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SI.1 Model system

The motivation for complementing our ab initio study of the BMA cation with a related

model system is to illustrate how instanton theory compares to exact quantum-mechanical

results. We can thus show the adequacy of our method, which includes both the GR ap-

proximation and the semiclassical/steepest-descent approximations. It also allows us to

elaborate on the instanton picture for a reaction through a conical intersection. We do not,

however, expect quantitative agreement between the model system and the full-dimensional

first-principles study.

Due to the general interest in the mechanism of diabatic trapping in the BMA cation,

there exists a two-dimensional model potential for the molecule in the literature.1,2 As is

common for minimal models of conical intersections, the potentials are defined in terms

of the coupling mode, x̂c, and the orthogonal tuning mode, x̂t, which together span the
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Table SI.1: Parameters of the three-mode model.

T [K] 300
ωt/c/b [cm−1] 1699, 1466, 500√
mζt [

√
u�A] 0.192

cb/mω
2
b 3.6951

α/
√
m [eV/

√
u�A] 0.178

branching space. We add an additional mode, x̂b, that couples to the tuning mode with

coupling strength, cb, and approximately accounts for the frictional effect of the remaining

molecular modes. The potentials as functions of these three modes are defined as

Vn = 1
2
mω2

t (x̂t ± ζt)
2 + 1

2
mω2

c x̂
2
c + 1

2
mω2

b

(
x̂b −

cb

mω2
b

x̂t

)2

, (SI.1)

where the positive (negative) sign corresponds to the reactant (product) surface and the

parameters are defined in Table SI.1. The parameters are mass-weighted such that m is

arbitrary and can thus be chosen as m = 1. The diabatic coupling is ∆(x) = α · x = αxc,

where α = ‖α‖.

SI.2 Rate theory

The diabatic Hamiltonian for a general nonadiabatic reaction is given by

Ĥ = Ĥ0 |0〉〈0|+ Ĥ1 |1〉〈1|+ ∆
(
|0〉〈1|+ |1〉〈0|

)
. (SI.2)

The nuclear Hamiltonian of electronic state n ∈ {0, 1} is of the form

Ĥn =

f∑
j=1

p̂2
j

2m
+ Vn(x̂), (SI.3)

where x̂ = (x̂t, x̂c, x̂3, . . . , x̂f ) is the coordinate vector comprising the tuning mode (x̂t), the

coupling mode (x̂c) as well as f − 2 further nuclear degrees of freedom. Without loss of
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generality, the nuclear degrees of freedom have been mass-weighted such that each has the

same mass, m. The nuclei move on the potentials Vn(x̂) with conjugate momenta p̂j.

SI.2.1 Quantum-mechanical and classical rates

The full quantum-mechanical thermal reaction rate constant is given by3–5

k Z0 =

∫ ∞
−∞

c(τ + it) dt, (SI.4)

in terms of the reactant partition function Z0 = Tr
{

e−βĤ |0〉〈0|
}

and the flux correlation

function

c(τ + it) =
1

2
Tr
{

e−Ĥ(β~−τ)/~ F̂ e−Ĥτ/~ F̂ (t)
}
. (SI.5)

Here, F̂ (t) = eiĤt/~ F̂ e−iĤt/~ describes the time evolution of the flux operator F̂ = i
~

[
Ĥ, |1〉〈1|

]
,

which for our Hamiltonian evaluates to F̂ = i∆(x̂)
~

(
|0〉〈1| − |1〉〈0|

)
, and τ is an imaginary

time which can be chosen arbitrarily (at least within the range [0, β~]) without changing the

result.

For the simple harmonic model [Eq. (SI.1)], the exact rate can be computed by expanding

the Hamiltonian and flux operators in a basis of vibronic states. The linearly coupled system–

bath model in Eq. (SI.1) can be transformed to a normal-mode basis which diagonalizes the

potential energy. In the basis of normal modes, {q̂i}, with corresponding frequencies {Ωi}

and shifts {ξi}, the potentials are given by

Vn =

f∑
i=1

1

2
mΩ2

i (q̂i ± ξi)2, (SI.6)

where again the positive (negative) sign corresponds to the reactant (product) surface. Note

that because the coupling mode of the system–bath model is not coupled to the other modes,

it will not be altered by the normal-mode transform and thus ωc appears in the set {Ωi}.
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Figure SI.1: Full (exact) quantum-mechanical and golden-rule (GR) flux correlation func-
tions as a function of time. For both correlation functions, we choose τ = β~/2. To obtain
a well-defined rate constant that can be compared to the instanton results, we integrate the
correlation function numerically over the interval [−tp, tp], which encompasses the central
peak only. Here we choose a plateau time of tp = 0.05 ps. We thus ignore resonances at later
times, which we assume will be damped out by friction from the other modes in the full-
dimensional system. For the calculation of the full quantum-mechanical correlation function,
we employed a basis of 9 × 15 × 30 vibrational wavefunctions for the tuning, coupling and
bath modes on each electronic state.

