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S1. General Methods

Reagents were obtained from commercial suppliers and used as received unless otherwise
indicated. Column chromatography was performed on silica gel (160-200 mesh, Sorbent
Technologies, USA). Thin-layer chromatography (TLC) was performed on pre-coated silica gel
plates (0.25 mm thick) and observed under UV light. 1D Nuclear magnetic resonance (NMR)
spectra and titrations were recorded on Varian Inova (500 and 600 MHz) and Bruker Avance
Neospectrometers (500 MHz) at room temperature (298 K). ROESY NMR was recorded on
Bruker Avance Neospectrometers (500 MHz) spectrometer at room temperature (298 K).
Chemical shifts were referenced to residual solvent peaks. Samples for high resolution ESI mass
analysis were directly infused into a ThermoFisher LTQ Orbitrap XL at a rate of 8 — 12 uL/min
from THF/DCM. The HESI 1l source was kept at 50 °C with a spray voltage of 2.7 kV. Sheath and
Aux gases were set to 20 and 5 (arbitrary units) but were varied as needed to maintain a stable
spray. lon transfer tube was held at 275 °C. Tube lens and capillary voltages were varied to ensure
transmission of ions to the detector.

Experimental method for NMR titration

A solution of cyanostar macrocycle was prepared in an NMR tube sealed with a silicone septum
and an initial spectrum was taken. A solution of phosphonate salt was also prepared and added to
the solution of cyanostar macrocycle with known quantities, the spectrum was recorded after each
addition. All the spectra data were analyzed by using MestReNova software.

Experimental method for diffusion NMR

The diffusion coefficients were then obtained based on the method of pulse gradient spin echo
(PGSE) experiments. Aromatic regions were analyzed in this way to determine diffusion
coefficients using Vnmrj’s analysis. Average diffusion coefficients and errors were generated from
multiple peaks used in analyses.

Experimental method for viscosity experiments
A series of solutions of cyanostar macrocycle with 0.5 equiv. of fluorene-based diphosphonate as
tetrabutylammonium salt were prepared. Every sample was filtered with a syringe filter membrane
before collection. Each sample was measured three time and averaged for comparison. Efflux time
were collected and converted to specific viscosity.

S2. Synthesis and Characterization of Vinyl Phosphonic Acids
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Scheme S1. General synthetic scheme of vinyl phosphonic acid.
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(E)-Styrylphosphonic acid (Phenyl vinylphosphonic acid (1))
A 250 mL Schlenk flask with stir bar was oven dried. The Schlenk flask

was charged with bromobenzene (1.74 g, 11.1 mmol) and bis(tri-tert- \ ﬁ
butyl phosphine)palladium(0) (0.142 g, 0.276 mmol), followed by H—OH
OH

vacuum and Nz refill cycles (3x). Vinyl phosphonic acid (VPA) (1.44 g,
13.3 mmol) was dissolved in 10 mL of anhydrous dioxane and gently bubbled with N2 for 20 min.
Anhydrous dioxane (70 mL) and the solution of VPA was added to the Schenk flask via syringe
with stirring. N,N-Dicyclohexylmethylamine (7.10 mL, 33.3 mmol) was added to the reaction
mixture dropwise via syringe. The reaction was stirred to 80°C for 20 h. The progress was
monitored with thin layer chromatography (EtOAc/Hexanes 1:4). Upon reaction completion,
mixture was cooled to room temperature. The product was extracted with EtOAc and washed with
5% HCI (3x). Organic phase was dried over MgSO4 and filtered. Obtained organic phase was
condensed to a few mL by rotary evaporator. The product was precipitated into DCM and filtered
precipitate (white flaky crystals) was dried overnight at 45°C under vacuum. Yield of 1.79 g (88%).
'H NMR (500 MHz, DMSO-ds) § 10.25 (s, 2H), 7.59 (d, J = 6.2 Hz, 2H), 7.37 (t, J = 8.2 Hz, 3H),
7.21 (dd, J = 22.0, 17.5 Hz, 1H), 6.51 (dd, J = 17.4, 16.5 Hz, 1H). *'P NMR (202 MHz, DMSO-
ds) & 14.37. 3C NMR (126 MHz, DMSO-ds) & 143.17 (d, J = 6.5 Hz), 135.48, 135.30, 129.57,
128.92, 127.48, 121.19, 119.73.

The purity of the compound was determined from *H, *3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the *'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>99%). The doublet at 143.17 ppm in 13C NMR is
assigned to the carbon adjacent to the phosphorus, the splitting is attributed to the 3!P-C coupling.
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Figure S1. *H NMR spectrum of (E)-styrylphosphonic acid (DMSO- ds & 2.50, 500 MHz, 298 K)
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Figure S2. 3C NMR spectrum of (E)-styrylphosphonic acid (DMSO- ds, 126 MHz, 298 K)
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Figure S3. 3P NMR spectrum of (E)-styrylphosphonic acid (DMSO-dgs, 202 MHz, 298 K)
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(E)-(4-(Trifluoromethyl)styryl)phosphonic acid (CFsPhenyl vinylphosphonic acid (2))

A 250 mL Schlenk flask with stir bar was oven dried. The Schlenk g

flask was charged with 4-bromo-benzotrifluoride (5.01 g, 22.2 F%—@—\\_ﬁ
mmol) and bis(tri-tert-butyl phosphine)palladium(0) (0.284 g, F FI’—OH
0.555 mmol), followed by vacuum and N refill cycles (3x). Vinyl OH
phosphonic acid (VPA) (2.88 g, 26.6 mmol) was dissolved in 10 mL of anhydrous dioxane and
gently bubbled with N2 for 20 min. Anhydrous dioxane (150 mL) and the solution of VPA was
added to the Schenk flask via syringe with stirring. N,N-Dicyclohexylmethylamine (14.2 mL, 66.6
mmol) was added to the reaction mixture dropwise via syringe. The reaction was stirred at 80°C
for 20 h. The progress was monitored with thin layer chromatography (EtOAc/Hexanes 1:4). Upon
reaction completion, mixture was cooled to room temperature. The product was extracted with
EtOAc and washed with 5% HCI (3x). Organic phase was dried over MgSQO4 and filtered. Obtained
organic phase was condensed to a few mL by rotary evaporator. The product was precipitated into
DCM and the filtered precipitate (white flaky crystals) was dried overnight at 45°C under vacuum.
Yield of 4.71 g (84%). *H NMR (500 MHz, DMSO-ds) & 9.59 (s, 2H), 7.83 (d, J = 14.1 Hz, 2H),
7.73 (s, 2H), 7.34 — 7.19 (m, 1H), 6.76 — 6.62 (m, 1H). 3P NMR (202 MHz, DMSO-ds) & 12.99.
13C NMR (126 MHz, DMSO-ds) § 141.26 (d, J = 6.1 Hz), 139.51, 139.34, 129.42, 129.17, 128.12,
125.68, 124.75, 123.32.

The purity of the compound was determined from *H, *3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>99%). The doublet at 141.26 ppm in 3C NMR is
assigned to the carbon adjacent to phosphorus, the splitting is attributed to the 3P-C coupling.
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Figure S4. 'H NMR spectrum of (E)-(4-(trifluoromethyl)styryl)phosphonic acid (DMSO- ds &
2.50, 500 MHz, 298 K)
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Figure S5. 3C NMR spectrum of (E)-(4-(trifluoromethyl)styryl)phosphonic acid (DMSO- ds,
126 MHz, 298 K)
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Figure S6. 3P NMR spectrum of (E)-(4-(trifluoromethyl)styryl)phosphonic acid (DMSO-ds, 202
MHz, 298 K)
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(E)-(2-(Naphthalen-1-yl)vinyl)phosphonic acid (Naphthyl vinyl phosphonic acid (3))
A 250 mL Schlenk flask with stir bar was oven dried. The Schlenk flask

was charged with 1-bromonaphthalene (4 g, 19.32 mmol) and bis(tri-tert- Q \ |OF!_OH
butyl phosphine)palladium(0) (0.394 g, 0.770 mmol), followed by I
vacuum and Nz refill cycles (3%). Vinyl phosphonic acid (VPA) (2.50 g, O ©
23.2 mmol) was dissolved in 10 mL of anhydrous dioxane and gently

bubbled with N2 for 20 min. Anhydrous dioxane (175 mL) and the solution of VPA was added to
the Schenk flask via syringe with stirring. N,N-Dicyclohexylmethylamine (8.22 mL, 38.64 mmol)
was added to the reaction mixture dropwise via syringe. The reaction was stirred at 80°C for 20 h.
The progress was monitored with thin layer chromatography (EtOAc/Hexanes 1:4). Upon reaction
completion, mixture was cooled to room temperature. The product was extracted with EtOAc and
washed with 5% HCI (3x). Organic phase was dried over MgSO4 and filtered. Obtained organic
phase was condensed to a few mL by rotary evaporator. The product was precipitated into DCM
and filtered product (white crystals) was dried overnight at 45°C under vacuum. Yield of 3.499 g
(77%). *H NMR (500 MHz, DMSO-ds) & 8.08 (s, 1H), 7.93 (d, J = 6.3 Hz, 3H), 7.83 (d, J = 9.4
Hz, 1H), 7.55 (d, J = 7.2 Hz, 2H), 7.40 — 7.30 (m, 1H), 6.66 (d, J = 16.7 Hz, 1H). 3P NMR (202
MHz, DMSO-ds) § 13.73.*C NMR (126 MHz, DMSO-ds) 5 143.18 (d, J = 6.1 Hz), 133.45, 133.06
(d, J=2.2 Hz), 132.90, 128.50, 128.40, 127.71, 126.95, 126.69, 123.62, 121.64, 120.19.

