Electronic Supplementary Information

Base-Mediated C-B Bond Activation of Benzylic Boronate for the Rapid Construction of β -Silyl/Boryl Functionalized 1,1-Diarylalkanes from Aromatic Alkenes

Liuzhou Gao,^{a,b†} Xinyi Liang,^{a,†} Linke He,^{a,†} Guoao Li,^a Shengda Chen,^a Jia Cao,^a Jing Ma,^a Guoqiang Wang,^{a,*} and Shuhua Li,^{a,*}

^aKey Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China

^bSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China

[†]These authors contributed equally to this work.

Correspondence to: wangguoqiang710@nju.edu.cn; shuhua@nju.edu.cn

Table of Contents

1.	Gene	ral Information	. 3						
2.	2. Experimental Details for the Base-mediated Difunctionalization of Aromatic Alkenes								
	2.1	Optimization Studies	. 4						
	2.2	General Procedure for Base-mediated Difunctionalization of Aromatic Alkenes	. 6						
	2.3	Gram-Scale Experiment	. 8						
	2.4	Product Transformations	10						
	2.5	Reactivities of Different Substituted Pyridines	10						
	2.6	Experimental Studies on the Reaction Mechanism	12						
3.	3. Spectroscopic Characterization Data16								
4. Computational Investigations 6									
	4.1	Computational Details	68						
	4.2	DFT Calculations on ^{BuOK} -Mediated Difunctionalization of Aromatic Alkenes	69						
	4.3	Computational Analysis of the Single Electron Transfer (SET) Processes	71						
	4.4	Computational Studies on Substituent Effect for the Aromatic Nucleophilic Substitution Step	72						
5.	Mach	ine-Learning-Assisted Reaction Space Exploration	73						
	5.1	Feature Selection	73						
	5.2	The Prediction of ML-IV Model	78						
6.	NMR	Spectra	85						
7.	Energ	gies and Cartesian Coordinates of the Optimized Structures	27						
8.	3. References								

1. General Information

All reactions were carried out with standard Schlenk techniques under argon or in an argon-filled glove-box. B₂pin₂ was purchased from TCI and used after vacuum drying. Chemicals purchased from Sigma-Aldrich, J&K, Acros, and Alfa Aesar Chemical Companies were used as received. Anhydrous solvents, such as 1,4-dioxane, ethyl acetate (EA), cyclohexane, acetonitrile (MeCN) and dimethyl sulfoxide (DMSO) were purchased from J&K and used as received (water < 30 ppm, J&K Seal). THF was distilled from sodium/benzophenone under an argon atmosphere before use. Analytical thin-layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ aluminum sheets from Qingdao Haiyang Chemical Co., Ltd. Flash chromatography was performed on silica gel (200 - 300 mesh, Qingdao Haiyang Chemical Co., Ltd). ¹H, ¹³C, ¹⁹F and ²⁹Si NMR spectra were recorded in CDCI₃ on a Bruker AVANCE Avance III 400 instrument. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CDCl₃: 7.26 ppm for ¹H NMR and 77.06 ppm for ¹³C{¹H NMR}. Data are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. Infrared spectra were recorded on a ThermoFisher Nicolet iS5 FTIR using a neat thin-film technique. High-resolution mass spectra (HRMS) were recorded on the Thermo Quest Finnigan LCQDECA system equipped with an ESI or APCI ionization source and a TOF detector mass spectrometer.

2. Experimental Details for the Base-mediated Difunctionalization of Aromatic Alkenes

2.1 Optimization Studies

General procedure A. In an argon-filled glovebox, styrene **1a** (0.2 ~ 0.24 mmol, 1.0 ~ 1.2 equiv.), PhMe₂SiBpin **2** (0.2 ~ 0.24 mmol, 1.0 ~ 1.2 equiv.), 'BuOK (10 mol%.) and solvent (1.0 mL) were added to an oven-dried Scklenk-tube. The reaction mixture was stirred at room temperature for 1 hour, then an additional 2.0 equivalent of base and 4-cyanopyridine **3a** (0.2 mmol, 1.0 equiv.) were sequentially added into the reaction mixture. The reaction tube was sealed, removed from the glovebox, and stirred at varied temperatures for 30 min. After the indicated time, benzyl ether (39.8 mg, 0.2 mmol, 1.0 equiv.) was added to the reaction mixture, and then an aliquot (approximately 50 µL) of the reaction solution was then directly transferred to an NMR tube and CDCl₃ was added. The yield was determined by ¹H NMR analysis based on the integration of the targeted product and internal standard. The results are tabulated in Table S1.

General Procedure B: In an argon-filled glovebox, styrene **1a** ($0.2 \sim 0.24 \text{ mmol}$, $1.0 \sim 1.2 \text{ equiv.}$), PhMe₂SiBpin **2** ($0.2 \sim 0.24 \text{ mmol}$, $1.0 \sim 1.2 \text{ equiv.}$), 'BuOK (2.0 equiv.), and solvent (1.0 mL) were added to an oven-dried Scklenk-tube. The reaction mixture was stirred at room temperature for 10 min, then 4-cyanopyridine **3a** (0.2 mmol, 1.0 equiv.) were added into the reaction mixture. The reaction tube was sealed, removed from the glovebox, and stirred at varied temperatures from 30 min. After the reaction finished, saturated ammonium chloride solution (2 mL) was added to the reaction mixture, and the organic phase was separated. The aqueous layer was extracted with EtOAc ($3\times 2 \text{ mL}$). Then, the organic layers were combined, dried over anhydrous sodium sulfate, and filtered. After the removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on silica gel or preparative TLC to afford the corresponding products.

	Ph + 1a	Me Me−Si−Bpin Ph ́ 2	^t BuOK (10 mol%) Solvent, 1 h	Base 4-cyanopyridine (3a , 1.0 equiv)	Ph 4 Ne Me Si Ph
Entry	a/b/c [equiv.]	Solvent	Base	T (°C)	Yield [%] ^b 4
1	1:1:1	THF	w/o base	e r.t.	n.d.
2	1:1:1	THF	<i>"</i> BuOK (1.0	eq.) r.t.	50%°
3	1:1:1	THF	MeONa (1.0	eq.) r.t.	trace
4	1:1:1	THF	MeOK (1.0	eq.) r.t.	trace
5	1:1:1	THF	[#] BuONa (1.0	eq.) r.t.	12%
6	1:1:1	THF	[#] BuOLi (1.0	eq.) r.t.	n.d.
7	1:1:1	THF	PhLi (1.0 e	eq.) r.t.	trace
8	1:1:1	THF	KHMDS (1.0) eq.) r.t.	38%
9	1:1:1	THF	CS2CO3 (1.0	eq.) r.t.	n.d.
10	1:1:1	THF	[#] BuOK (2.0	eq.) r.t.	80%
11	1.2:1.2:1	THF	[⁄] BuOK (2.0	eq.) r.t.	89%(85%°)
12	1.2:1.2:1	THF	['] BuOK (2.0	eq.) r.t.	85% ^d
13	1.2:1.2:1	1,4-dioxan	e [#] BuOK (2.0	eq.) r.t.	42%
14	1.2:1.2:1	Cyclohexar	ne [#] BuOK (2.0	eq.) r.t.	34%
15	1.2:1.2:1	EA	[#] BuOK (2.0	eq.) r.t.	n.d.
16	1.2:1.2:1	MeCN	[#] BuOK (2.0	eq.) r.t.	n.d.
17	1.2:1.2:1	DMF	[#] BuOK (2.0	eq.) r.t.	n.d.
18	1.2:1.2:1	DMSO	[#] BuOK (2.0	eq.) r.t.	n.d.

Table S1. Optimization of Reaction Conditions.^a

^a**Reaction conditions:** styrene **1a** (0.2 ~ 0.24 mmol, 1.0 ~ 1.2 equiv.), PhMe₂SiBpin **2** (0.2 ~ 0.24 mmol, 1.0 ~ 1.2 equiv.), 'BuOK (10 mol%, 0.02 ~ 0.024 mmol), in solvent (1.0 mL), r.t. for 1 h. Then, the base (0.4 ~ 0.48 mmol, 2.0 equiv.) and 4-cyanopyridine **3a** (0.2 mmol, 1.0 equiv.) were sequentially added into the reaction mixture and stirred for 30 min. ^bYields were determined by ¹H NMR analysis with benzyl ether as an internal standard. ^cIsolated yield. ^dThe reaction was conducted according to general procedure B, Isolated yield.

2.2 General Procedure for Base-mediated Difunctionalization of Aromatic Alkenes

2.2.1 Synthetic Procedure for Base-Mediated Carbosilyation of Aromatic Alkenes with Electrophiles

General Procedure C: In an argon-filled glovebox, alkene ($0.2 \sim 0.24 \text{ mmol}$, $1.0 \sim 1.2 \text{ equiv.}$), PhMe₂SiBpin ($0.2 \sim 0.24 \text{ mmol}$, $1.0 \sim 1.2 \text{ equiv.}$), 'BuOK (10 mol%.), and solvent (1.0 mL) were added to an oven-dried Scklenk-tube. The reaction mixture was stirred at room temperature for 1 h, then 2.0 equivalents of 'BuOK and electrophiles (0.2 mmol, 1.0 equiv.) were sequentially added into the reaction mixture. The reaction tube was sealed, removed from the glovebox, and stirred at varied temperatures from 1 minute to 2 hours. After the reaction finished, saturated ammonium chloride solution (2 mL) was added to the reaction mixture, and the organic phase was separated. The aqueous layer was extracted with EtOAc ($3\times 2 \text{ mL}$). Then, the organic layers were combined, dried over anhydrous sodium sulfate, and filtered. After the removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on silica gel or preparative TLC to afford the corresponding carbosilyation products.

$$\begin{array}{c} Ar \\ R^{1} \\ R^{2} \end{array} \xrightarrow{\begin{array}{c} PhMe_{2}SiBpin (1.0 equiv.) \\ BuOK (2.0 equiv.) \\ THF, r.t., 10 min. \end{array}} \left[\begin{array}{c} K^{\oplus} \\ Ar \\ Ar \\ R^{2} \\ R^{2} \\ Me \end{array} \xrightarrow{\begin{array}{c} Ph \\ R^{2} \\ Me \end{array}} \left[\begin{array}{c} Electrophiles (El) \\ r.t., 1 min \sim 2 h \\ R^{1} \\ R^{2} \\ R^{1} \\ R^{2} \end{array} \right] \xrightarrow{\begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ Me \end{array}} \left[\begin{array}{c} Electrophiles (El) \\ R^{2} \\ R^{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ Me \end{array} \right] \xrightarrow{\begin{array}{c} Electrophiles (El) \\ r.t., 1 min \sim 2 h \\ R^{1} \\ R^{1} \\ R^{2} \\ R^{2$$

General Procedure D: In an argon-filled glovebox, alkene ($0.2 \sim 0.24 \text{ mmol}$, $1.0 \sim 1.2 \text{ equiv.}$), PhMe₂SiBpin ($0.2 \sim 0.24 \text{ mmol}$, $1.0 \sim 1.2 \text{ equiv.}$), 'BuOK (2.0 equiv.), and solvent (1.0 mL) were added to an oven-dried Scklenk-tube. The reaction mixture was stirred at room temperature for 10 min, then electrophiles (0.2 mmol, 1.0 equiv.) were added into the reaction mixture. The reaction tube was sealed, removed from the glovebox, and stirred at varied temperatures from 1 minute to 2 hours. After the reaction finished, saturated ammonium chloride solution (2 mL) was added to the reaction mixture, and the organic phase was separated. The aqueous layer was extracted with EtOAc ($3 \times 2 \text{ mL}$). Then, the organic layers were combined, dried over anhydrous sodium sulfate, and filtered. After the removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on silica gel or preparative TLC to afford the corresponding carbosilyation products.

2.2.2 Unsuccessful Examples

Figure S1. Unsuccessful examples in the base-mediated difunctionalization of aromatic alkenes. ^aPreformed under the standard conditions with 4-cyanopyridine as the model electrophile. ^bUsing styrene and PhMe₂SiBpin as the model substrates. N.R.= No reaction, N.D.= Not detected.

As shown in Figure S1, our experiments suggested that 4-(trifluoromethyl)styrene, 4-vinylpyridine, 2vinylthiophene, alkyl alkene (e.g. allylbenzene), and ethyl acrylate were not suitable substrates under the current reaction conditions. In addition, the 2-thiophenecarbonitrile, chlorobenzene, bromobenzene, iodobenzene, and phenyl trifluoromethanesulfonate were also not suitable coupling partners in the base-mediated difunctionalization of aromatic alkenes, probably due to the higher activation barriers required.

2.2.3 Synthetic Procedure for Base-Mediated Carboborylation of Aromatic Alkenes with Aromatic Heterocycles

General Procedure E: In an argon-filled glove box, an oven-dried 10 mL Schlenk-tube was charged with alkene (0.40 mmol), PhMe₂SiBpin (0.40 mmol), ¹BuOK (10 mol%) in 1.5 mL THF, and stirred at room temperature for 1h. Then, ¹BuOK (0.80 mmol) and the related aromatic heterocycles (0.20 mmol) were sequentially added, and the mixture was stirred at room temperature for 12 h. After the reaction finished, saturated ammonium chloride solution (2 mL) was added to the reaction mixture, and the organic phase was separated. The aqueous layer was extracted with EtOAc (3×2 mL). Then, the organic layers were combined, dried over anhydrous sodium sulfate, and filtered. After the removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on silica gel or preparative TLC to afford the corresponding carbosilyation products.

2.2.4 Synthetic Procedure for the Base-Mediated Carboborylation of Aromatic Alkenes

As shown above, for the arylborylation processes, the corresponding carboborylation product was formed only in 50% isolated yield in the presence of 2.0 equivalents of ¹BuOK. It may be attributed to the competitive complexation event between the β -boryl group and ¹BuOK. Therefore, 3.0 equivalents of ¹BuOK were used in this type of reaction. Upon increasing the amount of ¹BuOK to 3.0 equivalents, the yield of carboborylation product (No. **83**) can be improved from 50% to 75%. Further increasing the amount of base to 3.5 equivalents had little effect on the reaction yield.

General Procedure F: In an argon-filled glove box, an oven-dried 10 mL Schlenk-tube was charged with styrene (0.24 ~ 0.3 mmol.), B_2pin_2 (1.1 equiv.), ⁷BuONa (10 mol%), MeOH (5.0 equiv.) and tetrahydrofuran (1.0 mL) were successively added. The reaction mixture was stirred at 60 °C for 16 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was redissolved in 1.0 mL of tetrahydrofuran. Then, ⁷BuOK (3.0 equiv.) and electrophiles (0.2 mmol) were successively added into the reaction mixture, stirred for 12 h. Purification by preparative TLC affords the corresponding carboborylation products.

2.3 Gram-Scale Experiment

Synthetic Procedure: In an argon-filled glove box, an oven-dried 100 mL schlenk-tube was charged with 1,1-diphenylethylene (0.90 g, 5.0 mmol, 1.0 equiv.), PhMe₂SiBpin (1.31 g, 5.0 mmol, 1.0 equiv.), ¹BuOK (56.1 mg, 0.50 mmol, 10 mol%), in 25 mL THF. The reaction mixture was stirred at room

temperature for 1 hour, then another 2.0 equiv of ⁶BuOK (1.12 g, 10.0 mmol, 2.0 equiv.) and 4cyanopyridine (0.52 g, 5.0 mmol, 1.0 equiv.) were sequentially added into the reaction mixture. The reaction tube was sealed, removed from the glovebox, and stirred at varied temperatures for 2 h. After the reaction finished, saturated ammonium chloride solution (20.0 mL) was added to the reaction mixture, and the organic phase was separated. The aqueous layer was extracted with EtOAc (4×20 mL). Then, the organic layers were combined, dried over anhydrous sodium sulfate, and filtered. After removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = $50:1\rightarrow5:1$, v/v) to afford the desired product **24** as a colorless oil (1.78 g, 90%).

Product 24, ¹**H NMR** (400 MHz, CDCl₃): δ 8.47 (d, J = 5.5 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.41 – 7.31 (m, 3H), 7.29 (s, 3H), 7.28 (s, 5H), 7.26 – 7.21 (m, 4H), 2.37 (s, 2H), -0.06 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl3): δ 158.1, 149.3, 146.9, 140.1, 133.3, 129.1, 128.8, 128.0, 127.8, 126.4, 124.0, 55.4, 30.8, -1.4 ppm. **IR (film):** 3054, 3021, 2954, 2923, 1589, 1492, 1444, 1426, 1410, 1249, 1111, 906, 821, 769, 729, 699 cm⁻¹. **HRMS (ESI):** calculated for $C_{27}H_{28}NSi^+$ [M+H]⁺ 394.1986; found 394.1983.

2.4 Product Transformations

Synthetic Procedure: An oven-dried flask was charged with **24** (79.0 mg, 0.20 mmol) and sealed with a rubber septum. After being evacuated and backfilled with argon three times, dry DCM (1 mL) was added via syringe. The solution was cooled to 0 °C and HBF₄·Et₂O (50%-55%, 0.4 mL) was added dropwise. The resulting mixture was stirred at r.t. for 2 h. When **24** disappeared monitored by TLC, the reaction mixture was quenched with 10 mL of 1 M NaOH aqueous, and extracted by DCM (3×10 mL). The organic layers were combined, dried over anhydrous magnesium sulfate, and filtered. After removal of volatiles under reduced pressure, the crude fluorosilane was used directly for the next oxidation without further purification. KF (23 mg, 0.40 mmol), NaHCO₃ (21 mg, 0.25 mmol), THF (0.5 mL), MeOH (0.5 mL), and 35% H₂O₂ (0.6 mL) were mixed in a vial before adding to the stirred fluorosilane in one portion. The mixture was stirred at r.t. overnight. After the reaction finished, 15 mL saturated Na₂SO₃ was added at 0 °C to quench the reaction, and the mixture was extracted with ethyl acetate (3×10 mL). The organic layers were combined, dried over anhydrous magnesium sulfate, and filtered. After removal of volatiles under reduced pressure at r.t. overnight. After the reaction finished, 15 mL saturated Na₂SO₃ was added at 0 °C to quench the reaction, and the mixture was extracted with ethyl acetate (3×10 mL). The organic layers were combined, dried over anhydrous magnesium sulfate, and filtered. After removal of volatiles under reduced pressure, the crude material was purified by preparative TLC (petroleum ether/*i*-PrOH = 20:1) to afford **24'** as colorless oil (43.3 mg, 79% yield).

Product 24', ¹**H NMR** (400 MHz, CDCl₃): δ 8.57 (d, J = 6.5 Hz, 2H), 7.51 – 7.36 (m, 6H), 7.32 (d, J = 6.3 Hz, 2H), 7.30 – 7.25 (m, 4H), 4.76 (s, 2H), 2.76 (s, 1H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.0, 149.4, 143.6, 129.3, 128.5, 127.0, 124.7, 69.4, 58.6 ppm. **HRMS** (ESI): calculated for C₁₉H₁₈NO⁺ [M+H]⁺ 276.1383; found 276.1378.

2.5 Reactivities of Different Substituted Pyridines

Table S2. Reactivities of different pyridine electrophiles with different leaving groups at the C-2 position.^a

^aReaction conditions: styrene (0.24 mmol), PhMe₂Si-Bpin₂ (0.24 mmol), ^{*i*}BuOK (10 mol%) in 1.0 mL THF, r.t. for 1 h. Then, ^{*i*}BuOK (0.48 mmol) and 2-substituted pyridines (0.20 mmol) were sequentially added; the mixture was stirred at r.t. for 30. Isolated yields. ^bNMR yields.

Given there are plenty of aromatic electrophiles commercially accessible, the reactivity of the different leaving groups was next examined with 2-substituted pyridines. As shown in Table S2, we found that 2-chloro-, bromo-, iodo- and benzenesulfonyl-substituted pyridine are less effective, but 2-fluoropyridine, 2-cyanopyridine, 2-methoxylpyridine, and 2-methylthiopyridine are viable 2-pydinyl precursors.

2.6 Experimental Studies on the Reaction Mechanism

2.6.1 NMR analysis on the reaction of benzylic boronate with different amounts of ^bBuOK.

To further verify the involvement of the carbanion intermediates **V**' in the reaction, the NMR experiments were performed. **Experimental procedure:** In an argon-filled glove box, an oven-dried 10 mL schlenk tube was charged styrene (10.4 mg, 0.1 mmol, 1.0 equiv.), PhMe₂SiBpin (26.2 mg, 0.1 mmol, 1.0 equiv.), 'BuOK (10 mol%), THF- d_8 (0.5 ML), strried at room temperature for 1 h to afford the silaboration product (I) of styrene. Then the ¹¹B NMR analysis of the crude reaction mixture was carried out immediately, which is labeled as **a**. After which, adding 1.2 or 2.0 equiv. of 'BuOK into two other parallel experiments, and shaking for 1 min, the ¹¹B and/or ¹H NMR spectrum analysis of the reaction mixture was acquired again, which are labeled as **b**, **c**, and **d** (as shown in Figure S2).

Figure S2. NMR analysis on the reaction of benzylic boronate with different amounts of 'BuOK. **a**, ¹¹B NMR spectrum of benzylic boronate **I** derived from PhMe₂SiBpin and styrene; **b**, ¹¹B NMR spectrum for the reaction mixture of **I** and 1.2 equivalent of 'BuOK; **c**, ¹¹B NMR spectrum for the reaction mixture of and 2.0 equivalent of 'BuOK; **d**, ¹H NMR spectrum for the reaction mixture of and 2.0 equivalent of 'BuOK; **d**, ¹H NMR spectrum for the reaction mixture of and 2.0 equivalent of 'BuOK; **d**, ¹H NMR spectrum for the reaction mixture of and 2.0 equivalent of 'BuOK; **d**, ¹H NMR spectrum for the reaction mixture of and 2.0 equivalent of 'BuOK. Chemical shifts shown in red were computed with the Gauge-independent atomic orbital (GIAO) method at B972/pcSseg-2 level of theory.

2.6.2 Trapping the carbanion by deuterium oxide

Experimental procedure: In an argon-filled glove box, an oven-dried 10 mL schlenk tube was charged styrene **1a** (20.8 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (52.4 mg, 0.2 mmol, 1.0 equiv.), ¹BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), strried at room temperature for 30 min. Then the reaction mixture was quenched by deuterium oxide (D₂O, 50 µL) and diluted by ethyl acetate (2 mL). The organic phase was separated, and the aqueous layer was extracted with ethyl acetate (3×3 mL). Then, the organic layers were combined, and dried over anhydrous sodium sulfate and filtered. After removal of the solvent under reduced pressure, the crude material was purified by preparative TLC (petroleum ether) to afford the hydrosilylation product **VI** as colorless oil (44.0 mg, 91% yield, see Figure S3-S5). ¹H **NMR** (400 MHz, CDCl₃): δ 7.56 – 7.50 (m, 2H), 7.38 – 7.32 (m, 3H), 7.29 – 7.20 (m, 2H), 7.20 – 7.07 (m, 3H), 2.66 – 2.60 (m, 1H), 1.11 (d, *J* = 9.4 Hz, 2H), 0.28 (s, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 145.0, 139.1, 133.6, 129.0, 128.3, 127.8, 127.8, 125.6, 29.7 (t, 19.1 Hz), 17.7, 0.9, -3.1 ppm. **HRMS** (APCI): calculated for C₁₆H₂₀DSi⁺ [M+H]⁺ 242.1470; found 242.1465.

Figure S3. GC-MS analysis for the reaction mixture of styrene 1a, PhMe₂SiBpin 2a, and ⁴BuOK with D₂O as the carbanion trapping reagent.

Figure S5. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound VI.

2.6.3 Electron paramagnetic resonance (EPR) experiments

Figure S6. EPR experiments.

As shown in Figure S6, the EPR experiments were also conducted to detect the potential silvl or carbon radical. However, the reaction between styrene, PhMe₂SiBpin and base (Entry c) or with 4-cyanopyridine as the electron acceptor (Entry d) does not show any signal of free radicals. Our DFT calculations indicate that the direct single electron transfer (SET) from carbanion intermediate **V**' to 4-cyanopyridine is endergonic by 20.8 kcal mol⁻¹ with an activation barrier of 21.2 kcal mol⁻¹. These computational results are consistent with the fact that no radical species are detectable by EPR experiments under current reaction conditions due to the high energy required for the corresponding SET process. Thus, SET mechanisms for the C–C coupling pathway can be excluded.

3. Spectroscopic Characterization Data

3.1.1 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (4)

Prepared according to general procedure C from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **4** as colorless oil (54.1 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.41 (d, *J* = 6.2 Hz, 2H), 7.46 – 7.37 (m, 2H), 7.38 – 7.28 (m, 3H), 7.26 – 7.21 (m, 2H), 7.20 – 7.14 (m, 3H), 7.12 (d, *J* = 6.2 Hz, 2H), 3.97 (t, *J* = 8.0 Hz, 1H), 1.65 – 1.58 (m, 2H), 0.07 (s, 3H), 0.05 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.7, 149.7, 144.7, 138.5, 133.5, 129.1, 128.6, 127.8, 127.7, 126.7, 122.8, 46.7, 22.7, -2.5, -2.9 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.34. **IR** (film): 3067, 3025, 2953, 2918, 1593, 1493, 1452, 1426, 1413, 1248, 1174, 1111, 993, 835, 780, 730, 697 cm⁻¹. **HRMS** (ESI): calculated for C₂₁H₂₄NSi⁺ [M+H]⁺ 318.1673; found 318.1670.