Since the three normal modes are uncoupled, the vibrational eigenstates (ψµ0 , ψ
ν
1 ) of the

nuclear Hamiltonians, Ĥn, with corresponding energies (Eµ
0 , E

ν
1 ) can be constructed as direct

products of the eigenstates of the individual modes. The vibronic states are formed as a direct

product of the vibrational states with electronic states |n〉.

We then evaluate the matrix exponentials in Eq. (SI.4) in a truncated vibronic basis,

enabling the calculation of the flux correlation function. The result needs to be converged

with respect to the size of the vibronic basis. The final time integration over the correlation

function is carried out numerically. The integration limits are reduced to [−tp, tp] so as to

encompass the first plateau only, as illustrated in Fig. SI.1. This permits the definition of a

rate in a finite-dimensional bound system.
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SI.2.1.1 Fermi’s golden rule

We now consider the golden-rule approximation. For small coupling strength, ∆(x̂), Eq. (SI.4)

can be expanded in a perturbation series and approximated by the first-order term, which

results in the following expression for the golden-rule rate constant6,7

kGR Z0 =

∫ ∞
−∞

cGR(τ + it) dt,

cGR(τ + it) =
1

~2
tr
{

∆(x̂) e−Ĥ0(β~−τ−it)/~ ∆(x̂) e−Ĥ1(τ+it)/~
}
, (SI.7)

with the golden-rule flux correlation function, cGR(τ + it). The trace, tr{·}, is over nuclear

degrees of freedom only. To arrive at the famous Fermi’s golden-rule rate8,9 generalized

for an initial thermal distribution,10,11 one evaluates the trace in the basis of reactant and

product vibrational eigenstates and takes the time integral analytically

kGR Z0 =
2π

~
∑
µ

e−βE
µ
0

∑
ν

|〈ψµ0 |∆(x̂) |ψν1〉|2 δs(E
µ
0 − Eν

1 ). (SI.8)

In order to define a rate in the bound three-mode model defined above, one can employ the

function

δs(E
µ
0 − Eν

1 ) =

∫ tp

−tp

e−i(Eµ0−Eν1 )t/~

2π~
dt =

sin[(Eµ
0 − Eν

1 )tp/~]

π(Eµ
0 − Eν

1 )
, (SI.9)

which effectively smears the harmonic-oscillator energy levels.

SI.2.1.2 Path-integral formulation of Fermi’s golden rule

Instead of using the standard Fermi’s golden rule, we wish to find an expression for the rate

that does not require knowledge of the vibrational wavefunctions. Inserting the linear form
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of the diabatic coupling at a CI into the correlation function in Eq. (SI.7) leads to

cGR(τ + it) =
1

~2
tr
{

(α · x̂) e−Ĥ0(β~−τ−it)/~ (α · x̂) e−Ĥ1(τ+it)/~
}
. (SI.10)

The quantum golden-rule rate for our harmonic model system with linear diabatic cou-

pling can equivalently be evaluated using path-integral theory. The expression for the path-

integral propagators for a system with the potentials in Eq. (SI.6) are known12,13 and the

position integrals with monomial prefactors in Eq. (SI.10) can be solved analytically, leading

to the rate expression

kGR =
1

~2

∫
χ(τ + it) e−φ(τ+it)/~ dt, (SI.11)

where

φ(τ) = −ετ +

f∑
i=1

2mΩiξ
2
i

[
1− cosh Ωiτ

tanh β~Ωi/2
+ sinh Ωiτ

]
, (SI.12a)

χ(τ) =
~α2

2mωc

coshωc(β~/2− τ)

sinh β~ωc/2
. (SI.12b)

For the charge transfer in the BMA cation, the thermodynamic driving force, ε, is zero and

the value of τ that makes φ(τ) stationary is τ = β~/2 by symmetry. However, we have

presented the equations such that they are valid also for systems where ε is non-zero.

We illustrate the GR flux correlation function in Fig. SI.1, which is seen to be in excellent

agreement with the non-perturbative correlation function. In order to obtain a well-defined

rate constant, we again integrate over the interval [−tp, tp].
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SI.2.1.3 Classical golden rule

The classical golden-rule rate can be computed by evaluating the trace in Eq. (SI.10) by a

phase-space integral

kcl =
1

~2

1

(2π~)f

∫∫∫ ∞
−∞

(α · x)2 e−β||p||
2/2m e−βV0−(V1−V0)(τ+it)/~ dt dp dx, (SI.13)

where p is the vector of momenta conjugate to the coordinates x. The Gaussian integrals over

the momenta are easily solved analytically and the integral over time results in a δ-function.