The purity of the compound was determined from *H, *3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>98%). The doublets at 143.18 and 133.06 ppm in
13C NMR are assigned to the vinyl linkage carbons adjacent to phosphorus, the splitting is
attributed to the 3!P-C coupling.
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Figure S7. *H NMR spectrum of (E)-(2-(naphthalen-1-yl)vinyl)phosphonic acid (DMSO- ds &
2.50, 500 MHz, 298 K)

S10



mmmmmmmmmmmm
A-TLSE8RTRABLEER
mmmmmmmmmmmmmm 40
i fus s o ar i B Butpal g
N e ————
k35
F30
J “ 25
20
T T T T T T T T T T T T T T T T T 15
143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127
F10
Iy
ks
‘ \I
| l R
k-5

T T T T T T T T T T T T T T T T T T T T T T T
200 180 180 170 160 150 140 130 120 110 f J(.DO ) S0 80 70 60 50 40 30 20 10 0 -0 -20
Ppm

Figure S8. *C NMR spectrum of (E)-(2-(naphthalen-1-yl)vinyl)phosphonic acid (DMSO- ds,
126 MHz, 298 K)

ZéD | 2[I)0 | 1é0 I ltl)O | 5I0 I [I) ‘ —5IO | -160 I —1L50 | —2I00 I -2|50
f1 (ppm)
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(E)-(2-(Anthracen-9-yl)vinyl)phosphonic acid (Anthracene vinylphosphonic acid (4))
A 100 mL Schlenk flask with stir bar was oven dried. The Schlenk flask

was charged with 9-bromoanthracene (1.20 g, 4.7 mmol) and bis(tri-tert- O
butyl phosphine)palladium(0) (0.096 g, 0.19 mmol), followed by vacuum Q
and N2 refill cycles (3x). Vinyl phosphonic acid (VPA) (0.61 g, 5.64

mmol) was dissolved in 5 mL of anhydrous dioxane and gently bubbled Q
with N2 for 20 min. Anhydrous dioxane (35 mL) and the solution of VPA

was added to the Schenk flask via syringe with stirring. N,N-Dicyclohexylmethylamine (2.0 mL,
9.4 mmol) was added to the reaction mixture dropwise via syringe. The reaction was stirred at
80°C for 20 h. The progress was monitored with thin layer chromatography (EtOAc/Hexanes 1:4).
Upon reaction completion, mixture was cooled to room temperature. The product was extracted
with EtOAc and washed with 5% HCI (3x). Organic phase was dried over MgSO4 and filtered.
Obtained organic phase was condensed to a few mL by rotary evaporator. The product was
precipitated into DCM and filtered product (bright yellow crystals) was dried overnight at 45°C
under vacuum. Yield of 0.962 g (72%). 'H NMR (500 MHz, DMSO-dg) & 8.61 (s, 1H), 8.17 (d,
2H), 8.11 (d, 1H), 8.04 (t, 1H), 7.56 (p, 4H), 6.31 (t, 1H). 3'P NMR (202 MHz, DMSO-ds) & 11.60.
13C NMR (126 MHz, DMSO-ds) 5 139.75 (d, J = 5.4 Hz), 131.61, 131.11, 130.91 (d, J = 7.2 Hz),
130.22, 128.81, 128.38, 127.29, 126.35, 125.53, 124.93.

The purity of the compound was determined from *H, *3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>98%). The doublets at 139.75 and 130.91 ppm in
13C NMR are assigned to the vinyl linkage carbons adjacent to phosphorus, the splitting is
attributed to the 3!P-C coupling.
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Figure S12. 3P NMR spectrum of (E)-(2-(anthracen-9-yl)vinyl)phosphonic acid (DMSO-ds, 202
MHz, 298 K)
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(E)-(2-(Pyren-1-yl)vinyl)phosphonic acid (Pyrene vinylphosphonic acid (5))
A 250 mL Schlenk flask with stir bar was oven dried. The Schlenk

flask was charged with 2-bromopyrene (4 g, 14.22 mmol) and bis(tri- \ ﬂ
tert-butyl phosphine)palladium(0) (0.394 g, 0.770 mmol), followed O

by vacuum and N refill cycles (3x). Vinyl phosphonic acid (VPA) O

(2.50 g, 23.2 mmol) was dissolved in 10 mL of anhydrous dioxane Q

and gently bubbled with N2 for 20 min. Anhydrous dioxane (175 mL)

and the solution of VPA was added to the Schenk flask via syringe with stirring. N,N-
Dicyclohexylmethylamine (8.22 mL, 38.64 mmol) was added to the reaction mixture dropwise via
syringe. The reaction was stirred at 80°C for 20 h. The progress was monitored with thin layer
chromatography (EtOAc/Hexanes 1:4). Upon reaction completion, mixture was cooled to room
temperature. 500 mL of 5% HCI was added to the reaction mixture and mixed well. Solid was
filtered and washed with MeOH, followed by filtration with celite plug. Organic phase was dried
over MgSO4 and filtered. Obtained organic phase was condensed to a few mL by rotary evaporator.
The product was precipitated into DCM and filtered product (olive-green solid) was dried
overnight at 45°C under vacuum. Yield of 3.12 g (52%). *H NMR (500 MHz, DMSO-dg) & 8.54 —
7.94 (m, 10H), 6.80 (s, 1H). P NMR (202 MHz, DMSO-dg) & 12.52. *C NMR (126 MHz,
DMSO-ds) 6 139.23 (d, J = 6.6 Hz), 131.45, 130.85, 130.14, 129.12 (d, J = 7.2 Hz), 128.35, 128.18,
128.02, 127.29, 126.48, 125.89, 125.56, 125.26, 124.27, 123.98, 123.83, 122.83, 122.00.

The purity of the compound was determined from *H, *3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>97%). The doublets at 139.23 and 129.12 ppm in
13C NMR are assigned to the vinyl linkage carbons adjacent to phosphorus, the splitting is
attributed to the 3!P-C coupling.
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((E)-4-((E)-phenyldiazenyl)styryl)phosphonic acid (Azobenzene vinylphosphonic acid (6))
A 100 mL Schlenk flask with stir bar was oven dried. The
Schlenk flask was charged with 4-bromoazobenzene (1.0 g, 3.8

_N
mmol) and bis(tri-tert-butyl phosphine)palladium(0) (0.049 g, N \©\/\ 0
0.096 mmol), followed by vacuum and N2 refill cycles (3x). ,P/\OH
HO

Vinyl phosphonic acid (VPA) (0.41 g, 3.8 mmol) was dissolved
in 5 mL of anhydrous dioxane and gently bubbled with N2 for 20 min. Anhydrous dioxane (35 mL)
and the solution of VPA was added to the Schenk flask via syringe with stirring. N,N-
Dicyclohexylmethylamine (1.6 mL, 7.6 mmol) was added to the reaction mixture dropwise via
syringe. The reaction was stirred at 80°C for 20 h. The progress was monitored with thin layer
chromatography (EtOAc/Hexanes 1:4). Upon reaction completion, mixture was cooled to room
temperature. The product was extracted with EtOAc and washed with 5% HCI (3x). Organic phase
was dried over MgSOg4 and filtered. Obtained organic phase was condensed to a few mL by rotary
evaporator. The product was precipitated into DCM and filtered product (bright yellow crystals)
was dried overnight at 45°C under vacuum. Yield of 0.581 g (53%) *H NMR (500 MHz, DMSO-
de) 8 7.90 (d, J = 8.1 Hz, 4H), 7.84 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 7.2 Hz, 3H), 7.28 (t, J = 21.6,
17.5 Hz, 1H), 6.67 (t, J = 16.7 Hz, 1H). 3P NMR (202 MHz, DMSO-ds) & 13.37. 1*C NMR (126
MHz, DMSO-ds) & 152.12, 152.01, 141.94, 141.69 (d, J = 9.0 Hz), 138.34 (d, J = 22.0 Hz), 131.85,
129.55 (d, J = 18.2 Hz), 128.61 (d, J = 23.1 Hz), 127.99 (d, J = 17.0 Hz), 123.40 — 122.90 (m),
122.76, 122.63.

The purity of the compound was determined from tH, *C, and 3P NMR. Integration of the H
NMR in addition to the single peak in the *'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>98%). Due to the solubility limitations, we were
unable to saturate the NMR sample to obtain high intensity signal spectrum. In addition, *3C NMR
was collected sometime after the sample was prepared, which could lead to the presence of E and
Z azobenzene isomers that were not detected while collecting *H and *'P NMR.
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Figure S17. 3C NMR spectrum of ((E)-4-((E)-phenyldiazenyl)styryl)phosphonic acid (DMSO-
de, 126 MHz, 298 K)
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Figure S18. 3P NMR spectrum of ((E)-4-((E)-phenyldiazenyl)styryl)phosphonic acid (DMSO-

de, 202 MHz, 298 K)
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((E)-4-((E)-styryl)styryl)phosphonic acid (Stilbene vinylphosphonic acid (7))

A 100 mL Schlenk flask with stir bar was oven dried. The

Schlenk flask was charged with 4-bromostilbene (0.80 g,

3.1 mmol) and bis(tri-tert-butyl phosphine)palladium(0) Z O o
(0.040 g, 0.078 mmol), followed by vacuum and N refill = /P/i
cycles (3x). Vinyl phosphonic acid (VPA) (0.40 g, 3.7 HO

mmol) was dissolved in 5 mL of anhydrous acetonitrile and gently bubbled with N2 for 20 min.
Anhydrous acetonitrile (35 mL) and the solution of VPA was added to the Schenk flask via syringe
with stirring. N,N-Dicyclohexylmethylamine (1.3 mL, 6.2 mmol) was added to the reaction
mixture dropwise via syringe. The reaction was stirred at 70°C for 20 h. The progress was
monitored with thin layer chromatography (EtOAc/Hexanes 1:4). Upon reaction completion,
mixture was cooled to room temperature. The product was extracted with EtOAc and washed with
5% HCI (3x). Organic phase was dried over MgSO4 and filtered. Obtained organic phase was
condensed to a few mL by rotary evaporator. The product was precipitated into DCM and filtered
product (bright white crystals) was dried overnight at 45°C under vacuum. Yield of 0.615 g (69%)
'H NMR (500 MHz, DMSO-dg) & 7.62 (s, 6H), 7.39 (s, 2H), 7.29 (s, 3H), 7.18 (s, 1H), 6.51 (s,
1H). 3P NMR (202 MHz, DMSO-ds) & 14.01. *3C NMR (126 MHz, DMSO-ds) § 142.41, 138.05,
136.82, 134.55 (d, J = 21.5 Hz), 129.19, 128.61, 127.70, 126.79, 126.51, 120.94, 119.48.