3.1.2 4-(2-(dimethyl(phenyl)silyl)-1-(2-methoxyphenyl)ethyl)pyridine (5)

Prepared according to general procedure C from 2-methoxystyrene (32.2 mg, 0.24 mmol, 1.0 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **5** as colorless oil

(47.3 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.42 (d, J = 4.7 Hz, 2H), 7.46 – 7.39 (m, 2H), 7.37 – 7.29 (m, 3H), 7.25 – 7.21 (m, 1H), 7.20 – 7.15 (m, 3H), 6.90 (td, J = 7.5, 1.2 Hz, 1H), 6.79 (dd, J = 8.2, 1.2 Hz, 1H), 4.54 (t, J = 8.0 Hz, 1H), 3.72 (s, 3H), 1.68 (dd, J = 14.6, 8.9 Hz, 1H), 1.56 (dd, J = 14.6, 7.2 Hz, 1H), 0.12 (s, 3H), 0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.5, 155.9, 149.3, 138.9, 133.4, 133.0, 128.8, 127.9, 127.7, 123.2, 120.5, 110.6, 55.1, 38.7, 21.5, -2.7, -2.8 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.33. IR (film): 3068, 3021, 2953, 2835, 1594, 1489, 1462, 1426, 1413, 1242, 1112, 1069, 1029, 906, 836, 730, 701 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NOSi⁺ [M+H]⁺ 348.1778; found 348.1775.

3.2.3 4-(2-(dimethyl(phenyl)silyl)-1-(3-methoxyphenyl)ethyl)pyridine (6)

Prepared according to general procedure C from 3-methoxystyrene (32.2 mg, 0.24 mmol, 1.0 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/i·PrOH = 20:1) to afford **6** as colorless oil (52.9 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, *J* = 6.2 Hz, 2H), 7.46 – 7.38 (m, 2H), 7.37 – 7.30 (m, 3H), 7.22 – 7.16 (m, 1H), 7.14 (d, *J* = 6.3 Hz, 2H), 6.83 – 6.78 (m, 1H), 6.76 – 6.70 (m, 2H), 3.96 (t, *J* = 8.0 Hz, 1H), 3.75 (s, 3H), 1.69 – 1.57 (m, 2H), 0.11 (s, 3H), 0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.7, 155.5, 149.6, 146.3, 138.4, 133.5, 129.5, 129.0, 127.8, 122.8, 120.1, 113.8, 111.5, 55.1, 46.6, 22.6, -2.6, -2.9 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.29. IR (film): 3074, 3018, 2954, 2915, 2836, 1594, 1487, 1452, 1426, 1414, 1251, 1148, 1112, 1049, 903, 829, 727 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NOSi⁺ [M+H]⁺ 348.1778; found 348.1775.

3.2.4 4-(2-(dimethyl(phenyl)silyl)-1-(4-methoxyphenyl)ethyl)pyridine (7)

Prepared according to general procedure C from 4-methoxystyrene (32.2 mg, 0.24 mmol, 1.0 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **7** as colorless oil (50.6 mg, 73% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.41 (d, *J* = 5.1 Hz, 2H), 7.56 – 7.23 (m, 5H), 7.10 (d, *J* = 6.1 Hz, 2H), 7.08 (d, *J* = 8.6 Hz, 2H), 6.78 (d, *J* = 8.7 Hz, 2H), 3.93 (t, *J* = 8.0 Hz, 1H), 3.77 (s, 3H), 1.65 – 1.53 (m, 2H), 0.08 (s, 3H), 0.06 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 158.4, 156.3, 149.7, 138.6, 136.8, 133.5, 129.0, 128.7, 127.8, 122.8, 114.0, 55.3, 45.9, 22.9, -2.5, -2.8 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.54. **IR** (film): 3068, 3018, 2954, 2915, 2836, 1594, 1487, 1452, 1426, 1414, 1251, 1148, 1112, 1049, 903, 829, 732, 700 cm⁻¹. **HRMS** (ESI): calculated for C₂₂H₂₆NOSi⁺ [M+H]⁺ 348.1778; found 348.1776.

3.2.5 4-(1-(4-chlorophenyl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (8)

Prepared according to general procedure C from 4-chlorostyrene (27.7 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **8** as colorless oil (43.1 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 6.2 Hz, 2H), 7.42 – 7.26 (m, 5H), 7.24 – 7.17 (m, 2H), 7.12 – 7.06 (m, 4H), 3.94 (t, *J* = 8.0 Hz, 1H), 1.65 – 1.53 (m, 2H), 0.09 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.2, 149.9, 143.2, 138.1, 133.5, 132.5, 129.1, 129.0, 128.7, 127.9, 122.7, 46.1, 22.8, -2.5, -2.7 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.36. IR (film): 3068, 3022, 2953, 1597, 1558, 1489, 1426, 1410, 1249, 1173, 1112, 1091, 1013, 836, 728, 699 cm⁻¹. HRMS (ESI): calculated for C₂₁H₂₃ClNSi ⁺ [M+H]⁺ 352.1283; found 352.1284.

3.2.6 4-(2-(dimethyl(phenyl)silyl)-1-(3-(trifluoromethyl)phenyl)ethyl)pyridine (9)

Prepared according to general procedure C from 3-(trifluoromethyl)styrene (34.4 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **9** as colorless oil (37.2 mg, 48% yield). **1H NMR** (400 MHz, CDCl₃): δ 8.45 (d, *J* = 6.0 Hz, 2H), 7.45 – 7.42 (m, 1H), 7.40 (s, 1H), 7.37 – 7.30 (m, 7H), 7.14 – 7.10 (m, 2H), 4.02 (t, *J* = 8.0 Hz, 1H), 1.63 (d, *J* = 8.0 Hz, 2H), 0.10 (s, 3H), 0.07 (s, 3H) ppm. **1**³C{**1**H} NMR (100 MHz, CDCl₃): δ 155.3, 149.5, 145.6, 137.8, 133.5, 131.2, 129.3, 129.2, 129.1, 127.9, 124.9 (q, *J* = 272.0 Hz), 124.4, 123.7 (d, *J* = 3.9 Hz), 122.9, 46.7, 22.8, -2.6, -2.8 ppm. **1**⁹F**{1H} NMR** (376 MHz, CDCl₃) δ -62.58 ppm. **2**⁹Si **{1H} NMR** (99 MHz, CDCl₃): δ -3.27. **IR** (film): 3070, 3022, 2957, 2923, 1658, 1596, 1552, 1493, 1445, 1413, 1327, 1258, 1165, 1125, 1074, 904, 829, 728, 650 cm⁻¹. **HRMS** (ESI): calculated for C₂₂H₂₃F₃NSi⁺ [M+H]⁺ 386.1546; found 386.1540.

3.2.7 4-(1-(dimethyl(phenyl)silyl)-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propan-2-yl) - pyridine (11)

Prepared according to general procedure C from 4,4,5,5-tetramethyl-2-(4-(prop-1-en-2-yl)phenyl)-1,3,2-dioxaborolane (58.6 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ⁷BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then ⁷BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/i-PrOH = 20:1) to afford **11** as colorless oil (71.4 mg, 78% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.50 – 8.31 (m, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.46 – 7.35 (m, 2H), 7.35 – 7.26 (m, 3H), 7.17 (d, *J* = 8.3 Hz, 2H), 7.12 – 7.03 (m, 2H), 1.86 – 1.76 (m, 2H), 1.57 (s, 3H), 1.35 (s, 12H), 0.02 (s, 3H), - 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.5, 152.2, 149.5, 139.6, 134.7, 133.4, 128.9, 127.8, 127.3, 126.5, 122.3, 83.8, 45.5, 30.4, 29.6, 24.9, -1.4, -1.5 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 31.33. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.16. IR (film): 2976, 1609, 1592, 1398, 1359, 1322, 1249, 1143, 1111, 1092, 1017, 859, 829, 729, 659 cm⁻¹. HRMS (ESI): calculated for C₂₈H₃₇BNO₂Si⁺ [M+H]⁺ 458.2681; found 458.2684.

3.2.8 4-(1-(4-allylphenyl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (12)

Prepared according to general procedure D from 1-allyl-4-vinylbenzene (34.6 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ¹BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **12** as colorless oil (57.4 mg, 80% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.42 (d, *J* = 5.2 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.37 – 7.28 (m, 3H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.16 – 7.06 (m, 4H), 7.05 – 6.75 (m, 1H), 6.35 (dd, *J* = 15.8, 1.7 Hz, 1H), 6.25 – 6.14 (m, 1H), 3.95 (t, *J* = 8.8 Hz, 1H), 1.88 – 1.86 (m, 2H), 1.67 – 1.52 (m, 2H), 0.09 (s, 3H), 0.07 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 155.8, 149.7, 143.2, 138.5, 136.5, 133.5, 130.5, 129.0, 127.8, 127.5, 126.0, 125.6, 122.8, 46.4, 22.7, 18.5, -2.4, -2.8 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.31. **IR** (film): 3068, 3020, 2955, 2912, 1594, 1508, 1426, 1414, 1248, 1112, 946, 835, 730, 700 cm⁻¹. **HRMS** (ESI): calculated for C₂₄H₂₈NSi⁺ [M+H]⁺ 358.1986; found 358.1981.

3.2.9 4-(1-(benzofuran-5-yl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (13)

Prepared according to general procedure C from 5-vinylbenzofuran (28.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*·PrOH = 20:1) to afford **13** as colorless oil (46.5 mg, 65% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.42 (d, *J* = 5.2 Hz, 2H), 7.59 (d, *J* = 2.2 Hz, 1H), 7.46 – 7.33 (m, 5H), 7.33 – 7.27 (m, 2H), 7.15 (d, *J* = 6.2 Hz, 2H), 7.08 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.68 (dd, *J* = 2.2, 1.0 Hz, 1H), 4.09 (t, *J* = 8.9 Hz, 1H), 1.74 – 1.60 (m, 2H), 0.07 (s, 3H), 0.05 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 156.2, 153.9, 149.8, 145.5, 139.4, 138.5, 133.5, 129.1, 127.8, 127.6, 124.3, 122.8, 120.0, 111.4, 106.6, 46.6, 23.2, -2.5, -2.8 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.35. **IR** (film): 3067, 2976, 2928, 2161, 1567, 1427, 1400, 1363, 1248, 1169, 835, 701 cm⁻¹. **HRMS** (ESI): calculated for C₂₃H₂₄NOSi⁺ [M+H]⁺ 358.1622; found 358.1620.

3.2.10 4-(1-(dimethyl(phenyl)silyl)-2-(p-tolyl)propan-2-yl)pyridine (14)

Prepared according to general procedure D from 1-methyl-4-(prop-1-en-2-yl)benzene (31.7 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) affords **14** as colorless oil (58.2 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 5.7 Hz, 2H), 7.42 – 7.29 (m, 5H), 7.14 – 7.09 (m, 2H), 7.06 (s, 4H), 2.32 (s, 3H), 1.87 – 1.76 (m, 2H), 1.57 (s, 3H), 0.04 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.0, 149.4, 146.1, 139.8, 135.8, 133.4, 128.8, 128.3, 127.8, 127.0, 122.3, 44.9, 30.7, 29.7, 20.9, –1.4, –1.5. ppm. **IR** (film): 3066, 3021, 2955, 1592,

1450, 1427, 1408, 1374, 1248, 1191, 1112, 1018, 812, 776 cm⁻¹. **HRMS** (ESI): calculated for $C_{23}H_{28}NSi^+$ [M+H]⁺ 346.1986; found 346.1986.

3.2.11 4-(1-(dimethyl(phenyl)silyl)-2-(4-(trifluoromethoxy)phenyl)propan-2-yl)pyridine (15)

Prepared according to general procedure C from 4-trifluoromethoxy-alpha-methylstyrene (40.4 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 2 h. The reaction mixture was stirred at room temperature for 2 h. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **15** as colorless oil (56.6 mg, 68% yield).¹H **NMR** (400 MHz, CDCl₃): δ 8.43 (d, *J* = 6.3 Hz, 2H), 7.41 – 7.23 (m, 5H), 7.15 (d, *J* = 8.8 Hz, 2H), 7.11 – 7.02 (m, 4H), 1.79 (s, 2H), 1.56 (s, 3H), 0.02 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 160.0, 149.6, 147.8, 147.5, 139.1, 133.4, 129.0, 128.5, 127.8, 122.2, 120.5 (q, *J* = 257.1 Hz). 120.4, 45.1, 30.7, 29.7, -1.6 ppm. ¹⁹F{¹H} **NMR** (376 MHz, CDCl₃) δ -57.78 ppm. **IR** (film): 3069, 2956, 1587, 1552, 1507, 1428, 1408, 1257, 1222, 1163, 1111, 1017, 834, 727, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₃H₂₅F₃NOSi⁺ [M+H]⁺ 416.1652; found 416.1651.

3.2.12 4-(1-(dimethyl(phenyl)silyl)-2-(4-(methylthio)phenyl)propan-2-yl)pyridine (16)

Prepared according to general procedure C from 4-methylthio-alpha-methylstyrene (32.8 mg, 0.2 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min.

Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **16** as colorless oil (49.1 mg, 65% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.42 (d, *J* = 5.5 Hz, 2H), 7.40 – 7.26 (m, 5H), 7.14 – 7.05 (m, 6H), 2.46 (s, 3H), 1.79 (s, 2H), 1.55 (s, 3H), 0.04 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.6, 149.5, 146.0, 139.5, 136.2, 133.4, 128.9, 127.8, 127.7, 126.4, 122.3, 45.0, 30.6, 29.7, 15.9, -1.5 ppm. **IR** (film): 3068, 2968, 1592, 1550, 1492, 1426, 1373, 1408, 1248, 1192, 1111, 1012, 824, 728, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₃H₂₈NSSi⁺ [M+H]⁺ 378.1706; found 378.1703.

3.2.13 4-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)-N,N-dimethylaniline (17)

Prepared according to general procedure D from 4-dimethylamino-alpha-methylstyrene (38.6 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **17** as colorless oil (51.8 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.41 (d, *J* = 6.4 Hz, 2H), 7.48 – 7.37 (m, 2H), 7.36 – 7.27 (m, 3H), 7.12 (d, *J* = 6.2 Hz, 2H), 7.02 (d, *J* = 8.9 Hz, 2H), 6.62 (d, *J* = 8.9 Hz, 2H), 2.92 (s, 6H), 1.85 – 1.72 (m, 2H), 1.56 (s, 3H), 0.05 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.4, 149.3, 148.9, 140.1, 137.0, 133.4, 128.7, 127.7, 127.2, 122.3, 112.20, 44.34, 40.62, 30.72, 29.8, -1.4 ppm. IR (film): 3068, 2954, 2798, 1592, 1520, 1486, 1428, 1408, 1350, 1247, 1158, 1111, 948, 700 cm⁻¹. HRMS (ESI): calculated for C₂₄H₃₁N₂Si⁺ [M+H]⁺ 375.2251; found 375.2248.

3.2.14 4-(4-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)phenyl)morpholine (18)

Prepared according to general procedure D from 4-(4-(prop-1-en-2-yl)phenyl)morpholine (48.8 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **18** as colorless oil (69.1 mg, 83% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.41 (d, *J* = 6.4 Hz, 2H), 7.50 – 7.26 (m, 5H), 7.12 – 7.09 (m, 2H), 7.05 (d, *J* = 8.9 Hz, 2H), 6.78 (d, *J* = 8.9 Hz, 2H), 3.86 – 3.83 (m, 4H), 3.14 – 3.11 (m, 4H), 1.85 – 1.75 (m, 2H), 1.55 (s, 3H), 0.04 (s, 3H), -0.00 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 161.0, 149.4, 140.4, 139.8, 133.4, 128.8, 128.1, 127.8, 127.7, 122.2, 115.1, 66.9, 49.3, 44.5, 30.6, 29.7, -1.5 ppm. **IR** (film): 3068, 2962, 1610, 1592, 1514, 1450, 1378, 1258, 1232, 1112, 1070, 824, 728, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₆H₃₃N₂OSi⁺ [M+H]⁺ 417.2357; found 417.2357.

3.2.15 4-(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-(dimethyl(phenyl)silyl)propan-2-yl)pyridine (19)

Prepared according to general procedure C from 6-(prop-1-en-2-yl)-2,3-dihydrobenzo[*b*][1,4]dioxine (35.2 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **19** as colorless oil (57.7 mg, 74% yield).¹**H NMR** (400 MHz, CDCl₃): δ 8.41 (d, *J* = 6.4 Hz, 2H), 7.51 – 7.27 (m, 5H), 7.10 (d, *J* = 6.3 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 1H), 6.66 (d, *J* = 2.3 Hz, 1H), 6.60 (dd, *J* = 8.5, 2.3 Hz, 1H), 4.24 – 4.19 (m, 4H), 1.79 – 1.70 (m, 2H), 1.53 (s, 3H), 0.05 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.7, 149.4, 142.9, 142.6, 141.8, 139.7, 133.4, 128.8, 127.7, 122.2, 120.2, 116.7, 116.1, 64.4, 64.4, 44.7, 30.7, 29.7, -1.5 ppm. **IR** (film): 3068, 2969, 1593, 1458, 1426, 1285, 1248, 1112, 1071, 836, 728, 700 cm⁻¹. **HRMS** (ESI): calculated for C₂₄H₂₈NO₂Si⁺ [M+H]⁺ 390.1884; found 390.1885.

3.2.16 2-(1-(dimethyl(phenyl)silyl)-2-(pyridin-4-yl)propan-2-yl)-9-ethyl-9H-carbazole (20)

Prepared according to general procedure C from 9-ethyl-2-(prop-1-en-2-yl)-9*H*-carbazole (56.5 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 3:1) to afford **20** as colorless oil (68.4 mg, 76% yield).¹**H NMR** (400 MHz, CDCl₃): δ 8.43 (d, *J* = 6.1 Hz, 2H), 8.10 – 8.03 (m, 1H), 7.98 (t, *J* = 1.4 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.44 – 7.39 (m, 1H), 7.39 – 7.34 (m, 2H), 7.31 – 7.25 (m, 3H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.20 – 7.16 (m, 2H), 7.12 (dd, *J* = 8.6, 1.7 Hz, 1H), 4.34 (q, *J* = 7.2 Hz, 2H), 1.95 (q, *J* = 14.3 Hz, 2H), 1.70 (s, 3H), 1.44 (t, *J* = 7.2 Hz, 3H), 0.00 (s, 3H), -0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.0, 149.3, 140.3, 139.8, 139.3, 138.4, 134.1, 133.5, 128.8, 127.7, 125.9, 125.6, 123.0, 122.4, 120.3, 118.7, 118.2, 108.5, 108.2, 45.3, 37.6, 31.2, 30.3, 13.9, -1.4, -1.5 ppm. IR (film): 3052, 3021, 2895, 2362, 1594, 1491, 1479, 1426, 1248, 1159, 1111, 908, 822, 727, 699 cm⁻¹. HRMS (ESI): calculated for C₃₀H₃₃N₂Si⁺ [M+H]⁺ 449.2408; found 449.2410.

3.2.17 4-(2-(4-(1H-imidazol-1-yl)phenyl)-1-(dimethyl(phenyl)silyl)propan-2-yl)pyridine (21)

Prepared according to general procedure C from 1-(4-(prop-1-en-2-yl)phenyl)-1*H*-imidazole (44.2 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 2:1) to afford **21** as colorless oil (55.8 mg, 70% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.52 – 8.47 (m, 2H), 7.88 (s, 1H), 7.41 – 7.34 (m, 3H), 7.33 – 7.29 (m, 3H), 7.29 – 7.26 (m, 3H), 7.26 – 7.22 (m, 2H), 7.18 – 7.13 (m, 2H), 1.92 – 1.85 (m, 2H), 1.66 (s, 3H), 0.16 (s, 3H), 0.12 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 160.0, 149.6, 148.5, 139.0, 135.5, 135.4, 133.3, 130.3, 128.9, 128.6, 127.8, 122.1, 120.9, 118.2, 45.1, 30.7, 29.7, -1.4, -1.5

ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.23. IR (film): 3068, 3044, 1592, 1551, 1518, 1487, 1426, 1408, 1374, 1248, 1193, 1111, 1053, 813, 729, 699 cm⁻¹. HRMS (ESI): calculated for C₂₅H₂₈N₃Si⁺ [M+H]⁺ 398.2047; found 398.2049.

3.2.18 4-(1-(dimethyl(phenyl)silyl)-2-(6-methoxynaphthalen-2-yl)propan-2-yl)pyridine (22)

Prepared according to general procedure D from 2-methoxy-6-(prop-1-en-2-yl)naphthalene (39.6 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 2 h. Purification by preparative TLC (petroleum ether/ethyl acetate = 3:1) to afford **22** as colorless oil (67.6 mg, 82% yield).¹**H NMR** (400 MHz, CDCl₃): δ 8.44 (d, *J* = 5.7 Hz, 2H), 7.72 – 7.67 (m, 2H), 7.57 (d, *J* = 8.7 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.34 – 7.24 (m, 3H), 7.21 – 7.16 (m, 1H), 7.14 (d, *J* = 6.2 Hz, 2H), 7.10 (d, *J* = 2.5 Hz, 1H), 7.08 – 7.02 (m, 1H), 3.92 (s, 3H), 1.97 – 1.85 (m, 2H), 1.66 (s, 3H), 0.02 (s, 3H), -0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.7, 157.7, 149.5, 143.9, 139.5, 133.4, 133.0, 129.5, 128.8, 128.4, 127.7, 127.1, 126.8, 124.4, 122.3, 118.9, 105.6, 55.3, 45.2, 30.4, 29.6, -1.4, -1.5 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.15. IR (film): 3068, 2954, 1604, 1593, 1501, 1485, 1462, 1408, 1389, 1264, 1212, 1111, 1032, 824, 734, 700 cm⁻¹. HRMS (ESI): calculated for C₂₇H₃₀NOSi⁺ [M+H]⁺ 412.2091; found 412.2089.

3.2.19 4-(1-cyclobutyl-2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (23)

Prepared according to general procedure D from (1-cyclobutylvinyl)benzene (37.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*·PrOH = 20:1) to afford **23** as colorless oil (49.9 mg, 67% yield).¹**H NMR** (400 MHz, CDCl₃): δ 8.49 (d, *J* = 6.2 Hz, 2H), 7.47 – 7.40 (m, 2H), 7.39 – 7.33 (m, 3H), 7.32 – 7.22 (m, 3H), 7.14 – 7.10 (m, 2H), 7.08 (d, *J* = 6.2 Hz, 2H), 3.25 – 3.14 (m, 1H), 1.96 – 1.83 (m, 2H), 1.71 (q, *J* = 14.3 Hz, 2H), 1.62 – 1.30 (m, 4H), -0.02 (s, 3H), -0.05 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.6, 148.9, 146.8, 139.8, 133.4, 129.0, 128.9, 127.7, 126.7, 126.3, 124.6, 51.5, 42.1, 27.4, 24.8, 24.4, 17.4, -1.8, -1.9 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.48. **IR** (film): 3067, 2976, 2953, 2866, 1593, 1493, 1444, 1426, 1407, 1249, 1112, 824, 783, 729, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₅H₃₀NSi⁺ [M+H]⁺ 372.2142; found 372.2140.

3.2.20 4-(2-(dimethyl(phenyl)silyl)-1,1-diphenylethyl)pyridine (24)

Prepared according to general procedure D from 1,1-diphenylethylene (36.0 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*·PrOH = 20:1) to afford **24** as colorless oil (64.8 mg, 82% yield).¹**H NMR** (400 MHz, CDCl₃): δ 8.47 (d, *J* = 5.5 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.41 – 7.31 (m, 3H), 7.29 (s, 3H), 7.28 (s, 5H), 7.26 – 7.21 (m, 4H), 2.37 (s, 2H), -0.06 (s, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 158.1, 149.3, 146.9, 140.1, 133.3, 129.1, 128.8, 128.0, 127.8, 126.4, 124.0, 55.4, 30.8, -1.4 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.57. **IR** (film): 3054, 3021, 2954, 2923, 1589, 1492, 1444, 1426, 1410, 1249, 1111, 906, 821, 769, 729, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₇H₂₈NSi⁺ [M+H]⁺ 394.1986; found 394.1983.

3.2.21 4-(1,1-di([1,1'-biphenyl]-4-yl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (25)

Prepared according to general procedure D from 4,4"-(ethene-1,1-diyl)di-1,1'-biphenyl (66.4 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **25** as white solid (93.0 mg, 85% yield).¹**H NMR** (400 MHz, CDCl₃): δ 8.50 (d, *J* = 5.8 Hz, 2H), 7.65 – 7.59 (m, 4H), 7.52 (d, *J* = 8.5 Hz, 4H), 7.46 (t, *J* = 7.7 Hz, 4H), 7.44 – 7.40 (m, 2H), 7.39 – 7.34 (m, 8H), 7.33 – 7.29 (m, 3H), 2.42 (s, 2H), 0.02 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.0, 149.4, 146.0, 140.4, 139.9, 139.2, 133.3, 129.5, 128.8, 128.8, 127.8, 127.3, 127.0, 126.6, 124.0, 55.0, 30.9, -1.3 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.62. **IR** (film): 3028, 2955, 2922, 1590, 1486, 1426, 1409, 1249, 1111, 1006, 906, 834, 816, 766, 726, 695 cm⁻¹. **HRMS** (ESI): calculated for C₃₉H₃₆NSi⁺ [M+H]⁺ 546.2612; found 546.2608.