In general, the position integral cannot be solved analytically and is thus approximated by

the method of steepest descent. Thereby, one locates the stationary point of the effective

potential Ṽ = (1 − λ)V0 + λV1 in the combined space of positions and the Lagrange multi-

plier λ = τ/β~.14 The stationary point of Ṽ corresponds to the minimum-energy crossing

point (MECP) of the two potentials or, in our case, the minimum-energy conical intersection

(MECI). It can be viewed as the golden-rule analogue to a transition state in adiabatic re-

actions. Carrying out the position integrals leads to the following expression for the classical

golden-rule rate13,15

kcl = χcl fFC,cl,

fFC,cl =

√
2πm

β

1

~2

1

‖G0 −G1‖
Z‡

Z0

e−βV
‡

χcl = αT(βH̃)−1α, (SI.14)

where V ‡ is the potential at the MECI relative to the potential of the reactant minimum,

G0 and G1 are the gradients on the two potentials and H̃ = (1− λ)H0 + λH1 is the mixed

Hessian given in terms of the Hessians H0 and H1, all evaluated at the MECI. The vi-

brational contributions to the partition functions Z0 and Z‡ are the classical harmonic-

oscillator partition functions of the reactant and MECI, where the latter can be evaluated

by computing the frequencies of the mixed Hessian H̃ after projecting out the reaction

7



coordinate with P = I − ∆G ⊗ ∆GT. Here I is the f -dimensional identity matrix and

∆G = (G0 −G1)/‖G0 −G1‖ is the normalized gradient-difference vector.

For globally harmonic model systems such as in Eq. (SI.1), the classical rate [Eq. (SI.14)]

simplifies to

kcl = χMT fFC,MT,

fFC,MT =
1

~

√
πβ

Λ
e−β(Λ−ε)2/4Λ,

χMT =
α2

βmω2
c

, (SI.15)

where the Marcus-theory Franck–Condon factors fFC,MT are given in terms of the reorgani-

zation energy, Λ =
∑f

i=1 2mΩ2
i ξ

2
i = 2mω2

t ζ
2
t , and the thermodynamic driving force. In this

way the standard Marcus-theory rate (for constant non-zero ∆) given by kMT = ∆2fFC,MT

is generalized to describe the effect of the CI using the prefactor χMT.16,17

SI.2.2 Instanton rates

SI.2.2.1 Semiclassical instanton theory

The SCI rate for a reaction proceeding via a CI is derived as a semiclassical approximation

to Eq. (SI.10). We evaluate the trace in the position representation, insert a complete set of

position states in the middle and replace the resulting quantum propagators by semiclassical

van-Vleck propagators, which leads to

cGR(τ + it) ∼ 1

~2

√
C0C1

(2π~)f

∫∫
(α · x′)(α · x′′) e−S(x′,x′′,τ+it)/~ dx′dx′′, (SI.16)

where the prefactors, Cn, are assumed to vary slowly compared to the exponential and can

thus be pulled outside of the integral. In order to carry out these integrals by steepest

descent, we locate the stationary point of S (called the instanton) in the combined space

of positions and imaginary time and keep t = 0 since this is the dominant point of the
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correlation function. The action can then be expanded in a Taylor series to second order

around the stationary point, which gives

cGR(τ̄) ∼ 1

~2

√
C0C1

(2π~)f
e−S(x̄′,x̄′′,τ̄)/~

∫∫
(α · x′)(α · x′′) e−(x−x̄)T ∂2S

∂x∂x
(x−x̄)/2~ dx′dx′′, (SI.17)

where x = (x′,x′′) is a vector combining all 2f position coordinates and ∂2S
∂x∂x

is the second-

derivative matrix of the action with respect to these coordinates evaluated at the stationary

point with positions x̄ = (x̄′, x̄′′) and imaginary time τ̄ . What remains is a standard multi-

dimensional Gaussian integral with monomial prefactors, which evaluates to

cGR(τ̄) ∼ χ

~2

√
C0C1

C
e−S(x̄′,x̄′′,τ̄)/~, (SI.18)

where C is the determinant of the second-derivative matrix of the action, C = ∂2S
∂x∂x

. The

two-point correlation χ arises from the monomial prefactors inside the integral and is given

by χ = ~ (α′)T C−1α′′, where α′ = (α,0) and α′′ = (0,α) are vectors in the space of end

points (x′,x′′) and 0 is an f -dimensional vector of zeros. The remaining time integral over

the correlation function can also be evaluated by steepest descent, which is equivalent to the

