC R_f 0.49 (EtOAc/hexane, 1:2). IR (neat): 2926, 1693 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (m, 1H), 7.47 (m, 1H), 7.16 (m, 1H), 6.97 (m, 1H), 4.20-3.88 (br, 8/3H), 3.22-3.17 (m, 4/3H), 3.14-3.04 (m, 2/3H), 2.78-2.57 (br, 4/3H), 2.10-2.02 (br, 2/3H), 1.76-1.58 (m, 5H), 1.46 (s, 3H), 1.45 (s, 6H), 1.20-1.07 (m, 4/3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ

^{S7} D. H. R. Barton, H. Togo, S. Z. Zard *Tetrahedron Lett.* 1985, *26*, 6349-6352.

159.1, 154.9, 149.5, 135.8, 122.2, 119.3, 79.2, 40.4, 35.9, 35.2, 32.1, 31.9, 29.7, 28.5 (3C), 27.3. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₇H₂₆N₂NaO₂S 345.1613; Found 345.1606.

Benzyl 4-[2-(pyridin-2-ylthio)ethyl]piperidine-1-carboxylate (16g)

As described for the preparation of **16a**, compound **S70** (7.7 mg, 0.207 mmol) was converted to 2.0 mg (27%) of **16g**. Compound **16g** was obtained as a yellow oil. TLC R_f 0.34 (EtOAc/hexane, 1:2). IR (neat): 2924, 1698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (m, 1H), 7.47 (m, 1H), 7.40-7.28 (m, 5H, phenyl), 7.16 (m, 1H), 6.98 (m, 1H), 5.12 (s, 2H), 4.24-4.06 (br, 2H), 3.19 (t, 2H, J = 7.2 Hz), 2.87-2.70 (br, 2H), 2.07 (br, 1H), 1.81-1.60 (m, 4H), 1.23-1.08 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.0, 155.3, 149.4, 136.9, 135.9, 128.5 (2C), 127.9, 127.8 (2C), 122.3, 119.3, 66.9, 44.1 (2C), 35.8, 35.1, 31.7 (2C, br), 27.2. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₂₄N₂NaO₂S 379.1456; Found 379.1447.

2-[(3,3-Dimethyl-4-phenylbutyl)thio]pyridine (16h)

As described for the preparation of **16a**, compound **S72** (10.0 mg, 0.0348 mmol) was converted to 5.6 mg (59%) of **16h**. Compound **16h** was obtained as a yellow oil. TLC R_f 0.64 (EtOAc/hexane, 1:10). IR (neat): 2957, 2926, 1578 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.44 (m, 1H), 7.47 (m, 1H), 7.30-7.14 (m, 6H), 6.97 (m, 1H), 3.24-3.18 (m, 2H), 2.58 (s, 2H), 1.67-1.61 (m, 2H), 0.95 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.4, 149.5, 138.8, 135.8, 130.6 (2C), 127.7 (2C), 125.9, 122.1, 119.2, 48.1, 41.5, 34.8, 26.6 (2C), 25.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₇H₂₁NNaS 294.1292; Found 294.1282.

2-{[4-((Benzyloxy)methoxy)-3,3-dimethylbutyl]thio}pyridine (16i)

As described for the preparation of **16a**, compound **S74** (9.7 mg, 0.0279 mmol) was converted to 5.3 mg (57%) of **16i**. Compound **16i** was obtained as a yellow oil. TLC R_f 0.38 (EtOAc/hexane, 1:10). IR (neat): 2926, 1579 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (m, 1H), 7.45 (m, 1H), 7.36-7.26 (m, 5H, phenyl), 7.16 (m, 1H), 6.95 (m, 1H), 4.76 (s, 2H), 4.60 (s, 2H), 3.34 (s, 2H), 3.18-3.12 (m, 2H), 1.74-1.68 (m, 2H), 1.00 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.5, 149.5, 137.9, 135.8, 128.4 (2C), 127.9 (2C), 127.7,
122.0, 119.2, 94.9, 69.3, 38.8, 34.8, 25.5, 24.4 (2C) (one carbon missing due to overlap). HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₂₅NNaO₂S 354.1504; Found 354.1496.