The purity of the compound was determined from *H, *3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>98%). The doublet at 120.58 ppm in 3C NMR is
assigned to the s-carbon, the splitting is attributed to the *!P-C coupling.

OH
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Figure S21. 3P NMR spectrum of ((E)-4-((E)-styryl)styryl)phosphonic acid (DMSO-ds, 202
MHz, 298 K)
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(E)-(2-(9-(2-ethylhexyl)-9H-carbazol-2-yl)vinyl)phosphonic acid (2-ethylhexyl carbazole
vinylphosphonic acid (8))

A 250 mL Schlenk flask with stir bar was oven dried. The

Schlenk flask was charged with 2-bromo-9-(2-ethylhexyl)-9H-

carbazole (401 g, 11.2 mmol) and bis(tri-tert-butyl

phosphine)palladium(0) (0.286 g, 0.560 mmol), followed by

vacuum and Nz refill cycles (3x). Vinyl phosphonic acid (VPA) N o
(1.45 g, 13.4 mmol) was dissolved in 10 mL of anhydrous \Ig,,oH
dioxane and gently bubbled with N, for 20 min. Anhydrous bH
dioxane (175 mL) and the solution of VPA was added to the

Schenk flask via syringe with stirring. N,N-Dicyclohexylmethylamine (7.15 mL, 33.6 mmol) was
added to the reaction mixture dropwise via syringe. The reaction was stirred at 80°C for 20 h. The
progress was monitored with thin layer chromatography (EtOAc/Hexanes 1:4). Upon reaction
completion, mixture was cooled to room temperature. 500 mL of 5% HCI was added to the reaction
mixture and mixed well. Solid was filtered and washed with MeOH, followed by filtration with
celite plug. Organic phase was dried over MgSO4 and filtered. Obtained organic phase was
condensed to a few mL by rotary evaporator. The product was precipitated into DCM and filtered
product (pale blue solid) was dried overnight at 45°C under vacuum. Yield of 2.34 g (54%) H
NMR (500 MHz, DMSO-de) & 8.14 (s, 2H), 7.84 (s, 1H), 7.57 — 7.32 (m, 4H), 7.20 (s, 1H), 6.62
(s, 1H), 4.29 (s, 2H), 1.23 (d, J = 76.8 Hz, 8H), 0.85 (s, 3H), 0.77 (s, 3H). 3P NMR (202 MHz,
DMSO-ds) § 14.51. 3C NMR (126 MHz, DMSO-dg) & 144.18 (d, J = 7.9 Hz), 141.12, 140.76,
133.00 (d, J =23.2 Hz), 126.19 (d, J = 17.9 Hz), 123.02, 121.79, 121.36, 120.51, 119.85, 119.12,
118.17 (d, J = 18.8 Hz), 109.60, 108.87 (d, J = 22.2 Hz), 46.44, 38.59, 30.08, 27.98, 23.62, 22.56,
13.90, 10.61.

The purity of the compound was determined from *H, 3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>96%). The doublet at 144.18 ppm in 13C NMR is
assigned to the carbon adjacent to phosphorus, the splitting is attributed to the 3P-C coupling.
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Figure S23. 3C NMR spectrum of (E)-(2-(9-(2-ethylhexyl)-9H-carbazol-2-yl)vinyl)phosphonic
acid (DMSO- ds, 126 MHz, 298 K)
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Figure S24. 3P NMR spectrum of (E)-(2-(9-(2-ethylhexyl)-9H-carbazol-2-yl)vinyl)phosphonic
acid (DMSO-dg, 202 MHz, 298 K)
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(E)-(2-(9,9-dimethyl-9H-fluoren-2-yl)vinyl)phosphonic acid (Dimethyl fluorene
vinylphosphonic acid (9))

A 250 mL Schlenk flask with stir bar was oven dried. The

Schlenk flask was charged with 2-bromo-9,9-dimethyl-9H- . A
fluorene (4 g, 19.32 mmol) and bis(tri-tert-butyl Q O AN F{’OH
phosphine)palladium(0) (0.394 g, 0.770 mmol), followed by OH
vacuum and N refill cycles (3x). Vinyl phosphonic acid (VPA) (2.50 g, 23.2 mmol) was dissolved
in 10 mL of anhydrous dioxane and gently bubbled with N2 for 20 min. Anhydrous dioxane (175
mL) and the solution of VPA was added to the Schenk flask via syringe with stirring. N,N-
Dicyclohexylmethylamine (8.22 mL, 38.64 mmol) was added to the reaction mixture dropwise via
syringe. The reaction was stirred at 80°C for 20 h. The progress was monitored with thin layer
chromatography (EtOAc/Hexanes 1:4). Upon reaction completion, mixture was cooled to room
temperature. 500 mL of 5% HCI was added to the reaction mixture and mixed well. The product
was extracted with EtOAc and washed with 5% HCI (3x). Organic phase was dried over MgSQO4
and filtered. Obtained organic phase was condensed to a few mL by rotary evaporator. The product
was precipitated into DCM and filtered product (light grey solid) was dried overnight at 45°C
under vacuum. Yield of 3.42 g (59%). *H NMR (500 MHz, DMSO-ds) & 7.88 (s, 2H), 7.86 — 7.78
(m, 2H), 7.54 (s, 1H), 7.39 — 7.30 (m, 2H), 7.26 (dd, 1H), 6.59 (t, 1H), 1.45 (s, 16H). 3P NMR
(202 MHz, DMSO-ds) & 14.16. 13C NMR (126 MHz, DMSO-ds) & 153.94 (d, J = 9.6 Hz), 143.47,
139.99, 138.00, 134.73, 134.55, 127.85, 127.38, 127.19, 122.89, 121.47, 120.52, 120.46, 119.03,
46.51, 26.74.

The purity of the compound was determined from *H, *3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>98%). The doublet at 153.94 ppm in *3C NMR is
assigned to the carbon adjacent to phosphorus, the splitting is attributed to the 3P-C coupling.
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Figure S25. 'H NMR spectrum of (E)-(2-(9,9-dimethyl-9H-fluoren-2-yl)vinyl)phosphonic acid
(DMSO- ds & 2.50, 500 MHz, 298 K)
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Figure S27. 3P NMR spectrum of (E)-(2-(9,9-dimethyl-9H-fluoren-2-yl)vinyl)phosphonic acid
(DMSO-ds, 202 MHz, 298 K)
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((1E,1'E)-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl))bis(phosphonic acid)
(Dihexyl fluorene bis(vinylphosphonic acid) (10))

A 100 mL Schlenk flask with stir bar was oven
dried. The Schlenk flask was charged with 2,7-
dibromo-9,9-dihexyl-9H-fluorene (2.80 g, 5.68
mmol) and bis(tri-tert-butyl
phosphine)palladium(0) (0.116 g, 0.23 mmol),
followed by vacuum and N refill cycles (3x%).
Vinyl phosphonic acid (VPA) (1.35 g, 12.5 mmol) was dissolved in 5 mL of anhydrous dioxane
and gently bubbled with N2 for 20 min. Anhydrous dioxane (55 mL) and the solution of VPA was
added to the Schenk flask via syringe with stirring. N,N-Dicyclohexylmethylamine (3.62 mL,
17.04 mmol) was added to the reaction mixture dropwise via syringe. The reaction was stirred at
80°C for 20 h. The progress was monitored with thin layer chromatography (EtOAc/Hexanes 1:4).
Upon reaction completion, mixture was cooled to room temperature. The product was extracted
with EtOAc and washed with 5% HCI (3x). Organic phase was dried over MgSO4 and filtered.
Obtained organic phase was condensed to a few mL by rotary evaporator. The product was
precipitated into DCM and filtered product (light grey solid) was dried overnight at 45°C under
vacuum. Yield of 1.74 g (53%). *H NMR (500 MHz, DMSO-ds) & 7.80 (s, 2H), 7.74 (s, 2H), 7.55
(s, 2H), 7.21 (s, 2H), 6.58 (s, 2H), 2.04 (s, 4H), 0.97 (s, 12H), 0.70 (s, 6H), 0.45 (s, 4H). 3P NMR
(202 MHz, DMSO-dg) & 14.19. 3C NMR (126 MHz, DMSO-ds) & 151.43, 143.49, 141.44, 134.91,
134.73, 127.14, 121.60, 120.58 (d, J = 16.2 Hz), 119.19, 54.81, 39.24, 30.93, 28.98, 23.45, 21.99,
13.83.

The purity of the compound was determined from H, *C, and 3P NMR. Integration of the H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>98%). The doublet at 120.58 ppm in *3C NMR is
assigned to the s-carbon, the splitting is attributed to the 3'P-C coupling.