SCI approach without a CI and again assumes the prefactors, this time including χ, to vary

slowly in time compared to e−S/~.13 The full SCI rate constant is then given by

kSCI = χ fFC,

fFC =

√
2π~

~2Z0

√
C0C1

C

(
−S̈
)−1/2

e−S(x̄′,x̄′′,τ̄)/~, (SI.19)

where we used the Cauchy–Riemann equations d2S
dτ2 = −d2S

dt2
and defined S̈ = d2S

dτ2 , which is

negative at the instanton.

As shown in Ref. 15, this derivation can equally be carried out in the ring-polymer

formalism and is easily amended to account for rotational and translational contributions.

In this ring-polymer version of the instanton rate, presented in Eq. (3.3) of Ref. 15, χ
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corresponds to the (r0,c, rNR,c)-element of the inverse of the second-derivative matrix of the

action [defined in Eq. (3.2) of Ref. 15] with respect to all bead positions multiplied by ~α2.

Note that in Ref. 15, the reactant and product states were labelled by n ∈ {R,P}, whereas

in this work we use n ∈ {0, 1}. The notation of Ref. 15 uses the notation r0,c, rNR,c to refer

to the coupling coordinate of the hopping beads, xc, with i = 0 and i = NR.

SI.2.2.2 Steepest-descent instanton theory

The calculation of the SDI rate is conceptually similar to the calculation of the standard

golden-rule instanton rate without CI with the exception that the diabatic coupling is in-

cluded in the action [Eq. (4) of the main text], which may lead to the occurrence of several

stationary paths of the effective action, Seff = S − ~ ln |∆(x′)∆(x′′)|. This is illustrated

in Fig. SI.2, where we plot the integrand of Eq. (SI.16) for the three-mode model defined in

Sec. SI.1 in the x′cx
′′
c coordinate space. From the figure, we can identify two positive lobes,

corresponding to the direct paths that bypass the CI and contribute to the total rate with a

positive sign, as well as two negative lobes, corresponding to the winding pathways that give

rise to a negative contribution to the rate (see Fig. SI.5 and Fig. 1 of the main text for the

pathways). Note that the reason for the negative contribution associated with the winding

paths is that they employ two different hopping points, x̄′ 6= x̄′′, on opposite sides of the

CI.

The total rate is thus given by a sum over the steepest-descent rates associated with each

of these stationary paths

kSDI =
∑
a

χeff
a f

eff
FC,a,

f eff
FC,a =

√
2π~

~2Z0

√
C0C1

Ceff

(
−d2Seff

dτ 2

)−1/2

e−S
eff(x̄′a,x̄

′′
a ,τ̄a)/~, (SI.20)

where all quantities are evaluated for the respective stationary path of Seff. Here, the Ceff

prefactor is defined in analogy to C in Eq. (SI.18) but with respect to the effective action in-
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Figure SI.2: Colour map of the integrand in Eq. (SI.16) for the model system defined in
Sec SI.1 in atomic units. The two positive lobes correspond to the direct paths in the
SDI formalism, while the two negative lobes correspond to the winding paths (see also
Fig. SI.5). To construct the plot, we transformed the system to a spin-boson model, as
described in Eq. (SI.6), and used the corresponding analytic expressions for the action.13

The two remaining coordinates, as well as the value of τ were fixed to their values at the
stationary point of the (effective) action. Note that in this symmetric spin-boson model, the
stationary points in the SCI and SDI formalisms only differ in the coupling coordinate, while
the values of the two other modes and τ are the same.

stead of S. We thereby separated the range of the position integrals into different regions, Γa

around the stationary points (similarly to Ref. 18). The prefactors, χeff
a = sgn[∆(x̄′)∆(x̄′′)],

depend on the relative sign of the diabatic-coupling terms at the hopping points of the sta-

tionary paths. In particular, direct instantons for which x̄′ = x̄′′ have χeff
a = 1, whereas those

which wind around the CI have χeff
a = −1. The derivatives of the coupling also enter into the

second-derivative matrix Ceff and the total τ -derivative since these terms derive from Seff.

In Table 1 of the main text, we presented the SDI rate constant for the three-mode model

defined above. Note that the 20% deviation from the quantum-mechanical result arises from

the neglect of anharmonicity around the stationary points of Seff, which within SDI is not

quadratic even for the harmonic LVC model, because of the contribution from the diabatic

coupling.
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SI.2.3 Resummed semiclassical instanton theory

We presented the SCI result for the three-mode model in Table 1 of the main text, which

deviates from the FGR rate constant by a factor of around 2. Considering all error sources

in realistic applications, including the electronic-structure calculations, this still constitutes

decent agreement. However, we can understand the reason for the deviation by comparing

the flux correlation functions underlying the different methods, which are illustrated in

Fig. SI.3(a) at the stationary value of τ = β~/2.