2-{[6-(2,5-Dimethylphenoxy)-3,3-dimethylhexyl]thio}pyridine (16j)

As described for the preparation of **16a**, compound **11** (8.8 mg, 0.0245 mmol) was converted to 4.2 mg (53%) of **16j**. Compound **16j** was obtained as a yellow oil. TLC R_f 0.59 (EtOAc/hexane, 1:10). IR (neat): 2955, 1414 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (m, 1H), 7.46 (m, 1H), 7.16 (m, 1H), 7.00 (d, 1H, J = 7.2 Hz , Ar), 6.95 (m, 1H), 6.65 (d, 1H, J = 7.2 Hz , Ar), 6.63 (s, 1H), 3.94 (t, 2H, J = 6.4 Hz) , 3.19-3.09 (m, 2H), 2.31 (s, 3H), 2.18 (s, 3H), 1.85-1.76 (m, 2H), 1.68-1.61 (m, 2H), 1.47-1.41 (m, 2H), 0.98 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.4, 157.1, 149.5, 136.4, 135.8, 130.2, 123.6, 122.1, 120.6, 119.2, 111.9, 68.5, 41.1, 37.7, 33.2, 29.7, 27.1, 25.5, 24.2, 21.4, 15.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₂₉NNaOS 366.1868; Found 366.1859.

3-Phenethyl-5-phenylpentan-1-ol (17a)

To a stirred solution of **5** (10.0 mg, 0.0265 mmol) and zinc(II) tetraphenylporphyrin (0.6 mg, 0.9 µmol) in toluene (0.3 mL) was added acrylic acid (8.0 µL, 0.012 mmol). The mixture was stirred and irradiated by red LEDs at 25 °C for 1 h under Ar, and Na₂CO₃ (16.9 mg, 0.159 mmol), TBAI (2.0 mg, 0.0052 mmol), [Ir(dF(CF₃)ppy)₂(dtbbpy)] PF₆ (0.3 mg, 0.3 µmol), toluene (1.0 mL) and H₂O (130 µL) were added. The mixture was stirred and irradiated by blue LEDs at 25 °C for 1 d under O₂, and NaBH₄ (20.0 mg, 0.528 mmol) was added. After being stirred for 30 min, the mixture was diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (5 mL × 3). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide 4.2 mg (59%) of **17a** as a colorless oil. TLC R_f 0.47 (EtOAc/hexane, 1:2). IR (neat): 3356, 2927 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.26 (m, 4H, Ar), 7.21-7.15 (m, 6H, Ar), 3.70 (t, 2H, J = 7.2 Hz, H-1, 1'), 2.63 (t, 4H, J = 7.6 Hz), 1.74-1.61 (m, 6H), 1.59 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.7, 128.4, 128.3, 125.7, 60.9, 36.6, 35.6 (2C), 33.6, 32.9 (2C). HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₂₅NaO 291.1725; Found 291.1714.

3-Methylpentan-1-ol (17b)

As described for the preparation of **17a**, compound **S60** (10.0 mg, 0.0473 mmol) was converted to **17b**. 46% yield of **17b** was calculated according to the GC results. **17b** is a commercially available compound.

3-Methyl-4-phenylbutan-1-ol (17c)

As described for the preparation of **17c**, compound **S62** (6.5 mg, 0.0238 mmol) was converted to 2.1 mg (53%) of **17c**.^{S8} Compound **17c** was obtained as a yellow oil. TLC R_f 0.65 (EtOAc/hexane, 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.25 (m, 2H), 7.21–7.13 (m, 3H), 3.79–3.61 (m, 2H), 2.64 (m, 1H), 2.45 (m, 1H), 1.90 (m, 1H), 1.66 (m, 1H), 1.49–1.35 (m, 1H), 0.90 (d, 3H, J = 6.8 Hz).