S30



r2.6
BB R 3 5R e 3
[N -] ~ S S
N/ | [ F2.4
r r2.2
rr/ ( ’ { F2.0
Jrjl / f J _ J
r1.8
ri.e
1.4
| L
ll ” 1 f ri.2
|
Il ] \
I |; Il |
o | "‘ ,‘J“ i [ !I 1.0
_/ SN A G AR UL Y AV AN
T —_
8 8 g 2 8 o8
79 78 7.7 76 75 7.4 7.3 7.2 7.1 7.0 69 68 67 6 6.5 [
ro.6
| |
ro.4
! ]
| ! 'N 0.2
- I
s, by o Al
cone 9 =) oo Loz
8858 8 8 88
T T T T \NNNN o T T T = va T T T
12 11 10 9 8 7 6 4 3 2 1 0 -1 -2

5
f1 (ppm)
Figure S28. 'H NMR spectrum of ((1E,1'E)-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-
diyl))bis(phosphonic acid) (DMSO- dg 6 2.50, 500 MHz, 298 K)
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Figure S29. 13C NMR spectrum of ((1E,1'E)-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-
diyl))bis(phosphonic acid) (DMSO- de, 126 MHz, 298 K)
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Figure S30. *'P NMR spectrum of ((1E,1'E)-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-
diyl))bis(phosphonic acid) (DMSO-ds, 202 MHz, 298 K)
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( (1E,1'E)-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl))bis(phosphonic acid)
(Dimethyl fluorene bis(vinylphosphonic acid) (11))
A 100 mL Schlenk flask with stir bar was oven

dried. The Schlenk flask was charged with 2,7-
dibromo-9,9-dimethyl-9H-fluorene (2.00 g, Ho\é’
5.68 mmol) and bis(tri-tert-butyl |,
phosphine)palladium(0) (0.116 g, 0.23 mmol),
followed by vacuum and N2 refill cycles (3x). Vinyl phosphonic acid (VPA) (1.35 g, 12.5 mmol)
was dissolved in 5 mL of anhydrous dioxane and gently bubbled with N2 for 20 min. Anhydrous
dioxane (55 mL) and the solution of VPA was added to the Schenk flask via syringe with stirring.
N,N-Dicyclohexylmethylamine (3.62 mL, 17.04 mmol) was added to the reaction mixture
dropwise via syringe. The reaction was stirred at 80°C for 20 h. The progress was monitored with
thin layer chromatography (EtOAc/Hexanes 1:4). Upon reaction completion, mixture was cooled
to room temperature. The product was extracted with EtOAc and washed with 5% HCI (3x%).
Organic phase was dried over MgSO4 and filtered. Obtained organic phase was condensed to a
few mL by rotary evaporator. The product was precipitated into DCM and filtered product (light
grey solid) was dried overnight at 45°C under vacuum. Yield of 1.43 g (62%). *H NMR (500 MHz,
DMSO-ds) & 7.89 (d, 1H), 7.75 (s, 2H), 7.61 (d, 1H), 7.26 (dd, 1H), 6.53 (t, 1H). *'P NMR (202
MHz, DMSO-ds) & 14.33.*C NMR (126 MHz, DMSO-ds) & 154.57, 143.25 (d, J = 6.0 Hz), 139.33,
135.10, 134.93, 127.46, 121.48, 120.84 (d, J = 6.1 Hz), 119.41, 46.55, 26.60.

The purity of the compound was determined from tH, *C, and 3P NMR. Integration of the H
NMR in addition to the single peak in the *'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>97%). The doublets at 143.25 and 120.84 ppm in
13C NMR are assigned to the vinyl linkage carbons adjacent to phosphorus, the splitting is
attributed to the *!P-C coupling.

S33



BERY 3 [ 4.5
N N o
\ A I
[ F4.0
f [ -
J
3.0
“ 2.5
H Il ' ”
| [ | |
| H‘ ||| ' ” ‘ N ' | 2.0
;‘! 1 ,‘lu'\ | i I | .H. |
I N UL VAV
— L . a— L
& 5 g g LS
79 7.8 7.7 76 7j5 74 7.3 7j2 7.1 7.0 6.9 6.8 6.7 6.6 6.5
r1.0
lk\l 0.5
UL—“ L 0.0
e T T
538 8 ]
e e o~ (1=
12 11 10 9 8 7 6 4 3 2 1 ] -1 -2

5
1 (ppm)

Figure S31. *H NMR spectrum of ((1E,1'E)-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-
diyl))bis(phosphonic acid) (DMSO- dg 6 2.50, 500 MHz, 298 K)
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Figure S32. 13C NMR spectrum of ((1E,1'E)-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-
diyl))bis(phosphonic acid) (DMSO- dg, 126 MHz, 298 K)
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Figure S33. 3P NMR spectrum of ( (1E,1'E)-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-
diyl))bis(phosphonic acid) (DMSO-ds, 202 MHz, 298 K)
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((LE,1'E)-(9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl))bis(phosphonic
acid) (Di(2-ethylhexyl) fluorene bis(vinylphosphonic acid) (12))

A 100 mL Schlenk flask with stir bar was oven
dried. The Schlenk flask was charged with 2,7-
dibromo-9,9-bis(2-ethylhexyl)-9H-fluorene
(1.00 g, 1.89 mmol) and bis(tri-tert-butyl
phosphine)palladium(0) (0.024 g, 0.047 mmol),
followed by vacuum and N refill cycles (3x%).
Vinyl phosphonic acid (VPA) (0.51 g, 4.73 mmol) was dissolved in 5 mL of anhydrous dioxane
and gently bubbled with N2 for 20 min. Anhydrous dioxane (55 mL) and the solution of VPA was
added to the Schenk flask via syringe with stirring. N,N-Dicyclohexylmethylamine (2.01 mL, 9.45
mmol) was added to the reaction mixture dropwise via syringe. The reaction was stirred at 80°C
for 20 h. The progress was monitored with thin layer chromatography (EtOAc/Hexanes 1:4). Upon
reaction completion, mixture was cooled to room temperature. The product was extracted with
EtOAc and washed with 5% HCI (3x). Organic phase was dried over MgSO4 and filtered. Obtained
organic phase was condensed to a few mL by rotary evaporator. The product was precipitated into
DCM and filtered product (light grey solid) was dried overnight at 45°C under vacuum. Yield of
0.950 g (66%). *H NMR (500 MHz, DMSO-ds) & 7.82 (s, 3H), 7.57 (dd, 2H), 7.26 (dd, 1H), 6.54
(t, 10H), 2.07 (s, 8H), 0.89 — 0.57 (m, 27H), 0.48 — 0.42 (m, 7H), 0.36 (hept, 2H). 3P NMR (202
MHz, DMSO-ds) & 14.48. C NMR (126 MHz, DMSO-ds) & 151.24, 143.52 (d, J = 7.4 Hz),
141.60, 134.26 (dt, J = 23.6, 12.0 Hz), 126.84 (t, J = 10.4 Hz), 123.02 (t, J = 17.0 Hz), 120.38 (d,
J=13.4 Hz), 118.97, 54.55, 43.24, 34.12, 33.09, 33.04, 27.44, 26.56, 22.09, 13.86, 10.25, 10.22.

The purity of the compound was determined from *H, 3C, and 3P NMR. Integration of the 'H
NMR in addition to the single peak in the 3'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>98%). The doublet at 143.52 ppm in *3C NMR is
assigned to the carbon adjacent to phosphorus, the splitting is attributed to the 3'P-C coupling. The
presence of two 2-ethylhexyl chains increased Ar-VPA solubility and resulted in a saturated NMR
sample, thus, the splitting of aromatic carbons is attributed to the formation of polymeric species
in the solution.
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Figure S34. 'H NMR spectrum of ((1E,1'E)-(9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-
diyl)bis(ethene-2,1-diyl))bis(phosphonic acid) (DMSO-ds 6 2.50, 500 MHz, 298 K)
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Figure S35. 3C NMR spectrum of ((1E,1'E)-(9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-
diyl)bis(ethene-2,1-diyl))bis(phosphonic acid) (DMSO- ds, 126 MHz, 298 K)
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Figure S36. 3P NMR spectrum of ((1E,1'E)-(9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-
diyl)bis(ethene-2,1-diyl))bis(phosphonic acid) (DMSO-ds, 202 MHz, 298 K)
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((1LE,1'E)-(9-(2-ethylhexyl)-9H-carbazole-2,7-diyl)bis(ethene-2,1-diyl))bis(phosphonic acid)
(2-ethylhexyl carbazole bis(vinylphosphonic acid) (13))

A 100 mL Schlenk flask with stir bar was oven dried.

The Schlenk flask was charged with 2,7-dibromo-9-

(2-ethylhexyl)-9H-carbazole (1.0 g, 2.4 mmol) and

bis(tri-tert-butyl phosphine)palladium(0) (0.049 g,

0.096 mmol), followed by vacuum and N refill N

cycles (3x). Vinyl phosphonic acid (VPA) (0.57 g, Ho\é’)fyOH
5.3 mmol) was dissolved in 15 mL of anhydrous .4 }gH
dioxane and gently bubbled with N2> for 20 min.

Anhydrous dioxane (35 mL) and the solution of VPA was added to the Schenk flask via syringe
with stirring. N,N-Dicyclohexylmethylamine (2.0 mL, 9.5 mmol) was added to the reaction
mixture dropwise via syringe. The reaction was stirred at 70°C for 20 h. The progress was
monitored with thin layer chromatography (EtOAc/Hexanes 1:4). Upon reaction completion,
mixture was cooled to room temperature. Product was extracted with EtOAc and washed with 5%
HCI (3x). Organic phase was dried over MgSO4 and filtered. Obtained organic phase was
condensed to a few mL by rotary evaporator. The product was precipitated into DCM and filtered
product (bright yellow crystals) was dried overnight at 45°C under vacuum. Yield of 0.714 g (61%)
'H NMR (500 MHz, DMSO-ds) & 8.08 (d, 2H), 7.69 (s, 2H), 7.45 (s, 2H), 7.36 (s, 2H), 6.62 (s,
2H), 4.18 (s, 2H), 1.96 (s, 1H), 1.20 (d, J = 74.6 Hz, 8H), 0.78 (d, J = 24.3 Hz, 6H). *1P NMR (202
MHz, DMSO-ds) & 14.62. C NMR (126 MHz, DMSO-ds) & 144.04 (d, J = 8.6 Hz), 141.37,
133.51, 133.33, 122.69, 120.73, 118.27 (d, J = 18.6 Hz), 109.21, 46.26, 38.44, 29.96, 27.84, 23.55,
22.58, 13.92, 10.81.