3.2.22 4-(2-(dimethyl(phenyl)silyl)-1-(naphthalen-2-yl)-1-phenylethyl)pyridine (26)

Prepared according to general procedure D from 2-(1-phenylvinyl)naphthalene (46.1 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), 'BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1 or petroleum ether/*i*-PrOH = 20:1) to afford **26** as colorless oil (76.5 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 4.7 Hz, 2H), 7.87 – 7.79 (m, 2H), 7.79 – 7.71 (m, 2H), 7.56 – 7.50 (m, 2H), 7.50 – 7.43 (m, 2H), 7.42 – 7.24 (m, 11H), 2.56 – 2.40 (m, 2H), - 0.06 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.9, 149.4, 146.7, 144.0, 140.0, 133.3, 132.8, 131.8, 129.3, 129.1, 128.8, 128.1, 128.0, 127.8, 127.5, 127.4, 126.9, 126.5, 126.1, 126.0, 124.1, 55.6, 30.9, -1.3, -1.4 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.52. IR (film): 3056, 3021, 2955, 1590, 1504,

1493, 1426, 1409, 1249, 1111, 907, 814, 726, 699 cm⁻¹. **HRMS** (ESI): calculated for $C_{31}H_{30}NSi^+$ [M+H]⁺ 444.2142; found 444.2137.

3.2.23 4-(4-((dimethyl(phenyl)silyl)methyl)chroman-4-yl)pyridine (27)

Prepared according to general procedure C from 4-methylenechromane (29.2 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **27** as colorless oil (47.6 mg, 66% yield).¹**H NMR** (400 MHz, CDCl₃): δ 8.45 (d, *J* = 4.9 Hz, 2H), 7.48 – 7.28 (m, 5H), 7.24 – 7.17 (m, 1H), 7.09 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.05 (d, *J* = 4.0 Hz, 2H), 6.95 – 6.81 (m, 2H), 4.03 (dt, *J* = 11.2, 3.3 Hz, 1H), 3.64 – 3.55 (m, 1H), 2.39 – 2.30 (m, 1H), 2.04 – 1.96 (m, 1H), 1.94 – 1.81 (m, 2H), 0.11 (s, 3H), 0.03 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.5, 154.8, 149.7, 139.9, 133.4, 129.7, 128.9, 128.5, 127.9, 126.0, 122.4, 120.5, 117.5, 62.6, 42.2, 37.4, 30.9, -1.2, -1.3 ppm. IR (film): 3068, 3024, 2952, 2882, 1590, 1484, 1450, 1251, 1220, 1110, 1058, 821, 727, 699 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₆NOSi⁺ [M+H]⁺ 360.1778; found 360.1779.

3.2.24 4-(2-(dimethyl(phenyl)silyl)-1-phenylpropyl)pyridine (28)

Prepared according to general procedure C from (*E*)- β -methylstyrene (28.4 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were

sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **28** as colorless oil (38.7 mg, 58% yield, dr = 1.4:1).¹**H NMR** (400 MHz, CDCl₃): δ 8.56 – 8.35 (m, 2H), 7.48 – 7.31 (m, 5H), 7.30 – 7.23 (m, 5H), 7.22 – 7.13 (m, 2H), 3.79 – 3.68 (m, 1H), 2.08 – 1.98 (m, 1H), 0.97 – 0.89 (m, 3H), 0.17 – -0.03 (m, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.2, 153.9, 149.9, 149.6, 143.5, 143.3, 138.2, 133.9, 133.8, 128.9, 128.8, 128.6, 128.6, 128.3, 128.1, 127.7, 127.6, 127.0, 126.6, 123.6, 123.3, 55.2, 54.7, 23.9, 23.8, 14.9, 14.3, -2.9, -3.5, -3.8, -4.4 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ 0.48. IR (film): 3067, 3024, 2953, 2870, 1593, 1557, 1493, 1452, 1415, 1248, 1111, 986, 833, 816, 736, 699 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NSi⁺ [M+H]⁺ 332.1829; found 332.1825.

3.2.25 4-(2-(dimethyl(phenyl)silyl)-1,2,3,4-tetrahydronaphthalen-1-yl)pyridine (29)

Prepared according to general procedure C from 1,2-dihydronaphthalene (31.2 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 2 h. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **29** as colorless oil (49.7 mg, 72% yield, dr = 4.2:1). **¹H NMR** (400 MHz, CDCl₃): δ 8.35 (d, *J* = 6.0 Hz, 2H), 7.44 – 7.37 (m, 2H), 7.34 – 7.27 (m, 3H), 7.08 – 7.02 (m, 2H), 6.98 – 6.90 (m, 1H), 6.82 (d, *J* = 6.0 Hz, 2H), 6.65 (d, *J* = 7.7 Hz, 1H), 3.99 (d, *J* = 7.0 Hz, 1H), 2.85 – 2.75 (m, 2H), 2.91 – 1.91 (m, 1H), 1.71 – 1.61 (m, 1H), 1.50 – 1.42 (m, 1H), 0.10 (s, 3H), 0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.8, 149.5, 137.9, 137.7, 137.4, 133.8, 133.6, 130.0, 129.1, 127.8, 126.2, 126.0, 124.2, 45.9, 30.2, 29.6, 22.2, -3.5, -4.0 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -0.69. IR (film): 3068, 3018, 2916, 2859, 1593, 1492, 1426, 1249, 1111, 857, 833, 734, 700 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₆NSi⁺ [M+H]⁺ 344.1829; found 344.1829.

Structural identification of compound 29:

As shown below, the chemical shifts of H_a and H_b of **29** could be conformed by 2D COSY spectra. The major isomer for compound **29** was further identified to be in *anti*-diastereoisomer according to the coupling constant ($J_{H, H}$) between two α -protons ($H_a \& H_b$) and the 2D NOESY experiment. (The ³ J_{HH} coupling constant between H_a and H_b in the *anti*-diastereoisomer is 7.0 Hz, and the coupling constant of a similar compound were reported by Hajime Ito et al.^[9]).

2D COSY spectrum (400 MHz, CDCl₃) of compound 29.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **29**.

2D NOESY spectrum (600 MHz, CDCl₃) of compound 29.

3.2.26 4-(2-(dimethyl(phenyl)silyl)-1-phenylcyclohexyl)pyridine (*anti-30*)

Prepared according to general procedure C from 1-phenyl-1-cyclohexene (37.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ⁷BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then ⁷BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 2 h. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **30** as colorless oil (34.4 mg, 46% yield, dr > 20:1). ¹H **NMR** (400 MHz, CDCl₃): δ 8.64 (d, *J* = 5.5 Hz, 2H), 7.49 – 7.43 (m, 5H), 7.43 – 7.38 (m, 2H), 7.33 – 7.26 (m, 4H), 7.25 – 7.20 (m, 1H), 2.72 – 2.64 (m, 1H), 2.60 – 2.49 (m, 2H), 2.07 – 1.80 (m, 4H), 1.65 – 1.58 (m, 2H), 0.40 (s, 3H), -0.00 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 157.6, 149.9, 146.8, 140.3, 133.6, 128.5, 128.2, 127.9, 127.6, 126.3, 123.0, 48.8, 33.3, 32.8, 25.6, 24.4, 22.6, 0.2, -0.5 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -0.90. **IR** (film): 3067, 3020, 2928, 2860, 1589, 1426, 1408, 1248, 1110, 833, 816, 768, 698 cm⁻¹. **HRMS** (ESI): calculated for C₂₅H₃₀NSi⁺ [M+H]⁺ 372.2142; found 372.2139.

For compound **30**, direct determination of the relative configuration of the major product through the NOESY experiment failed due to the severe overlap of signals of the related hydrogens. Therefore, we performed **some additional DFT calculations** to assist in the determination of the structure of **30**. As shown below, our computational analysis on the key nucleophilic substitution step reveals that the formation of *anti*-product is predicted to be kinetically more favorable by 6.6 kcal/mol than *syn-***30** (*Ts-anti vs TS-syn*), and this barrier difference is in good consistency with the observed diastereoselectivity. Taken together, we therefore assign **30** to be *anti*-configuration.

NOESY spectrum (400 MHz, CDCl₃) of compound 30.

Structural identification of compoud 30:

3.2.27 4-(2-(dimethyl(phenyl)silyl)-1,2-diphenylethyl)pyridine (31)

Prepared according to general procedure C from trans-1,2-diphenylethene (43.2 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 10:1) to afford **31** as colorless oil (31.6 mg, 40% yield, dr = 2.4:1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.40 – 8.20 (m, 2H), 7.38 – 7.27 (m, 2H), 7.24 – 7.16 (m, 4H), 7.15 – 7.10 (m, 4H), 7.09 – 6.99 (m, 4H), 6.98 – 6.87 (m, 4H), 4.41 (d, *J* = 12.8 Hz, 1H), 3.35 (d, *J* = 12.9 Hz, 1H), 0.08 (s, 3H), -0.08 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.2, 149.6, 143.3, 141.3, 137.4, 134.0, 130.0, 129.0, 128.9, 128.3, 127.9, 127.6, 126.1, 124.8, 123.8, 53.1, 40.6, -2.3, -3.9 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -0.74. IR (film): 3068, 3021, 2923, 1590, 1492, 1445, 1426, 1249, 1111, 906, 820, 768, 730, 699 cm⁻¹. HRMS (ESI): calculated for C₂₇H₂₈NSi⁺ [M+H]⁺ 394.1986; found 394.1980.

3.2.28 4-(1-(dimethyl(phenyl)silyl)-2-methyl-4-phenylbut-3-yn-2-yl)pyridine (32)

Prepared according to general procedure C from (3-methylbut-3-en-1-yn-1-yl)benzene (28.4 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 10:1) to afford **32** as colorless oil (37.8 mg, 53% yield).¹H **NMR** (400 MHz, CDCl₃): δ 8.32 (d, *J* = 6.3 Hz, 2H), 7.31 (d, *J* = 6.3 Hz, 2H), 7.26 – 7.21 (m, 3H), 7.18 – 7.14 (m, 3H), 7.13 – 7.11 (m, 2H), 7.10 – 7.04 (m, 2H), 1.49 (s, 3H), 1.47 (s, 2H),

0.18 (s, 3H), -0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.4, 149.7, 139.4, 133.5, 131.5, 128.9, 128.3, 128.1, 127.8, 123.3, 121.1, 94.3, 84.9, 38.6, 34.2, 32.6, -1.3, -1.7 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.21. IR (film): 3072, 3042, 2971, 2889, 2362, 2340, 1593, 1492, 1442, 1426, 1412, 1248, 1113, 1069, 832, 756. 692 cm⁻¹. HRMS (ESI): calculated for C₂₄H₂₆NSi⁺ [M+H]⁺ 356.1829; found 356.1827.

3.2.29 2-(tert-butyl)-4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (33)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ¹BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then ¹BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 2-(*tert*-butyl)isonicotinonitrile (32.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **33** as colorless oil (54.0 mg, 72% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.37 (d, *J* = 5.8 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.35 – 7.29 (m, 3H), 7.25 – 7.15 (m, 6H), 6.92 (dd, *J* = 5.2, 1.7 Hz, 1H), 3.95 (t, *J* = 8.0 Hz, 1H), 1.62 (dd, *J* = 8.0, 2.8 Hz, 2H), 1.31 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 169.3, 155.6, 148.6, 145.3, 138.6, 133.6, 129.0, 128.6, 127.8, 127.6, 126.6, 120.0, 118.3, 47.1, 37.3, 30.2, 23.0, -2.5, -2.7 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.37. **IR** (film): 3068, 3025, 2955, 1593, 1558, 1492, 1480, 1426, 1404, 1361, 1248, 1174, 1112, 837, 730, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₅H₃₂NSi⁺ [M+H]⁺ 374.2299; found 374.2296.

3.2.30 2-chloro-4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (34)

C₂₁H₂₂CINSi M = 351.95 g/mol
Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.) and 2-chloroisonicotinonitrile (27.7 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **34** as colorless oil (43.7 mg, 62% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.15 (d, *J* = 5.2 Hz, 1H), 7.44 – 7.26 (m, 5H), 7.26 – 7.21 (m, 2H), 7.21 – 7.16 (m, 1H), 7.15 – 7.10 (m, 3H), 7.00 (dd, *J* = 5.2, 1.6 Hz, 1H), 3.92 (dd, *J* = 9.1, 6.8 Hz, 1H), 1.61 (dd, *J* = 14.6, 9.1 Hz, 1H), 1.53 (dd, *J* = 14.6, 6.8 Hz, 1H), 0.07 (s, 3H), 0.04 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 159.3, 151.7, 149.5, 143.8, 138.1, 133.5, 129.2, 128.8, 127.9, 127.7, 127.0, 123.1, 121.7, 46.6, 22.7, -2.4, -3.0. **IR** (film): 3067, 3025, 2953, 2918, 1587, 1543, 1494, 1436, 1426, 1384, 1248, 1113, 1086, 835, 732, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₁H₂₃CINSi⁺ [M+H]⁺ 352.1283; found 352.1284.

3.2.31 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-3-methylpyridine (35)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 3-methylisonicotinonitrile (23.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **35** as colorless oil (51.9 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, *J* = 5.2 Hz, 1H), 8.18 (s, 1H), 7.38 – 7.31 (m, 2H), 7.31 – 7.23 (m, 3H), 7.22 (d, *J* = 5.2 Hz, 1H), 7.19 – 7.14 (m, 2H), 7.11 – 7.04 (m, 3H), 4.09 (t, *J* = 7.9 Hz, 1H), 2.02 (s, 3H), 1.58 – 1.46 (m, 2H), 0.04 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.1, 150.9, 147.7, 144.2, 138.4, 133.5, 131.1, 129.1, 128.5, 127.9, 127.8, 126.5, 121.5, 42.4, 23.5, 16.4, -2.4, -2.8 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.19. IR (film): 3068, 3042, 2954, 1552, 1493, 1436, 1408, 1280, 1248, 1111, 826, 758, 700 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NSi⁺ [M+H]⁺ 332.1829; found 332.1826.

3.2.32 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-3-methoxypyridine (36)

Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 3-methoxyisonicotinonitrile (26.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*-PrOH = 10:1) to afford **36** as colorless oil (45.3 mg, 65% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.15 – 8.09 (m, 2H), 7.43 – 7.37 (m, 2H), 7.35 – 7.28 (m, 3H), 7.26 – 7.21 (m, 4H), 7.18 – 7.12 (m, 2H), 4.53 (t, *J* = 8.0 Hz, 1H), 3.81 (s, 3H), 1.58 (d, *J* = 8.0 Hz, 2H), 0.11 (s, 3H), 0.06 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 152.8, 144.6, 143.7, 142.7, 138.8, 133.5, 133.1, 128.8, 128.3, 128.0, 127.6, 126.3, 122.0, 55.9, 38.6, 22.0, -2.5, -3.0 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ - 3.30. **IR** (film): 3066, 3026, 2953, 2902, 2838, 1588, 1493, 1453, 1426, 1415, 1295, 1250, 1112, 1069, 1024, 835, 732, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₂H₂₆NOSi⁺ [M+H]⁺ 348.1778; found 348.1773.

3.2.33 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-2,6-dimethylpyridine (37)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 2,6-dimethylisonicotinonitrile (26.4 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*-PrOH = 10:1) to afford **37** as colorless oil (54.8 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.38 – 7.25 (m, 5H), 7.21 – 7.17 (m, 2H), 7.14 (dt, *J* = 7.8, 2.2 Hz, 3H), 6.73 (s, 2H), 3.85 (t, *J* = 8.0 Hz, 1H), 2.38 (s, 6H), 1.57 – 1.52 (m, 2H), 0.03 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.6, 156.1, 145.2, 138.7, 133.5, 129.0, 128.6, 127.8, 127.7, 126.6, 119.4, 46.7 24.5, 22.7, -2.4, -2.9 ppm. IR (film): 3067, 3025, 2953, 2919, 1598, 1566, 1494, 1452, 1426, 1248, 1111, 1029, 837, 699 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₈NSi⁺ [M+H]⁺ 346.1986; found 346.1981.

3.2.34 2-(cyclopropylmethoxy)-4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (38)

C₂₅H₂₉NOSi M = 387.60 g/mol

Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), [']BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 2-(cyclopropylmethoxy)isonicotinonitrile (34.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*-PrOH = 10:1) to afford **38** as colorless oil (45.2 mg, 58% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.88 (d, *J* = 6.0 Hz, 1H), 7.42 – 7.31 (m, 2H), 7.32 – 7.23 (m, 3H), 7.21 – 7.17 (m, 2H), 7.15 – 7.09 (m, 3H), 6.64 (dd, *J* = 5.4, 1.6 Hz, 1H), 6.62 – 6.59 (m, 1H), 4.02 (d, *J* = 7.1 Hz, 2H), 3.88 (t, *J* = 7.9 Hz, 1H), 1.55 (dd, *J* = 8.0, 2.2 Hz, 2H), 1.24 – 1.18 (m, 1H), 0.58 – 0.52 (m, 2H), 0.30 – 0.24 (m, 2H), 0.03 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 164.3, 158.7, 146.5, 144.8, 138.6, 133.5, 129.0, 128.6, 127.8, 127.8, 126.7, 116.5, 109.5, 70.8, 46.6, 22.6, 10.1, 3.2, -2.5, -2.9 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.32. **IR** (film): 3068, 3022, 2952, 1607, 1557, 1477, 1452, 1426, 1387, 1313, 1248, 1151, 1112, 1029, 834, 776, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₅H₃₀NOSi⁺ [M+H]⁺ 388.2091; found 388.2090.

3.2.35 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-3-(4-(trimethylsilyl)phenyl)pyridine (39)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 3-(4-(trimethylsilyl)phenyl)isonicotinonitrile (50.4 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*-PrOH = 10:1) to afford **39** as colorless oil (72.0 mg, 77% yield).

¹**H NMR** (400 MHz, CDCl₃): δ 8.48 (d, J = 6.4 Hz, 1H), 8.37 (s, 1H), 7.54 – 7.48 (m, 2H), 7.38 (d, J = 5.3 Hz, 1H), 7.36 – 7.32 (m, 1H), 7.30 – 7.26 (dd, J = 4.0, 1.2 Hz, 4H), 7.21 – 7.13 (m, 3H), 7.09 (d, J = 6.6 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 4.30 (dd, J = 9.8, 5.9 Hz, 1H), 1.67 – 1.59 (m, 1H), 1.47 – 1.40 (m, 1H), 0.36 (s, 9H), -0.04 (s, 3H), -0.08 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.3, 150.3, 148.8, 144.2, 139.7, 138.5, 138.0, 136.9, 134.1, 133.4, 133.2, 128.9, 128.3, 127.9, 127.7, 126.4, 121.9, 42.0, 24.1, -1.1, -2.4, -3.1 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.58, -3.82. IR (film): 3069, 2961, 2913, 1610, 1587, 1247, 1112, 902, 841, 722, 649 cm⁻¹. HRMS (ESI): calculated for C₃₀H₃₆NSi₂⁺ [M+H]⁺ 466.2381; found 466.2376.

3.2.36 3-(4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridin-3-yl)benzonitrile (40)

Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), [']BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 3-(3-cyanophenyl)isonicotinonitrile (41.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **40** as colorless oil (53.9 mg, 64% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.58 (d, J = 5.3 Hz, 1H), 8.23 (s, 1H), 7.61 (dt, J = 7.8, 1.4 Hz, 1H), 7.51 (d, J = 5.3 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.31 – 7.26 (m, 4H), 7.21 – 7.12 (m, 5H), 6.81 (dd, J = 7.7, 1.8 Hz, 2H), 4.00 (dd, J = 9.1, 6.5 Hz, 1H), 1.61 (dd, J = 14.9, 9.1 Hz, 1H), 1.47 (dd, J = 14.8, 6.5 Hz, 1H), 0.02 (s, 3H), -0.05 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.9, 149.8, 149.6, 143.9, 138.9, 137.9, 135.1, 133.9, 133.4, 132.9, 131.3, 129.2, 129.0, 128.6, 127.9, 127.7, 126.8, 122.1, 118.3, 112.5, 42.7, 24.2, -2.3, -2.9 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.48. IR (film): 3027, 2953, 2924, 2230, 1585, 1491, 1472, 1426, 1397, 1249, 1173, 1111, 1027, 833, 729, 696 cm⁻¹. HRMS (ESI): calculated for C₂₈H₂₇N₂Si⁺ [M+H]⁺ 419.1938; found 419.1936.

3.2.37 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-3-(6-methoxynaphthalen-2-yl)pyridine (41)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 3-(6-methoxynaphthalen-2-yl)isonicotinonitrile (52.1 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **41** as colorless oil (87.1 mg, 92% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.51 (d, *J* = 5.3 Hz, 1H), 8.42 (s, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.25 – 7.16 (m, 5H), 7.15 – 7.10 (m, 6H), 6.95 – 6.90 (m, 2H), 4.32 (dd, *J* = 9.2, 6.4 Hz, 1H), 3.93 (s, 3H), 1.65 – 1.55 (m, 1H), 1.52 – 1.44 (m, 1H), -0.07 (s, 3H), -0.11 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 158.0, 153.2, 150.5, 148.7, 144.5, 138.3, 137.0, 133.7, 133.3, 132.8, 129.6, 128.8, 128.5, 128.4, 128.3, 128.0, 127.8, 127.6, 126.7, 126.4, 121.9, 119.2, 105.6, 55.3, 42.2, 24.2, -2.5, -3.0 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.67. **IR** (film): 3058, 3025, 2953, 1633, 1606, 1584, 1489, 1426, 1386, 1198, 1162, 1111, 1031, 914, 833, 809, 729, 698 cm⁻¹. **HRMS** (ESI): calculated for C₃₂H₃₂NOSi⁺ [M+H]⁺ 474.2248; found 474.2244.

3.2.38 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-6'-methyl-3,3'-bipyridine (42)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 6'-methyl-[3,3'-bipyridine]-4-carbonitrile (39.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*-PrOH = 5:1) to afford **42** as colorless oil (47.5 mg, 58% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.54 (d, *J* = 5.3 Hz, 1H), 8.31 (s, 1H), 8.28 – 8.22 (m, 1H), 7.46 (d, *J* = 5.2 Hz, 1H), 7.38 – 7.31 (m, 1H), 7.31 – 7.25 (m, 4H), 7.22 – 7.13 (m, 4H), 7.08 (d, *J* = 7.9 Hz, 1H), 6.96 – 6.92 (m, 2H), 4.14 (dd, *J* = 9.2, 6.5 Hz, 1H), 2.64 (s, 3H), 1.63 (dd, *J* = 14.9, 9.2 Hz, 1H), 1.46 (dd, *J* = 14.9, 6.5 Hz, 1H), -0.01 (s, 3H), -0.04 (s, 3H) ppm. ¹³C{1H} NMR (100 MHz, CDCl₃): δ 157.7, 153.4,

150.5, 149.4, 149.2, 144.1, 138.2, 137.2, 133.6, 133.4, 130.4, 129.0, 128.6, 127.8, 127.7, 126.6, 122.6, 122.1, 42.4, 29.7, 24.4, -2.4, -2.9 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.60. IR (film): 3026, 2952, 2923, 1598, 1585, 1550, 1492, 1473, 1426, 1402, 1248, 1112, 999, 831, 730, 699 cm⁻¹. HRMS (ESI): calculated for $C_{27}H_{29}N_2Si^+$ [M+H]⁺ 409.2095; found 409.2092.

3.2.39 2-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (43)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 2-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **43** as colorless oil (55.9 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.55 – 8.40 (m, 1H), 7.44 (td, *J* = 7.7, 1.9 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.32 – 7.27 (m, 5H), 7.24 – 7.18 (m, 2H), 7.15 – 7.10 (m, 1H), 7.09 – 7.05 (m, 1H), 7.01 – 6.96 (m, 1H), 4.17 (t, *J* = 7.9 Hz, 1H), 1.92 – 1.84 (m, 1H), 1.65 – 1.58 (m, 1H), 0.02 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 165.0, 149.1, 145.6, 139.2, 136.3, 133.6, 128.8, 128.4, 127.8, 127.7, 126.3, 122.4, 121.2, 49.6, 22.7, -2.7, -2.8 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.39. IR (film): 3067, 3023, 2953, 2895, 1588, 1568, 1492, 1471, 1431, 1248, 1112, 993, 870, 837, 815, 729, 699 cm⁻¹. HRMS (ESI): calculated for C₂₁H₂₄NSi⁺ [M+H]⁺ 318.1673; found 318.1668.