In previous instanton studies on reactions without CIs,19 the GR flux correlation function

at the stationary value of τ was shown to be almost perfectly described by a Gaussian. This is

not the case in Fig. SI.3(a), which exhibits dips to negative functional values. This is caused

by the two-point correlation, χ(τ + it), which fluctuates relatively quickly in time. The SCI

approximation of the correlation function treats χ as a constant and thus overestimates the

rate. The SDI approach captures the negative contributions to the correlation function by

virtue of locating several instantons with positive and negative contributions to the rate,

see also Fig. SI.3(b). This leads to the improved agreement with the GR rate observed in

Table SI.2.
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Figure SI.3: (a) Flux correlation function of the three-mode model defined in the text com-
puted with the quantum-mechanical GR, steepest-descent (SDI) and semiclassical instanton
theory (SCI), as well as with resummed semiclassical instanton theory (rSCI). In all cases,
we set τ to its value at the stationary point. (b) Contributions to the total flux correlation
function in SDI from the direct and winding instantons.
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Based on our understanding of the error in SCI, we can improve the method by at least

partially correcting for a rapidly oscillating prefactor. First, we go beyond the constant

approximation for χ by expanding it as a second-order Taylor series. Next, we can use our

knowledge that the analytical expression for χ in a harmonic system [Eqs. (SI.12a)] is a cosh

function. Given χ(τ̄) and its second τ -derivative we can therefore propose a resummation

for the Taylor series as

χ(τ̄ + it) = χ(τ̄)

[
1 +

1

2

χ̈(τ̄)

χ(τ̄)
(it)2 + · · ·

]
∼ χ(τ̄) cos

(√
χ̈(τ̄)

χ(τ̄)
t

)
, (SI.21)

where χ̈ = ∂2χ
∂τ2 , and we used the relation cosh(it) = cos(t). The corresponding approxima-

tion of the correlation function, depicted in Fig. SI.3(a), is in excellent agreement with the

quantum-mechanical GR correlation function. With knowledge of χ(τ), we can approximate

the exponential in Eq. (SI.18) by a Gaussian in the time domain and take the final integral

over time analytically.

In order to carry out this approach for an anharmonic system, we need to compute the

second time-derivative of χ at τ = τ̄ . This can be achieved by taking time-derivatives of the

correlation function, as can be seen from Eq. (SI.18). Taking the second time-derivative of

the golden-rule flux correlation function [Eq. (SI.10)] leads to

c̈GR(τ + it) =
∂2cGR(τ + it)

∂τ 2
=

1

m2~2
tr
{

(α · p̂) e−Ĥ0(β~−τ−it)/~ (α · p̂) e−Ĥ1(τ+it)/~
}

+
1

~4
tr
{

[V0(x̂)− V1(x̂)](α · x̂) e−Ĥ0(β~−τ−it)/~ [V0(x̂)− V1(x̂)](α · x̂) e−Ĥ1(τ+it)/~
}
, (SI.22)

where the second term on the right-hand side arises from time-derivatives of the time-

evolution operators and is thus also found in Wolynes theory,6,20,21 even in cases where

the position-dependence of the diabatic coupling is ignored. It follows that the first term on

the right-hand side of Eq. (SI.22), which contains time-derivatives of the diabatic coupling,
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contains the information about χ̈. In particular, the term of interest is given by

χ̈(τ + it)

χ(τ + it)
=

1

m2

tr
{

(α · p̂) e−Ĥ0(β~−τ−it)/~ (α · p̂) e−Ĥ1(τ+it)/~
}

tr
{

(α · x̂) e−Ĥ0(β~−τ−it)/~ (α · x̂) e−Ĥ1(τ+it)/~
} . (SI.23)

As before, we expand this expression in a position basis, replace the quantum propagators

by their semiclassical analogues and evaluate the term around the instanton (the stationary

point of the total action). At the instanton, the component of the momentum pointing along

the coupling mode (orthogonal to the reaction coordinate given by the tuning mode) is zero.