The purity of the compound was determined from H, *C, and 3P NMR. Integration of the H
NMR in addition to the single peak in the *'P NMR and the absence of the signal attributed to the
starting VPA indicated high compound purity (>96%). The doublets at 144.04 and 118.27 ppm in
13C NMR are assigned to the vinyl linkage carbons adjacent to phosphorus, the splitting is
attributed to the *!P-C coupling.
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Figure S37. *H NMR spectrum of ((1E,1'E)-(9-(2-ethylhexyl)-9H-carbazole-2,7-diyl)bis(ethene-
2,1-diyl))bis(phosphonic acid) (DMSO-ds 6 2.50, 500 MHz, 298 K)
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Figure S38. *C NMR spectrum of ((1E,1'E)-(9-(2-ethylhexyl)-9H-carbazole-2,7-diyl)bis(ethene-
2,1-diyl))bis(phosphonic acid) (DMSO- ds, 126 MHz, 298 K)
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Figure S39. 3P NMR spectrum of ((1E,1'E)-(9-(2-ethylhexyl)-9H-carbazole-2,7-diyl)bis(ethene-

2,1-diyl))bis(phosphonic acid) (DMSO-ds, 202 MHz, 298 K)
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S3. Standard Procedure of Converting Phosphonic Acid to Tetrabutylammonium
Phosphonate

Small scale tetrabutylammonium phosphonate preparation: (< 10 mg phosphonic acid)*
The phosphonate tetrabutylammonium salt was formed by titrating the corresponding acid with
aliquots of tetrabutylammonium hydroxide acetonitrile solution (tetrabutylammonium hydroxide
30-hydrate dissolved in deuterium acetonitrile) until deprotonation was complete as verified by *H
NMR spectroscopy based on the integration of a-proton of tetrabutylammonium and one proton
of vinyl group from phosphonic acid. Then the solvent was evaporated, and the resulting salt was
dried under vacuum for at least two days at room temperature before using for complexation.

Large scale tetrabutylammonium phosphonate preparation: (> 100 mg
tetrabutylammonium hydroxide 30-hydrate)? 2 The phosphonic acid was weighted out and
dissolved in around 5 mL MeOH. The amount of tetrabutylammonium hydroxide 30-hydrate
needed to deprotonate one proton of the acid was weighted out accurately and dissolved in 2 mL
MeOH. Two solutions were mixed and stirred for 15 min. Then the solvent was evaporated and
the resulting salt was dried under vacuum for at least two days at room temperature before using
for complexation.
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Figure S40. 'H NMR spectrum of tetrabutylammonium salt of vinylphosphonate. (CD3OD-
CD3CN, 600 MHz, 298 K)
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Figure S41. 3P NMR spectrum of tetrabutylammonium salt of vinylphosphonate, §=14.15 ppm.
(CD30D-CD3CN, 202 MHz, 298 K)
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Figure S42. HRMS spectrum of tetrabutylammonium salt of vinylphosphonate.

S43



MeCN 5

\/\/N

e |

1.00 8.3 11.81

75 70 65 60 55 50 45 40 35 30 25 20 15 1.0
Chemical Shift (ppm)

Figure S43. 'H NMR spectrum of tetrabutylammonium salt of phenyl vinylphosphonate.
(CD30D-CD3CN, 600 MHz, 298 K)
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Figure S44. 3'P NMR spectrum of tetrabutylammonium salt of phenyl vinylphosphonate, 5=11.55
ppm. (CD30D-CD3CN, 202 MHz, 298 K)
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Figure S45. HRMS spectrum of tetrabutylammonium salt of phenyl vinylphosphonate.
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Figure S46. 'H NMR spectrum of tetrabutylammonium salt of 4-trifluoromethylbenzyl

vinylphosphonate. (CD30D-CDsCN, 600 MHz, 298 K)
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Figure S47. 3P NMR spectrum of tetrabutylammonium salt of 4-trifluoromethylbenzyl
vinylphosphonate, =10.28 ppm. (CD3OD-CD3CN, 202 MHz, 298 K)
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Figure S48. HRMS spectrum of tetrabutylammonium salt of 4-trifluoromethylbenzyl
vinylphosphonate.
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Figure S49. 'H NMR spectrum of tetrabutylammonium salt of naphthyl vinylphosphonate.
(CD30D-CD3CN, 600 MHz, 298 K)
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Figure S50. 3P NMR spectrum of tetrabutylammonium salt of naphthyl vinylphosphonate,
0=11.44 ppm. (CD30D-CD3CN, 202 MHz, 298 K)
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Figure S51. HRMS spectrum of tetrabutylammonium salt of naphthyl vinylphosphonate.
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Figure S52. TH NMR spectrum of tetrabutylammonium salt of anthracene vinylphosphonate.
(CD30D-CD3CN, 600 MHz, 298 K)
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Figure S53. 3P NMR spectrum of tetrabutylammonium salt of anthracene vinylphosphonate,
6=9.37 ppm. (CD30D-CD3CN, 202 MHz, 298 K)
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Figure S54. HRMS spectrum of tetrabutylammonium salt of anthracene vinylphosphonate.
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Figure S55. 'H NMR spectrum of tetrabutylammonium salt of pyrene vinylphosphonate.
(CDsOD-CD3sCN, 600 MHz, 298 K)
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Figure S56. 3'P NMR spectrum of tetrabutylammonium salt of pyrene vinylphosphonate, 5=11.48
ppm. (CD30D-CD3CN, 202 MHz, 298 K)
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Figure S57. HRMS spectrum of tetrabutylammonium salt of pyrene vinylphosphonate.
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Figure S58. 'H NMR spectrum of tetrabutylammonium salt of dimethyl fluorene
vinylphosphonate. (CD3:0D-CDsCN, 600 MHz, 298 K)

140 110 80 50 20 -10 -40 -70 -100 -130 -160 -190 -220 -2!
Chemical Shift (ppm)

Figure S59. 3P NMR spectrum of tetrabutylammonium salt of dimethyl fluorene
vinylphosphonate, 6=11.86 ppm. (CD30OD-CD3CN, 202 MHz, 298 K)
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Figure S60. HRMS spectrum of tetrabutylammonium salt of dimethyl fluorene vinylphosphonate.
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Figure S61. 'H NMR spectrum of tetrabutylammonium salt of dimethyl fluorene
bis(vinylphosphonate). (CD3:OD-CDsCN, 600 MHz, 298 K)
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Figure S62. 5P NMR spectrum of tetrabutylammonium salt of dimethyl fluorene
bis(vinylphosphonate), 6=11.87 ppm. (CD30OD-CD3zCN, 202 MHz, 298 K)
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Figure S63. HRMS spectrum of tetrabutylammonium salt of dimethyl fluorene
bis(vinylphosphonate).

S57



o R
_\_\ ANO MeCN

CgH13, CsHi3

i ) i
TO—p h—0
.~ Q O \a \

OH

HO

N0

\/\/ \_\_
H,0 MeOH

3 JL JUJL

o
.00 8.41

75 70 65 60 55 50 45 40 35 30 25 20 15 10 05
Chemical Shift (ppm)

Figure S64. 'H NMR spectrum of tetrabutylammonium salt of dihexyl fluorene
bis(vinylphosphonate). (CD3:0OD-CDsCN, 600 MHz, 298 K)
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Figure S65. 3P NMR spectrum of tetrabutylammonium salt of dihexyl fluorene
bis(vinylphosphonate), 6=11.95 ppm. (CD30OD-CD3zCN, 202 MHz, 298 K)
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Figure S66. HRMS spectrum of tetrabutylammonium salt of dihexyl fluorene
bis(vinylphosphonate).
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Figure S67. 'H NMR spectrum of tetrabutylammonium salt of di(2-ethylhexyl) fluorene
bis(vinylphosphonate). (CD30D, 600 MHz, 298 K)
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Figure S68. *'P NMR spectrum of tetrabutylammonium salt of di(2-ethylhexyl) fluorene
bis(vinylphosphonate), 6=11.85 ppm. (CD30OD-CD3zCN, 202 MHz, 298 K)
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Figure S69. HRMS spectrum of tetrabutylammonium salt of di(2-ethylhexyl) fluorene

bis(vinylphosphonate).
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Figure S70. *H NMR spectrum of tetrabutylammonium salt of 2-ethylhexyl carbazole
vinylphosphonate. (CD3:0D-CDsCN, 600 MHz, 298 K)
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Figure S71. 3P NMR spectrum of tetrabutylammonium salt of 2-ethylhexyl carbazole
vinylphosphonate, =12.00 ppm. (CD3OD-CD3CN, 202 MHz, 298 K)
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Figure S72. HRMS spectrum of tetrabutylammonium salt of 2-ethylhexyl carbazole
vinylphosphonate.
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Figure S73. 'H NMR spectrum of tetrabutylammonium salt of 2-ethylhexyl carbazole

bis(vinylphosphonate). (CD3:OD-CDsCN, 600 MHz, 298 K)
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Figure S74. 3P NMR spectrum of tetrabutylammonium salt of 2-ethylhexyl carbazole
bis(vinylphosphonate), 6=12.25 ppm. (CD3OD-CD3zCN, 202 MHz, 298 K)

S64



244 5737

805 731.4305
803 CsoHes Og N2 P2
-2.5173 ppm

= 490.1545
405 CoaH27r 0P
304 -1.2629 ppm

Relative Abundance
[8)]
T
|

e 777.4357

Data from sample
(TBA)(C24H29NOBP2)-

(10981504 1464.8713 1706.1479 1951.7278

L ol
731.4323
CaoHes O N2 P2
0.0002 ppm

Theoretical for
(TBA)(C24H29NOBP2)-

I
200 400 800 800

T T T T T T T [ T T T [ T T T [ T T T ]
1000 1200 1400 1600 1800 2000

m/z

Figure S75. HRMS spectrum of tetrabutylammonium salt of 2-ethylhexyl carbazole

bis(vinylphosphonate).
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Figure S76. 'H NMR spectrum of tetrabutylammonium salt of azobenzene vinylphosphonate.
(CD30OD-CD3CN, 600 MHz, 298 K)
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Figure S77. 3P NMR spectrum of tetrabutylammonium salt of azobenzene vinylphosphonate,
6=10.82 ppm. (CD30D-CD3CN, 202 MHz, 298 K)
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Figure S78. HRMS spectrum of tetrabutylammonium salt of azobenzene vinylphosphonate.
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Figure S79. 'H NMR spectrum of tetrabutylammonium salt of stilbene vinylphosphonate.
(CD30D-CD3CN, 600 MHz, 298 K)
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Figure S80. 3P NMR spectrum of tetrabutylammonium salt of stilbene vinylphosphonate,
0=12.17 ppm. (CD30D-CD3CN, 202 MHz, 298 K)
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Figure S81. HRMS spectrum of tetrabutylammonium salt of stilbene vinylphosphonate.
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S4. IH NMR Spectra of Titration Experiments
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Figure S82. 'H NMR titration of phenyl vinylphosphonate into 1 mM cyanostar solution. (CD2Cly,