3.2.40 2-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-6-methylpyridine (44)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 6-methylpicolinonitrile (23.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative

TLC (petroleum ether/*i*·PrOH = 10:1) to afford **44** as colorless oil (53.1 mg, 80% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.48 – 7.39 (m, 2H), 7.39 – 7.27 (m, 6H), 7.24 (d, *J* = 7.8 Hz, 2H), 7.19 – 7.13 (m, 1H), 6.90 (dd, *J* = 13.2, 7.7 Hz, 2H), 4.20 (t, *J* = 8.0 Hz, 1H), 2.52 (s, 3H), 1.90 (dd, *J* = 14.6, 8.6 Hz, 1H), 1.61 (dd, *J* = 14.6, 7.4 Hz, 1H), 0.07 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.4, 157.6, 146.0, 139.5, 136.4, 133.6, 128.7, 128.3, 127.9, 127.6, 126.2, 120.6, 119.1, 49.6, 24.6, 23.1, -2.6, -2.7 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.27. IR (film): 3066, 3024, 2953, 2922, 2896, 1589, 1574, 1494, 1450, 1427, 1247, 1112, 835, 729, 698 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NSi⁺ [M+H]⁺ 332.1829; found 332.1826.

3.2.41 2-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-3-methylpyridine (45)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 3-methylpicolinonitrile (23.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **45** as colorless oil (41.9 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.48 (dd, *J* = 4.8, 1.7 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.35 – 7.27 (m, 6H), 7.22 (dd, *J* = 8.3, 6.6 Hz, 2H), 7.15 – 7.11 (m, 1H), 6.99 (dd, *J* = 7.5, 4.8 Hz, 1H), 4.28 (dd, *J* = 9.3, 6.1 Hz, 1H), 2.15 – 2.07 (m, 4H), 1.60 (dd, *J* = 14.6, 6.1 Hz, 1H), 0.07 (s, 3H), 0.03 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.8, 146.6, 145.7, 139.4, 137.7, 133.6, 130.9, 128.7, 128.3, 128.0, 127.7, 126.0, 121.2, 44.7, 23.7, 18.9, -2.5, -2.7 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.12. IR (film): 3066, 3022, 2952, 2895, 1584, 1570, 1492, 1447, 1425, 1247, 1112, 875, 836, 750, 699 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₆NSi⁺ [M+H]⁺ 332.1829; found 332.1825.

3.2.42 2-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-4-(4-fluorophenyl)pyridine (46)

Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-(4-fluorophenyl)picolinonitrile (39.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **46** as colorless oil (70.9 mg, 86% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.49 (d, J = 3.3 Hz, 1H), 7.40 (dd, J = 8.1, 2.4 Hz, 1H), 7.33 – 7.20 (m, 4H), 7.19 – 7.15 (m, 2H), 7.14 – 7.00 (m, 5H), 6.99 – 6.88 (m, 4H), 4.06 (t, J = 7.9 Hz, 1H), 1.76 (dd, J = 14.6, 8.2 Hz, 1H), 1.49 (dd, J = 14.6, 7.7 Hz, 1H), -0.08 (s, 3H), -0.10 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 163.9 (d, J = 1.8 Hz), 161.5, 147.3, 145.5, 139.0, 134.5, 134.0 (d, J = 3.2 Hz), 133.6, 133.2, 128.6 (d, J = 8.1 Hz), 128.5, 127.8, 127.6 (d, J = 230.3 Hz), 127.7, 122.2, 116.1, 115.8, 49.2, 22.7, -2.5, -2.9 ppm. ¹⁹F{¹H} **NMR** (376 MHz, CDCl₃) δ -114.53 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.31. **IR** (film): 3067, 3024, 2953, 2895, 1592, 1557, 1514, 1474, 1452, 1426, 1371, 1232, 1160, 1111, 1002, 827, 767, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₇H₂₇FNSi⁺ [M+H]⁺ 412.1891; found 412.1890.

3.2.43 6-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-2,2'-bipyridine (47)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then [2,2'-bipyridine]-6-carbonitrile (36.2 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*-PrOH = 10:1) to afford **47** as colorless oil (58.5 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.66 – 8.54 (m, 1H), 8.52 – 8.45 (m, 1H), 8.12 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.77 (td, *J* = 7.8, 1.9 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.40 – 7.31 (m, 4H), 7.25 – 7.16 (m, 6H), 7.12 – 7.06 (m, 1H),

7.02 (dd, J = 7.7, 1.0 Hz, 1H), 4.19 (dd, J = 8.9, 6.8 Hz, 1H), 2.08 – 2.00 (m, 1H), 1.65 – 1.56 (m, 1H), 0.00 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.0, 156.6, 155.1, 149.0, 146.1, 139.3, 137.2, 136.8, 133.6, 128.8, 128.4, 127.9, 127.7, 126.3, 123.5, 122.7, 121.3, 118.4, 49.6, 23.1, -2.5, -2.7 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.03. IR (film): 3065, 3024, 2952, 2923, 1581, 1563, 1491, 1453, 1428, 1247, 1112, 832, 768, 730, 699 cm⁻¹. HRMS (ESI): calculated for C₂₆H₂₇N₂Si⁺ [M+H]⁺ 395.1938; found 395.1936.

3.2.44 3-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyridine (48)

Me Ме 48 C₂₁H₂₃NSi M = 317.51 g/mol

Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 3-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at 50 °C for 30 min. Purification by preparative TLC (petroleum ether/*i*-PrOH = 20:1) to afford **48** as colorless oil (32.4 mg, 51% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.48 (d, *J* = 2.3 Hz, 1H), 8.37 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.48 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.42 – 7.27 (m, 5H), 7.25 – 7.13 (m, 5H), 7.12 – 7.08 (m, 1H), 4.03 (t, *J* = 8.0 Hz, 1H), 1.72 – 1.56 (m, 2H), 0.07 (s, 3H), 0.04 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 149.3, 147.5, 145.6, 142.1, 138.5, 134.8, 133.5, 129.0, 128.6, 127.8, 127.5, 126.5, 123.3, 44.8, 23.3, -2.6, -2.8 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.22. **IR** (film): 3025, 2953, 2908, 1574, 1493, 1476, 1452, 1425, 1248, 1112, 866, 837, 814, 729, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₁H₂₄NSi⁺ [M+H]⁺ 318.1673; found 318.1671.

3.2.45 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)quinoline (49)

49 C₂₅H₂₅NSi M = 367.57 g/mol

Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then quinoline-4-carbonitrile (30.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **49** as colorless oil (59.5 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.73 (d, *J* = 4.6 Hz, 1H), 8.05 – 7.98 (m, 1H), 7.88 – 7.84 (m, 1H), 7.60 – 7.54 (m, 1H), 7.39 – 7.32 (m, 3H), 7.31 – 7.23 (m, 4H), 7.20 – 7.16 (m, 4H), 7.12 – 7.06 (m, 1H), 4.77 (dd, *J* = 8.8, 6.8 Hz, 1H), 1.73 – 1.60 (m, 2H), 0.03 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.2, 150.2, 148.6, 144.4, 138.4, 133.6, 130.4, 129.1, 128.8, 128.6, 128.0, 127.9, 126.8, 126.7, 126.4, 123.4, 119.2, 41.7, 24.0, -2.4, -2.9 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.26. IR (film): 3066, 3026, 2952, 1588, 1567, 1507, 1494, 1452, 1426, 1389, 1248, 1112, 836, 756, 732, 699 cm⁻¹. HRMS (ESI): calculated for C₂₅H₂₆NSi⁺ [M+H]⁺ 368.1829; found 368.1828.

3.2.46 1-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)isoquinoline (50)

Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), 'BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then isoquinoline-1-carbonitrile (30.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/*i*·PrOH = 10:1) to afford **50** as colorless oil (57.5 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, J = 5.7 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.50 – 7.43 (m, 2H), 7.42 – 7.35 (m, 4H), 7.32 – 7.24 (m, 3H), 7.23 – 7.16 (m, 2H), 7.13 – 7.06 (m, 1H), 5.03 (dd, J = 9.0, 6.3 Hz, 1H), 2.24 (dd, J = 14.6, 9.0 Hz, 1H), 1.75 (dd, J = 14.6, 6.3 Hz, 1H), 0.05 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.0, 146.0, 141.7, 139.3, 136.5, 133.6, 129.5, 128.7, 128.4, 127.8, 127.6, 127.5, 127.0, 126.8, 126.2, 124.9, 119.5, 44.2, 23.8, -2.5, -2.6 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.58. IR (film): 3050, 3023, 2951, 2894, 1622, 1586, 1559, 1501, 1493, 1452, 1426, 1351, 1248, 1112, 986, 837, 822, 733, 699 cm⁻¹. HRMS (ESI): calculated for C₂₅H₂₆NSi⁺ [M+H]⁺ 368.1829; found 368.1826.

3.2.47 2-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)quinoline (51)

Prepared according to general procedure D from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), [′]BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then quinoline-2-carbonitrile (30.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **51** as colorless oil (55.3 mg, 75% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.99 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.63 – 7.52 (m, 2H), 7.44 – 7.34 (m, 1H), 7.34 – 7.29 (m, 2H), 7.28 – 7.23 (m, 2H), 7.22 – 7.10 (m, 5H), 7.08 (d, J = 8.5 Hz, 1H), 7.07 – 7.02 (m, 1H), 4.31 (dd, J = 8.7, 7.1 Hz, 1H), 1.98 – 1.91 (m, 1H), 1.61 (dd, J = 14.6, 7.2 Hz, 1H), -0.01 (s, 3H), -0.02 (s, 3H) ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.02. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.9, 147.6, 145.5, 139.3, 136.1, 133.6, 129.3, 129.2, 128.7, 128.4, 128.0, 127.6, 127.4, 126.9, 126.4, 125.8, 121.1, 50.2, 22.4, -2.4, -2.7 ppm. IR (film): 3067, 3028, 2954, 2897, 1683, 1589, 1499, 1454, 1426, 1378, 1304, 1249, 1214, 1176, 1113, 831, 755, 730, 699 cm⁻¹. HRMS (ESI): calculated for C₂₅H₂₆NSi⁺ [M+H]⁺ 368.1829; found 368.1821.

3.2.48 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)benzonitrile (52)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 1,4-dicyanobenzene (25.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 20:1) to afford **52** as colorless oil (61.7 mg, 90% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.3 Hz, 2H), 7.37 – 7.27 (m, 5H), 7.26 – 7.23 (m, 2H), 7.20 (d, *J* = 6.9 Hz, 2H), 7.18 – 7.11 (m, 3H), 4.03 (t, *J* = 8.0 Hz, 1H), 1.63 – 1.52 (m, 2H), 0.04 (s, 3H), 0.01 (s, 3H)

ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.4, 145.1, 138.8, 133.5, 132.2, 129.0, 128.6, 128.3, 127.8, 127.6, 126.7, 119.0, 109.8, 47.3, 23.1, -2.5, -2.9 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.36. IR (film): 3067, 3025, 2954, 2910, 2226, 1605, 1492, 1452, 1426, 1413, 1249, 1112, 870, 835, 729, 699 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₄NSi ⁺ [M+H]⁺ 342.1673; found 342.1669.

3.2.49 (2-([1,1'-biphenyl]-4-yl)-2-phenylethyl)dimethyl(phenyl)silane (53)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ¹BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-cyanobiphenyl (35.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 20:1) to afford **53** as colorless oil (72.4 mg, 92% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.56 – 7.44 (m, 2H), 7.43 – 7.30 (m, 6H), 7.30 – 7.11 (m, 10H), 7.10 – 7.01 (m, 1H), 4.02 (t, *J* = 8.0 Hz, 1H), 1.62 (d, *J* = 8.0 Hz, 2H), 0.10 – -0.10 (m, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 146.7, 146.0, 141.0, 139.1, 138.9, 133.6, 128.9, 128.7, 128.4, 128.0, 127.8, 127.6, 127.1, 127.0, 126.9, 126.2, 46.9, 23.5, -2.5, -2.7 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.29. **IR** (film): 3066, 3025, 2953, 2906, 1599, 1486, 1451, 1426, 1408, 1247, 1112, 1007, 833, 757, 694 cm⁻¹. **HRMS** (ESI): calculated for C₂₈H₂₈NaSi⁺ [M+Na]⁺ 415.1852; found 415.1850.

3.2.50 2-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)benzonitrile (54)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*t*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then phthalonitrile (25.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added,

the mixture was stirred at room temperature for 2 h. Purification by preparative TLC (petroleum ether/ethyl acetate = 20:1) to afford **54** as colorless oil (53.4 mg, 78% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.37 (d, *J* = 8.2 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.22 – 7.16 (m, 5H), 7.15 – 7.10 (m, 2H), 7.08 – 7.00 (m, 2H), 4.48 (t, *J* = 8.0 Hz, 1H), 1.63 – 1.51 (m, 2H), 0.04 (s, 3H), -0.01 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 150.5, 144.4, 138.4, 133.4, 132.9, 132.8, 129.0, 128.6, 127.8, 127.7, 127.6, 126.7, 126.5, 118.3, 111.9, 45.0, 23.5, -2.6, -3.1 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.52. **IR** (film): 3042, 3025, 2914, 2227, 1600, 1487, 1451, 1426, 1248, 1112, 836, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₃H₂₄NSi⁺ [M+H]⁺ 342.1673; found 342.1669.

3.2.51 (2,2-diphenylpropyl)dimethyl(phenyl)silane (55)

Prepared according to general procedure B from α-methyl-styrene (23.6 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then benzonitrile (20.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at 50 °C for 2 h. Purification by preparative TLC (petroleum ether/*i*-PrOH = 10:1) to afford **55** as colorless oil (41.8 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.44 (m, 2H), 7.42 – 7.32 (m, 3H), 7.31 – 7.26 (m, 8H), 7.22 – 7.15 (m, 2H), 1.91 (s, 2H), 1.65 (s, 3H), 0.01 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 151.4, 140.5, 133.5, 128.7, 127.9, 127.7, 127.2, 125.6, 45.4, 31.4, 30.6, -1.6 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.31. IR (film): 3060, 3025, 2955, 2924, 1626, 1491, 1467, 1454, 1276, 1252, 1170, 1123, 866, 824, 700 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₆NaSi⁺ [M+Na]⁺ 353.1696; found 353.1690.

3.2.52 (3-([1,1'-biphenyl]-4-yl)-2-phenylpropyl)dimethyl(phenyl)silane (56)

Me ∵Ph Si Ме 56 C₂₉H₃₀Si M = 406.64 g/mol

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-(chloromethyl)-1,1'-biphenyl (40.5 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether) to afford **56** as colorless oil (77.4 mg, 95% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.61 – 7.56 (m, 2H), 7.50 – 7.43 (m, 3H), 7.43 – 7.38 (m, 3H), 7.36 – 7.28 (m, 4H), 7.26 – 7.20 (m, 2H), 7.19 – 7.14 (m, 1H), 7.13 – 7.08 (m, 2H), 7.02 (d, *J* = 8.2 Hz, 2H), 3.05 – 2.96 (m, 1H), 2.96 – 2.83 (m, 2H), 1.35 – 1.26 (m, 2H), 0.10 (s, 3H), 0.03 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 146.3, 141.1, 139.8, 139.4, 138.6, 133.6, 129.6, 128.8, 128.7, 128.2, 127.8, 127.7, 127.0, 126.9, 126.7, 126.2, 47.2, 44.1, 23.0, -2.0, -3.0 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.59. **IR** (film): 3065, 3026, 2952, 2911, 1600, 1487, 1452, 1426, 1407, 1247, 1111, 1008, 829, 760, 731, 695 cm⁻¹. **HRMS** (ESI): calculated for C₂₉H₃₀NaSi⁺ [M+Na]⁺ 429.2009; found 429.2004.

3.2.53 dimethyl(phenyl)(2,3,3,3-tetraphenylpropyl)silane (57)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ¹BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then (chloromethanetriyl)tribenzene (55.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether) to afford **57** as colorless oil (60.2 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59 – 7.37 (m, 5H), 7.35 – 7.27 (m, 6H), 7.23 – 7.10 (m, 9H), 7.09 – 7.05 (m, 1H), 7.04 – 6.98 (m, 2H), 6.62 (d, *J* = 7.4 Hz, 2H), 4.68 (d, *J* = 12.7 Hz, 1H), 1.57 – 1.49 (m, 1H), 0.94 (t, *J* = 13.8 Hz, 1H), -0.08 (s, 3H), -0.11 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 141.2, 139.2, 133.9, 132.3, 130.8, 129.5, 129.1, 127.8, 127.1, 126.7, 126.4, 125.6, 64.6, 45.3, 20.1, -2.3, -3.6 ppm. IR (film): 3059, 3025, 2951, 1599, 1492, 1448, 1426, 1248, 1112, 1049, 909, 837, 747, 697 cm⁻¹. HRMS (ESI): calculated for C₃₅H₃₄NaSi⁺ [M+Na]⁺ 505.2322; found 505.2318.

3.2.54 9-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)acridine (59)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), [']BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 9-chloroacridine (42.7 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **59** as white solid (44.3 mg, 53% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.37 (d, *J* = 8.5 Hz, 2H), 8.29 – 8.15 (m, 2H), 7.95 – 7.78 (m, 2H), 7.62 – 7.50 (m, 3H), 7.43 (t, *J* = 7.6 Hz, 4H), 7.36 (d, *J* = 7.1 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.20 (d, *J* = 6.4 Hz, 2H), 5.83 (dd, *J* = 10.7, 5.1 Hz, 1H), 2.41 (dd, *J* = 14.5, 5.1 Hz, 1H), 2.31 (dd, *J* = 14.5, 10.7 Hz, 1H), 0.00 (s, 3H), -0.11 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 149.3, 145.5, 137.7, 133.0, 130.5, 130.3, 129.4, 128.9, 128.5, 128.2, 127.6, 126.9, 126.1, 125.7, 124.8, 38.2, 21.1, -2.6, -3.2 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.35. **IR** (film): 3066, 3023, 2951, 1601, 1556, 1519, 1493, 1426, 1406, 1249, 1146, 1112, 909, 832, 749, 698 cm⁻¹. **HRMS** (ESI): calculated for C₂₉H₂₈NSi⁺ [M+H]⁺ 418.1986; found 418.1983.

3.2.55 2-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)benzo[d]oxazole (60)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*i*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 2-chlorobenzoxazole (30.7 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 50:1) to afford **60** as colorless oil (41.6 mg, 58% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.57 – 7.49 (m, 1H), 7.34 – 7.27 (m, 2H), 7.26 – 7.22 (m, 3H), 7.18 – 7.06 (m, 8H), 4.22 (t, *J* = 8.0 Hz, 1H), 1.89 (dd, *J* = 14.7, 8.0 Hz, 1H), 1.60 (dd, *J* = 14.8, 8.1 Hz, 1H), 0.02 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 169.2, 150.7, 141.5, 141.1, 137.9, 133.5, 129.0,

128.7, 127.9, 127.7, 127.3, 124.5, 124.1, 119.8, 110.4, 41.9, 22.0, -2.7, -3.3 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.26. IR (film): 3067, 2954, 2216, 1719, 1604, 1546, 1484, 1438, 1286, 1248, 1111, 826, 699 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₄NOSi⁺ [M+H]⁺ 358.1622; found 358.1613.

3.2.56 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-1-isobutyl-1*H*-imidazo[4,5-*c*]quinoline (61)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4-chloro-1-isobutyl-1*H*-imidazo[4,5-*c*]quinoline (51.9 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford **61** as colorless oil (79.0 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.20 (d, *J* = 7.7 Hz, 1H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.65 (s, 1H), 7.63 – 7.58 (m, 2H), 7.57 – 7.50 (m, 1H), 7.45 – 7.40 (m, 1H), 7.32 – 7.25 (m, 2H), 7.14 (t, *J* = 7.6 Hz, 2H), 7.12 – 6.94 (m, 4H), 5.22 (dd, *J* = 9.6, 6.3 Hz, 1H), 4.07 – 3.98 (m, 2H), 2.33 (dd, *J* = 14.5, 9.7 Hz, 1H), 2.21 – 2.10 (dq, *J* = 13.7, 6.8 Hz, 1H), 1.77 (dd, *J* = 14.5, 6.3 Hz, 1H), 0.87 (dd, *J* = 6.7, 1.3 Hz, 6H), 0.01 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.8, 145.9, 144.5, 142.9, 139.5, 136.7, 133.4, 132.2, 130.9, 128.4, 128.2, 128.1, 127.2, 126.6, 126.0, 125.4, 119.7, 117.4, 54.8, 44.2, 28.6, 22.3, 19.8, 19.7, -2.4, -2.8 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.21. IR (film): 3067, 3025, 2955, 2923, 2855, 2161, 1703, 1576, 1539, 1453, 1249, 1112, 1086, 839, 700 cm⁻¹. HRMS (ESI): calculated for C₃₀H₃₄N₃Si⁺ [M+H]⁺ 464.2517; found 464.2511.

3.2.57 2-(1-(dimethyl(phenyl)silyl)-2-(p-tolyl)propan-2-yl)benzo[d]thiazole (62)

Prepared according to general procedure D from 4-isopropenyltoluene **1a** (31.7 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 2-chlorobenzo[*d*]thiazole (33.9 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 50:1) to afford **62** as colorless oil (50.8 mg, 63% yield). **1H NMR** (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.26 – 7.16 (m, 6H), 7.01 (d, *J* = 8.0 Hz, 2H), 2.25 (s, 3H), 2.11 – 1.99 (m, 2H), 1.79 (s, 3H), 0.04 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 182.5, 152.9, 144.7, 139.8, 136.4, 135.8, 133.6, 128.9, 128.7, 127.6, 126.6, 125.7, 124.6, 122.9, 121.4, 47.5, 31.5, 29.2, 21.0, -1.3, -1.5 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -5.03. IR (film): 3067, 2954, 2210, 1694, 1605, 1545, 1482, 1248, 1111, 836, 699 cm⁻¹. HRMS (ESI): calculated for C₂₅H₂₈NSSi⁺ [M+H]⁺ 402.1706; found 402.1699.

3.2.58 (5-methoxy-2-phenylpentyl)dimethyl(phenyl)silane (63)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ¹BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 1-bromo-3-methoxypropane (30.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at 0 °C for 10 min. Purification by preparative TLC (petroleum ether) to afford **63** as colorless oil (48.1 mg, 77% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.39 – 7.30 (m, 2H), 7.26 – 7.20 (m, 3H), 7.18 – 7.13 (m, 2H), 7.10 – 7.04 (m, 1H), 7.03 – 6.99 (m, 2H), 3.17 (s, 3H), 3.17 – 3.12 (m, 2H), 2.60 – 2.52 (m, 1H), 1.66 – 1.42 (m, 2H), 1.38 – 1.18 (m, 2H), 1.14 – 1.08 (m, 2H), 0.00 (s, 3H), -0.08 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 147.0, 139.7, 133.6, 128.7, 128.3, 127.7, 127.6, 126.0, 72.8, 58.5, 41.8, 37.3, 27.8, 24.4, -2.2, -3.0 ppm. **IR** (film): 3068, 3022, 2952, 2883, 1590, 1487, 1449, 1427, 1253, 1222, 1129, 1111, 1057, 824, 777, 756, 700 cm⁻¹. **HRMS** (ESI): calculated for C₂₀H₂₉OSi⁺ [M+H]⁺ 313.1982; found 313.1976.

3.2.59 (3-cyclopropyl-2-phenylpropyl)dimethyl(phenyl)silane (64)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), [']BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 1-(bromomethyl)cyclopropane (27.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at 0 °C for 10 min. Purification by preparative TLC (petroleum ether) to afford **64** as colorless oil (34.3 mg, 58% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.44 – 7.34 (m, 2H), 7.32 – 7.27 (m, 3H), 7.23 – 7.18 (m, 2H), 7.14 – 7.08 (m, 3H), 2.78 – 2.70 (m, 1H), 1.68 – 1.56 (m, 1H), 1.28 – 1.22 (m, 1H), 1.20 – 1.11 (m, 2H), 0.45 – 0.36 (m, 1H), 0.31 – 0.26 (m, 1H), 0.25 – 0.19 (m, 1H), 0.08 (s, 3H), -0.05 (s, 3H), -0.07 – 0.13 (m, 1H), -0.15 – 0.21 (m, 1H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 147.5, 139.8, 133.6, 128.7, 128.1, 127.7, 126.9, 125.9, 46.1, 42.4, 23.9, 9.5, 4.5, 4.4, -2.1, -2.9 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.77. **IR** (film): 3068, 3025, 2946, 1494, 1452, 1426, 1248, 1111, 837, 730, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₀H₂₇Si⁺ [M+H]⁺ 295.1877; found 295.1870.

3.2.60 (2-cyclobutyl-2-phenylethyl)dimethyl(phenyl)silane (65)

Prepared according to general procedure D from styrene (24.9 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^{*I*}BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then cyclobutyl bromide (27.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at 0 °C for 10 min. Purification by preparative TLC (petroleum ether) to afford **65** as colorless oil (52.4 mg, 89% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.44 – 7.34 (m, 2H), 7.32 – 7.26 (m, 3H), 7.21 – 7.15 (m, 2H), 7.14 – 7.08 (m, 1H), 7.07 – 7.02 (m, 2H), 2.50 – 2.36 (m, 2H), 2.10 – 2.02 (m, 1H), 1.68 – 1.55 (m, 4H), 1.49 – 1.42 (m, 1H), 1.16 (dd, *J* = 14.7, 2.9 Hz, 1H), 0.96 (dd, *J* = 14.8, 11.7 Hz, 1H), 0.00 (s, 3H), -0.12 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.0, 139.8, 133.5, 128.7, 128.1, 128.0, 127.7, 126.0, 49.0, 45.2, 27.7, 26.6, 19.8, 16.9, -2.1, -3.2 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -3.53. IR (film): 3067, 3025, 2955, 2897, 2866, 1491, 1452, 1426, 1247, 1180, 1112, 835, 813, 727, 697 cm⁻¹. HRMS (ESI): calculated for C₂₀H₂₇Si⁺ [M+H]⁺ 295.1877; found 295.1872.