We therefore need to use the following expansion

〈x′|(α · p̂) e−Ĥnτn/~ |x′′〉 ∼ −i~
(
α · ∂

∂x′

)√
Cn

(2π~)f
e−Sn/~

∼ iα ·
(

∂2Sn
∂x′∂x′

x′ +
∂2Sn
∂x′∂x′′

x′′
)√

Cn
(2π~)f

e−Sn/~, (SI.24)

where all derivatives are evaluated at the hopping points. The analogous procedure is fol-

lowed for the terms associated with the propagation in the other direction. Second derivatives

of Sn can be evaluated using formulas presented in the Appendix of Ref. 22. These require

knowledge of nothing more than the potentials, gradients and Hessians along the instanton

path, which are anyway required for the original SCI approach.

We are now in the position to evaluate χ̈ at the instanton, which is given by

χ̈(τ̄) = − ~
m2

(α′)T

 ∂2S0

∂x′∂x′
∂2S0

∂x′∂x′′

∂2S0

∂x′′∂x′
∂2S0

∂x′′∂x′′


 ∂2S

∂x′∂x′
∂2S

∂x′∂x′′

∂2S
∂x′′∂x′

∂2S
∂x′′∂x′′


−1 ∂2S1

∂x′∂x′
∂2S1

∂x′∂x′′

∂2S1

∂x′′∂x′
∂2S1

∂x′′∂x′′

α′′, (SI.25)

and the masses are accounted for by mass-weighting all terms. With the general expressions
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for χ(τ̄) and χ̈(τ̄) at hand, the resummed SCI formula for the rate constant is given by

krSCI =
1

~2Z0

√
C0C1

C
e−S(τ̄)/~

∫ ∞
−∞

χ(τ̄ + it) e
t2

2~ S̈(τ̄) dt,

= χr fFC, (SI.26)

where χr = χ e
~
2
χ̈
χ
S̈−1

, and all quantities are evaluated at the instanton. We present the rate

constant for the three-mode model obtained with this method in Table SI.2. It is seen to be

in excellent agreement with the quantum-mechanical results, as expected for the harmonic

system. For more complicated, anharmonic systems where the diagonal and off-diagonal

blocks of the C-matrix cannot be simultaneously diagonalized, the resummation would have

to be adapted. We leave the development of such a more general resummation open for

future work since the correction of the SCI rate in the model system is relatively minor.

SI.2.4 Extended results for the model system

In Table SI.2, we compare the classical and NA-TST rates to the other rates given in Table 1

of the main text. Furthermore, we illustrate the rate constants computed with several

methods over a range of different temperatures in Fig. SI.4. As also seen in our ab initio

results, the NA-TST rate for the model system can be larger than the instanton and quantum-

mechanical rates, despite the neglect of nuclear tunnelling in this method. Furthermore,

Table SI.2 seems to suggest that the classical rate is in reasonably good agreement with the

exact result. This is simply a fortuitous cancellation of errors, on which one cannot rely in

general.

Table SI.2: Reaction rates [in ns−1] for 300 K from Table 1 of the main text in addition to
the classical and NA-TST rates.

BOI Classical NA-TST SCI SDI rSCI GR Exact

2401 0.9706 30.95 3.306 1.784 1.507 1.473 1.475
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Figure SI.4: Rates computed with different methods for the three-mode model system.

SI.3 SDI and the geometric phase

It is also possible to define a classical rate in the spirit of the SDI approach. Therefore,

we evaluate the correlation function [Eq. (SI.7)] by a phase-space integral but this time

include the coupling in the exponent. We then arrive at a configuration-space integral

that we can take by steepest descent about the stationary points of the effective potential

V eff(x, λ) = (1− λ)V0(x) + λV1(x)− ln[∆(x)2]/β. This leads to the rate expression

ksdcl =
∑
a

χeff
cl f

eff
FC,cl,a,

f eff
FC,cl,a =

√
2πm

β

1

~2‖G0,a −G1,a‖
Zeff,‡
a

Z0

e−βV
eff,‡
a , (SI.27)

where the sum is over stationary points of the effective potential, the MECI partition func-

tion, Zeff,‡, is evaluated based on the second-derivative matrix of V eff with respect to positions

only with the reaction coordinate projected out. Finally, χeff
cl = 1 is the classical limit of χeff.

For the model system from Sec. SI.1, the method leads to a rate of 1.010 ns−1, which is

in excellent agreement with the classical rate in Table SI.2 obtained with Eq. (SI.14). Note

that in the effective SDI action [Eq. (4)], ∆(x′) and ∆(x′′) can vary independently giving
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rise to two pairs of stationary paths, one pair with a positive sign and the other pair with

a negative sign. In contrast, the ∆(x)2 term in the effective potential of Eqs. (SI.27) only

allows for one pair of stationary paths with a positive sign. The classical rate therefore does

not contain negative contributions and cannot account for the GPE. The lack of GPEs in the

classical and NA-TST rates is the reason why these rates can be higher than the instanton

and quantum-mechanical results, as shown in Fig. SI.4, despite the neglect of tunnelling.