600 MHz, 298 K) Peaks marked with blue asterisks are complexed anions and black asterisks mark

excess anions.
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Figure S83. Proton intensity versus equivalents of complexed cyanostar in the titration of phenyl
vinylphosphonate into 1 mM cyanostar solution.
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Figure S84. a-Proton shift of TBA™ versus equivalents of anion in the titration of phenyl
vinylphosphonate into 1 mM cyanostar solution.
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Figure S85. *H NMR titration of pheny!l vinylphosphonate into 5 mM cyanostar solution. (2:1 v/v
CD2Cl»:CDsCN, 600 MHz, 298 K)
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Figure S86. *H NMR titration of 4-trifluoromethylbenzyl vinylphosphonate into 1 mM cyanostar
solution. (CD2Cl2, 600 MHz, 298 K) Peaks marked with asterisk are excess anions.
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Figure S87. 'H NMR signal intensity comparison of 4-trifluoromethylbenzyl vinylphosphonate
and cyanostar. (CD2Cl2, 600 MHz, 298 K)
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The assignment of peaks g and g’ was based on the J-coupling constant comparison of peak 1
and 2, 1 and 3. The J-coupling constant of peak 1 and 2 is 17.43 Hz, which is identical to the
coupling constant of proton g caused by the splitting of proton f in the acid format. Similarly, the
J-coupling constant of peak 3 and 4 is 17.78 Hz. Therefore, 1 and 2 are in one set, 3 and 4 are in
another set, considering the integration ratio between two sets, they were assigned to be g and g’.
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Figure S88. ROESY NMR spectra of 3.5 mM cyanostar solution with 0.5 equiv. 4-
trifluoromethylbenzyl vinylphosphonate. (CD2Cl2, 500 MHz, 298 K) Dimer model was modified
from crystal structure.
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Figure S89. 'H NMR titration of naphthyl vinylphosphonate into 1 mM cyanostar solution.
(CD2Cly, 600 MHz, 298 K) Peaks marked with asterisk are complexed anions.
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Figure S90. 'H NMR titration of anthracene vinylphosphonate into 1 mM cyanostar solution.
(CD2Cl2, 600 MHz, 298 K) Peaks marked with asterisk are complexed anions.
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Figure S91. 'H NMR titration of pyrene vinylphosphonate into 1 mM cyanostar solution. (CD2Cly,
600 MHz, 298 K) Peaks marked with asterisk are complexed anions.
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Figure S92. *H NMR titration of vinylphosphonate into 1 mM cyanostar solution. (CD2Clz, 600
MHz, 298 K) Peaks marked with asterisk are excess anions.
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Figure S93. Proton intensity versus equivalents of complexed cyanostar in the titration of
vinylphosphonate into 1 mM cyanostar solution. Data points start at 0.6 equivalents, as before this
equivalent, free cyanostar and complexed cyanostar resonances are in intermediate exchange.
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Figure S94. a-Proton shift of TBA™ versus equivalents of anion in the titration of
vinylphosphonate into 1 mM cyanostar solution.
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Figure S95. 'H NMR titration of 2-ethylhexyl carbazole vinylphosphonate into 1 mM cyanostar
solution. (CD2Cl2, 600 MHz, 298 K) Peaks marked with asterisk are complexed anions.
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Figure S96. *H NMR titration of azobenzene vinylphosphonate into 1 mM cyanostar solution.
(CD2Cl2, 600 MHz, 298 K) Peaks marked with asterisk are complexed anions.
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Figure S97. 'H NMR titration of stilbene vinylphosphonate into 1 mM cyanostar solution. (CD2Cly,
600 MHz, 298 K) Peaks marked with asterisk are complexed anions.

S5. HRMS of Versatile Cyanostar-anion Dimers

Samples for high resolution ESI mass analysis were directly infused into a ThermoFisher LTQ
Orbitrap XL at a rate of 8 — 12 uL/min from THF/DCM. The HESI Il source was kept at 50 °C
with a spray voltage of 2.7 kV. Sheath and Aux gases were set to 20 and 5 (arbitrary units) but
were varied as needed to maintain a stable spray. lon transfer tube was held at 275 °C. Tube lens
and capillary voltages were varied to ensure transmission of ions to the detector.
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Figure S98. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of

phenyl vinylphosphonate.

(CS,*P,)?
1167.0347

P
—-
) f
©
i= (CS,+*P,)(TBA-CI)—
1306.1623
(CSyePoTBA)
2576.3483
(CS5P,)(TBAH,PO, )~
1794.9252
pdbl . Lda. ~r = =T
1000 1500 2000 2500
m/z

I
3000

Figure S99. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of 4-

trifluoromethylbenzyl vinylphosphonate.
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Figure S100. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of

naphthyl vinylphosphonate.
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Figure S101. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of

anthracene vinylphosphonate.
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Figure S102. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of

pyrene vinylphosphonate.
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Figure S103. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of
dimethyl fluorene vinylphosphonate.
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Figure S104. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of
vinyl phosphonate.
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Figure S105. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of 2-
ethylhexyl carbazole vinyl phosphonate.
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Figure S106. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of

stilbene vinyl phosphonate.
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Figure S107. HRMS spectrum of 1 mM cyanostar dichloromethane solution and 1.0 equiv. of

azobenzene vinyl phosphonate.
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S6. Characterization of Supramolecular Polymer based on Di-vinyl Phosphonates
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Figure S108. *H NMR titration of Mezfluorene-VP into 1 mM cyanostar solution. (CD,Cl,, 600
MHz, 298 K) Peaks marked with asterisk are complexed anions.
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Figure S109. Proton intensity versus equivalents of complexed cyanostar in the titration of
dimethyl fluorene vinylphosphonate into 1 mM cyanostar solution.
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Figure S110. a-Proton shift of TBA™ versus equivalents of anion in the titration of dimethyl
fluorene vinylphosphonate into 1 mM cyanostar solution.
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Figure S111. Variable concentration *H NMR of 2:2 cyanostar:Mezfluorene-VP complex
solution. (CD2Cl,, 600 MHz, 298 K)
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Figure S112. *H NMR titration of methyl ditopic monomer into 1 mM cyanostar solution. (CD2Clx,
600 MHz, 298 K) The inserted image is the sample after addition of 0.5 equivalent anion.
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Figure S113. 'H NMR titration of hexyl ditopic monomer into 2 mM cyanostar solution. (CD2Cly,

600 MHz, 298 K)
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Figure S114. *H NMR titration of 2-ethylhexyl ditopic monomer into 1 mM cyanostar solution.
(CDCl3, 600 MHz, 298 K)
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Figure S115. *H NMR titration of 2-ethylhexyl carbazole bis(vinylphosphonate) into 1 mM
cyanostar solution. (CD2Cl,, 600 MHz, 298 K) Peaks marked with asterisk are complexed anions.
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Comments on solubility: The fluorene-based monomers with dimethyl and dihexyl side chains
forms precipitation immediately at 1 and 2 mM cyanostar dichloromethane solution when 0.5
equivalents of ditopic monomer was added (equivalence point). The carbazole-based monomer
with 2-ethylhexyl chain forms precipitation at 1 mM cyanostar dichloromethane solution in one
day after the addition of 0.5 equivalents of ditopic monomer.

Table 1. Diffusion data of supramolecular polymer consist of 2-ethylhexthyl ditopic
monomer and cyanostar.

Cyanostar Proton Signal e - 11 o o
Concentration (mM) (ppm) Diffusion Coefficient (10-1* m?/s) Average (10t m?/s)
8.38 9.18884
8.12 9.65264
? 7.49 9.94793 96203
7.34 9.47507
8.38 6.17641
8.12 6.25744
10 7.49 6.33665 6.2+0.1
7.34 6.20028

S7. X-ray Diffraction Data Analysis
S7.1 Me2fluorene-VP-CS (label 22005)
Data collection

A colorless crystal (approximate dimensions 0.221 x 0.216 x 0.109 mm?3) was placed onto
the tip of a MiTeGen loop and mounted on a Bruker Venture D8 diffractometer equipped with a
Photonlll detector at 153(2) K.

The data collection was carried out using Mo Ka radiation (graphite monochromator) with
a frame time of 59 and 2 seconds and a detector distance of 5.00 cm. A collection strategy was
calculated and complete data to a resolution of 0.80 A with a redundancy of 10.7 were collected.
Thirteen major sections of frames were collected with 1° ® and ¢ scans. A total of 2011 frames
were collected. The total exposure time was 19.82 hours. The frames were integrated with the
Bruker SAINT software package* using a narrow-frame algorithm. The integration of the data

using a triclinic unit cell yielded a total of 185443 reflections to a maximum 0 angle of 25.09°
(0.84 A resolution), of which 17340 were independent (average redundancy 10.695, completeness
=99.7%, Rint = 6.09%, Rsig = 3.24%) and 11473 (66.16%) were greater than 26(F?). The final cell
constants of a = 15.9708(14) A, b = 16.8532(14) A, ¢ = 19.6348(16) A, o = 98.989(2)°, B =
107.266(2)°, y = 97.797(2)°, volume = 4891.0(7) A3, are based upon the refinement of the XYZ-
centroids of 9946 reflections above 20 o(I) with 4.619° < 26 < 45.48°. Data were corrected for
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absorption effects using the Multi-Scan method (SADABS?). The ratio of minimum to maximum
apparent transmission was 0.923. The calculated minimum and maximum transmission
coefficients (based on crystal size) are 0.9830 and 0.9910.