3.2.61 1-benzhydryl-4-(2-(dimethyl(phenyl)silyl)-3-phenyl-3-(pyridin-4-yl)propyl)piperazine (66)

Prepared according to general procedure C from stugeron (88.4 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ⁷BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then ⁷BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (DCM/ethyl acetate = 5:1) to afford **66** as colorless oil (81.8 mg, 70% yield, dr = 1.9:1). ¹H **NMR** (400 MHz, CDCl₃): δ 8.42 – 8.28 (m, 2H), 7.40 – 7.32 (m, 6H), 7.26 – 7.16 (m, 10H), 7.15 – 7.04 (m, 6H), 4.13 – 4.08 (m, 1H), 3.99 – 3.92 (m, 1H), 2.30 – 1.99 (m, 11H), 0.13 – -0.01 (m, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 154.9, 154.6, 149.0, 148.9, 143.4, 142.9, 142.3, 138.9, 138.8, 133.9, 133.8, 128.6, 128.6, 128.5, 128.4, 128.3, 127.8, 127.5, 127.4, 126.8, 126.7, 126.6, 123.8, 123.7, 76.3, 58.6, 58.2, 53.4, 52.3, 51.8, 51.8, 51.7, 28.2, 27.9, 21.4, -1.7, -2.1, -2.4, -2.6 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -0.21. **IR** (film): 3064, 3025, 2952, 2809, 1709, 1595, 1492, 1450, 1257, 1150, 1007, 908, 834, 817, 700 cm⁻¹. **HRMS** (ESI): calculated for C₃₉H₄₄N₃Si⁺ [M+H]⁺ 582.3299; found 582.3297.

3.2.62 2-(dimethyl(phenyl)silyl)-*N*-methyl-*N*-(naphthalen-1-ylmethyl)-3-phenyl-3-(pyridin-4-yl)propan-1amine (**67**)

Prepared according to general procedure C from naftifine (69.0 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), 'BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative

TLC (DCM/ethyl acetate = 5:1) to afford **67** as colorless oil (51.3 mg, 51% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 5.1 Hz, 2H), 8.22 – 8.08 (m, 1H), 7.85 – 7.78 (m, 1H), 7.75 – 7.68 (m, 1H), 7.65 – 7.58 (m, 1H), 7.46 – 7.36 (m, 4H), 7.34 – 7.13 (m, 10H), 7.12 – 7.07 (m, 2H), 5.01 (s, 1H), 2.92 – 2.72 (m, 1H), 2.65 – 2.55 (m, 1H), 2.50 – 2.39 (m, 1H), 2.38 – 2.30 (m, 1H), 2.10 – 2.00 (m, 3H), 1.71 – 1.59 (m, 1H), 0.17 – 0.05 (m, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.3, 152.1, 149.2, 149.2, 142.9, 142.8, 138.2, 138.2, 137.2, 137.0, 134.0, 133.8, 131.4, 131.3, 129.1, 128.9, 128.8, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6, 126.3, 126.2, 126.1, 126.0, 125.7, 125.6, 125.5, 125.4, 123.7, 123.6, 123.3, 123.2, 70.5, 69.9, 57.4, 57.1, 40.5, 40.0, 34.8, 34.7, 26.3, 26.2, -3.5, -3.6, -3.9, -4.2 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -0.49. IR (film): 3062, 2954, 2848, 2796, 1594,1493, 1413, 1250, 1112, 1039, 798, 767, 700 cm⁻¹. HRMS (ESI): calculated for C₃₄H₃₇N₂Si⁺ [M+H]⁺ 501.2721; found 501.2717.

3.2.63 4-(1-((8*R*,9*S*,13*S*,14*S*)-17-((tert-butyldimethylsilyl)oxy)-13-methyl-7,8,9,11,12,13,14,15,16,17decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl)-2-(dimethyl(phenyl)silyl)ethyl)pyridine (**68**)

Prepared according to general procedure C from *tert*-butyldimethyl(((8R,9S,13S,14S)-13-methyl-3vinyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl)oxy)silane (95.2 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), ^tBuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then 'BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) to afford 70 as colorless oil (99.2 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.41 (d, J = 5.8 Hz, 2H), 7.43 – 7.26 (m, 5H), 7.18 – 7.10 (m, 3H), 6.95 (d, J = 8.1 Hz, 1H), 6.84 (t, J = 2.5 Hz, 1H), 3.92 (t, J = 7.9 Hz, 1H), 3.64 (t, J = 8.4 Hz, 1H), 2.80 – 2.68 (m, 2H), 2.29 – 2.22 (m, 1H), 2.19 – 2.11 (m, 1H), 1.96 – 1.81 (m, 2H), 1.70 – 1.58 (m, 2H), 1.53 – 1.44 (m, 2H), 1.43 – 1.22 (m, 5H), 1.22 – 0.99 (m, 2H), 0.90 (d, J = 0.9 Hz, 9H), 0.74 (s, 3H), 0.03 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.2, 149.4, 141.8, 139.0, 138.6, 136.9, 133.5, 129.0, 128.1, 128.0, 127.7, 125.6, 124.8, 124.7, 123.0, 81.8, 49.8, 46.4, 44.4, 43.6, 38.7, 37.2, 31.0, 29.6, 27.3, 26.2, 25.9, 23.3, 22.8, 22.8, 18.1, 11.4, -2.5, -2.6, -2.7, -4.4, -4.8 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ 16.29, -3.40. **IR** (film): 3068, 2953, 2926, 2854, 1595, 1470, 1426, 1413, 1249, 1140, 1112, 1094, 1006, 905, 835, 774, 730, 650 cm⁻¹. HRMS (ESI): calculated for C₃₉H₅₆NOSi₂⁺ [M+H]⁺ 610.3895; found 610.3890.

3.2.64 2-(dimethyl(phenyl)silyl)-N,N-dimethyl-3-phenyl-3-(pyridin-2-yl)propan-1-amine (69)

Prepared according to general procedure C from *(E)-N,N*-dimethyl-3-phenyl-2-propen-1-amine (38.7 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 2-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 3:1) to afford **69** as colorless oil (43.7 mg, 58% yield, dr = 1.8:1). ¹H NMR (400 MHz, CDCl₃): δ 8.62 – 8.35 (m, 1H), 7.41 – 7.32 (m, 3H), 7.26 – 7.23 (m, 1H), 7.22 – 7.16 (m, 3H), 7.15 – 7.10 (m, 3H), 7.09 – 7.02 (m, 1H), 7.00 – 6.92 (m, 2H), 4.13 (dd, *J* = 12.4, 9.5 Hz, 1H), 2.55 – 2.35 (m, 1H), 2.34 – 2.10 (m, 1H), 1.96 – 1.91 (m, 1H), 1.90 – 1.84 (m, 6H), 0.04 – -0.02 (m, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.2, 163.6, 148.8, 148.7, 144.1, 143.8, 140.6, 140.1, 136.0, 135.9, 134.2, 134.1, 129.0, 128.5, 128.2, 128.1, 128.0, 127.2, 127.1, 126.4, 126.0, 124.0, 123.4, 121.2, 120.9, 60.3, 59.8, 54.3, 54.0, 45.6, 45.5, 30.0, 29.1, -1.7, -1.8, -2.4, -2.5 ppm. IR (film): 3068, 2954, 2848, 1690, 1597, 1488, 1412, 1248, 1112, 842, 798, 728, 700 cm⁻¹. HRMS (ESI): calculated for C₂₄H₃₁N₂Si⁺ [M+H]⁺ 375.2251; found 375.2245.

3.2.65 2-(dimethyl(phenyl)silyl)-N,N-dimethyl-3-phenyl-3-(pyridin-4-yl)propan-1-amine (70)

Prepared according to general procedure C from *(E)-N,N*-dimethyl-3-phenyl-2-propen-1-amine (38.7 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30

min. Purification by preparative TLC (petroleum ether/ethyl acetate = 3:1) to afford **70** as colorless oil (58.6 mg, 78% yield, dr = 2.6:1). ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, *J* = 5.6 Hz, 2H), 7.36 – 7.28 (m, 2H), 7.25 – 7.15 (m, 3H), 7.12 (d, *J* = 4.4 Hz, 4H), 7.08 – 7.02 (m, 1H), 7.00 (d, *J* = 6.2 Hz, 2H), 3.93 (d, *J* = 9.0 Hz, 1H), 2.15 – 2.06 (m, 2H), 1.93 – 1.87 (m, 1H), 1.85 (s, 6H), 0.00 (s, 3H), -0.05 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.0, 149.6, 143.6, 139.2, 134.1, 128.6, 128.5, 127.5, 126.9, 126.7, 123.8, 59.9, 51.8, 45.4, 29.2, -1.8, -2.5 ppm. ²⁹Si {¹H} NMR (99 MHz, CDCl₃): δ -0.46. IR (film): 3064, 3026, 2966, 2952, 2888, 1702, 1661, 1599, 1578, 1488, 1451, 1249, 1112, 1190, 1112, 830, 765, 693 cm⁻¹. HRMS (ESI): calculated for C₂₄H₃₁N₂Si⁺ [M+H]⁺ 375.2251; found 375.2244.

3.2.66 2-(dimethyl(phenyl)silyl)-*N*,*N*-dimethyl-3-phenyl-3-(quinolin-4-yl)propan-1-amine (71)

Prepared according to general procedure C from *(E)-N,N*-dimethyl-3-phenyl-2-propen-1-amine (38.7 mg, 0.24 mmol, 1.2 equiv.), PhMe₂SiBpin (62.8 mg, 0.24 mmol, 1.2 equiv.), BuOK (10 mol%.), in THF (1.0 mL), r.t., stirred for 1 h, then BuOK (53.9 mg, 0.48 mmol, 2.4 equiv.) and quinoline-4-carbonitrile (30.8 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 2:1) to afford **71** as colorless oil (39.3 mg, 46% yield, dr = 2.9:1). ¹H NMR (400 MHz, CDCl₃): δ 8.92 (s, 1H), 7.94 – 7.80 (m, 2H), 7.56 – 7.44 (m, 2H), 7.32 – 7.24 (m, 4H), 7.16 – 7.08 (m, 3H), 7.07 – 7.01 (m, 2H), 7.01 – 6.92 (m, 2H), 4.54 (d, *J* = 12.1 Hz, 1H), 2.32 – 2.24 (m, 1H), 2.12 – 2.06 (m, 1H), 1.86 – 1.80 (m, 1H), 1.57 (s, 6H), 0.00 (s, 3H), -0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 151.3, 145.5, 143.4, 142.2, 138.2, 134.1, 133.9, 133.1, 129.8, 129.7, 129.6, 129.0, 128.9, 128.9, 128.7, 128.6, 128.3, 128.0, 127.9, 127.7, 127.6, 127.4, 125.6, 125.4, 124.9, 115.5, 114.9, 60.7, 60.2, 51.1, 45.4, 44.8, 34.8, 28.8, 26.4, 0.1, -2.1, -3.5, -3.6 ppm. IR (film): 3066, 3026, 2952, 1702, 1587, 1507, 1494, 1452, 1426, 1389, 1249, 1112, 836, 756, 732, 699 cm⁻¹. HRMS (ESI): calculated for C₂₈H₃₃N₂Si⁺ [M+H]⁺ 425.2408; found 425.2400.

3.2.67 2-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)pyrazine (73)

Prepared according to general procedure E from styrene (41.6 mg, 0.40 mmol, 2.0 equiv.), PhMe₂SiBpin (104.8 mg, 0.4 mmol, 2.0 equiv.), 'BuOK (10 mol%) in 1.5 mL THF, r.t. for 1h. Then, 'BuOK (89.8 mg, 0.80 mmol, 4.0 equiv.) and pyrazine (16.0 mg, 0.2 mmol, 1.0 equiv.) was sequentially added, the mixture was stirred at r.t. for 12 h. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) affords **73** as colorless oil (28.8 mg, 45% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.48 – 7.42 (m, 1H), 8.40 (s, 1H), 8.32 (d, *J* = 2.5 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.36 – 7.31 (m, 5H), 7.30 – 7.27 (m, 2H), 7.22 – 7.16 (m, 1H), 4.21 (t, *J* = 7.9 Hz, 1H), 1.93 (dd, *J* = 14.6, 8.2 Hz, 1H), 1.67 (dd, *J* = 14.6, 8.2 Hz, 1H), 0.11 (s, 3H), 0.08 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 160.4, 144.4, 143.9, 142.2, 138.5, 133.6, 129.0, 128.6, 127.9, 127.8, 126.8, 125.8, 47.1, 22.5, -2.5, -3.0 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.47. **IR** (film): 3067, 3029, 2954, 2896, 2232, 1624, 1587, 1492, 1427, 1384, 1249, 1112, 838, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₀H₂₃N₂Si⁺ [M+H]⁺ 319.1625; found 319.1619.

3.2.68 4-(2-(dimethyl(phenyl)silyl)-1-phenylethyl)-1,5-naphthyridine (74)

Prepared according to general procedure E from styrene (41.6 mg, 0.40 mmol, 2.0 equiv.), PhMe₂SiBpin (104.8 mg, 0.4 mmol, 2.0 equiv.), 'BuOK (10 mol%) in 1.5 mL THF, r.t. for 1h. Then, 'BuOK (89.8 mg, 0.80 mmol, 4.0 equiv.) and 1,5-naphthyridine (26.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at r.t. for 12 h. Purification by preparative TLC (petroleum ether/ethyl acetate = 3:1) affords **74** as colorless oil (53.3 mg, 72% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 8.82 – 8.78 (m, 1H), 8.60 (d, *J* = 4.5 Hz, 1H), 8.14 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.40 (dd, *J* = 8.5, 4.1 Hz, 1H), 7.32 (d, *J* = 4.6 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 7.11 – 7.01 (m, 5H), 6.98 – 6.93 (m, 1H), 5.63 (t, *J* = 8.0 Hz, 1H), 1.60 (d, *J* = 8.0 Hz, 2H), -0.05 (s, 3H), -0.09 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 155.1, 150.9, 149.8, 145.2, 143.6, 142.1, 139.0, 137.4, 133.4, 128.8, 128.3, 128.2, 127.5, 126.3, 124.1, 121.8, 38.6, 23.1, -2.3, -3.0 ppm. ²⁹Si {¹H} **NMR** (99 MHz, CDCl₃): δ -3.22.

IR (film): 3064, 2977, 2928, 2025, 1567, 1427, 1400, 1363, 1248, 1169, 836, 701 cm⁻¹. HRMS (ESI): calculated for $C_{24}H_{25}N_2Si^+$ [M+H]⁺ 369.1782; found 369.1771.

3.2.69 (2-(dimethyl(phenyl)silyl)-1-phenylethyl)(methyl)diphenylsilane (75)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ¹BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then chlorodimethylphenylsilane (34.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at r.t. for 2 min. Purification by preparative TLC (petroleum ether) to afford **75** as colorless oil (82.2 mg, 94% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.62 – 7.55 (m, 1H), 7.54 – 7.47 (m, 2H), 7.44 – 7.30 (m, 9H), 7.25 – 7.22 (m, 3H), 7.19 – 7.11 (m, 2H), 7.11 – 7.05 (m, 1H), 6.94 – 6.84 (m, 2H), 2.75 (dd, *J* = 11.8, 3.4 Hz, 1H), 1.34 – 1.29 (m, 2H), 0.45 (s, 3H), 0.02 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 143.3, 139.3, 136.3, 135.5, 135.0, 133.7, 129.6, 129.3, 129.0, 128.8, 128.6, 127.8, 127.7, 127.7, 127.5, 124.8, 29.3, 16.3, -1.9, -3.3, -5.8 ppm. **IR** (film): 3068, 3048, 3022, 2955, 2901, 1598, 1488, 1426, 1248, 1110, 1051, 787, 723, 696 cm⁻¹. **HRMS** (ESI): calculated for C₂₉H₃₂NaSi₂⁺ [M+Na]⁺ 459.1935; found 459.1929.

3.2.78 dimethyl(phenyl)(2-phenyl-2-(triphenylgermyl)ethyl)silane (76)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then triphenylgermanium chloride (67.9 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at r.t. for 10 min. Purification by preparative TLC (petroleum ether) to afford **76** as colorless oil (99.2 mg, 91% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.44 – 7.40 (m, 2H), 7.40 – 7.33 (m, 6H), 7.32 – 7.28 (m, 6H), 7.27 – 7.23 (m, 6H), 7.14 – 7.09 (m, 3H), 6.92 – 6.86 (m,

2H), 3.20 (dd, J = 12.7, 2.9 Hz, 1H), 1.56 – 1.45 (m, 2H), 0.00 (s, 3H), -0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.7, 139.1, 136.1, 135.7, 135.4, 133.8, 128.9, 128.8, 128.7, 128.0, 127.7, 125.2, 31.4, 18.5, -1.8, -3.4 ppm. IR (film): 3067, 3049, 3023, 2922, 1484, 1429, 1248, 1112, 1089, 836, 734, 697 cm⁻¹. HRMS (ESI): calculated for C₃₄H₃₄GeNaSi⁺ [M+Na]⁺ 567.1534; found 567.1525.

3.2.79 dimethyl(phenyl)(2-phenyl-2-(triphenylstannyl)ethyl)silane (77)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), [']BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then chlorotriphenyltin (77.1 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at r.t. for 2 min. Purification by preparative TLC (petroleum ether) to afford **77** as colorless oil (108.8 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.33 (m, 3H), 7.32 – 7.28 (m, 5H), 7.27 – 7.22 (m, 12H), 7.12 – 7.05 (m, 2H), 7.02 – 6.96 (m, 3H), 3.30 (dd, *J* = 13.7, 2.4 Hz, 1H), 1.76 (dd, *J* = 15.1, 13.6 Hz, 1H), 1.55 (dd, *J* = 15.0, 2.4 Hz, 1H), 0.00 (s, 3H), -0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.6, 139.1, 138.6, 137.5, 137.4, 137.3, 137.2, 133.7, 129.2, 128.9, 128.7, 128.6, 128.4, 128.3, 128.2, 127.7, 127.6, 127.5, 127.3, 124.5, 30.6, 19.4, -1.8, -3.1 ppm. IR (film): 3068, 3023, 2952, 1485, 1429, 1247, 1112, 1089, 835, 816, 777, 734, 699 cm⁻¹. HRMS (ESI): calculated for C₃₄H₃₄NaSiSn⁺ [M+Na]⁺ 613.1344; found 613.1345.

3.2.80 4-((2-(dimethyl(phenyl)silyl)-1-phenylethyl)thio)pyridine (78)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then 4,4'-dipyridyl disulfide (44.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at r.t. for 30 min. Purification by preparative TLC (petroleum

ether) to afford **78** as colorless oil (30.9 mg, 44% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 8.21 – 8.12 (m, 2H), 7.37 – 7.32 (m, 2H), 7.30 – 7.24 (m, 3H), 7.17 – 7.11 (m, 5H), 6.81 (d, *J* = 6.3 Hz, 2H), 4.30 (dd, *J* = 9.9, 6.0 Hz, 1H), 1.53 – 1.47 (m, 2H), -0.00 (s, 3H), -0.05 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 149.2, 142.1, 137.8, 133.6, 129.3, 128.8, 128.7, 128.0, 127.8, 127.6, 122.4, 47.5, 25.1, -2.3, -3.3 ppm. **IR** (film): 3067, 3028, 2953, 2924, 1572, 1491, 1480, 1453, 1406, 1249, 1112, 835, 731, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₁H₂₄NSSi⁺ [M+H]⁺ 350.1393; found 350.1387.

3.2.74 3-(dimethyl(phenyl)silyl)-1,1,2-triphenylpropan-1-ol (79)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then benzophenone (36.4 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether) to afford **79** as colorless oil (61.1 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.28 (m, 10H), 7.19 – 7.12 (m, 5H), 7.11 – 7.01 (m, 5H), 3.90 – 3.78 (m, 1H), 2.76 – 2.52 (m, 1H), 1.52 – 1.43 (m, 1H), 1.33 – 1.26 (m, 1H), 0.05 (s, 3H), 0.03 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 146.0, 145.9, 140.8, 138.8, 133.7, 130.2, 129.0, 128.1, 127.7, 127.5, 127.4, 126.7, 126.7, 126.4, 126.0, 125.7, 81.8, 49.7, 17.5, -2.2, -3.6 ppm. IR (film): 3086, 3055, 3031, 2950, 1595, 1492, 1446, 1426, 1248, 1217, 1111, 1034, 908, 836, 728, 697 cm⁻¹. HRMS (ESI): calculated for C₂₉H₃₀NaOSi⁺ [M+Na]⁺ 445.1958; found 445.1950.

3.2.75 3-(dimethyl(phenyl)silyl)-1,2-diphenylpropan-1-ol (80)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0

mL), r.t., stirred for 10 min, then benzaldehyde (21.2 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at room temperature for 10 min. Purification by preparative TLC (petroleum ether) to afford **80** as colorless oil (37.6 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.26 (m, 5H), 7.25 – 7.12 (m, 6H), 7.09 (dd, *J* = 7.7, 1.9 Hz, 2H), 6.98 (dd, *J* = 7.4, 2.1 Hz, 2H), 4.70 (dd, *J* = 6.3, 3.5 Hz, 1H), 3.05 – 2.96 (m, 1H), 2.01 (d, *J* = 3.8 Hz, 1H), 1.46 (dd, *J* = 14.7, 3.0 Hz, 1H), 1.32 – 1.22 (m, 1H), -0.01 (s, 3H), -0.07 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.8, 142.4, 139.3, 133.5, 128.9, 128.7, 128.0, 127.9, 127.6, 127.2, 126.6, 126.5, 79.9, 49.7, 16.5, -2.0, -3.1 ppm. IR (film): 3416, 3065, 3027, 2953, 2923, 1665, 1601, 1547, 1529, 1493, 1452, 1426, 1248, 1175, 1111, 1023, 836, 767, 699 cm⁻¹. HRMS (ESI): calculated for C₂₃H₂₇OSi⁺ [M+H]⁺ 347.1826; found 347.1823.

3.2.82 3-(dimethyl(phenyl)silyl)-*N*,*N*-dimethyl-2-phenylpropan-1-amine (81)

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), ^{*i*}BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then dimethylmethylammonium iodide (37.0 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at r.t. for 30 min. Purification by preparative TLC (petroleum ether) to afford **81** as colorless oil (38.9 mg, 65% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.34 – 7.26 (m, 2H), 7.15 – 7.09 (m, 3H), 7.04 – 6.98 (m, 4H), 6.93 – 6.84 (m, 1H), 2.22 (dd, *J* = 8.7, 6.5 Hz, 1H), 1.28 (dd, *J* = 14.7, 8.8 Hz, 1H), 0.99 – 0.94 (m, 1H), 0.93 – 0.89 (m, 8H), 0.00 (s, 3H), -0.05 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.5, 139.5, 133.7, 128.8, 128.2, 128.1, 127.7, 125.1, 83.3, 24.7, 24.5, 18.5, -2.5, -2.7 ppm. **IR** (film): 3062, 3023, 2954, 2796, 2362, 1594, 1493, 1452, 1426, 1413, 1250, 1112, 798, 700 cm⁻¹. **HRMS** (ESI): calculated for C₁₉H₂₈NSi⁺ [M+H]⁺ 298.1986; found 298.1981.

3.2.83 (2-(cyclohepta-2,4,6-trien-1-yl)-2-phenylethyl)dimethyl(phenyl)silane (82)

C₂₃H₂₆Si M = 330.55 g/mol

Prepared according to general procedure B from styrene (20.8 mg, 0.20 mmol, 1.0 equiv.), PhMe₂SiBpin (52.8 mg, 0.20 mmol, 1.0 equiv.), [']BuOK (44.9 mg, 0.40 mmol, 2.0 equiv.), in THF (1.0 mL), r.t., stirred for 10 min, then tropylium tetrafluoroborate (37.6 mg, 0.2 mmol, 1.0 equiv.) were sequentially added, the mixture was stirred at r.t. for 30 min. Purification by preparative TLC (petroleum ether) to afford **82** as colorless oil (55.7 mg, 84% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.42 – 7.34 (m, 2H), 7.34 – 7.26 (m, 3H), 7.25 – 7.19 (m, 2H), 7.19 – 7.14 (m, 1H), 7.08 – 7.04 (m, 2H), 6.66 – 6.53 (m, 2H), 6.23 (dd, *J* = 9.4, 5.3 Hz, 1H), 5.96 (dd, *J* = 9.5, 5.4 Hz, 1H), 5.28 (dd, *J* = 9.4, 5.8 Hz, 1H), 4.97 (dd, *J* = 9.4, 5.9 Hz, 1H), 2.90 – 2.82 (m, 1H), 1.79 – 1.68 (m, 1H), 1.56 (dd, *J* = 14.7, 2.7 Hz, 1H), 1.11 (dd, *J* = 14.7, 12.2 Hz, 1H), -0.00 (s, 3H), -0.09 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 145.0, 139.4, 133.6, 130.9, 130.5, 128.8, 128.4, 128.4, 127.7, 126.5, 125.7, 125.5, 124.9, 124.1, 48.1, 43.9, 22.0, -2.0, -3.3 ppm. **IR** (film): 3065, 3025, 2953, 2907, 1599, 1486, 1450, 1454, 1426, 1248, 1112, 870, 833, 694 cm⁻¹. **HRMS** (ESI): calculated for C₂₃H₂₇Si⁺ [M+H]⁺ 331.1877; found 331.1870.

