Supporting information for

Micellar catalysis: green solution to enable undirected and mild $\mathrm{C}-\mathrm{H}$ activation of (oligo)thiophenes at challenging β-position.

Pascal Hauk, ${ }^{\text {a }}$ Valérie Mazan, ${ }^{\text {a }}$ Fabrice Gallou*b and Joanna Wencel-Delord*a

a. Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 67087 Strasbourg, France; orcid.org/0000-0002-7094-5443; Email: wenceldelord@unistra.fr.
b. Chemical \& Analytical Development, Novartis Pharma AG, 4056 Basel.

Table of Content

General information 2
OPTIMIZATION OF THE DIRECT ARYLATION OF THIOPHENES 3
SYNTHESIS OF THIOPHENES AND ARYL IODINE SUBSTRATES 11
GENERAL PROCEDURES 12
General procedure A 12
General procedure B 12
General procedure C 12
General procedure D 12
KINETIC MEASUREMENTS 13
COMPOUND CHARACTERIZATION 16
FLUORESCENCE MEASUREMENTS 34
X-RAY DATA 38
References 39
SPECTRA 40

General information

All reactions from the optimization and scope were carried out under air. PS-750-M solutions were previously prepared with PS-750-M from Merck and from distilled and degassed $\mathrm{H}_{2} \mathrm{O}$ and stored in a Schlenk flask under argon at $7{ }^{\circ} \mathrm{C}$. Optimization reactions were carried out with 2 mL flasks using 11 mm diameter and 8 mm stirring bars. Scope reactions were performed in 5 mL round bottom flasks with 15 mm stirring bars. Volatile reagents were added as last to the reaction before air-tight sealing the reaction vessel. Room temperature was set at $25^{\circ} \mathrm{C}$. Screening reactions were carried out in a metal block from DrySyn and scope reactions were kept in a water bath to ensure a constant reaction temperature. Technical grade solvents for purifications and extractions (cyclohexane, ethyl acetate, toluene, and dichloromethane) were used without further purification. All reagents were purchased from commercial suppliers (Merck, Sigma Aldrich, Fluorochem, TCI, Alfa Aesar and Apollo Scientific) and used without purification and assumed to have a purity higher than 95%. TLCs were performed with silica coated aluminum plates (0.25 mm , Merck silicagel 60-F254). Flash column chromatography was performed on VWR silica gel ($40-63 \mu \mathrm{~m}$) and with the indicated solvents. Spots were visualized by UV light irradiation (254 or 390 nm). ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{19} \mathbf{F}$ NMR (377 MHz) and ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra were recorded on Bruker Avance III HD 400 instrument. Chemical shifts are reported as δ-values in parts per million (ppm) and are referred to partially deuterated chloroform (chloroform $\delta\left[{ }^{1} \mathrm{H}\right]=7.26 \mathrm{ppm}$ and $\delta\left[{ }^{13} \mathrm{C}\right]=77.0 \mathrm{ppm}$). The spectra were processed with MestreNova 14.3.0 (Mestrelab). Multiplicities were abbreviated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), $d d$ (doublet of doublets), $d d d$ (doublet of doublets of doublets). Coupling constants J were given in Hz . Coupling constants are given for $\mathrm{H}-\mathrm{H}$ and $\mathrm{H}-\mathrm{F}$ for proton signals and C-F for carbon signals. Quantitative NMR. (QNMR) were performed by adding $\mathrm{CH}_{2} \mathrm{Br}_{2}$ to the crude product in CDCl_{3} and integrated with respect to characteristic peaks of the thiophene. Regioselectivity of the products were analyzed by the GC/MS trace and integrated with Agilent MassHunter Qualitative Analysis 10.0 software. High resolution mass spectrometry (HRMS) analysis was performed with a Bruker MicroTOF mass analyser under ESI in positive ionization mode detection (measurement accuracy $\leq 15 \mathrm{ppm}$) by the analytical facility at the University of Strasbourg. All measures were carried on at $25^{\circ} \mathrm{C}$. The absorption spectra were recorded on spectrophotometer Cary 5000 UV-visible-NIR (Agilent Technologies). Emission and excitation measurements were carried on a fluorescence spectrometer LS55 (Perkin Elmer). The X-ray crystallographic structure analysis was performed by the radio- crystallographic facility at the Université de Strasbourg. The analysis was carried out on a Bruker PHOTON III DUO CPAD diffractometer equipped with an Oxford Cryosystem liquid N_{2} device, using Mo-K α radiation ($\lambda=0.71073 \AA \AA$).

Optimization of the direct arylation of thiophenes

Initial Screening

[T], 16 h

Entry	[Pd]	[Ag]	$\mathrm{RCO}_{2} \mathrm{H}$	Additive	[t]	[7]	Yield
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc (2 eq.)	-	L1	62h	$50^{\circ} \mathrm{C}$	19\%*
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc (2 eq.)	-	L2	62h	$50^{\circ} \mathrm{C}$	12\%*
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc (2 eq.)	AcOH 10 eq. ${ }^{\text {l }}$	L2	62h	$50^{\circ} \mathrm{C}$	35\%*
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc (2 eq.)	AcOH 10 eq. l	-	45h	$50^{\circ} \mathrm{C}$	22\%*
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc (2 eq.)	AcOH 10 eq.l	L2	45h	$25^{\circ} \mathrm{C}$	32\%*
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc (2 eq.)	AcOH 10 eq. l	L2	45h	$25^{\circ} \mathrm{C}$	32\%*
7	$\mathrm{Pd}(\mathrm{OAC})_{2}$	AgOAc (2 eq.)	AcOH 10 eq. 1	L2	16h	$25^{\circ} \mathrm{C}$	44\%*
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc (2 eq.)	AcOH 10 eq. l	L2	41h	$50^{\circ} \mathrm{C}$	21\%*
9	1\%	AgOAc (2 eq.)	AcOH 10 eq.l	L2	16h	$50^{\circ} \mathrm{C}$	2\%*
10	2\%	AgOAc (2 eq.)	AcOH 10 eq. I	L2	16h	$50^{\circ} \mathrm{C}$	5\%*
11	25\%	AgOAc (2 eq.)	AcOH 10 eq. 1	L2	16h	$50^{\circ} \mathrm{C}$	44\%*