Structure solution and refinement

The space group P-1 was determined based on intensity statistics and the lack of systematic
absences. The structure was solved and refined using the SHELX suite of programs.> 7 An
intrinsic-methods solution was calculated, which provided most non-hydrogen atoms from the E-
map. Full-matrix least squares / difference Fourier cycles were performed, which located the
remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic
displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding
atoms with relative isotropic displacement parameters. Disorder was refined for CS, tha, and the
anion. Sets of restraints and constraints were applied. The final anisotropic full-matrix least-
squares refinement on F? with 1351 variables converged at R1 = 9.24%, for the observed data and
WR2 = 30.30% for all data. The goodness-of-fit was 1.030. The largest peak in the final difference
electron density synthesis was 1.753 /A% and the largest hole was -0.378 /A3 with an RMS
deviation of 0.064 e/A3. On the basis of the final model, the calculated density was 1.078 g/cm®
and F(000), 1722 e

Figure S116. Image of bulk material.
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Figure S117. Formula unit.
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Table 2. Crystal data and structure refinement.

CCDC deposition number
Empirical formula

Formula weight

Crystal color, shape, size
Temperature

Wavelength

Crystal system, space group
Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient
F(000)

Data collection
Diffractometer

Source

Detector

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Observed Reflections
Completeness to theta = 25.088°
Solution and Refinement
Absorption correction

Max. and min. transmission
Solution

Refinement method
Weighting scheme

Data / restraints / parameters

Goodness-of-fit on F2
Final R indices [1>2o(1)]
R indices (all data)

Largest diff. peak and hole

2263985

C107 H138 N6 O3 P

1587.20

colourless block, 0.221 x 0.216 x 0.109 mm3
150(2) K

0.71073 A

Triclinic, P-1

a=15.9708(14) A a = 98.989(2)°.
b = 16.8532(14) A B = 107.266(2)°.
¢ =19.6348(16) A vy =97.797(2)°.
4891.0(7) A3

2

1.078 Mg/m3

0.079 mm-1
1722

Venture D8, Bruker

1uS 3.0, Incoatec

Photon 111

1.891 to 25.088°.

-19<=h<=19, -20<=k<=20, -23<=1<=23
185443

17340 [Rint = 0.0609]

11473

99.7 %

Semi-empirical from equivalents
0.7452 and 0.6881
Intrinsic methods

Full-matrix least-squares on F2

W= [02F02+ APZ+ BP]'l, with

P = (Fo2+ 2 Fc2)/3, A = 0.1656, B = 4.6390
17340/ 3352 /1351

1.030

R1=0.0924, wR2 = 0.2653

R1=0.1291, wR2 = 0.3030

1.753 and -0.378 e.A-3

Goodness-of-fit = [Z[W(Fo? — Fc?)?]/Nobservns — Nparams)]*2, all data.
R1 =Z(|Fo| — |Fe|]) / Z |Fo. WR2 = [Z[W(Fo? — FA)?] 1 = [w(Fo?)A]Y2.
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Figure S118. Tiltangle of fluorene moiety shown in the Mezfluorene-VP cyanostar complex. One
of the fluorene moiety shows pink and another shows gray. Counter-cations and solvent molecules
omitted for clarity.

a: 16.388 A a: 16.378 A

b: 16.499 A b: 16.435 A

c: 19.185A c: 18.886 A
Volume = 4246 A3 Volume = 4157 A3
Space group: P-1 Space group: P-1

Figure S119. Crystal-to-crystal transition of the Phenyl-VP cyanostar complex. Disorder of
cyanostar and counter-cation were omitted for clarity.
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We obtained the crystal structure for Phenyl-VVP dimer in both its solvated and fully
desolvated state (Figure S119, CCDC 2263986 and 2263987). The single crystal was
obtained by slowly evaporating its mixed solution in dichloromethane and acetonitrile (v/v,
3:2). Desolvation of cyanostar-based crystals typically deteriorates the quality of the
diffraction data. In the present case, however, we observed a crystal-to-crystal transition
upon loss of four molecules of acetonitrile per unit cell. The packing shows modest changes
in relative location of the two cyanostars, the two anions and two cations. The P_1 space
group does not change, and the unit cell parameters only slightly changed. The unit cell
volume contracted 88 A2, which is less than the loss of four acetonitrile molecules (53
A3/per molecule). In general, the structures are loosely packed such that the volume change
Is not exactly the volume of the solvent molecules. Consistently, the distance between the
two cyanostar planes is 3.6 A for the solvated structure and expands a little to 3.7 A for the
desolvated one. The distance between donor and acceptor oxygen atoms also extend from
2.49 A to 2.50 A for the desolvated structure. Both of them are classified as very strong
hydrogen bond®, and in the range that is typical of hydrogen bonds between anionic
dimers.® 1% We still observe the hydrogen bonding between two a-protons of TBA* and the
phosphonate oxygen atom. In the solvated structure, we observe the nitrogen atom from
acetonitrile interacts with two b-protons from TBA* (2.7 A) and the hydrogen atom from
acetonitrile interacts with the nitrogen atom from cyano-group on the macrocycle (2.7 A).

S7.2 PhVP-CS (label 22149)
Data collection

A colorless crystal (approximate dimensions 0.319 x 0.160 x 0.154 mm?3) was placed onto
the tip of a MiTeGen loop and mounted on a Bruker Venture D8 diffractometer equipped with a
Photonlll detector at 153(2) K.

The data collection was carried out using Mo Ka radiation (graphite monochromator) with
a frame time of 90, 60, and 2 seconds and a detector distance of 5.00 cm. A collection strategy was
calculated and complete data to a resolution of 0.77 A with a redundancy of 10.1 were collected.
Ten major sections of frames were collected with 1° » and ¢ scans. A total of 1536 frames were
collected. The total exposure time was 18.47 hours. The frames were integrated with the Bruker
SAINT software package* using a narrow-frame algorithm. The integration of the data using
a triclinic unit cell yielded a total of 192781 reflections to a maximum 0 angle of 27.50° (0.77 A
resolution), of which 19054 were independent (average redundancy 10.118, completeness
= 99.8%, Rint = 15.24%, Rsig = 9.21%) and 9623 (50.50%) were greater than 2(F?). The final cell
constants of a=16.3782(4) A, b =16.4347(6) A, c=18.8864(6) A, o =111.4570(10)°, P
= 112.340(2)°, y = 97.4620(10)°, volume = 4157.2(2) A3, are based upon the refinement of the
XY Z-centroids of 9695 reflections above 20 o(I) with 4.622° < 20 < 53.25°. Data were corrected
for absorption effects using the Multi-Scan method (SADABS®). The ratio of minimum to
maximum apparent transmission was 0.953. The calculated minimum and maximum transmission
coefficients (based on crystal size) are 0.9740 and 0.9870.

Structure solution and refinement

The space group P-1 was determined based on intensity statistics and the lack of systematic
absences. The structure was solved and refined using the SHELX suite of programs.t 7 An
intrinsic-methods solution was calculated, which provided most non-hydrogen atoms from the E-
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map. Full-matrix least squares / difference Fourier cycles were performed, which located the
remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic
displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding
atoms with relative isotropic displacement parameters. All parts of the structure are disordered and
were refined with restraints and constraints. The CS disorder ratio is 52:48, the guest anion disorder
ration is 73:27. The final anisotropic full-matrix least-squares refinement on F? with1038 variables
converged at R1 = 8.00%, for the observed data and wR2 = 24.71% for all data. The goodness-of-
fit was 1.086. The largest peak in the final difference electron density synthesis was 0.530 e
/A3 and the largest hole was -0.444 e’/A% with an RMS deviation of 0.043 e/A3. On the basis of

Figure S121. Formula unit.
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Table 3. Crystal data and structure refinement.

CCDC deposition number
Empirical formula

Formula weight

Crystal color, shape, size
Temperature

Wavelength

Crystal system, space group
Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient
F(000)

Data collection
Diffractometer

Source

Detector

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Observed Reflections
Completeness to theta = 25.242°
Solution and Refinement
Absorption correction

Max. and min. transmission
Solution

Refinement method
Weighting scheme

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [1>2o(1)]

R indices (all data)

Largest diff. peak and hole

2263986

C89 H109 N6 O3 P

1341.79

colorless block, 0.319 x 0.160 x 0.154 mm3
153(2) K
0.71073 A
Triclinic, P-1
a=16.3782(4) A
b = 16.4347(6) A
¢ = 18.8864(6) A
4157.2(2) A3

2

1.072 Mg/m3

0.083 mm-1
1448

o = 111.4570(10)°.
B = 112.340(2)°.
y = 97.4620(10)°.

Venture D8, Bruker

113.0, Incoatec

Photon 111

2.093 to 27.496°.

-21<=h<=21, -21<=k<=21, -24<=|<=24
192781

19054 [Rint = 0.1524]

9623

99.9 %

Semi-empirical from equivalents
0.7456 and 0.7107
Intrinsic methods

Full-matrix least-squares on F2

w = [62F02+ AP2]"L, with P = (Fo2+ 2 Fc2)/3, A = 0.1344

19054 / 2581 / 1038

1.086
R1 =0.0800, wR2 = 0.2243
R1=0.1675, wR2 = 0.2471

0.530 and -0.444 e.A-3

Goodness-of-fit = [Z[W(Fo? — Fc?)?]/Nobservns — Nparams)]*2, all data.
R1 =Z(|Fo| — |Fe|]) / Z |Fo. WR2 = [Z[W(Fo? — FA)?] 1 = [w(Fo2)]Y2.
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S7.2 Ph-VP-CS (label22149s)
Data collection

A colorless crystal (approximate dimensions 0.333 x 0.282 x 0.251 mm?) was placed onto
the tip of a MiTeGen loop and mounted on a Bruker Venture D8 diffractometer equipped with a
Photonlll detector at 153(2) K.