2-Cyclohexylethan-1-ol (17d)

As described for the preparation of **17a**, compound **S64** (9.8 mg, 0.0413 mmol) was converted to 2.5 mg (46%) of **17d**. Compound **17d** was obtained as a yellow oil. TLC R_f 0.35 (EtOAc/hexane, 1:2). ¹H NMR (400 MHz, CDCl₃): δ 3.68 (t, 2H, J = 6.8 Hz), 1.75-1.61 (m, 5H), 1.50-1.43 (m, 2H),1.39 (m, 1H), 1.32-1.08 (m, 3H), 0.98-0.85 (m, 2H). **17d** is a commercially available compound.

tert-Butyl 4-(2-hydroxyethyl)piperidine-1-carboxylate (17f)

As described for the preparation of **17a**, compound **S68** (9.2 mg, 0.0272 mmol) was converted to 3.0 mg (48%) of **17f**.^{S9} Compound **17f** was obtained as a yellow oil. TLC R_f 0.24 (EtOAc/hexane, 1:2). ¹H NMR

^{S8} J. V. Braun, G. Kirschbaum *Ber. Dtsch. Chem. Ges.* 1914, 47, 262.

^{\$9} S. M. N. Efange, R. H. Michelson, B. Knusel, F. Hefti, R. J. Boudreau, J. R. Thomas, J. R.

(400 MHz, CDCl₃): δ 4.16-3.98 (br, 2H), 3.71 (t, 2H, *J* = 6.8 Hz), 2.78-2.60 (br, 2H), 1.71-1.48 (m, 5H), 1.45 (s, 9H), 1.18-1.06 (m, 2H).

Benzyl 4-(2-hydroxyethyl)piperidine-1-carboxylate (17g)

As described for the preparation of **17a**, compound **S70** (7.2 mg, 0.0193 mmol) was converted to 3.4 mg (66%) of **17g**.^{S10} Compound **17g** was obtained as a yellow oil. TLC R_f 0.12 (EtOAc/hexane, 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.28 (m, 5H, phenyl), 4.29-4.04 (br, 2H), 3.71 (t, 2H, J = 6.8 Hz), 2.88-2.66 (br, 2H), 1.93-1.40 (m, 5H), 1.23-1.06 (m, 2H).

3,3-Dimethyl-4-phenylbutan-1-ol (17h)

As described for the preparation of **17a**, compound **S72** (10.0 mg, 0.0348 mmol) was converted to 3.5 mg (56%) of **17h**.^{S11} Compound **17h** was obtained as a yellow oil. TLC R_f 0.46 (EtOAc/hexane, 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.24 (m, 2H), 7.23–7.18 (m, 1H), 7.15–7.11 (m, 2H), 3.77 (t, 2H, J = 7.2 Hz), 2.54 (s, 2H), 1.55 (t, 2H, J = 7.2 Hz), 0.91 (s, 6H).

4-[(Benzyloxy)methoxy]-3,3-dimethylbutan-1-ol (17i)

As described for the preparation of **17a**, compound **S74** (9.2 mg, 0.0265 mmol) was converted to 3.8 mg (65%) of **17i**. Compound **17i** was obtained as a yellow oil. TLC R_f 0.33 (EtOAc/hexane, 1:2). IR (neat): 3406, 2927 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.27 (m, 5H, phenyl), 4.77 (s, 2H), 4.61 (s, 2H), 3.70 (t, 2H, J = 6.8 Hz), 3.34 (s, 2H), 1.61 (t, 2H, J = 6.8 Hz), 0.96 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 137.7, 128.5 (2C), 127.9 (2C), 127.8, 94.9, 69.5, 59.5, 42.9, 33.8, 25.2 (2C). HRMS (ESI-TOF) m/z: [M + Na]⁺Calcd for C₁₄H₂₂NaO₃ 261.1467; Found 261.1456.

Tennison Nucl. Med. Biol. 1993, 20, 527.

^{S10} R. Brehm, D. Ohnhäuser, H. Gerlach *Helv. Chim. Acta* 1987, *70*, 1981.