The SDI instantons are depicted in Fig. SI.5 along with the stationary points of V eff

projected onto the two-dimensional plane spanned by xt and xc. The Figure confirms that

the two stationary points of the effective potential correspond to the classical limit of the

curving or direct instantons (blue and red paths), whereas the pair of instantons winding

around the CI (violet paths, on top of each other, winding clockwise and counterclockwise),

which reduce the total rate, do not have a classical analogue.

−5 0 5
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y

0.0040
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0.0052

0.0058

0.0064

0.0070

0.0076

0.0082

0.0088

Figure SI.5: Contour plot of the adiabatic ground-state potential projected into the xtxc-
plane (with a relaxed bath-mode coordinate) along with the steepest-descent instantons and
the stationary points of V eff (black crosses) defined beneath Eq. (SI.27) at 300 K. The direct
blue and red paths contribute to the rate with a positive sign, whereas the winding violet
paths (clockwise and counterclockwise, lie on top of each other) contribute with a negative
sign. Additionally, the Born–Oppenheimer instantons (black lines) and transition states
(black dots) are shown. Note that there are two BOI paths curving left and right around
the CI, which are not resolved here because the paths traverse the barrier very close to the
CI.
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It can further be seen that the curving SDI paths deviate significantly from the cor-

responding classical stationary points. In both the instanton approach and the classical

approach, a compromise needs to be found between maximizing the diabatic coupling, which

grows away from the CI, and minimizing the potential-energy barrier, which is smallest at

the CI. Such effects of corner cutting, where tunnelling changes the reaction mechanism, are

not uncommon. Usually, however, the instanton cuts the corner to find a shorter, more direct

path from reactant to product at the expense of travelling through regions of higher potential

energy. This can be more favourable because tunnelling through high but narrow barriers is

very efficient. In this case, the steepest-descent instantons take a longer path exhibiting a

higher barrier than the path via the classical stationary points, which is favourable because

of the larger diabatic coupling along these paths. The ability of the instanton to describe

tunnelling hence allows it to find a better (in fact the optimal) compromise between path

length, potential-energy barrier and diabatic coupling than classical rate theory.

SI.4 Ab initio calculations

In this section we present additional details of the ab initio calculations and additional

discussions on the ab initio results.

SI.4.1 PBE vs PBEX50 functional

Hybrid functionals, often with an increased fraction of Fock exchange, are commonly used in

constrained density functional theory (CDFT) calculations, especially for computing diabatic

coupling.23,24 Since the PBE functional is considerably less expensive than the PBEX50

functional (i.e. a hybrid functional with 50% Fock exchange), we employed it for the instanton

optimizations. We have carefully tested its performance compared to the PBEX50 functional.

The fully optimized geometries with the PBEX50 functional are almost identical to those of

the PBE functional, and the MECP barrier is 0.180 eV (only 0.009 eV higher than the PBE
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barrier). Therefore we think that it is justifiable to use the PBE functional in the geometry

(including instanton) optimizations.

SI.4.2 Coupling mode from CDFT

Since the coupling mode vector is defined as α = ∂∆
∂x

, it seems one could straightforwardly

perform a finite displacement calculation at the MECI to obtain α. However, CDFT is only

able to return unsigned |∆| values, making the procedure to obtainαmore complicated as |∆|

is not a differentiable function at the CI. We first perform forward-difference and backward-

difference calculations, and by taking the unsigned average of the two (i.e., the forward-

difference derivative has only positive elements and the backward-difference derivative has

only negative elements so we reverse the backward-difference derivative before averaging),

we obtain α̃ = ∂|∆|
∂x

. This vector has the correct magnitude (i.e. the same as α), but the

relative signs for each element are missing. Next we displace the MECI in an arbitrary

direction by a displacement larger than the step size used for the numerical derivative. At

this point, we perform a central-difference gradient calculation to obtain the signs of the

elements of α. The procedure is repeated to ensure consistency by recomputing the gradient

at a point displaced from the CI in the direction of α, where the derivative of |∆| is well

defined. Finally, we checked that displacing along α does not lift the degeneracy of the two

diabatic states and that the slope of |∆| along this mode is indeed α = ||α||.

SI.4.3 Rate constants and H/D kinetic isotope effects

Here we present all the computed rate constants for BMA and deuterated BMA. One can

see from Table SI.3 (comparing the top and bottom sections) that the H/D kinetic isotope

effect (KIE) predicted by NA-TST is 1.2 at 300 K, while the KIE predicted by SCI is 1.4.