Ligand Screening
4-Iodotoluene (1.5 eq.)
Ligand (30\%)
$\mathrm{Pd}(\mathrm{OAc})_{2}$ (10\%)

AgOAc (2.0 eq.)
0.1 mmol

PS-750-M (3wt\%, 1.0 ml$)$
AcOH (10 eq.) $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$

Silver quantity

4-Iodotoluene (1.5 eq.) Ligand (30\%) $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$

0.1 mmol

PS-750-M (3wt\%, 1.0 ml$)$
AcOH (10 eq.) $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$

Yield 7\%* 1 No Silver 41\%*
AgOAc 0.5 eq. AgOAc 1.0 eq. 53\% *
AgOAc 1.5 eq. 51\% *
AgOAc 2.0 eq.
43\% *
*Yield determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard

Silver/oxidant source

Entry	Deviation	Yield
1	$\mathrm{Ag}_{2} \mathrm{O} 1.0$ eq.	5\%*
2	Agl 1.0 eq.	6\%*
3	$\mathrm{Ag}_{2} \mathrm{SO}_{4} 1.0$ eq.	27\%*
4	AgTFA 1.0 eq.	52\%*
5	AgOAc 1.0 eq.	53\%*
6	No Silver	7\%*
7	CuOAc	0\%*
8	$\mathrm{Cu}(\mathrm{OAc})_{2}$	8\%*
9	BQ	0\%*
10	O_{2} balloon	9\%*

*Yield determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard

Carboxylic acid screening

4-lodotoluene (1.5 eq .) $\mathrm{Pd}(\mathrm{OAc})_{2}$ (10\%)

AgOAc (1.0 eq.)
PS-750-M (3wt\%, 1.0 ml)
carboxylic acid (3 eq.) $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$

12\%

76\%

0\%

84\%

77\%

76\%

30\%

79\%

65\%

Alternative acids screening

Entry	Deviation	Yield
1	$\mathrm{HCl} 37 \% 50 \mathrm{yl}$	$0 \%^{*}$
2	$p \mathrm{TsOH} 50 \mathrm{mg}$	$8 \%^{*}$
3	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \mathrm{10} \mathrm{eq}+$	$62 \%^{*}$
4	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Ag} 1.0$ eq.	$47 \%^{*}$

*Yield determined by 1H NMR using an internal standard

Homogeneity of reaction mixture, standard reaction condition (1.0 eq. 2-methylthiophene, 1.5 eq. 4iodotoluene, $\mathrm{Pd}(\mathrm{OAc})_{2} 10 \%$, AgOAc 1.0 eq , undecanoic acid $1.0 \mathrm{eq}, 3 \mathrm{wt} \% \mathrm{PS}-750-\mathrm{M}, 0.1 \mathrm{mmol}$ scale),
A. In water instead of PS-750-M
B. With benzoic acid instead of undecanoic acid
C. Optimized conditions
D. With 5.0 eq. undecanoic instead of 1.0 eq.

Carboxylic acid quantity

Entry	Deviation	Yield
1	5 eq. acid	90%
2	3 eq. acid	79%
3	1 eq. acid	79%
4	0.5 eq. acid	69%
5	3 eq. acid, ligand free	84%
6	acid free	24%
$\mathbf{7}$	1.0 eq. acid,ligand free	$\mathbf{8 0 \%}$
8	3.0 eq. acid, ligand free	86%
9	5.0 eq. acid, ligand free	89%
10	10.0 eq. acid, ligand free	84%
*Yield determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard		

Reaction media

 $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$

Entry	Deviation	Yield
1	In water	$86 \%^{*}$
2	In water, 0.2 mmol scale	$50 \%^{* *}$
3	5% PS-750-M	$83 \%^{*}$
4	EtOH as solvent	$55 \%^{*}$
5	$0.5 \mathrm{~mL} \mathrm{3} \mathrm{\%} \mathrm{PS}-750-\mathrm{M}$	$83 \%^{*}$

*Yield determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard
**The absence of surfactant resulted in an inhomogeneous mixture, which could not be reproduced on 0.5 mmol scale

Surfactant concentration

Entry	Deviation	Yield
1	3% PS-750-M	88%
2	2% PS-750-M	87%
3	1% PS-750-M	86%
4	2% TPGS-750-M	81%
5	2% SPGS-550-M	86%

*Yield determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard

Control experiments

Entry	Deviation	Yield
1	4-bromotoluene	$0 \%^{*}$
2	No [Pd]	$0 \%^{*}$
3	No Silver	$5 \%^{*}$
4	Solvent free (10 eq. undecanoic acid) 1.0 eq. lodotoluene	$0 \%^{*}$
5	1.1 eq. Thiophene 1.0 eq 4-iodotoluene	$86 \%^{*}$
6	Yield determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard	$92 \%^{*}$