3.2.69 4-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)pyridine (83)

Prepared according to general procedure F from styrene (24.9 mg, 0.24 mmol.), B₂pin₂ (67.0 mg, 0.26 mmol, 1.1 equiv.), ^{*i*}BuONa (2.5 mg, 10 mol%, Cat.), MeOH (5.0 equiv.) and tetrahydrofuran (1.0 mL) were successively added. The reaction mixture was stirred at room temperature for 16 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was redissolved in 1.0 mL of tetrahydrofuran. Then, ^{*i*}BuOK (80.8 mg, 3.0 equiv.) and 4-cyanopyridine (20.8 mg, 0.2 mmol, 1.0 equiv.) were successively added into the reaction mixture, stirred for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 5:1) affords **83** as colorless oil (46.5 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 5.3 Hz, 2H), 7.27 – 7.20 (m, 4H), 7.18 – 7.15 (m, 3H), 4.22 (t, *J* = 8.4 Hz, 1H), 1.56 (d, *J* = 8.4 Hz, 2H), 1.22 (s, 3H), 1.04 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 33.64. IR (film): 3061, 3028, 2978, 1596, 1495, 1452, 1414, 1369, 1328, 1269, 1115, 1143, 967, 845, 699 cm⁻¹. HRMS (ESI): calculated for C₁₉H₂₅BNO₂⁺ [M+H]⁺ 310.1973; found 310.1965.

3.2.70 4-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)benzonitrile (84)

Prepared according to general procedure F from styrene (31.2 mg, 0.30 mmol.), B₂pin₂ (83.8 mg, 0.33 mmol, 1.1 equiv.), 'BuONa (3.0 mg, 10 mol%, Cat.), MeOH (5.0 equiv.) and tetrahydrofuran (1.0 mL) were successively added. The reaction mixture was stirred at room temperature for 16 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was redissolved in 1.0 mL of tetrahydrofuran. Then, 'BuOK (101.0 mg, 3.0 equiv.) and 1,4-dicyanobenzene (25.6 mg, 0.2 mmol, 1.0 equiv.) were successively added into the reaction mixture, stirred for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 10:1) affords **84** as colorless oil (41.3 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.24 – 7.20 (m, 2H), 7.20 – 7.14 (m, 1H), 4.32 (t, *J* = 8.4 Hz, 1H), 1.58 (dd, *J* = 8.4, 3.4 Hz, 2H), 1.06 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.3, 145.0, 132.2, 128.6, 128.5, 127.6, 126.5, 119.1, 109.8, 83.4, 46.7, 24.8, 24.6, 18.9 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 33.74. IR (film): 3061, 3026, 2931, 2226, 1605, 1492, 1452, 1426, 1328, 1249, 1112, 870, 835, 699 cm⁻¹. HRMS (ESI): calculated for C₂₁H₂₄BNNaO₂⁺ [M+Na]⁺ 356.1792; found 356.1787.

3.2.71 2-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)benzo[d]thiazole (85)

Prepared according to general procedure F from styrene (31.2 mg, 0.30 mmol.), B₂pin₂ (83.8 mg, 0.33 mmol, 1.1 equiv.), ^{*t*}BuONa (3.0 mg, 10 mol%, Cat.), MeOH (5.0 equiv.) and tetrahydrofuran (1.0 mL) were successively added. The reaction mixture was stirred at room temperature for 16 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was redissolved in 1.0 mL of tetrahydrofuran. Then, ^{*t*}BuOK (101.0 mg, 3.0 equiv.) and 2-chlorobenzo[*d*]thiazole (33.9 mg, 0.2 mmol, 1.0 equiv.) were successively added into the reaction mixture, stirred for 5 min. Purification

by preparative TLC (petroleum ether/ethyl acetate = 10:1) affords **85** as colorless oil (49.6 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.42 – 7.36 (m, 3H), 7.34 – 7.27 (m, 3H), 7.25 – 7.21 (m, 1H), 4.69 (dd, *J* = 8.9, 7.5 Hz, 1H), 1.94 (dd, *J* = 15.6, 8.9 Hz, 1H), 1.66 – 1.59 (m, 1H), 1.15 (s, 6H), 1.10 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 176.7, 153.1, 143.8, 135.8, 128.7, 128.0, 127.2, 125.7, 124.5, 122.8, 121.5, 83.3, 46.6, 24.8, 24.7, 19.3 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 33.52. IR (film): 3067, 3028, 2954, 2216, 1605, 1540, 1248, 1112, 967, 837, 699 cm⁻¹. ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 33.52. IR (film): δ 33.52. HRMS (ESI): calculated for C₂₁H₂₅BNO₂S⁺ [M+H]⁺ 366.1694; found 366.1687.

3.2.72 2-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)benzo[d]oxazole (86)

Prepared according to general procedure F from styrene (31.2 mg, 0.30 mmol.), B_2pin_2 (83.8 mg, 0.33 mmol, 1.1 equiv.), 'BuONa (3.0 mg, 10 mol%, Cat.), MeOH (5.0 equiv.) and tetrahydrofuran (1.0 mL) were successively added. The reaction mixture was stirred at room temperature for 16 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was redissolved in 1.0 mL of tetrahydrofuran. Then, 'BuOK (101.0 mg, 0.9 mmol, 3.0 equiv.) and 2-chlorobenzoxazole (30.7 mg, 0.2 mmol, 1.0 equiv.) were successively added into the reaction mixture, stirred for 10 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 10:1) affords **86** as colorless oil (51.1 mg, 73% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.72 – 7.64 (m, 1H), 7.45 – 7.40 (m, 1H), 7.39 – 7.34 (m, 2H), 7.32 – 7.29 (m, 2H), 7.28 – 7.20 (m, 3H), 4.52 (dd, *J* = 9.3, 7.5 Hz, 1H), 1.91 (dd, *J* = 15.8, 9.3 Hz, 1H), 1.62 (dd, *J* = 15.9, 7.5 Hz, 1H), 1.15 (s, 6H), 1.08 (s, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 33.43. **IR** (film): 3065, 2976, 1719, 1606, 1545, 1489, 1428, 1361, 1248, 1112, 859, 826, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₁H₂₅BNO₃⁺ [M+H]⁺ 350.1922; found 350.1917.

3.2.73 2-(2-([1,1'-biphenyl]-4-yl)-2-phenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (87)

Prepared according to general procedure F from styrene (31.2 mg, 0.30 mmol.), B_2pin_2 (83.8 mg, 0.33 mmol, 1.1 equiv.), 'BuONa (3.0 mg, 10 mol%, Cat.), MeOH (5.0 equiv.) and tetrahydrofuran (1.0 mL) were successively added. The reaction mixture was stirred at room temperature for 16 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was redissolved in 1.0 mL of tetrahydrofuran. Then, 'BuOK (101.0 mg, 0.9 mmol, 3.0 equiv.) and 4-cyanobiphenyl (35.8 mg, 0.2 mmol) were successively added into the reaction mixture, stirred for 30 min. Purification by preparative TLC (petroleum ether/ethyl acetate = 10:1) affords **87** as colorless oil (53.2 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 7.3 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.38 – 7.30 (m, 5H), 7.29 – 7.25 (m, 2H), 7.17 (t, *J* = 7.2 Hz, 1H), 4.34 (t, *J* = 8.5 Hz, 1H), 1.65 (d, *J* = 8.5 Hz, 2H), 1.08 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 33.37. IR (film): 3066, 3025, 2953, 1599, 1486, 1451, 1426, 1247, 1112, 967, 833, 695 cm⁻¹. HRMS (ESI): calculated for C₂₆H₃₀BO₂⁺ [M+H]⁺ 385.2333; found 385.2330.

4. Computational Investigations

4.1 Computational Details

All calculations were performed with the Gaussian 16 package^[1]. The 3D structures of the optimized species were generated using CYLview^[2]. Geometry optimizations were performed at M06-2X^[3]/6-31G(d,p) (def2-TZVP for K and Br atoms) level of theory in conjugation with the polarizable continuum model (PCM)^[4] solvation model for tetrahydrofuran. Vibrational frequencies were calculated for all the geometries to provide thermal corrections to the Gibbs free energies at 298.15 K and 1.0 atm, and to confirm whether the optimized geometry corresponds to a minimum or a transition state (TS). Intrinsic reaction coordinate (IRC) calculations were performed to verify whether a TS connects the correct minimum structures. To get more accurate energies, single-point energy calculations were done with the same functional and solvation model using the cc-pVTZ basis set (def2-QZVP for K, Br atom). Free energy barriers here are defined as the free energy difference between the transition state and the lowest-energy stationary point before it along the reaction pathways. Chemical shifts key intermediates were computed with the Gauge-independent atomic orbital (GIAO) method at B972/pcSseg-2 level of theory^[5].

Free energy barriers of single electron transfer (SET) processes were calculated with the above computational level, using the SET module implemented in the Automated Design of Chemical Reactions (ADCR) Program^[6], which utilizes the Marcus theory^[7] automatically for electron donor-acceptor pairs.

4.2 DFT Calculations on [#]BuOK-Mediated Difunctionalization of Aromatic Alkenes

Figure S7. Gibbs free energy profile for 'BuOK-mediated deborylative cross-coupling of the silaboration product of alkenes with 4-cyanopyridine and benzonitrile.

Figure S8. 3D structures of the species involved in the ^{*t*}BuOK-mediated deborylative cross-coupling of the silaboration product with 4-cyanopyridine and benzonitrile. Selected distances were in Å.

4.3 Computational Analysis of the Single Electron Transfer (SET) Processes

Ph Si-Me Me	+ CN	SET-1	$ \begin{array}{c} $	
Ph Si-Me Me	+ CN	SET-2	Ph + CN Si-Me Me (2)	
Ph Si-Me Me	+ F	SET-3	Ph + (3)	
Ph Si-Me Me	+	SET-4	Ph + Cl Si-Me Me (4)	
Ph Si-Me Me	+ Br	SET-5	Ph + (5)	
Reaction		$ riangle G^{\ddagger}$ (kcal/mol)	$ riangle {\mathsf G}$ (kcal/mol)	
(1) SET-1		21.2	20.8	
(2) SET-2		40.2 33.0		
(3) SET-3		69.9	52.5	
(4) SET-4		35.7	29.4	
(5) SET-5		28.7	22.3	

Figure S9. Computed activation barriers and reaction energies for the SET processes between carbanion intermediate V' and different electrophiles.

As shown in Figure S9, the direct single electron transfer (SET) from carbanion intermediate V' to 4cyanopyridine and benzonitrile is endergonic by 20.8 and 33.0 kcal/mol, respectively. And the SET processes between carbanion V' and halogenated benzenes, such as fluorobenzene, chlorobenzene or bromobenzene, are also thermodynamically unfavorable (being endergonic by 52.5, 29.4, 22.3 kcal/mol, respectively) and requires higher activation barriers. Thus, SET mechanisms could be excluded.

4.4 Computational Studies on Substituent Effect for the Aromatic Nucleophilic Substitution Step

Table S3. Calculated activation barrier (TS, ΔG^{\neq}) and reaction energies (ΔG) for the reaction of the carbanion **V**' with various electrophiles (in kcal/mol).

V' Me	+ Ar S_NAr KX	Ph via:	[™] K ⁻ X ⁻ [™] CH [™] Si-Me Me
Entry	Substrates	ΔG [≠]	ΔG
1	CN CN	11.7	-32.0
2	OMe	22.4	-20.1
3	CN CN	6.1	-33.6
4	K → F	9.7	-41.8
5	F	21.1	-44.0
6	ОМе	27.9	-20.9
7	CI	25.1	-66.2
8	Br	25.4	-70.9
9		33.3	-72.9

As shown in Table S3, the reactivities of different types of electrophiles were also evaluated with DFT calculations. In addition to 4-cyanopyridine (Entry 1), our calculations show that the S_NAr reactions between carbanion **V'** and 4-methoxypyridine, 2-cyanopyridine, 2-methoxypyridine, and fluorobenzene (Entries 2-5) require activation barriers of 6.1 to 22.4 kcal/mol. However, reactions of **V'** with other halogenated benzenes, such as anisole, chlorobenzene, bromobenzene, and iodobenzene are kinetically unfavorable, the activation barriers of which are about 27.9 to 33.3 kcal/mol (Entries 6-9). These computational results are consistent with our experimental observation that no desired product was formed with these substrates with high barriers (Entries 6-9).
5. Machine-Learning-Assisted Reaction Space Exploration

5.1 Feature Selection

Since silylboronate (PhMe₂SiBpin) was invariant in our system, only the properties of aromatic alkenes (**sub1**) and aromatic electrophiles (**sub2**) were considered as descriptors. Ten descriptors were collected to build different models (Tables S4 and S5).

Features	Definition
SUB1_LOGP	The logP value of sub1
1_C_charge	The NPA charge of the carbon at position 1 of sub1
2_C_charge	The NPA charge of the carbon at position 2 of sub1
C1-C2	The NPA charge difference between the position 1 and 2 of sub1
SUB2_LOGP	The logP value of sub2
C_charge	The NPA charge of the carbon adjacent to the leaving group of sub2
Volume*	The molecular volume of sub2 (cm ³ /mol)
H_hetero	C-X Bond dissociation energy of heterolytic cleavage of sub2
H_homo	C-X Bond dissociation energy of homolytic cleavage of sub2
gap	The HOMO-LUMO gap of sub2

Table S4. The selected features and definition

*Multiwfn software was used for the calculation of molecular volume.^[8]

	ML-I	ML-II	ML-III	ML-IV	ML-V
SUB1_LOGP	٧	v	V	V	٧
1_C_charge	v	v	v	V	v
2_C_charge	v	v	v	V	v
C1-C2	-	v	V	V	-
SUB2_LOGP	v	V	V	V	V
C_charge	v	V	V	V	V
Volume	v	V	V	V	V
H_hetero	٧	v	V	V	v
H_homo	٧	v	V	-	-
gap	-	-	V	-	-

Table S5. Performance of different ML models with the selected features.

Comparing different ML models' prediction performance (Table S6, Table S7), ML-III, ML-IV and ML-V models with better performance were chosen for further evaluation.

aub1	aub?	V true			ML model		
Subi	SUDZ	t-true	Ι	II	111	IV	V
a25	b96	•	×	×	•	•	•
a37	b96	×	•	•	•	•	•
a57	b2	×	•	•	•	•	•
a57	b3	×	•	•	•	•	•
a57	b8	•	•	•	•	•	•
a57	b18	•	•	•	•	•	•
a57	b22	•	•	•	•	•	•
a57	b23	•	•	•	•	•	•
a57	b24	•	×	×	•	•	•
a57	b25	•	•	•	•	•	•
a57	b38	•	•	٠	•	•	•
a57	b41	×	•	•	•	•	•
a57	b57	•	•	٠	•	•	•
a57	b58	•	•	•	•	•	•
a57	b82a	•	•	٠	•	•	•
a57	b83	×	×	×	•	•	•
a57	b84a	•	•	•	•	•	•
a57	b85b	•	×	•	•	•	•
a57	b107	•	•	٠	•	•	•
a57	b108	•	•	•	•	•	•
a57	b109a	•	•	•	•	•	•
a57	b110a	•	•	٠	•	•	•
a57	b111	•	•	•	•	•	•
a57	b112	×	•	٠	•	•	•
a52	b82a	×	•	•	•	•	•
a63	b82a	×	•	•	•	•	•
a66	b82a	•	•	•	•	•	•
a68	b82a	×	×	×	×	×	×

Table S6. The prediction of different ML models in 28 out-of-sample data (Yields < 50% are marked with ' \star ', and yields > 50% are marked with ' \cdot ').

Table S7. The comparison of different ML models' prediction performance. Model trained by XGBoost algorithm.

Model	R ² of sample data	Accuracy of out-of-sample data prediction
ML-I	0.92	64.3%
ML-II	0.86	67.9%
ML-III	0.86	71.4%
ML-IV	0.82	71.4%
ML-V	0.79	71.4%

In the second-round learning, 3 samples (≈10%) were randomly selected from the 28 'unseen' data to give feedback to the trained models (Table S8).

No subt sub?		Y-				Ν	IL mod	el				
NO.	Subi	SUDI SUDZ	true	III ^a	III-2 ^b	III-3 ^a	IV ^a	IV-2 ^b	IV-3 ^a	Va	V-2 ^b	V-3 ^b
1	a25	b96	•	•	•	•	•	×	•	•	×	×
2	a37	b96	×	•	-	٠	•	-	٠	•	-	•
3	a57	b2	×	•	-	٠	•	-	٠	•	-	•
4	a57	b3	×	•	-	٠	•	-	٠	•	-	•
5	a57	b8	•	•	•	•	•	•	•	•	•	•
6	a57	b18	•	•	•	•	•	•	•	•	•	•
7	a57	b22	•	•	×	٠	•	×	٠	•	×	•
8	a57	b23	•	•	×	•	•	•	×	•	•	•
9	a57	b24	•	•	•	•	•	•	•	•	•	•
10	a57	b25	•	•	•	٠	•	•	٠	•	×	•
11	a57	b38	•	•	×	•	•	•	•	•	•	•
12	a57	b41	×	•	•	•	•	×	•	•	•	•
13	a57	b57	•	•	٠	•	•	×	•	•	×	•
14	a57	b58	•	•	•	•	•	×	•	•	×	•
15	a57	b82a	•	•	×	-	•	•	-	•	•	-
16	a57	b83	×	•	×	×	•	•	•	•	•	•
17	a57	b84a	•	•	•	-	•	•	-	•	×	-
18	a57	b85b	•	•	×	-	•	•	-	•	×	-
19	a57	b107	•	•	•	•	•	•	•	•	×	•
20	a57	b108	•	•	٠	•	•	•	•	•	×	•
21	a57	b109a	•	•	•	•	•	•	•	•	•	•
22	a57	b110a	•	•	٠	•	•	•	•	•	•	•
23	a57	b111	•	•	٠	•	•	•	•	•	•	•
24	a57	b112	×	•	•	•	•	•	•	•	•	•
25	a52	b82a	×	•	×	•	•	•	•	•	•	•
26	a63	b82a	×	•	×	٠	•	•	٠	•	•	•
27	a66	b82a	•	•	٠	•	•	•	•	•	•	•
28	a68	b82a	×	×	×	×	×	×	×	×	×	×
error number		8	7	7	8	8	9	8	14	9		
total number			28	25	25	28	25	25	28	25	25	
accuracy			71%	72%	72%	71%	68%	64%	71%	44%	64%	

Table S8. The comparison of different ML models' prediction performance in 25 out-of-sample data in the second-round learning.

^aModel trained by XGBoost algorithm. ^bModel trained by GBR algorithm. (Yields < 50% are marked with 'x', and yields > 50% are marked with '•').

The ML-III-2 and ML-III-3 models used the same features as the ML-III model. Similarly, ML-IV, ML-IV-2 and ML-IV-3 models used the same features, ML-V, ML-V-2 and ML-V-3 models used the same features. No.2, No.3 and No.4 samples were selected to give feedback to the trained models(ML-III-2, ML-IV-2, ML-V-2). No.15, No.17 and No.18 samples were selected to give feedback to the trained

models(ML-III-3, ML-IV-3, ML-V-3). Comparing the accuracy of these models, it could be found that the stability of ML-V model is poor and should be excluded. The ML-III model has the best stability, but the relative importance (Table S9) of features of ML-III model showed that 'H_homo' and 'gap' had no contribution. Therefore, we finally chose ML-IV model without features 'H_homo' and 'gap' compared to the ML-III model (Table S5).

Feature	Importance
SUB1_LOGP	9.4%
1_C_charge	10.6%
2_C_charge	34.6%
C1-C2	21.9%
SUB2_LOGP	4.1%
C_charge	7.3%
Volume	8.7%
H_hetero	3.3%
H_homo	0.0%
gap	0.0%

Table S9. The relative importance of features of ML-III model.

5.2 The Prediction of ML-IV Model

As shown below, forty-three experimental data were collected to train ML models (see Figure S6, Table S10, and Table S11 for details).

Figure S10. Training set molecules and test set molecules.

No.	sub1	sub2	Y_true	Y_predict
0	a57	b96	0.85	0.75
1	a58	b96	0.61	0.66
2	a61	b96	0.73	0.70
3	a71	b96	0.68	0.67
5	a62	b96	0.84	0.80
6	a72	b96	0.78	0.74
7	a73	b96	0.69	0.63
8	a74	b96	0.83	0.73
9	a75	b96	0.8	0.73
11	a77	b98	0.64	0.67
12	a78	b96	0.74	0.72
13	a79	b96	0.94	0.75
14	a80	b96	0.82	0.73
15	a81	b96	0.65	0.75
16	a64	b96	0.67	0.73
17	a65	b96	0.66	0.72
18	a63	b96	0.82	0.76
19	a82	b96	0.85	0.76
20	a69	b96	0.86	0.76
21	a67	b96	0.58	0.62
22	a66	b96	0.72	0.64
23	a83	b96	0.46	0.41
24	a59	b96	0	0.30
25	a70	b96	0	0.29
26	a84	b96	0	0.32
28	a86	b96	0.7	0.62
29	a57	b42	0.62	0.67
31	a57	b98	0.88	0.77
32	a57	b106	0.8	0.66
33	a57	b44	0.63	0.66
34	a57	b97	0.51	0.57
35	a57	b103	0.74	0.66
37	a57	b102	0.58	0.66
38	a57	b105	0.79	0.78
39	a57	b104	0.58	0.66
40	a57	b101	0.53	0.66
41	a57	b100	0.92	0.78
42	a57	b99	0.78	0.67

 Table S10. Training set data: The prediction was given by XGBoost model.

No.	sub1	sub2	Y_true	Y_predict
4	a60	b96	0.760	0.72
10	a76	b98	0.790	0.68
27	a85	b96	0.000	0.31
30	a57	b5	0.790	0.66
36	a57	b34	0.420	0.62

 Table S11. Test set data: The prediction was given by XGBoost model.

Table S12. The relative importance of features of sub1 and sub2.

Feature	Importance
SUB1_LOGP	9.0%
1_C_charge	11.1%
2_C_charge	31.6%
C1-C2	21.9%
SUB2_LOGP	5.0%
C_charge	6.9%
Volume	11.2%
H_hetero	3.4%

We collected a large number of commercially available substrates into the database, including 86 aromatic alkenes **sub1** and 117 aromatic electrophiles **sub2** (Figure S7 and Figure S8). Since there are two leaving groups in some electrophiles (147 reaction sites in total), the total dataset size is 12642 pairs of combinations (86*147).

Figure S11. All sub1 molecules for new reaction screening.

Figure S12. All sub2 molecules for new reaction screening.

As shown below, 86 **sub1** molecules and 117 molecules containing 147 reaction sites were collected to build 86*147 reaction combinations. 12642 reaction yields were predicted based on ML-IV (Figure S9).

Figure S13. Distribution of yields predicted by the ML model (Yields < 50% are marked with 'x', and yields > 50% are marked with ' \cdot ').

sub1	sub2	Y-true	Y-predict
a25	b96	•	•
a37	b96	×	•
a57	b2	×	•
a57	b3	×	•
a57	b8	•	•
a57	b18	•	•
a57	b22	•	•
a57	b23	•	•
a57	b24	•	•
a57	b25	•	•
a57	b38	•	•
a57	b41	×	•
a57	b57	•	•
a57	b58	•	•
a57	b82a	•	•
a57	b83	×	•
a57	b84a	•	•
a57	b85b	•	•
a57	b107	•	•
a57	b108	•	•
a57	b109a	•	•
a57	b110a	•	•
a57	b111	•	•
a57	b112	×	•
a57	b113	•	•
a57	b114	×	•
a57	b115	×	•
a57	b116	•	•
a57	b117a	•	•
a52	b82a	×	•
a63	b82a	×	•
a66	b82a	•	•
a68	b82a	×	×

Table S13. The prediction performance of ML-IV model in 33 out-of-sample data (Yields < 50% are</th>marked with 'x', and yields > 50% are marked with '•').

6. NMR Spectra

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 4.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 5.

²⁹Si{¹H} NMR spectrum (99 MHz, CDCl₃) of compound 5.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 6.

S91

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 7.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 8.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 8.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 9.

S97

S98

 $^{13}\mbox{C}\{^1\mbox{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 12.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **12**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **13**.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **13**.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl3) of compound 14.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **15**.

¹⁹F{¹H} NMR spectrum (376 MHz, CDCl₃) of compound **15**.

S106

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 19.

 $^{13}\mbox{C}{^1\mbox{H}}$ NMR spectrum (100 MHz, CDCl3) of compound 21.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **21**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 22.