^{S11} G. L. Goerner J. Org. Chem. 1959, 24, 888-891.

6-(2,5-Dimethylphenoxy)-3,3-dimethylhexan-1-ol (17j)

As described for the preparation of **17a**, compound **11** (10.0 mg, 0.0278 mmol) was converted to 4.3 mg (62%) of **17j**. Compound **17j** was obtained as a yellow oil. TLC R_f 0.47 (EtOAc/hexane, 1:2). IR (neat): 3375, 2955 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.01 (d, 1H, J = 7.2 Hz), 6.68-6.61 (m, 2H), 3.92 (t, 2H, J = 6.4 Hz), 3.73 (t, 2H, J = 7.6 Hz), 2.31 (s, 3H), 2.18 (s, 3H), 1.81-1.72 (m, 2H), 1.57 (m, 1H) 1.41-1.36 (m, 2H), 0.95 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.0, 136.4, 130.3, 123.5, 120.6, 111.9, 68.4, 59.8, 44.2, 38.6, 32.0, 27.5 (2C), 24.2, 21.4, 15.8. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₁₆H₂₆NaO₂ 273.1830; Found 273.1818.

5. Stern–Volmer emission quenching

Determination of photon flux:

Photon flux of the reaction equipment was determined by the method described by Brauer.^{S12} Briefly, methylene blue (8 × 10⁻⁵ M) and *meso*-diphenylhelianthrene^{S13} (1 × 10⁻⁴ M) was dissolved in air-saturated chloroform. The change in absorbance A_a was recorded at wavelength $\lambda_a = 405$ nm, and plotted against irradiation time using red light irradiation equipment. The slope of the plot was used to calculate the photon flow I_{λ} according to the following equation:

$$\frac{\Delta A_a}{\Delta t} = \frac{0.96dQ_{\rm PO}\Delta\epsilon_a}{V} \times I_{\lambda}$$

Where d = 1 cm (optical path length), $Q_{PO} \Delta \varepsilon_a = 1.930 \times 10^6$ cm² M⁻¹ (actinometric factor), V = 3.0 mL (volume). Photon flow $I_{\lambda} = 1.03 \times 10^{-7}$ einstein min⁻¹ was thus obtained.

Figure S3 Absorption at 405 nm as a function of red light irradiation time.

^{S12} H.-J. Adick, R. Schmidt, H.-D. Brauer J. Photochem. Photobiol. A 1989, 49, 311-316.

^{S13} G. Sauvage Ann. Chim. 1947, 2, 844-852.

Determination of quantum yield: 514

A 4 mL vial was charged with Barton ester **1a** (195 mg, 0.50 mmol), *t*-dodecanethiol (0.47 mL, 2.0 mmol), ZnTPP (0.3 mg, 0.0045 mmol) and MeCN (2.5 mL). The resulting mixture was irradiated with red LED equipment shown in Experimental procedure.

The quantum yield ϕ was calculated according to the following equation:

$$\phi = \frac{n}{I_{\lambda}t(1-10^{-A})}$$

Where $n = 9.69 \times 10^{-5}$ mmol (product obtained), t = 200 s (reaction time), A = 0.034 (absorbance at 630 nm of the ZnTPP (MeCN)). The quantum yield $\phi = 62$ was thus obtained.

Stern–Volmer emission quenching:

A 4 mL vial was charged with ZnTPP, MeCN and indicated concentration of Barton ester **1a** or *t*-dodecanethiol. Fluorescence was measured at excitation wavelength of 630 nm. Stern–Volmer equation for **1a** is the following:

$$I_0/I = 1 + k_{q,1a} \tau_0 [1a]$$

Where $k_{q,1a}$ is quencher rate constant for 1a, τ_0 is fluorescence lifetime of ZnTPP in MeCN (1.9 ns).^{S15} $k_{q,1a}$ is thus calculated to be 1.0×10^{12} (M⁻¹s⁻¹). Similarly, $k_{q,thiol}$ was calculated to be 1.4×10^9 (M⁻¹s⁻¹).