Optimization of the reaction conditions for direct arylation of Ticlopidine

Entry	Deviation	Yield (SM:Pr)
1	Ticlopidine* HCl	7\%* (10:1)
2	3 days	36\%* (1:1)
3	$2 \mathrm{~mL} 5 \% \mathrm{PS}-750-\mathrm{M}$	32\%* (1.4:1)
4	AcOH (3 eq.)	27\%* (1.8:1)
5	benzoic acid	18\%* (3.7:1)
6	PivOH	30\%* (1.3:1)
7	At $40^{\circ} \mathrm{C}$, 1 eq. undecanoic acid	36\%* (1.2:1)
8	1 eq. AgOAc	36\%* (1.3:1)
9	1.5 eq. AgOAc	44\%* (0.9:1)
10	2.0 eq AgOAc	37\%* (0.8:1)
11	3.0 eq AgOAc	39\%* (0.8:1)
12	$\begin{aligned} & 1.5 \text { eq. AgOAc } \\ & 41 \text { hours } \end{aligned}$	40\%* (0.8:1)
13	1.5 eq. AgOAc and 0.2 eq Pd	47\%* (0.5:1)
14	1.5 eq. AgOAc 3 eq. undecanoic acid	20\%* (3:1)
15	1.5 eq. AgOAc, 3 eq. acid Dppf (0.3 eq.) ligand	1\%* (99:1)
16	under Argon	37\%* (1.1:1)
17	0.5 eq. acid	$34 \% *$ (1:1)
18	0.1 eq. acid	33\%* (0.9:1)
19	no acid	21\%* (1.8:1)
20	0.2 eq. Pd/C (10\%)	0\%* (98:0)
21	$\mathrm{Pd}(\mathrm{Acac})_{2}$	0\%* (100:0)
22	PdCl_{2}	10\%* (8:1)

23	$\mathrm{Pd}(\mathrm{dba})_{2}$	20\%* (4:1)
24	$\mathrm{Pd}(\mathrm{TFA})_{2}$	38\%* (1.5:1)
25	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	44\%* (0.8:1)
26	AgTFA	26\%* (2.6:1)
27	AgBenzoate	25\%* (2.1:1)
28	$\mathrm{Ag}_{2} \mathrm{O}$	5\%* (14:1)
29	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \text { (2.0 eq.) } \\ \text { additive } \end{gathered}$	26\%* (1.7:1)
30	$\begin{gathered} \mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \text { eq. }) \\ \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \%) \end{gathered}$	10\%* (7:1)
31	10 yl EtOAc cosolvent	41\%* (0.8:1)
32	$\begin{gathered} 10 \% \mathrm{Pd}(\mathrm{OAc})_{2} \text { after } 16 \mathrm{~h}, \\ 41 \mathrm{~h} \end{gathered}$	40\%* (0.3:1)
33	$60^{\circ} \mathrm{C}$	30\%* (1.2:1)
34	$80^{\circ} \mathrm{C}$	21\%* (1.9:1)
35	8h	44\%* (1:1)
36	$\begin{gathered} 3.0 \text { eq. AgOAc, } \\ 8 \mathrm{~h} \end{gathered}$	33\%* (1.4:1)
37	1.5 eq. AgOAc 8 h , then 1.5 eq. $\mathrm{AgOAc}, 8 \mathrm{~h}$	38\%* (0.7:1)
38	$\mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$	24\%* (1.6:1)
39	$1 \mathrm{~mL} \mathrm{PS}-750-\mathrm{M}, 10 \% \mathrm{MeOH}$	41\%* (0.9:1)
40	1 mL PS-750-M, 10\% EtOH	43\%* (1:1)
41	1 mL PS-750-M, 10\% iPrOH	46\%* (0.7:1)
42	$1 \mathrm{~mL} \mathrm{PS}-750-\mathrm{M}, 10 \%$ THF	$37 \% *$ (1:1)
43	1 mL PS-750-M, 10\% Toluene	26\%* (2:1)
44	1 mL PS-750-M, 10\% Acetone	41\%* (1:1)
45	1 mL PS-750-M, 10\% ACN	44\%* (0.9:1)
46	1 mL HFIP	14\%* (4:1)
47	3 eq. Arl	50\%* (1:1)

Synthesis of thiophenes and aryl iodine substrates

4-iodobenzaldehyde

4-iodobenzonitrile ($687 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$ before DIBALH ($3.0 \mathrm{~mL}, 1.2 \mathrm{M}$ in hexane, 3.60 mmol .1 .2 eq.) was added slowly. After full addition, the reaction was allowed to stir for 2 h at rt before it was transferred to an Erlenmeyer flask with ice and concentrated HCl $(20 \mathrm{~mL})$ and stirred for another 30 min . The reaction was quenched with sat. aq. NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over MgSO_{4}. The product was isolated as white solid ($563 \mathrm{mg}, 2.43 \mathrm{mmol}, 81 \%$) and used without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}$, $2 H)$. Spectral data were consistent with the literature. ${ }^{[1]}$

2-(2-fluorophenyl)thiophene

2-fluorophenylboronic acid ($700 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 2-bromothiophene ($815 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(86.6 \mathrm{mg}, 75.0 \mu \mathrm{~mol}, 1.5 \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(898 \mathrm{mg}, 6.50 \mathrm{mmol}, 1.3 \mathrm{eq}$.$) were dissolved in a 1: 1$ mixture of dioxane/water (10 mL) and heated for 14 h at $100^{\circ} \mathrm{C}$. The reaction was extracted with EtOAc, dried over MgSO_{4}, and purified by flash column chromatography (cyclohexane/EtOAc 95:5) to obtain the product as white solid ($750 \mathrm{mg}, 4.20 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{td}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dt}, J=3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=5.1,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 3 \mathrm{H})$. Spectral data were consistent with the literature. ${ }^{[2]}$