S115

¹⁰⁰ ³⁰ ³⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ^{f1 (ppm)} ²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **23**.

S117

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 24'.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 25.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 26.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 27.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 28.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 29.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 30.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **30**.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl3) of compound 31.

has a set on a lot a to provide a the a file out of the activity of the set o

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 32.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 34.

 $^{13}\mbox{C}\{^1\mbox{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 35.

1. Land to a second and a second of the second of t

60 55 50 -45 -60 45 40 30 -10 -15 -20 -25 -30 -35 -40 -50 -55 35 25 20 15 10 5 0 f1 (ppm) -5 ²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **35**.

S140

100 90 80 70 60 50 40 30 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 20 10 0 f1 (ppm) ^{29}Si {1H} NMR spectrum (99 MHz, CDCl₃) of compound 36.

 $^{13}\mbox{C}\{^1\mbox{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 37.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 38.

⁶⁰ ⁵⁵ ⁵⁰ ⁴⁵ ⁴⁰ ³⁵ ³⁰ ²⁵ ²⁰ ¹⁵ ¹⁰ ⁵ ¹⁰ ⁵ ⁻¹⁰ ⁻¹⁵ ⁻²⁰ ⁻²⁵ ⁻³⁰ ⁻³⁵ ⁻⁴⁰ ⁻⁴⁵ ⁻⁵⁰ ⁻⁵⁵ ⁻⁶⁰ ²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **38**.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 39.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **39**.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **40**.

S149

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 42.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **42**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 43.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **43**.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **44**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 45.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 46.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 46.

¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound **47**.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 47.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 48.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 48.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 49.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **50**.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **50**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **51**.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **51**.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 52.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **52**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **53**.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **53**.

 $^{13}\mbox{C}{^1\mbox{H}}$ NMR spectrum (100 MHz, CDCl₃) of compound 54.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **54**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 56.

 29 Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **56**.

S181

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 59.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **59**.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 60.

100 90 70 -10 -90 80 60 50 -20 -30 -40 -50 -60 -70 -80 ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ¹_{f1 (ppm)} ²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **60**. 40 30 20

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 61.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 61.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **62**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 63.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 64.

55 50 45 40 35 30 25 20 15 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -5 10 0 f1 (ppm) 5 ²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 64.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 65.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 65.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 66.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 67.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **67**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 68.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 68.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 69.

S202

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **70**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **71**.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 73.

35 30 25 20 15 10 5 0 f1 (ppm) -5 ²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound 73.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 74.

²⁹Si {¹H} NMR spectrum (99 MHz, CDCl₃) of compound **74**.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 75.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 76.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 77.

S212

7,753 7,550 7,550 7,550 7,550 7,550 7,550 7,550 7,550 7,757 7,777 7,731 7,731 7,732

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **79.**

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 80.

S215

S216

 $^{13}\mbox{C}{^1\mbox{H}}$ NMR spectrum (100 MHz, CDCl3) of compound 83.

 $^{13}\mbox{C}\{^1\mbox{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 84

¹¹B{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 84.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 85.

¹¹B{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 85.

 $^{13}\mbox{C}{^1}\mbox{H}$ NMR spectrum (100 MHz, CDCl₃) of compound 86.

¹¹B{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 86.

 $^{13}\mbox{C}\{^1\mbox{H}\}$ NMR spectrum (100 MHz, CDCl_3) of compound 87.

7. Energies and Cartesian Coordinates of the Optimized Structures

ľ

M06	-2X/6-31G(d,p) Ele	ctronic E: -1321.4	92420 a.u.
M06	-2X/6-31G(d,p) Gib	obs free E: -1321.0	63564 a.u.
M06	-2X/cc-pVTZ Ele	ectronic E: -1321.8	89508 a.u.
В	-0.2181971244	2.0160559294	-2.0147195643
0	1.0158579315	2.3423167497	-2.5237521225
0	-1.2449847973	2.6135954454	-2.6974452082
С	0.8200841729	3.4204904450	-3.4649310142
С	-0.6839430353	3.2475841362	-3.8657967955
С	1.8084043087	3.2595478762	-4.6080993616
Н	1.6248057482	4.0097932635	-5.3836390027
Н	2.8261535187	3.3969161630	-4.2339661309
Н	1.7392396064	2.2658087510	-5.0545630225
С	1.0860846865	4.7156911225	-2.7009553542
Н	2.0960876729	4.6769280967	-2.2863967092
Н	1.0080401101	5.5899554131	-3.3526866560
Н	0.3807027021	4.8291456057	-1.8724624398
С	-1.4257214980	4.5503665484	-4.1213760878
Н	-0.9646965169	5.0981893200	-4.9494020404
Н	-2.4620252488	4.3319798339	-4.3899825285
Н	-1.4301641736	5.1853878667	-3.2346561663
С	-0.8885667352	2.2880462832	-5.0359691644
Н	-1.9555110496	2.0729934878	-5.1290241498
Н	-0.5354002126	2.7212468729	-5.9756644975
Н	-0.3662231596	1.3420826030	-4.8686383107
Si	1.8538304217	-0.6431006515	-1.4408687582
С	3.5035507424	0.0982936775	-1.9531845764
Н	4.1626634020	0.2431485865	-1.0917294778
Н	4.0262286509	-0.5310648879	-2.6798844931
Н	3.3199411950	1.0743465826	-2.4113818087
С	0.8299369084	-1.0050816882	-2.9831228936
Н	1.3376630291	-1.7537729488	-3.5983224950
Н	-0.1629848510	-1.3950281071	-2.7393930659
Н	0.7107593913	-0.0984713601	-3.5836043294
С	2.1458751706	-2.2766715910	-0.5427702135
С	1.0857281297	-2.9110648121	0.1224773865
С	3.3943404344	-2.9114243051	-0.5304563354
С	1.2606790218	-4.1302359722	0.7696988747

Н	0.1024220571	-2.4422393316	0.1394370905
С	3.5801097677	-4.1315918977	0.1171326438
Н	4.2403655210	-2.4457259553	-1.0308669702
С	2.5123797856	-4.7429486095	0.7674686333
н	0.4251526840	-4.6018130288	1.2778620814
н	4.5579349787	-4.6035600662	0.1160632368
н	2.6542019055	-5.6928233033	1.2735519180
С	-1.3717154930	3.0864104480	2.3762552885
С	-0.6195732688	2.3555812283	1.4565862752
С	-1.2003782962	1.8658857588	0.2853756843
С	-2.5564463289	2.1348545977	0.0565639061
С	-3.3080978942	2.8598185282	0.9722040122
С	-2.7174423729	3.3403012476	2.1403980759
н	-0.8992800406	3.4538277436	3.2821148400
н	0.4274130503	2.1605109163	1.6628242665
н	-3.0165290323	1.7743944148	-0.8595934474
Н	-4.3585813592	3.0506207147	0.7753176257
Н	-3.3031240733	3.9053113726	2.8583376340
С	-0.4083380384	1.0819007908	-0.7558651485
Н	-1.0535444385	0.2502413714	-1.0753970205
С	0.9343903283	0.5254923353	-0.2544410616
Н	1.6200107188	1.3567487041	-0.0453341915
Н	0.7876962861	0.0012976840	0.6984991401

KO^tBu

M06-2X/6-311G(d,p) Electronic E: -832.902319 a.u. M06-2X/6-311G(d,p) Gibbs free E: -832.810525 a.u. M06-2X/cc-pVTZ Electronic E: -833.034178 a.u.

С	0.1163704779	0.9514402943	3.1178919267
0	0.1464595237	0.0955884766	2.0458121775
С	-0.6461270245	2.2402065154	2.7547489902
Н	-1.6684266072	1.9856823403	2.4553151772
Н	-0.6941268259	2.9543814798	3.5856020993
Н	-0.1542106019	2.7268323326	1.9057316880
С	-0.5881142234	0.2842474907	4.3151796338
Н	-0.6337527408	0.9328746015	5.1982616475
Н	-1.6099920730	0.0123896598	4.0297949113
Н	-0.0547550934	-0.6336142888	4.5849742643
С	1.5492294432	1.3305884105	3.5399617317
Н	2.1021911243	0.4225053255	3.8032935842
Н	2.0613073430	1.8088616619	2.6981334740

Н	1.5742480810	2.0143671646	4.3969648030
к	0.2285891971	-1.3078604645	0.3202428913

ll'

M06·	-2X/6-31G(d,p) Ele	ectronic E: -2154.4	85870 a.u.
M06·	-2X/6-31G(d,p) Gib	obs free E: -2153.9	33409 a.u.
M06·	-2X/cc-pVTZ Ele	ectronic E: -2154.9	81679 a.u.
В	0.1539913575	2.2273572770	-0.6128873784
0	0.8025206737	1.9312417137	-1.8801195658
0	-1.2766902058	2.5035998304	-0.9973391917
С	-0.1610446956	1.5668562234	-2.8534742808
С	-1.4758658007	2.3030643633	-2.3846158388
С	-0.3054921954	0.0400375388	-2.8805725281
Н	-0.9917760588	-0.2895862364	-3.6669399224
Н	0.6760632852	-0.3986507416	-3.0796729673
Н	-0.6538800068	-0.3638881204	-1.9273842705
С	0.3450896709	2.0161633962	-4.2231529954
Н	1.2693419061	1.4798770049	-4.4562443904
Н	-0.3863336809	1.7916224477	-5.0069259410
Н	0.5609121269	3.0862079687	-4.2434500397
С	-1.6730389428	3.6708519949	-3.0482556833
Н	-1.8907703120	3.5866769610	-4.1173152337
Н	-2.5260054992	4.1686354443	-2.5718209830
Н	-0.7918054425	4.3006364158	-2.9196617079
С	-2.7476455519	1.4804719442	-2.5888459865
Н	-3.6109411959	2.0500974852	-2.2296611171
Н	-2.9098181346	1.2522418002	-3.6476618374
Н	-2.7023410675	0.5429442612	-2.0316114373
Si	2.4771569819	-0.7286004935	-0.0530949746
С	3.7947841394	-1.4692675483	1.0818453059
Н	3.3393727845	-1.9670325353	1.9433486030
Н	4.4015021025	-2.2082339702	0.5498901117
Н	4.4662969065	-0.6898901960	1.4575326078
С	3.3535311360	-0.0589336612	-1.5758236561
Н	3.8021671819	-0.8668601283	-2.1629682343
Н	2.6677192524	0.5163871356	-2.2016532533
Н	4.1660637186	0.6058591017	-1.2638595192
С	1.2808761166	-2.1103113766	-0.5356967617
С	1.4080727072	-2.8266763802	-1.7331388446
С	0.2278363649	-2.4638946649	0.3217557026
С	0.5203853511	-3.8467360920	-2.0685470565

Н	2.2070659258	-2.5766630704	-2.4277585604	
С	-0.6642653381	-3.4825073636	-0.0035178532	
н	0.0920219039	-1.9225602143	1.2569558362	
С	-0.5201778556	-4.1747802067	-1.2036702340	
Н	0.6375028581	-4.3823660628	-3.0058279157	
Н	-1.4736775393	-3.7334969039	0.6754456823	
Н	-1.2165144548	-4.9661037984	-1.4638187511	
С	-1.0727692845	2.7163612513	3.6987155552	
С	-0.2286673337	2.1608744612	2.7365818499	
С	-0.7355108452	1.4283886610	1.6480885260	
С	-2.1290003905	1.2386375958	1.5983083597	
С	-2.9776470832	1.7888724485	2.5570237595	
С	-2.4565049375	2.5472152619	3.6098308000	
н	-0.6481628805	3.2767516689	4.5269910091	
н	0.8431485664	2.3159064191	2.8078881909	
н	-2.5428944727	0.6705142499	0.7700215023	
н	-4.0483513243	1.6175799654	2.4903723822	
н	-3.1131264696	2.9653709804	4.3661286011	
С	0.1368121497	0.9831978194	0.5149472867	
н	-0.3764387783	0.1433798674	0.0324085792	
С	1.5378807884	0.5483855205	0.9788230941	
Н	2.1856723782	1.4266058604	1.0982380807	
н	1.4838152839	0.0962297516	1.9829373984	
С	1.7655659356	4.2617949195	-0.3126177622	
0	0.7058400416	3.4161851257	0.0965630300	
С	1.4255788835	4.9976848692	-1.6109762072	
н	0.4734587584	5.5325076683	-1.5055105599	
н	2.2004608580	5.7302375635	-1.8589361353	
н	1.3401090801	4.2790498575	-2.4279428765	
С	1.9346702770	5.2768505624	0.8211712749	
Н	1.0308259029	5.8919824116	0.9266103854	
н	2.1074331015	4.7511752503	1.7651179056	
н	2.7748379756	5.9517964658	0.6335281809	
С	3.0702850918	3.4819740036	-0.4948004339	
Н	3.3905813937	3.0418601425	0.4545397353	
Н	2.9243261430	2.6863691712	-1.2275289571	
Н	3.8668018006	4.1469026551	-0.8446399711	
Κ	-1.6241529835	4.1741989282	0.8904552676	

TS1

M06-2X/6-31G(d,p) Electronic E: -2154.447244 a.u.

M06	6-2X/6-31G(d,p) Gib	obs free E: -2153.9)03166 a.u.
MOG	6-2X/cc-pVTZ Ele	ectronic E: -2154.9	50796 a.u.
В	0.1665630392	2.6312878866	-0.9478139895
0	0.7660066050	1.9548223735	-1.9818801181
0	-1.2074373094	2.7781720637	-1.1259289591
С	-0.2493565850	1.4120428176	-2.8404897061
С	-1.5861874469	2.1256162815	-2.3509165823
С	-0.2363495276	-0.1053901357	-2.6638419805
Н	-0.9820432046	-0.5881903110	-3.3012627314
Н	0.7518908975	-0.4756584793	-2.9485465115
Н	-0.4130607537	-0.3896511440	-1.6268183672
С	0.1424318442	1.7421967077	-4.2778171874
Н	1.1023165931	1.2691452341	-4.4977132331
Н	-0.5986193130	1.3566074110	-4.9841805316
Н	0.2510487528	2.8169360003	-4.4328513320
С	-2.0702739853	3.2305683697	-3.2888259697
Н	-2.3664569204	2.8358178283	-4.2641437178
Н	-2.9393558423	3.7175597869	-2.8381808447
Н	-1.2949685537	3.9870884888	-3.4344293390
С	-2.7290725163	1.1647371311	-2.0513619524
Н	-3.5821019978	1.7301511539	-1.6662385168
Н	-3.0461571645	0.6398027535	-2.9574840238
Н	-2.4385453257	0.4320522357	-1.2970931952
Si	1.7575113526	-1.2015613288	1.8069353535
С	0.9537840335	-2.6187429637	0.8565139838
Н	1.3338714168	-2.6628460403	-0.1696503888
Н	1.1514809458	-3.5846611375	1.3296263354
Н	-0.1302012639	-2.4742959800	0.8107303454
С	1.1211122889	-1.1742429526	3.5768001414
Н	1.2155061164	-2.1537620690	4.0563752406
Н	1.6586672598	-0.4417641744	4.1865729494
Н	0.0640914192	-0.8910235650	3.5790969911
С	3.6323815759	-1.4591119396	1.8203242855
С	4.3334510334	-1.7979218623	2.9856706641
С	4.3780803140	-1.2893336544	0.6430638003
С	5.7166960577	-1.9679057227	2.9791426282
Н	3.7904375269	-1.9306408490	3.9187667033
С	5.7598109725	-1.4566269634	0.6260552179
Н	3.8700154243	-1.0183282016	-0.2812959614
С	6.4326456880	-1.7978127062	1.7976339756
Н	6.2359147540	-2.2319872958	3.8956927680

Н	6.3135133654	-1.3201940955	-0.2982006383	
н	7.5104529846	-1.9286927007	1.7889875371	
С	-0.9053705407	2.8172860033	3.8956531474	
С	-0.1778076312	2.0679891548	2.9841992035	
С	-0.8160642795	1.3284339438	1.9142024836	
С	-2.2648248755	1.3622267080	1.9568394000	
С	-2.9644573318	2.1151599651	2.8782136263	
С	-2.3077166842	2.9067823423	3.8456635449	
Н	-0.3673615873	3.3430417849	4.6822795495	
Н	0.9010714434	2.0153120533	3.0911978397	
Н	-2.8086614654	0.7568980429	1.2350018303	
Н	-4.0522058781	2.0866225894	2.8606675219	
Н	-2.8643367286	3.4545561760	4.5965160525	
С	-0.1318869610	0.6834291292	0.8902541470	
Н	-0.7403869368	0.0391111143	0.2577167837	
С	1.3499425537	0.4107741840	0.9130572357	
Н	1.7528475194	0.3570318948	-0.1103348733	
Н	1.8866020855	1.2375158409	1.3944277899	
С	2.0830813669	4.0887369163	-0.3289198876	
0	0.8129491403	3.4593816288	-0.0592754008	
С	1.9527448439	4.9249483885	-1.6022395381	
Н	1.1266602776	5.6373952321	-1.5066470533	
Н	2.8721493994	5.4871251995	-1.7875007426	
Н	1.7647516070	4.2768444251	-2.4629016633	
С	2.3348315295	4.9770672954	0.8840591735	
Н	1.5585870798	5.7466271209	0.9658460960	
Н	2.3242039084	4.3694329816	1.7936218448	
Н	3.3030204391	5.4780232710	0.8046388533	
С	3.2002568654	3.0580507107	-0.4731524994	
Н	3.3306325839	2.4919706333	0.4510941434	
Н	2.9802060337	2.3597688041	-1.2827624403	
Н	4.1392772508	3.5730814276	-0.6971693825	
κ	-1.4306785787	4.0646817865	1.2111580712	

III'

M06-2X/6-31G(d,p) Electronic E: -2154.452733 a.u. M06-2X/6-31G(d,p) Gibbs free E: -2153.909057 a.u. M06-2X/cc-pVTZ Electronic E: -2154.956474 a.u. B 2.8930945370 -1.1426519063 -2.1817645509

0	2.2238769935	-2.0390142932	-2.9702784274
0	3.3985178185	-0.0645345471	-2.8898023306

С	1.9453207534	-1.3355413713	-4.2067010992
С	3.1398453528	-0.3283278118	-4.2897290329
С	0.6028195524	-0.6331275104	-4.0148420340
Н	0.2883458826	-0.1136958667	-4.9238258934
Н	-0.1524428019	-1.3804755280	-3.7598436247
Н	0.6541542647	0.0935418559	-3.1957026034
С	1.8795117972	-2.3408381851	-5.3419135400
Н	1.0167697760	-2.9958083445	-5.1999677159
Н	1.7638405348	-1.8251348202	-6.3001446410
Н	2.7777507360	-2.9589208060	-5.3784579148
С	4.4019043467	-0.9590122512	-4.8694720161
Н	4.3001326626	-1.1307016592	-5.9441854346
Н	5.2441322576	-0.2827722575	-4.7049059337
Н	4.6222170322	-1.9127604389	-4.3814017186
С	2.8155290531	0.9842331463	-4.9810354790
Н	3.7091512663	1.6133572752	-5.0148887930
Н	2.4852150500	0.8041345003	-6.0087891139
Н	2.0374991056	1.5276886393	-4.4416305848
Si	-1.9088905737	2.1047370172	1.6846793606
С	-3.2899566676	1.6300963143	0.4948801930
Н	-3.4487076279	0.5471627106	0.4701932099
Н	-4.2371409414	2.1077021474	0.7631982615
Н	-3.0224245763	1.9507704718	-0.5160873114
С	-1.6432476622	3.9667001861	1.6308709684
Н	-2.5941151673	4.4931859860	1.7579720144
Н	-0.9657725256	4.3048393545	2.4207476332
Н	-1.2057079018	4.2583115085	0.6712518039
С	-2.4130159357	1.6076461595	3.4396184342
С	-1.6069774802	1.9667379058	4.5311483164
С	-3.5601876667	0.8483954562	3.7066631709
С	-1.9288147426	1.5871466699	5.8307361966
Н	-0.7083004857	2.5588321861	4.3636975726
С	-3.8919496482	0.4632058816	5.0044483539
Н	-4.2116824053	0.5532132091	2.8872277921
С	-3.0756825514	0.8323709714	6.0695214962
Н	-1.2892676849	1.8802587741	6.6580060415
Н	-4.7882838932	-0.1228452856	5.1847510825
Н	-3.3318496082	0.5354214144	7.0819441533
С	2.5384837906	4.3415234615	-0.0054239000
С	1.5504741208	3.4512562050	0.3837878619
С	0.8480539750	2.6161729483	-0.5786691129

1.1167409409	2.9730208090	-1.9626271890
2.1114858535	3.8575528952	-2.3166926063
2.9058893008	4.5188776203	-1.3507702296
3.0387714022	4.9282130590	0.7630432464
1.2916733740	3.3767947657	1.4355193913
0.5154301407	2.4968416576	-2.7355944821
2.2797062045	4.0604777280	-3.3730622876
3.6497302479	5.2506909621	-1.6404643830
0.0677674841	1.5268527906	-0.2359653730
-0.4828629525	1.0305301323	-1.0352397525
-0.3323678654	1.1834605423	1.1780854953
-0.5300465990	0.1071464135	1.2866373450
0.4688963620	1.4096206999	1.8976867714
2.3716957556	-2.0491871268	0.0686617494
3.0796910039	-1.1643954851	-0.8402029685
3.0109489224	-3.4288184467	-0.0279210875
4.0745735856	-3.3763748778	0.2207144475
2.5238874434	-4.1198264196	0.6654687968
2.9015400724	-3.8232813806	-1.0422540400
2.5765214703	-1.4221660428	1.4421225576
3.6441978490	-1.3122459266	1.6561328745
2.0910695864	-0.4400380981	1.4776237453
2.1303729103	-2.0481094722	2.2189267416
0.8844146033	-2.0855806827	-0.2749487834
0.5113955997	-1.0605007474	-0.3775631776
0.7027793086	-2.6316794648	-1.2019699720
0.3376884930	-2.5772472830	0.5347349998
3.4231680810	1.5605678754	-0.7835855407
	1.1167409409 2.1114858535 2.9058893008 3.0387714022 1.2916733740 0.5154301407 2.2797062045 3.6497302479 0.0677674841 -0.4828629525 -0.3323678654 -0.5300465990 0.4688963620 2.3716957556 3.0796910039 3.0109489224 4.0745735856 2.5238874434 2.9015400724 2.5765214703 3.6441978490 2.0910695864 2.1303729103 0.8844146033 0.5113955997 0.7027793086 0.3376884930 3.4231680810	1.11674094092.97302080902.11148585353.85755289522.90588930084.51887762033.03877140224.92821305901.29167337403.37679476570.51543014072.49684165762.27970620454.06047772803.64973024795.25069096210.06776748411.5268527906-0.48286295251.0305301323-0.33236786541.1834605423-0.53004659900.10714641350.46889636201.40962069992.3716957556-2.04918712683.0796910039-1.16439548513.0109489224-3.42881844674.0745735856-3.37637487782.5238874434-4.11982641962.9015400724-3.82328138062.5765214703-1.42216604283.6441978490-1.31224592662.0910695864-0.44003809812.1303729103-2.04810947220.8844146033-2.08558068270.5113955997-1.06050074740.7027793086-2.63167946480.3376884930-2.57724728303.42316808101.5605678754

[#]BuO-Bpin

M06	-2X/6-31G(d,p) El	ectronic E: -644.1	38280 a.u.
M06	-2X/6-31G(d,p) Gi	bbs free E: -643.8	67313 a.u.
M06	-2X/cc-pVTZ EI	ectronic E: -644.3	75645 a.u.
В	0.0160731023	3.1641124245	-1.3051748019
0	0.6093882360	2.7976106775	-2.5011278281
0	-1.2812244529	2.7161284532	-1.1985621167
С	-0.2695757976	1.8327970677	-3.1120380713
С	-1.6536358185	2.2174612222	-2.4940746655
С	0.2059089083	0.4502160548	-2.6693842274
Н	-0.3749113872	-0.3457269072	-3.1432662775
Н	1.2552106897	0.3318940647	-2.9509360896

Н	0.1261153577	0.3431257962	-1.5834494124
С	-0.1823161088	1.9688675173	-4.6229456908
н	0.8155015688	1.6776793019	-4.9605971484
н	-0.9129294554	1.3147348096	-5.1091995018
н	-0.3635920585	2.9972053144	-4.9388021079
С	-2.3293894028	3.3638992289	-3.2446209242
Н	-2.7079842250	3.0407979998	-4.2182695891
Н	-3.1667279428	3.7284362906	-2.6453825745
Н	-1.6305912439	4.1917731662	-3.3969379608
С	-2.6170571319	1.0547093717	-2.3197114644
Н	-3.5535545468	1.4183466865	-1.8899489285
Н	-2.8396025552	0.5908432275	-3.2859858137
Н	-2.2059836794	0.2984210466	-1.6495031679
С	1.9726164266	4.2881464980	-0.3203551015
0	0.5948096738	3.8781082022	-0.3163039102
С	2.2277597135	5.2244733403	-1.5001375735
Н	1.5372747300	6.0716556909	-1.4572374696
Н	3.2505003310	5.6102046080	-1.4603772759
Н	2.0878688416	4.6997127421	-2.4475741969
С	2.1621874756	5.0266613132	1.0001227851
Н	1.4841946636	5.8823857858	1.0515567325
Н	1.9403832726	4.3603621406	1.8376486400
Н	3.1908775105	5.3844298144	1.0956471130
С	2.8763136857	3.0575021243	-0.3804637435
Н	2.6409792754	2.3830823752	0.4480123125
Н	2.7387592429	2.5242377738	-1.3236771352
Н	3.9253131011	3.3554007765	-0.2962088143