At 150 K, KIE only slightly increased (to 2.3) according to SCI, only slightly larger than

the NA-TST KIE (1.4). By comparing the decompositions in Table SI.4 and Table 2 in the

main text, one can see that apart from the ZPE contributions to the H/D isotope effect
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(which appear in the NA-TST KIEs), the remainder mainly originates from the tunnelling

factor. Meanwhile, if one substitutes all 12C atoms with 13C, the tunnelling factor decreases

from 9.1 to 8.6 at 300 K, which as discussed in the main text, is a remarkably large KIE for

heavy-atom substitution at room temperature.

Table SI.3: Rate constants (in units of ns−1) for the charge transfer process in BMA cation
(top) and deuterated BMA cation (bottom) computed with CDFT.

T [K] kcl kNA-TST kSCI

370 24 90 81
300 6.3 39 45
250 1.5 17 24
200 0.19 5.1 11
150 0.0061 0.74 6.3

300 6.2 33 32
200 0.19 3.8 7.1
150 0.0060 0.52 2.7

Table SI.4: Same as Table 2 in the main text but for fully deuterated BMA.

T [K] ZPE Tunnelling CI Fluctuations
300 5.2 7.1 0.56 0.24
200 21 66 0.38 0.073
150 87 830 0.29 0.022

Table SI.5: The contribution from fluctuations is defined as the ratio between SCI and
NA-TST prefactors computed on the full-dimensional system vs 1D MEP.

T [K] full dimensional 1D MEP
370 0.38 0.59
300 0.26 0.51
250 0.15 0.45
200 0.069 0.41
150 0.023 0.40
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SI.4.4 1D vs full-dimensional representation and discussion on the

fluctuations term

Given the seemingly negligible corner-cutting effects, one might expect that a one-dimensional

description based on the minimum-energy pathways (MEPs) would be sufficient. However,

the contribution from fluctuations (i.e. the ratio between SCI and NA-TST prefactor) at

150 K would be 0.40 if computed on the one-dimensional MEPs, significantly larger than the

value (0.023) computed on the full-dimensional system. One can see from Table SI.5 that the

contribution from fluctuations decreases rapidly with temperature for the full-dimensional

system, while it changes much slower for the 1D MEPs. This indicates that a theory based

on the one-dimensional MEP is inadequate to describe the system, and that the fluctuations

around the instanton contain important multidimensional effects. A similar behaviour of

the fluctuations has also been found for the LVC model (see Table SI.6). This indicates

that this effect is not unique to the ab initio system and that it can be reproduced with

multidimensional globally harmonic models.

SI.5 Ab initio system vs LVC model

In Fig. SI.6, we compare our first-principles results based on CDFT with rate constants com-

puted for the full-dimensional LVC model constructed in Ref. 25. It can be seen that the

SCI result for the LVC model at 300 K is in agreement with the GR rate constant extracted

from the short-time dynamics shown in Fig. 18 of Ref. 25. This is further evidence that the

semiclassical approximation inherent in instanton theory is well-suited for the description of

the charge transfer in the BMA cation. While the first-principles results agree with the rate

constants for the LVC model at high temperatures, a significant deviation of more than one

order of magnitude is observed in Fig. SI.6 at lower temperatures. One reason for this differ-

ence is that different electronic-structure methods were used in the two studies. In particular,

CASSCF was used to construct the LVC model, whereas our first-principles calculations are
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Table SI.6: Same as Table 2 in the main text but for the LVC model.

T ZPE Tunnelling CI Fluctuations
370 4.2 15 0.53 0.46
300 7.4 54 0.44 0.33
250 14 230 0.38 0.22
200 38 2200 0.34 0.090
150 220 97000 0.36 0.014

based on CDFT. A second difference is that the LVC model uses a global harmonic approx-

imation, whereas our first-principles instanton calculations make no assumptions about the

shape of the underlying PESs.

The comparison between the different contributions to the SCI rates based on our on-

the-fly CDFT calculations (Table 2 of the main text) and the LVC model (Table SI.6)

highlights that the tunnelling contribution constitutes the decisive difference between the

two approaches. This deviation originates from differing instanton actions, indicating that

the barrier in the harmonic LVC model is narrower than the one obtained with on-the-fly

CDFT.
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Figure SI.6: Rate constants computed with SCI for the charge transfer in the BMA cation
based on on-the-fly CDFT evaluations of the PESs. For comparison, we present results for
the full-dimensional LVC model of Ref. 25. The “LVC FGR” results are extracted from
Fig. 18 of Ref. 25, and the “LVC SCI” results are computed with instanton theory on the
same LVC model.
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