2-phenylthiophene-5-d

2-Phenylthiophene ($401 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.0$ eq.) was dissolved in DMSO- d6 ($2.8 \mathrm{~mL}, 40.0 \mathrm{mmol}, 16$ eq.) and $\mathrm{K}_{3} \mathrm{PO}_{4}(265 \mathrm{mg}, 1.25 \mathrm{mmol}, 0.5 \mathrm{eq}$.) was added. The reaction mixture was stirred for 60 h at $130^{\circ} \mathrm{C}$ and quenched with sat. aq. NaHCO_{3}. The organic layer was extracted with cyclohexane and the product was isolated without further purification as white solid ($317 \mathrm{mg}, 1.97 \mathrm{mmol}, 79 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR
(400 MHz, Chloroform-d) $\delta 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27$ (m, 1H), $7.09(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 144.49,134.56,129.02,127.98$, 127.59, 126.10, 123.21. HRMS (ESI) m/z calc. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{DS}^{+}\left[\mathrm{M}+\mathrm{H}^{+}: 162.0482\right.$, found: 162.0457 .

General procedures

General procedure A : Thiophene (1.0 eq.), aryl iodide (1.5 eq.), silver acetate (1.0 eq), palladium diacetate (10%) and undecanoic acid (1.0 eq.) were added in a 10 mL RBF with a 15 mm stirring bar. A degassed solution of $3 \mathrm{wt} \% \mathrm{PS}-750-\mathrm{M}(0.1 \mathrm{M})$ was added, and the reaction stirred for 16 h at room temperature. After this time, the mixture was diluted with EtOAc , dried with MgSO_{4}, filtered over a plug of celite and washed several times with EtOAc. The crude mixture was then analysed by quantitative NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. The crude product was purified by column chromatography with the specified solvent and further purified on preparative TLC if necessary to obtain the pure product.

General procedure B : An excess of thiophene (2.4-5.0 eq.), aryl iodide (1.0 eq.), silver acetate (3.0 eq.), palladium diacetate (10%) and undecanoic acid (3.0 eq.) were added in a 10 mL RBF with a 15 mm stirring bar. A degassed solution of $3 \mathrm{wt} \% \mathrm{PS}-750-\mathrm{M}(0.1 \mathrm{M})$ was added and the reaction stirred for three days at room temperature. After this time, the mixture was diluted with EtOAc, dried with MgSO_{4}, filtered over a plug of celite and washed several times with EtOAc. The crude mixture was then analysed by quantitative NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. The crude product was purified by column chromatography with the specified solvent and further purified on preparative TLC if necessary to obtain the pure product.

General procedure C : Thiophene (1.0 eq.), aryl iodide (5.0 eq.), silver acetate (3.0 eq.), palladium diacetate (10%) and undecanoic acid (3.0 eq.) were added in a 10 mL RBF with a 15 mm stirring bar. A degassed solution of $3 \mathrm{wt} \% \mathrm{PS}-750-\mathrm{M}(0.1 \mathrm{M})$ was added, and the reaction stirred for the indicated time at room temperature. After this time, the mixture was diluted with EtOAc, dried with MgSO_{4}, filtered over a plug of celite and washed several times with EtOAc. The crude mixture was then analysed by quantitative NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. The crude product was purified by column chromatography with the specified solvent and further purified on preparative TLC if necessary to obtain the pure product.

General procedure D : Thiophene (1.0 eq.), aryl iodide (3.0 eq.), silver acetate (1.5 eq.), palladium diacetate (10%) and undecanoic acid (1.0 eq.) were added in a 2 mL vial with an 8 mm stirring bar. A degassed solution of $3 \mathrm{wt} \% \mathrm{PS}-750-\mathrm{M}(0.1 \mathrm{M})$ was added, and the reaction stirred for 16 h at room temperature. After this time, the mixture was diluted with EtOAc, dried with MgSO_{4}, filtered over a plug of celite and washed several times with EtOAc. The crude mixture was then analysed by quantitative NMR
with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. The crude product was purified by column chromatography with the specified solvent and further purified on preparative TLC if necessary to obtain the pure product.

Kinetic measurements

b)
$\mathrm{Pd}(\mathrm{OAc}) 2$ (10%)
AgOAc (1.5 eq.)
 decanoic acid (1.0 eq.) $\xrightarrow{\mathrm{rt}, 16 \mathrm{~h} \longrightarrow}$

Compound characterization

2-methyl-4-(p-tolyl)thiophene (3a)

The product 3a was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 4-iodotoluene ($163 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($82 \mathrm{mg}, 0.43 \mathrm{mmol}, 86 \%$). (QNMR: 99\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.48$ (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.55(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 142.18, 140.49, $136.79,133.51,129.55,126.27,124.78,117.52,21.28,15.59$. GC/MS regioselectivity by integration $\beta / \alpha>$ 99:1. Spectral data were consistent with the literature. ${ }^{[3]}$

2-methyl-4-phenylthiophene (3b)

The product 3b was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), iodobenzene ($153 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($79 \mathrm{mg}, 0.45 \mathrm{mmol}, 91 \%$). (QNMR: 95\%). ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{p}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 142.20,140.63$, $136.28,128.85,127.06,126.38,124.76,118.15,15.57$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[4]}$

4-(4-(tert-butyl)phenyl)-2-methylthiophene (3c)

The product 3 c was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 1-(tert-butyl)-4-iodobenzene ($195 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($104 \mathrm{mg}, 0.45 \mathrm{mmol}, 90 \%$). (QNMR: 99\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.52(d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H})$, 2.55 ($\mathrm{s}, 3 \mathrm{H}$), 1.37 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 150.02, 142.11, 140.39, 133.54, 126.08, $125.76,124.80,117.65,34.65,31.47,15.58$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[5]}$

4-(4-methoxyphenyl)-2-methylthiophene (3d)