Average chain length:

The average chain length can be estimated by calculating ϕ/Q .^{S14} Q is the quenching fraction and is calculated according to the following equation:

$$Q = \frac{k_{q,\mathbf{1}a}[\mathbf{1}a]}{\tau_0^{-1} + k_{q,\mathbf{1}a}[\mathbf{1}a] + k_{q,\text{thiol}}[\text{thiol}]}$$

Where k_q = quenching rate (M⁻¹s⁻¹, vide supra), $\tau_0 = 1.9$ ns (life time of excited state of ZnTPP in MeCN).^{S15} Q = 0.99 was thus obtained. Average chain length ϕ/Q was calculated to be 63.

^{S14} M. A. Cismesia, T. P. Yoon *Chem. Sci.* **2015**, *6*, 5426-5434.

S15 M. Ghosh, A. K. Mora, S. Nath, A. K. Chandra, A. Hajra, S. Sinha Spectrochim. Acta A 2013, 116, 466-472.

6. Differential pulse voltammetry

The electrochemical measurements were conducted in an Ar filled glove box with a continuous gas purified system at 298 K using a computerized electrochemical system (HZ-7000, Hokuto Denko). The dried **1a** was dissolved in super hydrated acetonitrile containing 0.1 M tetrabutylammonium perchlorate as a supporting electrolyte. Pt was used as a working and counter electrode, respectively. Reference electrode was an Ag wire immersed in acetonitrile containing 0.1 M TBAP and 10 mM AgClO₄. The inner electrolyte of the reference electrode was separated from the sample electrolyte by a porous glass (Vycor). The middle potential of ferrocene (Fc) | ferrocenium (Fc⁺) in acetonitrile was 0.04 V vs. Ag|Ag(I).

Figure S2 shows the differential pulse voltammogram of a Pt electrode in 10 mM 1a / acetonitrile. The cathodic current was observed around -2.01 V vs. Ag|Ag(I), e.g. -1.76 V vs SCE.

Figure S4 Differential pulse voltammogram of 1a

7. HPLC profiles of ZnTPP before/after the reaction

A stirred solution of **1a** (30.0 mg), *tert*-dodecanethiol (73.1 μ L) and zinc(II) tetraphenylporphyrin 1 M solution in MeCN (0.388 mL) was irradiated by red LEDs at 25 °C for 15 min. Aliquots (0.10 mL) before or after the reaction were taken and diluted with 0.40 mL of 0.025 M H₂TPP (reference) solution in MeCN. 10 μ L of the resulting mixture was injected to HPLC and eluted with acetone/MeCN = 1:20 at flow rate of 1 mL/min.

Figure S5 UV-vis spectra of ZnTPP and Ru(bpy)₃Cl₂

Several mechanistic possibilities can be postulated for 17% conversion of **12** to **13** when red-red light was used.

(I) Red-light activation of $Ru(bpy)_3Cl_2$: We believe this unlikely, because UV-vis spectra of $Ru(bpy)_3Cl_2$ has little absorption peak in the red light region compared to co-existing ZnTPP, as shown obove.

(II) Partial photoredox reaction by ZnTPP: Activated ZnTPP can convert phthalimidyl ester. However, this process is supposed to be slow, because photoredox is not a chain mechanism (photoredox catalyst requires activation every time for conversion of each substrate molecule), and difference in redox potentials is not so large.

(III) Activation of BNAH-phthalimidyl EDA complex by ZnTPP.

(IV) Reduction of activated ZnTPP by BNAH to form ZnTPP⁻⁻.

9. Computational methods

Compound **19** was subjected to a conformational search using the OPLS3 force field as implemented in MacroModel. Both singlet and triplet states for each conformers were further optimized using B3LYP/6-311+G(d,p) with the CPCM MeCN model in Jaguar. Free energies at B3LYP/6-311+G(3df,3dp) were calculated respectively using Jaguar. The S–T gap was computed as the difference between the two free energies.