IV'

M06	-2X/6-31G(d,p) Ele	ctronic E: -1477.10	04563 a.u.
M06	-2X/6-31G(d,p) Gib	bs free E: -1476.7	15338 a.u.
M06	-2X/cc-pVTZ Ele	ctronic E: -1477.4	54668 a.u.
В	-0.1538988672	3.6811063256	-1.5510228844
0	0.5232486550	3.0977289699	-2.7070499439
0	-1.2833404841	2.7048970931	-1.2795135703
С	-0.1358278976	1.9263290673	-3.1359407362
С	-1.5639474630	2.0667193444	-2.5148572645
С	0.6023354815	0.6991168728	-2.5848890640
Н	0.1620070090	-0.2413984897	-2.9310587224
Н	1.6435697252	0.7326633700	-2.9160866491
Н	0.6027966932	0.7084013522	-1.4883395345

С	-0.1230362848	1.8724512333	-4.6606729151	
Н	0.9062180182	1.7585726285	-5.0120892463	
Н	-0.7097202150	1.0262886642	-5.0360118574	
Н	-0.5215408851	2.7974446474	-5.0794594557	
С	-2.4714961567	2.9689082226	-3.3575470147	
Н	-2.7882484367	2.4724286278	-4.2800916494	
Н	-3.3641209965	3.2102795730	-2.7705805590	
Н	-1.9575738031	3.9015796443	-3.5986844753	
С	-2.2755593623	0.7460450308	-2.2410272950	
Н	-3.2670827416	0.9427409873	-1.8204136280	
Н	-2.4089032732	0.1691012832	-3.1619652695	
Н	-1.7135301184	0.1272569277	-1.5338981542	
С	2.0530311953	3.9322028482	-0.2809210262	
0	0.6554219461	3.6696969511	-0.2891432312	
С	2.4565881594	5.0111333606	-1.2902622442	
Н	1.9649959314	5.9587362690	-1.0675662350	
Н	3.5405755299	5.1610584842	-1.2492779739	
Н	2.1765030794	4.7071175818	-2.3004275978	
С	2.3896699024	4.3925265483	1.1390839842	
Н	1.8315087407	5.2991126540	1.3896205280	
Н	2.1254222371	3.6122979552	1.8660686777	
Н	3.4583761112	4.5993294081	1.2474128043	
С	2.8156966273	2.6407751681	-0.5945575110	
Н	2.5082585645	1.8397670966	0.0918823552	
Н	2.5947644989	2.3301663841	-1.6159868144	
Н	3.8956179183	2.7830915127	-0.4843579233	
С	-1.3659782524	5.8747494914	-1.0918462812	
0	-0.6122695250	5.0055668028	-1.9037856766	
С	-2.3462606285	6.5859950540	-2.0302421705	
Н	-3.0386751720	5.8599659270	-2.4664588718	
Н	-2.9239719665	7.3536606220	-1.5051438216	
Н	-1.7884259888	7.0565068037	-2.8441939258	
С	-2.1657013697	5.1722205667	0.0174885640	
Н	-2.7780972333	5.9045327382	0.5532199484	
Н	-2.8092854886	4.3956452459	-0.4003138000	
Н	-1.4722779363	4.7247012564	0.7402497665	
С	-0.4397275040	6.9085482542	-0.4428575020	
н	0.2484746555	6.4080800871	0.2443705928	
н	0.1460841664	7.4156935148	-1.2148015962	
Н	-1.0092076315	7.6591349068	0.1157789369	
К	-0.7338271636	2.0996091312	1.0431009334	

۷'

M06	6-2X/6-31G(d,p) Ele	ctronic E: -1510.2	78684 a.u.
M06	5-2X/6-31G(d,p) Gib	bs free E: -1510.0)26525 a.u.
M06	i-2X/cc-pVTZ Ele	ectronic E: -1510.5	63598 a.u.
Si	-1.9235559222	2.1098169889	1.6852391651
С	-3.2973452517	1.6153990189	0.4963548868
Н	-3.4405425860	0.5304041941	0.4717187062
Н	-4.2510539952	2.0792254175	0.7655562534
Н	-3.0362700259	1.9397846207	-0.5151637448
С	-1.6857126256	3.9758786324	1.6337294330
Н	-2.6445798931	4.4866166016	1.7644835138
Н	-1.0128473366	4.3235357253	2.4235213377
Н	-1.2567420147	4.2781545413	0.6735155890
С	-2.4105808287	1.6019778239	3.4405133384
С	-1.6072817489	1.9740744611	4.5295905580
С	-3.5451502188	0.8249825389	3.7101491694
С	-1.9196149519	1.5894268898	5.8299602579
Н	-0.7186766159	2.5805837859	4.3598673112
С	-3.8672665916	0.4348463571	5.0088181138
Н	-4.1939875304	0.5194363288	2.8924621170
С	-3.0539421061	0.8168317587	6.0715827600
Н	-1.2826649948	1.8925361898	6.6555859734
Н	-4.7536857111	-0.1652495508	5.1915403776
Н	-3.3026767325	0.5158666724	7.0846327680
С	2.5658865276	4.3331537921	-0.0047272411
С	1.5191648154	3.5120045642	0.3784220337
С	0.8172986322	2.6729217127	-0.5842618223
С	1.1086309569	3.0104889359	-1.9712009022
С	2.1575365169	3.8324863453	-2.3183253699
С	2.9834797274	4.4478901856	-1.3450686383
Н	3.0764082683	4.9148466764	0.7606395219
Н	1.2258522117	3.4772861567	1.4229454766
Н	0.4986293867	2.5521938085	-2.7463710410
Н	2.3488555987	4.0205897886	-3.3729482345
Н	3.7692738426	5.1357258775	-1.6313407615
С	0.0636553298	1.5680311951	-0.2398585076
Н	-0.4576728225	1.0440216612	-1.0396509384
С	-0.3316245324	1.2159618495	1.1732002810
н	-0.5135129539	0.1379692573	1.2696330468
Н	0.4651679501	1.4528772987	1.8939748227
Κ	3.2461602263	1.5109118983	-0.7565876109

4-CN-Py

M06	-2X/6-31G(d,p) [Electronic E:	-340.383	803 a.u.
M06	-2X/6-31G(d,p) (Gibbs free E:	-340.32	5538 a.u.
M06	-2X/cc-pVTZ I	Electronic E:	-340.512	2760 a.u.
С	-0.0478608741	-0.75027	71076	-8.1029634103
С	-0.0887461829	0.62880	10463	-8.2826088435
С	-0.3974685094	1.42108	65517	-7.1761185189
С	-0.6503372289	0.80657	13791	-5.9489570432
С	-0.5803987107	- 0.58169	36387	-5.8910595734
Ν	-0.2867318411	-1.35436	11092	-6.9380140507
Н	0.1885438712	-1.40042	38936	-8.9412459153
Н	0.1120996634	1.07638	73644	-9.2485908577
Н	-0.8928638084	1.39467	55854	-5.0719760502
Н	-0.7711569860	-1.09656	56017	-4.9531081291
С	-0.4549127343	2.85566	30597	-7.2991643499
Ν	-0.5010066588	4.00687	43642	-7.3977342576

TS2

M06	M06-2X/6-31G(d,p) Electronic E: -1850.673186 a.u.				
M06	-2X/6-31G(d,p) Gil	obs free E: -1850.3	38315 a.u.		
M06	-2X/cc-pVTZ Ele	ectronic E: -1851.0	82102 a.u.		
Si	2.2565680921	-1.0948698283	1.1519072471		
С	1.4093124330	-1.4210152466	2.8000115047		
Н	0.3307428159	-1.2485604888	2.7308795385		
Н	1.5705202256	-2.4482035895	3.1390054657		
Н	1.7973248366	-0.7430727914	3.5670741823		
С	4.1207979208	-1.3172680535	1.3157569089		
Н	4.3806714407	-2.3585853776	1.5269153217		
Н	4.6437804040	-1.0183556045	0.4023072832		
Н	4.5078069419	-0.7002167562	2.1324893101		
С	1.5885384107	-2.2529434841	-0.1731421025		
С	2.3863140870	-2.6200640328	-1.2668992243		
С	0.2570112048	-2.6917091647	-0.1640824376		
С	1.8776595326	-3.3917218931	-2.3083710382		
Н	3.4254728884	-2.2999803746	-1.3092667573		
С	-0.2652624926	-3.4504754860	-1.2083085412		
Н	-0.3939509498	-2.4264919350	0.6665347795		
С	0.5472575949	-3.8047652205	-2.2813901589		
Н	2.5158209788	-3.6664670225	-3.1429270871		
Н	-1.3079182560	-3.7494512874	-1.1930653889		
Н	0.1426739145	-4.3939569625	-3.0984148427		

С	-0.2364551792	3.4187539226	3.3631899303
С	0.4210011419	2.6615209743	2.3990705570
С	-0.2535696460	1.6586091021	1.6478894052
С	-1.6448912176	1.5059536619	1.9141545604
С	-2.3002792395	2.2827649916	2.8654750294
С	-1.6081304442	3.2509832565	3.6048573150
н	0.3288708132	4.1423177575	3.9445193161
н	1.4805854494	2.8276211301	2.2400303138
Н	-2.1876307420	0.7310330432	1.3818729195
н	-3.3555669334	2.1088668298	3.0584133131
Н	-2.1078237462	3.8171748853	4.3836735177
С	0.3572969930	0.8933896589	0.5887086157
Н	-0.2242577602	0.0016664213	0.3442924388
С	1.8515086288	0.6637622475	0.5747778898
Н	2.2460227086	0.7407253515	-0.4495631672
н	2.3978306678	1.4013838191	1.1705609191
К	-1.4658862982	4.4108491852	0.8088464363
С	-0.2003336298	1.6447885066	-1.2004703987
С	-1.6512229202	1.6304133157	-1.2702128961
С	0.4051665983	0.7524328051	-2.1744095334
С	-2.2708283384	0.5103748498	-1.7883433355
Н	-2.2560790266	2.4240253970	-0.8403145973
С	-0.3349448315	-0.3115497997	-2.6243878444
Н	1.4434470085	0.8666794539	-2.4594062850
Н	-3.3579145849	0.4411970602	-1.7286692954
Н	0.1540388330	-1.0675078608	-3.2373220775
С	0.3895505377	2.9466754081	-0.9839751691
Ν	0.7471359914	4.0150682821	-0.6949186418
Ν	-1.6543118577	-0.5076500569	-2.4001921989

٧ľ

M06-	-2X/6-31G(d,p) E	Electronic E: -1157.9	960030 a.u.
M06-	-2X/6-31G(d,p) 0	Gibbs free E: -1157.	627703 a.u.
M06-	2X/cc-pVTZ	Electronic E: -1158.2	295067 a.u.
Si	-1.5875438601	2.3653456104	1.6108501469
С	-2.9210988897	2.5451210980	0.2937957794
Н	-3.3472922485	1.5780661678	0.0081193323
Н	-3.7369400859	3.1833682436	0.6461983855
Н	-2.5043913207	3.0082906910	-0.6061615934
С	-0.7765021504	4.0306047825	1.9423540003
Н	-1.4900194946	4.6977602064	2.4356845336

Н	0.0960943033	3.9298697673	2.5953803283	
Н	-0.4403786659	4.5044931611	1.0150304551	
С	-2.3606177222	1.7412448853	3.2118718763	
С	-1.6142423613	1.7268607736	4.3999075715	
С	-3.6747889818	1.2577696523	3.2624451707	
С	-2.1542564106	1.2465625362	5.5891419846	
Н	-0.5916721892	2.1004366900	4.4000007680	
С	-4.2241123753	0.7764380853	4.4490667375	
Н	-4.2850695905	1.2581731419	2.3621174632	
С	-3.4632146098	0.7698034963	5.6143814937	
Н	-1.5576654254	1.2453833534	6.4961526428	
Н	-5.2454321627	0.4085585937	4.4646620031	
Н	-3.8883880517	0.3958593389	6.5405105532	
С	2.4177841140	4.2047113864	0.0038297666	
С	1.8641845132	2.9400476817	0.1695457368	
С	0.8006702768	2.5118231446	-0.6337325089	
С	0.3163799697	3.3793525032	-1.6132599114	
С	0.8616639396	4.6518655529	-1.7773559899	
С	1.9122368427	5.0689224624	-0.9664302946	
Н	3.2399391058	4.5209967682	0.6378928545	
Н	2.2581937444	2.2767176145	0.9355499830	
Н	-0.5032823792	3.0563887688	-2.2504387925	
Н	0.4642282466	5.3150959108	-2.5389319296	
Н	2.3374535731	6.0595399622	-1.0894813655	
С	0.1450388096	1.1640699213	-0.4076257938	
Н	-0.7408966624	1.1245690335	-1.0568576763	
С	-0.3527052039	1.0328045581	1.0518101794	
Н	-0.8513175001	0.0643828734	1.1810150397	
Н	0.5048496046	1.0140212759	1.7366324724	
С	1.0112562689	-0.0270348640	-0.8060003508	
С	0.4585412595	-1.3117944760	-0.7842993238	
С	2.3399511684	0.0736330392	-1.2132150624	
С	1.2390471742	-2.4020714032	-1.1445456167	
н	-0.5774131173	-1.4641682261	-0.4952719415	
С	3.0383870346	-1.0854776863	-1.5514545930	
Н	2.8343402965	1.0359127947	-1.2800951293	
Н	0.8146412303	-3.4035971017	-1.1316229810	
Н	4.0772215971	-1.0151280117	-1.8673570901	
Ν	2.5177793862	-2.3104227579	-1.5213323140	

VI″

M06-	-2X/6-311G(d,p) El	ectronic E: -644.2	138280 a.u.
M06-	-2X/6-311G(d,p) G	ibbs free E: -643.	867313 a.u.
M06-	-2X/cc-pVTZ Ele	ectronic E: -644.3	75645 a.u.
В	0.0160731023	3.1641124245	-1.3051748019
0	0.6093882360	2.7976106775	-2.5011278281
0	-1.2812244529	2.7161284532	-1.1985621167
С	-0.2695757976	1.8327970677	-3.1120380713
С	-1.6536358185	2.2174612222	-2.4940746655
С	0.2059089083	0.4502160548	-2.6693842274
Н	-0.3749113872	-0.3457269072	-3.1432662775
Н	1.2552106897	0.3318940647	-2.9509360896
Н	0.1261153577	0.3431257962	-1.5834494124
С	-0.1823161088	1.9688675173	-4.6229456908
Н	0.8155015688	1.6776793019	-4.9605971484
Н	-0.9129294554	1.3147348096	-5.1091995018
Н	-0.3635920585	2.9972053144	-4.9388021079
С	-2.3293894028	3.3638992289	-3.2446209242
Н	-2.7079842250	3.0407979998	-4.2182695891
Н	-3.1667279428	3.7284362906	-2.6453825745
Н	-1.6305912439	4.1917731662	-3.3969379608
С	-2.6170571319	1.0547093717	-2.3197114644
Н	-3.5535545468	1.4183466865	-1.8899489285
Н	-2.8396025552	0.5908432275	-3.2859858137
Н	-2.2059836794	0.2984210466	-1.6495031679
С	1.9726164266	4.2881464980	-0.3203551015
0	0.5948096738	3.8781082022	-0.3163039102
С	2.2277597135	5.2244733403	-1.5001375735
Н	1.5372747300	6.0716556909	-1.4572374696
Н	3.2505003310	5.6102046080	-1.4603772759
Н	2.0878688416	4.6997127421	-2.4475741969
С	2.1621874756	5.0266613132	1.0001227851
Н	1.4841946636	5.8823857858	1.0515567325
Н	1.9403832726	4.3603621406	1.8376486400
Н	3.1908775105	5.3844298144	1.0956471130
С	2.8763136857	3.0575021243	-0.3804637435
Н	2.6409792754	2.3830823752	0.4480123125
Н	2.7387592429	2.5242377738	-1.3236771352
Н	3.9253131011	3.3554007765	-0.2962088143

Ph-CN

M06	-2X/6-31G(d,p)	Electronic E:	-324.3542	201 a.u.
M06	-2X/6-31G(d,p)	Gibbs free E:	-324.284	068 a.u.
M06	-2X/cc-pVTZ	Electronic E:	-324.476	106 a.u.
С	2.383044367	73 -2.80871	65656	1.0009027228
С	2.489332140	-4.18000	59336	0.7460307929
С	2.652203463	33 -2.29962	72696	2.2757704385
С	2.865745272	-5.03865	519449	1.7714726946
Н	2.277112874	4.55751	04042	-0.2480402213
С	3.027792412	-3.16808	54093	3.2932404793
Н	2.564850078	33 -1.23393	379055	2.4557299191
С	3.134468040	00 -4.53445	59602	3.0423133209
Н	2.949567456	6.10266	68629	1.5787731626
Н	3.237426821	2 -2.77817	08606	4.2833574981
Н	3.428097247	74 -5.20885	37061	3.8399356662
С	1.993180417	79 -1.91374	38391	-0.0577041200
Ν	1.679857519	94 -1.19458	374884	-0.9082031038

TS3

M06	-2X/6-31G(d,p) Ele	ectronic E: -1834.62	29941 a.u.
M06	-2X/6-31G(d,p) Gib	obs free E: -1834.2	83733 a.u.
M06	-2X/cc-pVTZ Ele	ectronic E: -1835.0	28624 a.u.
Si	2.2643684178	-1.0253967990	1.1376351798
С	1.4653687913	-1.2382155707	2.8286954602
Н	0.3861484419	-1.0619352189	2.7841353649
Н	1.6336805431	-2.2430295265	3.2271155146
Н	1.8810557852	-0.5160925598	3.5388855666
С	4.1289988307	-1.2684131000	1.2678748842
Н	4.3762276424	-2.2888076899	1.5746386660
Н	4.6287400695	-1.0729024231	0.3144199066
Н	4.5525336514	-0.5814641167	2.0070920551
С	1.5406338452	-2.2639008419	-0.0847818979
С	2.2573126365	-2.6306960780	-1.2331563332
С	0.2363465812	-2.7576844547	0.0519058207
С	1.6963515698	-3.4514760009	-2.2075849678
Н	3.2728456122	-2.2661663052	-1.3752342027
С	-0.3361552320	-3.5737623587	-0.9206195798
Н	-0.3520055418	-2.4921450002	0.9278881267
С	0.3936479656	-3.9210817593	-2.0537826322
Н	2.2715930184	-3.7218567709	-3.0880377653
Н	-1.3529677355	-3.9336873318	-0.7969029488

Н	-0.0499969450	-4.5558143170	-2.8147387434	
С	-0.2594601754	3.1497412721	3.4212445373	
С	0.4116428322	2.4703567261	2.4096838095	
С	-0.2601279621	1.5651046984	1.5459307894	
С	-1.6572043226	1.4043553791	1.7612484888	
С	-2.3256998795	2.0961266878	2.7706791455	
С	-1.6405924550	2.9816088625	3.6094727002	
Н	0.2997286887	3.8050427010	4.0834340104	
Н	1.4794808222	2.6241838533	2.2991810552	
Н	-2.1925300588	0.6915111136	1.1430603325	
Н	-3.3875633428	1.9213688193	2.9226607087	
Н	-2.1537577439	3.4859048256	4.4215467223	
С	0.3611564706	0.9060609299	0.4120869943	
Н	-0.1949393209	0.0057920875	0.1288472170	
С	1.8585317982	0.6771861935	0.4240999460	
Н	2.2271431440	0.6534254439	-0.6121235014	
Н	2.4078189899	1.4780491267	0.9299700464	
κ	-1.4156100931	4.3381890918	0.8881365219	
С	-0.1289491757	1.7633206867	-1.2167483191	
С	-1.5922758260	1.8117235156	-1.3296922383	
С	0.4837655002	0.9372740068	-2.2659701453	
С	-2.2477532326	0.6749492523	-1.7687893345	
Н	-2.1561146172	2.6972999083	-1.0474294613	
С	-0.1937763472	-0.1848323466	-2.6700468391	
Н	1.4829673130	1.1621806411	-2.6183731610	
С	-1.5455409379	-0.3979572460	-2.3234052005	
Н	-3.3345448205	0.6439113674	-1.7251569567	
Н	0.3070384323	-0.8996194301	-3.3182199840	
Н	-2.0604374097	-1.2947481703	-2.6463782999	
С	0.4602643391	3.0681426701	-0.9827187164	
Ν	0.8165474426	4.1273755559	-0.6629333421	

VII'

M06	-2X/6-31G(d,p) El	ectronic E: -1141.9	24810 a.u.
M06	-2X/6-31G(d,p) Gi	bbs free E: -1141.	580711 a.u.
M06	-2X/cc-pVTZ El	ectronic E: -1142.2	251440 a.u.
Si	-1.5799681033	2.3557722201	1.6083736701
С	-2 9167448641	2 5258235173	0 2926860782

С	-2.9167448641	2.5258235173	0.2926860782
Н	-3.3374376321	1.5555647892	0.0096664469
Н	-3.7357076265	3.1610947682	0.6432790040
Н	-2.5018292953	2.9878175538	-0.6087533478

С	-0.7838481113	4.0296684338	1.9356953112
Н	-1.5034591548	4.6927440379	2.4257453425
Н	0.0892565206	3.9387892130	2.5895042954
Н	-0.4506441675	4.5023316173	1.0066497272
С	-2.3524199224	1.7365886350	3.2129583193
С	-1.6065512305	1.7302177742	4.4013794025
С	-3.6652597693	1.2498823580	3.2662443569
С	-2.1454781517	1.2549047014	5.5931398400
Н	-0.5848481642	2.1061707800	4.3994184052
С	-4.2136918417	0.7733526144	4.4552831866
Н	-4.2752078672	1.2438205272	2.3656984373
С	-3.4532027018	0.7748844665	5.6208693508
Н	-1.5489775915	1.2601155528	6.5002562437
Н	-5.2340831555	0.4028231324	4.4725256805
Н	-3.8776331280	0.4048173014	6.5489423565
С	2.4081385039	4.2165156992	0.0097508691
С	1.8610665194	2.9491102532	0.1764137606
С	0.8077491700	2.5088403306	-0.6341167197
С	0.3273665553	3.3699016490	-1.6215957454
С	0.8657319346	4.6451678457	-1.7870907212
С	1.9063140941	5.0731959365	-0.9690188525
Н	3.2221373859	4.5411264909	0.6502551375
Н	2.2521105348	2.2922282495	0.9493262534
Н	-0.4848356047	3.0387325915	-2.2641312721
Н	0.4703376208	5.3023347750	-2.5550889434
Н	2.3260001207	6.0661614698	-1.0926644054
С	0.1566768417	1.1584508377	-0.4084699723
Н	-0.7327021811	1.1246606889	-1.0533413214
С	-0.3386006734	1.0302868516	1.0524983994
Н	-0.8307061074	0.0586625821	1.1835819637
Н	0.5200293776	1.0156773252	1.7361647489
С	1.0204641199	-0.0363756736	-0.8113605617
С	0.4296574142	-1.3063355477	-0.8235508179
С	2.3622609086	0.0680242648	-1.1792069962
С	1.1566764784	-2.4367223117	-1.1734060324
Н	-0.6210064131	-1.4063715336	-0.5612069645
С	3.0968149796	-1.0657646408	-1.5277710635
Н	2.8416553610	1.0404365050	-1.2073714322
С	2.5012336760	-2.3209418049	-1.5231263818
Н	0.6738589070	-3.4089551524	-1.1772726091
Н	4.1399465146	-0.9600615163	-1.8092819144

KCN

 M06-2X/6-31G(d,p)
 Electronic E: -692.734024 a.u.

 M06-2X/6-31G(d,p)
 Gibbs free E: -692.748942 a.u.

 M06-2X/cc-pVTZ
 Electronic E: -692.839335 a.u.

 K
 -3.1846179302
 -2.7828783310
 2.6150123819

 C
 -1.5093394033
 -3.5925552154
 0.8281760446

 N
 -0.7503293965
 -3.9579759636
 0.0193989535

8. References

- Full citation of Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.
- [2] C. Y. Legault, CYLview, version 1.0b; Universitéde Sherbrooke: Quebec, Canada, 2009; <u>http://www.cylview.org</u>.
- [3] a) Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory. Comput. 2006, 2, 364–382; b) Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101; c) Y. Zhao, D. G. Truhlar, J. Phys. Chem. A. 2006, 110, 13126–13130; d) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241; e) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157–167.
- [4] J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027–2094.
- [5] F. Jensen, J. Chem. Theory Comput. 2015, 11, 132–138.
- [6] M. Yang, G. Li, S. Li, et al. ADCR (Version 0.8.3). 2022, https://itcc.nju.edu.cn/shuhua/index_ADCR.html.
- [7] R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 155–196.
- [8] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- [9] H. Ito, Y. Horitaa, E. Yamamotoa, Chem. Commun., 2012, 48, 8006-8008.