The product 3d was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 1-iodoanisole ($175 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($55 \mathrm{mg}, 0.27 \mathrm{mmol}, 54 \%$) (QNMR: 63\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H})$, 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 2.53 ($\mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 158.86,141.83,140.48,129.18$, $127.47,124.71,116.76,114.24,55.44,15.56$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[4]}$

4-(5-methylthiophen-3-yl)phenol (3e)

The product 3 e was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 1-iodoanisole ($175 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (90% cyclohexane, 10% EtOAc). The product was isolated as white solid white oil ($68 \mathrm{mg}, 0.36 \mathrm{mmol}, 72 \%$). The product was further purified by preparative HPLC (ACN/ $\left.\mathrm{H}_{2} \mathrm{O}\right) .\left(\right.$ QNMR: 72\%). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, DMSO-d6) ס: $9.43(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{brd}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{brd}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6) $\delta 156.55,141.24,139.62,127.02,126.63,124.38,116.16,115.50,15.04$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{OS}^{+}[\mathrm{M}]^{+}, 190.0452$, measured: 190.0446

4-(4-bromophenyl)-2-methylthiophene (3f)

The product $3 f$ was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5$ mmol, 1.0 eq.), 1-bromo-4-iodobenzene ($212 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($70 \mathrm{mg}, 0.28 \mathrm{mmol}, 55 \%$) (QNMR: 70\%) ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.02 ($\mathrm{s}, 1 \mathrm{H}$), $2.53(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 141.06, 140.92, 135.16, 131.93, 127.91, 124.45, 120.90, 118.54, 15.55. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[4]}$

4-(3-bromophenyl)-2-methylthiophene (3g)

The product 3 g was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 3-bromoiodobenzene ($283 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as clear oil ($110 \mathrm{mg}, 0.43 \mathrm{mmol}, 87 \%$) (QNMR: 88\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.75(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52 (ddd, $J=7.8,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (ddd, $J=8.0,2.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.07,140.59,138.28,130.36,129.93,129.38,124.91,124.48,122.99,119.05,15.54$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[6]}$

1-(4-(5-methylthiophen-3-yl)phenyl)ethan-1-one (3h)

The product 3 h was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 4-iodobenzaldehyde ($174 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (95:5 Cyclohexane/EtOAc). The product was isolated as white solid ($86 \mathrm{mg}, 0.43 \mathrm{mmol}, 85 \%$) (QNMR: 91\%). ${ }^{\mathbf{1} \mathbf{H}}$ NMR (400 MHz, Chloroform-d) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}) 2.54(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .,{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.90, 141.94, $141.45,140.72,134.95,130.53,126.68,124.46,120.56,15.56$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 203.0525, found: 203.0529.

2-methyl-4-(4-nitrophenyl)thiophene (3i)

The product 3 i was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 1.0$ eq.), 1-iodo-4-nitrobenzene ($187 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.), isolated by column chromatography (95:5 Cyclohexane/EtOAc) and further purified by preparative TLC (100\% toluene). The product was isolated as white solid (22 mg, 0.10 mmol , 20\%) (QNMR: 20\%). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz , Chloroform-d) $\delta 8.26-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 146.64, 142.33, 141.90, 139.78, 126.72, $124.41,124.35,121.25,15.57$. GC/MS regioselectivity by integration $\beta / \alpha=97: 3$. Spectral data were consistent with the literature. ${ }^{[4]}$

2-methyl-4-(4-(trifluoromethyl)phenyl)thiophene (3j)

The product 3 j was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 1-iodobenzotrifluoride ($204 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($92 \mathrm{mg}, 0.40 \mathrm{mmol}, 80 \%$) (QNMR: 87\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 141.25,140.55,139.44(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 128.84(\mathrm{q}, J=32.5 \mathrm{~Hz}$), $126.34,125.74(q, J=3.8 \mathrm{~Hz}), 124.35,124.35(q, J=271.8 \mathrm{~Hz}), 119.65,15.36 .{ }^{19} \mathrm{~F} \mathrm{NMR}(377 \mathrm{MHz}$, Chloroform-d) $\delta-62.42$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[4]}$

4-(4-fluorophenyl)-2-methylthiophene (3k)

The product 3k was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 1-fluoro-4-iodobenzene ($166 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as clear oil ($85 \mathrm{mg}, 0.44 \mathrm{mmol}, 88 \%$) (QNMR: 99\%) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ $(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{p}, \mathrm{J}=1.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.53(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 162.14(\mathrm{~d}, \mathrm{~J}=245.8 \mathrm{~Hz}$), 141.16, 140.89, $132.52(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 127.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 124.69,117.91(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 115.70(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 15.55 .{ }^{19} \mathrm{~F}$ NMR (377 MHz , Chloroform- d) $\delta-115.75$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[4]}$

ethyl 4-(5-methylthiophen-3-yl)benzoate (31)

The product 31 was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), ethyl 4 -iodobenzoate ($207 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (95:5 Cyclohexane/EtOAc). The product was isolated as white solid ($107 \mathrm{mg}, 0.44 \mathrm{mmol}, 88 \%$). (QNMR: 90\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.09-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{p}, \mathrm{J}$ $=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform-d) $\delta 166.62,141.18,141.07,140.35,130.26,128.91,126.07,124.56,119.81,61.05,15.57$, 14.51. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m / z calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 247.0787, found: 247.0784

1-(4-(5-methylthiophen-3-yl)phenyl)ethan-1-one (3m)

The product 3m was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 4-iodoacetophenone ($184 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% toluene). The product was isolated as white solid ($60 \mathrm{mg}, 0.28 \mathrm{mmol}, 55 \%$) (QNMR: 88\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H})$, $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 197.69, 141.27, 140.87, 140.59, $135.58,129.13,126.25,124.48,120.03,26.71,15.55$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m/z calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 217.0682, found: 217.0686.