Complex of compound **19** and ZnTPP was subjected to a conformational search using the OPLS3 force field as implemented in MacroModel. The obtained structure was further optimized using LANL2TZ for Zn and B3LYP-D3/6-31G(d,p) for other atoms in vacuum in Jaguar. Free energies were also calculated at the same level of theory.

References for computational methods (also, see ref. 72 of the main article)

B3LYP: a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372; b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; c)
C. Lee,; W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski,
M. J. Frisch, J. Phys. Chem. 1994, 98, 11623; e) J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput.
2008, 4, 297.

Macromodel: Schrödinger Release 2020-3, Schrödinger, LLC, New York, NY, 2020.

Jaguar: a) Schrödinger Release 2020-3, Schrödinger, LLC, New York, NY, 2020; b) Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A., "Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences," *Int. J. Quantum Chem.*, **2013**, *113*(*18*), 2110-2142

Computed coordinates and energies for 19

Coordinates of S₀: C -4.43250 -1.95450 0.54360 C -4.63010 -1.99310 -0.85570 C -3.72130 -1.40460 -1.70240 C -2.55770 -0.73850 -1.22450 N -2.43520 -0.76240 0.15260 C -3.31880 -1.32520 1.02680 S -1.41000 0.02420 -2.22070 O -1.37800 -0.06990 0.73590 C -0.17370 -0.79780 0.81430 C 0.91990 0.09560 1.35360 O -0.11190 -1.94870 0.49330 C 1.76110 0.64640 0.17970 C 1.78510 -0.68440 2.35510 H -5.13510 -2.40480 1.23380 H -5.50600 -2.48490 -1.26800 H-3.86520-1.42170-2.77520H-3.06920-1.225702.07710H0.437800.936301.86020H1.153101.22830-0.51470H2.543801.295300.58140H2.23860-0.16710-0.37350H2.28060-1.528301.86810H2.55370-0.022102.76160H1.18870-1.067003.18740

solution phase energy = -953.170893 Hartree

Coordinates of T₁: C -3.93460 -3.01390 -0.23670 C -4.88210 -2.29470 -0.96130 C -4.59540 -0.98490 -1.32860 C -3.34900 -0.40500 -0.95920 N -2.45020 -1.14140 -0.24980 C -2.71900 -2.38670 0.09920 S -2.97920 1.21110 -1.40600 O -0.44540 -0.05570 0.37320 C 0.43470 -0.76500 0.99500 C 1.68500 0.12400 1.28200 O 0.36090 -1.94350 1.32990 C 2.89560 -0.46710 0.54510 C 1.89750 0.21910 2.79940 H -4.11040 -4.03860 0.07270 H -5.82960 -2.74620 -1.23800 H -5.30020 -0.38650 -1.89510 H -1.95170 -2.90820 0.66190 H 1.48650 1.12450 0.88910 Н 2.72620 -0.50870 -0.53440 H 3.77190 0.16380 0.72430 Н 3.11750 -1.47640 0.90160 H 2.09010 -0.76620 3.23120 H 2.75940 0.86180 3.00430 H 1.02810 0.65470 3.29940 solution phase energy = -953.116722 Hartree