The data collection was carried out using Mo Ka. radiation (graphite monochromator) with
a frame time of 60, 45, and 1 seconds and a detector distance of 5.00 cm. A collection strategy was
calculated and complete data to a resolution of 0.77 A with a redundancy of 8.4 were collected.
Thirteen major sections of frames were collected with 1° » and ¢ scans. The total exposure time
was 17.92 hours. The frames were integrated with the Bruker SAINT software package®* using a
narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total
of 165073 reflections to a maximum 0 angle of 27.53° (0.77 A resolution), of which 19524 were
independent (average redundancy 8.455, completeness = 99.8%, Rint=6.92%, Rsig=4.41%)
and 15468 (79.23%)  were  greater  than  2o(F?). The final cell constants
of a=16.3882(7) A, b =16.4992(7) A, ¢ = 19.1849(8) A, 0. = 111.8930(10)°, B = 111.740(2)°, y
=97.594(2)°, volume =4245.5(3) A%, are based upon the refinement of the XYZ-centroids
of 9330 reflections above 20 o(I) with 4.556° < 26 <54.53°. Data were corrected for absorption
effects using the Multi-Scan method (SADABS®). The ratio of minimum to maximum apparent
transmission was 0.740. The calculated minimum and maximum transmission coefficients (based
on crystal size) are 0.9720 and 0.9790.

Structure solution and refinement

The space group P-1 was determined based on intensity statistics and the lack of systematic
absences. The structure was solved and refined using the SHELX suite of programs.> 7 An
intrinsic-methods solution was calculated, which provided most non-hydrogen atoms from the E-
map. Full-matrix least squares / difference Fourier cycles were performed, which located the
remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic
displacement parameters with exception of the solvent molecules. The hydrogen atoms were
placed in ideal positions and refined as riding atoms with relative isotropic displacement
parameters. Disorder was refined for CS, tba, and the solvent molecules. The disorder ratio for CS
is 57:43. The final anisotropic full-matrix least-squares refinement on F? with 1202 variables
converged at R1 = 9.27%, for the observed data and wR2 = 28.05% for all data. The goodness-of-
fit was 1.031. The largest peak in the final difference electron density synthesis was 0.869 e
/A3 and the largest hole was -0.459 e”/A% with an RMS deviation of 0.106 e/A3. On the basis of
the final model, the calculated density was 1.114 g/cm? and F(000), 1536 €.
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Figure S123. Formula unit.
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Figure 124. Dimer in solvent pocket.
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Table 4. Crystal data and structure refinement.

CCDC deposition number 2263987

Empirical formula C93 H115N8 O3 P

Formula weight 1423.89

Crystal color, shape, size colorless block, 0.333 x 0.282 x 0.251 mm3

Temperature 153(2) K

Wavelength 0.71073 A

Crystal system, space group Triclinic, P-1

Unit cell dimensions a=16.3882(7) A o =111.8930(10)°.
b =16.4992(7) A B =111.740(2)°.
c=19.1849(8) A v = 97.594(2)°.

Volume 42455(3) A3

Z 2

Density (calculated) 1.114 Mg/m3

Absorption coefficient 0.085 mm-1

F(000) 1536

Data collection

Diffractometer Venture D8, Bruker

Source 113.0, Incoatec

Detector Photon 111

Theta range for data collection 2.088 to 27.528°.

Index ranges -21<=h<=21, -21<=k<=21, -24<=|<=24

Reflections collected 165073

Independent reflections 19524 [Rint = 0.0692]

Observed Reflections 15468

Completeness to theta = 25.242° 99.9 %

Solution and Refinement

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7456 and 0.5517

Solution Intrinsic methods

Refinement method Full-matrix least-squares on F2

Weighting scheme W= [02F02+ AP2+ BP]'l, with
P = (Fo2+ 2 Fc2)/3, A= ,B=

Data / restraints / parameters 19524 / 2582 / 1202

Goodness-of-fit on F2 1.031

Final R indices [1>2o(1)] R1 =0.0927, wR2 = 0.2592

R indices (all data) R1=0.1078, wR2 = 0.2805

Largest diff. peak and hole 0.869 and -0.459 e.A-3

Goodness-of-fit = [Z[W(Fo? — Fc?)?]/Nobservns — Nparams)]*2, all data.
R1 =Z(|Fo| — |Fe|]) / Z |Fo. WR2 = [Z[W(Fo? — FA)?] 1 = [w(Fo?)A]Y2.
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S8. Sorting, Competition and Depolymerization Based on Modular Anion Library
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Figure 125. Self-sorting between anion dimers of CF3Phenyl-VP (2, blue) and Carbazole-VP
(8, magenta), heterodimer (2¢8) is produced (1 mM, 298 K, 600 MHz, CD2Cl,). NMR spectra of
2+2 and 88 dimers are presented at the very bottom and the very top. The proton patterns of proton
a (orange box) and d (green box) are used to quantitatively analyze the distribution of homodimers
and the heterodimer.
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Figure 126. Competition between anion dimers of 8¢8 and tetrabutylammonium salt of anion 2 (1
mM, 298 K, 600 MHz, CD.Cly).
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Figure 127. Quantitative analysis of homodimer and heterodimer distribution based on the
integration of proton a from three types of dimers generated by vinyl phosphonate 2 and 8.
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Figure 128. Self-sorting between anion dimers of Carbazole-VP (8, magenta) and naphthyl
phosphate (P, blue), heterodimer (P+8) is produced (1 mM, 298 K, 600 MHz, CD2Cl2). NMR
spectra of PP and BB dimers are presented at the very bottom and the very top. The proton pattern
of proton d is used to quantitatively analyze the distribution of homodimers and the heterodimer.
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Figure 129. Competition between anion dimers of 8¢8 and tetrabutylammonium salt of anion P (1
mM, 298 K, 600 MHz, CD2Cl,). The proton pattern of proton d (red box) is used to quantitatively
analyze the distribution of homodimers and the heterodimer.
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Figure 130. Competition between anion dimers of P+P and tetrabutylammonium salt of anion 8 (1
mM, 298 K, 600 MHz, CD.Cl,). The proton pattern of proton d is used to quantitatively analyze
the distribution of homodimers and the heterodimer.
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Figure 131. Depolymerization of supramolecular polymers using tetrabutylammonium salt of
naphthyl phosphate P (5 mM, 298 K, 600 MHz, CD2Cl.). Purple dots indicate polymer’s proton
signal.

Table 5. Diffusion data comparison of supramolecular homopolymer and copolymer at the
same cyanostar concentration.

5 mM Cyanostar Prot(% r:)r?]i)gnal Diffusion Coefficient (101 m?/s) Average (101! m?/s)
8.35 6.22106
50:50% 11:12 8.11 6.42907
(copolymer) 7.46 6.31968 6.4+0.1
7.31 6.48005
8.39 8.96395
100% 12 8.13 9.50585
(homopolymer) 7.50 9.31195 93202
7.34 9.30019
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Figure 132. HRMS of heterodimer 2¢8.
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Figure 134. Summary of electrostatic surface potential of 14 vinyl phosphonates (method:
RB3LYP, basis set: 6-31G(D)).

(a)

Figure 135. Electrostatic surface potential comparison of (a) CFsPhenyl-VP, 2 and (b)
Carbazole-VP, 8 (method: RB3LYP, basis set: 6-31G(D)). The value close to the molecule
indicates the electrostatic surface potential of the oxygen atom from the phosphonate anion, unit
is kJ.
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S9. Supramolecular Polymer Literature Including Multiple Monomers

Table 6. Summary of literature including multiple monomers.

construction of metallooligomers and macromolecules.
Colbran, S. B. et al.

_ Interaction Type # of # of
Title and Lead Authors # Citations Building
HB | HeG M-L Blocks

Strong dimerization of ureidopyrimidones via quadruple
hydrogen bonding. Meijer, E. W. et al. 1 \/ 865 11
Controlling the structure and photophysics of fluorophore
dimers using multiple cucurbit [8] uril clampings. 2 v 40 10
Scherman, O. A. et al.
Bis [4-(4-anilino)-2, 2": €', 2 "-terpyridine] transition-metal
complexes: electrochemically active monomers with a
range of magnetic and optical properties for assembly of 3 < 68 9
metallo oligomers and macromolecules. Colbran, S. B. et
al.
Monosaccharides as versatile units for water-soluble 4 \/ 26 8
supramolecular polymers. Meijer, E. W. et al.
Highly efficient and tunable filtering of electrons' spin by
supramolecular chirality of nanofiber-based materials. 5 N 130 5
Meijer, E. W. et al.
Living supramolecular polymerization of fluorinated 6 \/ 36 5
cyclohexanes. VVon Delius, M. et al.
Toward a single-layer two-dimensional honeycomb 7 \/ 328 4
supramolecular organic framework in water. Li, Z. T. et al.
Supramolecular block copolymers with cucurbit[8]uril in
lwater. Scherman, O. A. et al. 8 \/ 321 4
Elucidating the ordering in self-assembled glycocalyx
mimicking supramolecular copolymers in water. Meijer, 9 \/ 43 4
E. W. etal.
Thioamides: versatile bonds to induce directional and
lcooperative hydrogen bonding in supramolecular polymers.| 10 v 46 3
Meijer, E. W. et al.
Modular supramolecular dimerization of optically tunable 11 \/ 35 3
extended aryl viologens. Scherman, O. A. et al.
Transition-metal complexes of 4'(4-anilino)-2,2": 6',2 "-
terpyridine (and derivatives): versatile building blocks for 12 \/ 26 3

Total

Notes:

(1) HB refers to hydrogen bonding arrays

(2) HeG refers to n-stacked dimers encapsulated by cucurbit[n]uril hosts
(3) M-L refers to terpyridine ligands driven by metal-coordination
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