4-(5-methylthiophen-3-yl)benzonitrile (3na) and 4-(5-methylthiophen-2-yl)benzonitrile (3nb)

The product 3na was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.) and 4 -iodobenzonitrile ($172 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ eq.). The product was purified by column chromatography (90:10 cyclohexane/EtOAc) and further purified by preparative TLC (90:10 Cyclohexane/EtOAc). The compound was isolated as an inseparable mixture of 3na and the alpha-arylated product 3nb (3na/3nb: 4.2:1, 40mg, 0.2 mmol , 40%) (QNMR: 38\% 3na, 9\% 3nb). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.67-7.61(\mathrm{~m}, 5 \mathrm{H}, 3 \mathrm{na}+3 \mathrm{nb}), 7.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{na}), 7.22(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 0.22 \mathrm{H}, 3 \mathrm{nb}$), 7.06 (s, 1H, 3na), 6.78 (dd, $J=3.6,1.2 \mathrm{~Hz}, 0.21 \mathrm{H}, 3 \mathrm{nb}$), 2.54 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{na}$), 2.53 (d, $J=1.1 \mathrm{~Hz}, 0.7 \mathrm{H}$, XY). ${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 142.36$ (3nb), 141.71 (3na), 140.41 (3na), 140.15 (3na), 139.72 (3nb), 139.08 (3nb), 132.81 (3nb), 132.77 (3na), 126.97 (3nb), 126.74 (3na), 125.65 (3nb), 125.26 (3nb),
124.23 (3na), 120.61 (3na), 119.16 (3na), 119.12 (3nb), 110.35 (3na), 110.04 (3nb), 15.70 (3nb), 15.55 (3na). GC/MS regioselectivity by integration $\beta / \alpha=81: 19$. Spectral data were consistent with the literature. ${ }^{[4,7]}$

2-methyl-4-(naphthalen-1-yl)thiophene (30)

The product 30 was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 1-iodonaphthalene ($190 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane The product was isolated as clear oil ($45 \mathrm{mg}, 0.2 \mathrm{mmol}, 40 \%$) (QNMR: 47\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.14-8.12(m, 1 H), 7.93-7.90(m, 1 H), 7.86-7.84(m, 1 H), 7.54-7.47(m, 4 H), 7.16(d, J$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 141.12,139.68$, $135.50,133.94,131.91,128.40,128.05,127.72,126.86,126.16,126.12,125.91,125.52,121.39,15.53$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[4]}$

2-methyl-4-(2-methylphenyl)thiophene (3p)

The product 3p was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 2 -iodotoluene ($164 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as clear oil ($40 \mathrm{mg}, 0.21 \mathrm{mmol}, 42 \%$) (QNMR: 49\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.36$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 142.18,139.25,137.08,135.76,130.55,129.75,127.37,127.28$, 125.87, 120.50, 20.93, 15.47. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[8]}$

5,5'-dimethyl-2,3'-bithiophene (3qa) and 5,5'-dimethyl-2,2'-bithiophene (3qb)

The product 3qa was synthesized via the general procedure A using 2-methylthiophene ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 2-iodo-5-methylthiophene ($168 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane) as an inseparable mixture of $3 q a$ and $3 q$ ($3 q a / 3 q b: 8: 1,19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \%$) (QNMR: 39\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.03$ (d, J = $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 q \mathrm{a}$), $6.94-6.92$ (m, 2H, 3qa), 6.88 (d, J = $=3.5 \mathrm{~Hz}, 0.24 \mathrm{H}, 3 q \mathrm{~b}$), 6.66 (dd, $J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 q \mathrm{a}$), 6.64 (dd, $J=3.5,1.1 \mathrm{~Hz}, 0.24 \mathrm{H}, 3 q \mathrm{~b}), 2.49$ ($d, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, 3 q \mathrm{a}$), 2.48 ($\mathrm{d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{qa}$), 2.47 ($\mathrm{d}, J=1.0 \mathrm{~Hz}, 0.82 \mathrm{H}, 3 \mathrm{qb}$). ${ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform-d) $\delta 140.54$ (3qa), 138.60 (3qb), 138.30 (3qa), 137.45 (3qa), 135.73 (3qa), 135.64 (3qb), 125.87 (3qb), 125.78 (3qa), 124.35 (3qa), 122.99 (3qb), 122.75 (3qa), 116.58 (3qa), 31.04 (3qa), 15.45 (3qb), 15.43 (3qa). HRMS (ESI) 3qa m / z calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 195.0297, found: 195.0302. GC/MS regioselectivity by integration $\beta / \alpha=87: 13$. Spectral data were consistent with the literature. ${ }^{[9]}$

1,4-bis(5-methylthiophen-3-yl)benzene (3r)

The product $3 r$ was synthesized via the general procedure B using 2-methylthiophene ($245 \mathrm{mg}, 2.5 \mathrm{mmol}$, 5.0 eq.), 1,4-diiodobenzene ($165 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). Compound $3 r$ was further purified by preparative TLC obtaining the product as white solid ($35.2 \mathrm{mg}, 0.13 \mathrm{mmol}, 26 \%$). (QNMR: 50\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.57$ (s, 4H), 7.21 (d, J=1.5 Hz, 2H), 7.09 - 7.07 (m, 2H), 2.54 (d, J = $1.1 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 141.78,140.70$, 134.84, 126.67, 124.64, 117.99, 15.60. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~S}_{2}^{+}[\mathrm{M}]^{+}$: 271.0610, found: 271.0613.