triplet energy = 0.054171 Hartree = 142.23 kJ/mol

Computed coordinates and energies for 19 and ZnTPP

C 13.41467 -1.56237 3.11929 C 14.84358 -1.10137 3.21325 C 12.48014 -0.41945 3.56886 C 13.21878 -2.83768 3.94381 O 15.15513 -0.29172 2.07951 O 15.66854 -1.33641 4.04594 N 16.39490 0.31903 2.18849 C 17.44589 -0.39775 1.70192 C 16.44693 1.57391 2.79046 C 18.70396 0.12416 1.76709 C 17.77974 2.10520 2.81731 S 15.08885 2.33303 3.40792 C 18.86267 1.41142 2.34310 C 16.61969 2.25282 -0.95121 N 15.36277 2.24456 -0.39160 C 15.04731 3.54104 -0.07123 C 13.82278 3.99514 0.45898 C 16.14848 4.40581 -0.43860 C 17.10838 3.61668 -0.99649 C 17.32093 1.11960 -1.41033 C 12.66694 3.21383 0.64913 C 13.75627 5.43840 0.84438 C 11.39179 3.71961 1.11391 N 12.55526 1.86784 0.39913 C 11.25928 1.50368 0.67468 C 10.73179 0.19923 0.57453 C 10.51952 2.67379 1.10670 C 9.29654 0.00293 0.94548 C 11.46008 -0.95095 0.19324 N 12.78418 -0.98050 -0.17661 C 13.12747 -2.29815 -0.38276 C 14.40644 -2.77209 -0.74255 C 11.96880 -3.13168 -0.14444 C 10.94515 -2.30411 0.21411 C 15.53145 -1.96998 -1.03677 C 16.83795 -2.47219 -1.40477 N 15.56859 -0.59483 -1.01259 C 16.83445 -0.20852 -1.38022 C 17.63480 -1.38710 -1.63317 C 18.69874 1.32214 -1.94718 C 14.58514 -4.25560 -0.81384 C 12.97580 6.35117 0.12054 C 12.93183 7.69625 0.48924 C 13.66762 8.14583 1.58756 C 14.44698 7.24314 2.31440 C 14.49404 5.89829 1.94602 C 8.84890 0.25377 2.25265 C 7.51195 0.05790 2.59957 C 6.59805 -0.39195 1.64458 C 7.03002 -0.64245 0.34038 C 8.36710 -0.44653 -0.00574 C 14.84654 -4.89588 -2.03481 C 15.01555 -6.27975 -2.09151 C 14.92568 -7.04621 -0.92761 C 14.66441 -6.42084 0.29344 C 14.49535 -5.03726 0.34867 C 19.71118 1.89868 -1.16297 C 20.99840 2.07213 -1.67102 C 21.29972 1.67243 -2.97462 C 20.30210 1.10011 -3.76682 C 19.01543 0.92697 -3.25744 Zn 14.10742 0.61589 -0.14525 H 13.21474 -1.76530 2.06583 H 12.63336 0.47768 2.96712 H 11.44501 -0.75217 3.45614 H 12.65939 -0.16394 4.61749 H 13.88408 - 3.63916 3.60758 H 13.42598 -2.65324 5.00154 H 12.18615 - 3.18224 3.84095 H 17.19002 -1.34894 1.25558 H 19.53700 -0.43096 1.35687 H 17.88697 3.09006 3.25456 H 19.85259 1.85404 2.40358 H 16.16384 5.47841 -0.31491 H 18.05094 3.93009 -1.41863 H 11.19228 4.74279 1.39478

H 9.47242 2.69012 1.36869 H 11.94195 -4.20673 -0.24186 H 9.93536 -2.58421 0.47396 H 17.10917 -3.51465 -1.48187 H 18.67591 -1.38644 -1.91898 H 12.40862 5.99913 -0.73637 H 12.32630 8.39295 -0.08384 H 13.63303 9.19292 1.87535 H 15.01681 7.58489 3.17412 H 15.08496 5.18575 2.51461 H 9.55859 0.60601 2.99471 H 7.18581 0.25396 3.61714 H 5.55690 -0.54481 1.91405 H 6.32448 -0.98667 -0.41061 H 8.70312 -0.63774 -1.02057 H 14.91155 -4.29846 -2.93930 H 15.21271 -6.75963 -3.04601 H 15.05729 -8.12352 -0.97193 H 14.59554 -7.00928 1.20406 H 14.29188 -4.54918 1.29762 H 19.47706 2.20782 -0.15059 H 21.76816 2.51738 -1.04649 H 22.30222 1.80777 -3.37042 H 20.52384 0.79271 -4.78495 H 18.23887 0.48666 -3.87540

HOMO energy: -0.17951 hartrees LUMO energy: -0.08108 hartrees

10. ¹H and ¹³C NMR spectra of new compounds