1,3-bis(5-methylthiophen-3-yl)benzene (3s)

The product 3s was synthesized via the general procedure B using 2-methylthiophene ($118 \mathrm{mg}, 1.2 \mathrm{mmol}$, 2.4 eq.), 1,3-diiodobenzene ($165 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($78 \mathrm{mg}, 0.29 \mathrm{mmol}, 58 \%$) (QNMR: 73\%) ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.79(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=8.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 142.14, 140.71, 136.74, 129.24, 125.07, 124.84, 124.42, 118.37, 15.59. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[10]}$

2-hexyl-4-(p-tolyl)thiophene (3t)

The product 3t was synthesized via the general procedure A using 2-hexylthiophene ($84 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ eq.), 4-iodotoluene ($163 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane The product was isolated as clear oil ($114 \mathrm{mg}, 0.44 \mathrm{mmol}, 88 \%$) (QNMR: 100\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{dt}, J=1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.83(\mathrm{~m}$, $2 H), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 146.71$, 141.90, 136.72, 133.60, 129.53, 126.27, 123.51, 117.22, 31.77, 31.74, 30.39, 28.97, 22.73, 21.27, 14.23. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[11]}$

2-phenyl-4-(p-tolyl)thiophene (3u)

The product 3 u was synthesized via the general procedure A using 2-phenylthiophene ($80 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 eq.), 4-iodotoluene ($163 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($105 \mathrm{mg}, 0.42 \mathrm{mmol}, 84 \%$) (QNMR: 99\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}$, $2 \mathrm{H}), 7.35(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 145.04,143.26,137.18,134.54,133.23,129.65,129.06,127.77,126.34,125.99,122.49$, 119.26, 21.31. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. Spectral data were consistent with the literature. ${ }^{[12]}$

2-(2-fluorophenyl)-4-(p-tolyl)thiophene (3v)

The product $3 v$ was synthesized via the general procedure A using 2-(2-fluorophenyl)thiophene ($89 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) , 4 -iodotoluene ($163 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and isolated by column chromatography (100% cyclohexane). The product was isolated as white solid ($89 \mathrm{mg}, 0.33 \mathrm{mmol}, 66 \%$) (QNMR: 72\%) ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.17(\mathrm{~m}, 5 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d$) \delta 159.24(\mathrm{~d}, \mathrm{~J}=250.2 \mathrm{~Hz}$), 142.97, 137.82 (d, $J=3.3 \mathrm{~Hz}$), 137.19, 133.13, 129.66, $128.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 128.81(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 126.39,125.72(\mathrm{~d}, J=6.5$ $\mathrm{Hz}), 124.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 122.37(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 120.15(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 116.51(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 21.30 .{ }^{19} \mathrm{~F}$ NMR (377 MHz , Chloroform- d) $\delta-113.70$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FS}^{+}[\mathrm{M}]^{+}$: 268.0717, found: 268.0715.

3-phenyl-4-(p-tolyl)thiophene (3w)

The product $3 w$ was synthesized via the general procedure A with the exception of using 1.0 eq. of 4iodotoluene ($109 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3-phenylthiophene ($80.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq}$). The product was purified by preparative HPLC ($\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}$) to obtain a clean sample for analysis (QNMR: 45\%). ${ }^{\mathbf{1}} \mathrm{H}$ NMR (600 MHz, DMSO-d6) $\delta: 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6) δ 140.8 (C3, C4), 136.3 (C9, C12), 133.4, 128.9, 128.6, 128.5, 128.2, 126.8, 124.4, 20.7. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$.

2,3-dimethyl-4-(p-tolyl)thiophene (3ya)

The product 3ya was synthesized via the general procedure A using 2,3 dimethylthiophene ($11.6 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.), 2-iodotoluene ($32.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in a 2 mL vial and isolated by preparative TLC (100% toluene). The product was isolated as white solid ($15 \mathrm{mg}, 0.07 \mathrm{mmol}, 74 \%$) (QNMR: 74\%). ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H})$, 2.40 ($\mathrm{s}, 3 \mathrm{H}$), 2.13 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 143.88, 136.66, 135.14, 133.69, 131.81, 129.10, 128.71, 118.27, 21.31, 13.96, 13.25. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{OS}^{+}[\mathrm{M}]^{+}: 202.0811$, found: 202.0832 .

3-(p-tolyl)thiophene (3x)

The product $3 \mathbf{x}$ was synthesized via the general procedure A with the exception of using an excess of thiophene ($84.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and 4 -iodotoluene ($109 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The title product was isolated as the mayor regioisomer by column chromatography (100% cyclohexane). The product was isolated as white solid ($21.7 \mathrm{mg}, 0.12 \mathrm{mmol}, 25 \%$) (QNMR: 56\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.53$ $-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 142.49,137.00,133.23,129.62,126.47,126.18,119.78,21.28$. GC/MS regioselectivity by integration $\beta / \alpha=97: 3$. Spectral data were consistent with the literature. ${ }^{[4]}$

5-(2-chlorobenzyl)-3-(p-tolyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (3za)

The product 3za was synthesized via the general procedure D using Ticlopidine (free base) ($26.4 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.), 4 -iodotoluene ($65.4 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and purified by preparative TLC (5% EtOAc/cyclohexane). The product was obtained as clear oil ($17.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 50 \%$). (QNMR: 50\%, 50\% SM recovered). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.51$ (dd, J = 7.4, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (dd, J = 7.6, 1.6 Hz , 1H), $7.26-7.15(\mathrm{~s}, 6 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.97-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.37 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 140.80,136.92,136.28,134.89,134.29,133.68,132.53$, 130.57, 129.55, 129.32, 128.27, 128.07, 126.87, 119.49, 58.63, 54.20, 50.16, 26.24, 21.31. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClNS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 354.1078$, found: 354.1066.

5-(2-chlorobenzyl)-3-(naphthalen-1-yl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (3zb)

The product 3zb was synthesized via the general procedure D using Ticlopidine (free base) ($26.4 \mathrm{mg}, 0.1$ mmol, 1.0 eq.), 1-iodonaphthalene ($76.2 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ eq.) and purified by preparative TLC (10% EtOAc/cyclohexane). The product was obtained as clear oil ($9.2 \mathrm{mg}, 0.024 \mathrm{mmol}, 24 \%$) (QNMR: 39\%, 46\% Sm recovered). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.88(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.84(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{dd}, J=7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.191-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 138.73,136.28,134.45,134.22,134.19,134.19,133.75,132.39,130.44,129.46$, $128.32,128.17,128.02,127.29,126.77,126.28,126.25,125.99,125.42,121.39,58.39,53.50,50.17,26.12$. GC/MS regioselectivity by integration $\beta / \alpha>99: 1$. HRMS (ESI) m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{CINS}^{+}$[M] ${ }^{+}: 389.10$, found: 386.08.

4,4'-di-p-tolyl-2,2'-bithiophene ($T T_{1}{ }^{\prime}$) and 4-(p-tolyl)-2,2'-bithiophene (T_{1})

TT1

The products $\mathrm{TT}_{1}{ }^{\prime}$ and TT_{1} were synthesized via the general procedure C using $2,2^{\prime}$-bithiophene ($83 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.), 4 -iodotoluene ($545 \mathrm{mg}, 2.50 \mathrm{mmol}, 5.0 \mathrm{eq}$.) and a reaction time of 3 days and isolated by column chromatography (100% to 98% cyclohexane/EtOAc). Product $\mathrm{TT}_{1}{ }^{\prime}$ was isolated as white solid that is barely soluble in EtOAc and CDCl_{3} ($61 \mathrm{mg}, 0.18 \mathrm{mmol}, 35 \%$) and product TT_{1} was obtained as white solid (46 $\mathrm{mg}, 0.18 \mathrm{mmol}, 36 \%)$. Due to the different solubility of $\mathrm{TT}_{1}{ }^{\prime}$ and TT_{1}, the quantitative ${ }^{1} \mathrm{H}$ NMR could not deliver reliable results. $\mathrm{TT}_{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.53-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 143.08,138.04$,
137.32, 132.89, 129.67, 126.34, 123.14, 118.82, 21.32. $\mathrm{TT}_{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.50-7.47$ (m, 2H), $7.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.37 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 143.02, 138.03, 137.54, 137.27, 132.91, 129.65, 127.94, 126.32, 124.64, 123.98, 123.07, 118.68, 21.30. TT $_{1}$ HRMS (ESI) m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OS}_{2}{ }^{+}$[M] ${ }^{+}$: 256.0375, found: 256.0376. TT $_{1}{ }^{\prime}$ HRMS (ESI) m / z calc. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}]^{+}$: 347.0923, found: 347.0922.

diethyl 4,4'-([2,2'-bithiophene]-4,4'-diyl)dibenzoate (TT_{2})

The product TT_{2} was synthesized via the general procedure C using $2,2^{\prime}$-bithiophene $(83 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ eq.), ethyl 4 -iodobenzoate ($690 \mathrm{mg}, 2.50 \mathrm{mmol}, 5.0$ eq.) and a reaction time of 3 days and isolated by column chromatography (10% to 100% cyclohexane/EtOAc). The product was further purified by crystallization from cyclohexane. TT_{2} was isolated as yellow solid that is barely soluble in cyclohexane (143 $\mathrm{mg}, 0.31 \mathrm{mmol}, 62 \%) .\left(\right.$ QNMR: 72\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.11$ - 8.07 (m, 4H), 7.69 - 7.66 $(\mathrm{m}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 166.49, 142.05, 139.62, 138.26, 130.37, 129.45, 126.22, 123.13, 121.18, 61.16, 14.51. HRMS (ESI) m/z calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NaO}_{4} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 485.0852$, found: 485.0841 .

4-(4-methoxyphenyl)-2,2':5',2"-terthiophene (TTT ${ }_{1}$)

The product TTT_{1} was synthesized via the general procedure C using $2,2^{\prime}: 5^{\prime}, 2^{\prime \prime}$-terthiophene (124 $\mathrm{mg}, 0.5$ mmol, 1.0 eq.), 4-iodoanisole ($545 \mathrm{mg}, 2.50 \mathrm{mmol}, 5.0$ eq.) and a reaction time of 5 days and isolated by column chromatography (10% to 100% EtOAc/cyclohexane). Product TTT $_{1}$ was isolated as red solid that is barely soluble in EtOAc and $\mathrm{CDCl}_{3}(100 \mathrm{mg}, 0.28 \mathrm{mmol}, 56 \%)$ (QNMR: 44\%). TTT_{1} can be further purified by vacuum sublimation. Due to the low solubility in CDCl_{3}, quantitative ${ }^{1} \mathrm{H}$ NMR could not deliver reliable results. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.23(\mathrm{dd}, J=5.2,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03 (dd, J = 5.1, 3.6 Hz, 1H), 6.97-6.93 (m, 2H), $3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 159.23$, $142.82,137.73,137.25,136.48,136.33,128.47,128.04,127.60,124.68,124.50,124.47,123.88,122.90$, 118.07, 114.37, 55.49. HRMS (ESI) m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{OS}_{3}{ }^{+}[\mathrm{M}]^{+}$: 354.0201, found: 354.0196.

diethyl 4,4'-([2,2':5',2'"-terthiophene]-4,4"-diyl)dibenzoate (TTT ${ }_{2}$)

The product TTT_{2} was synthesized via the general procedure C using $2,2^{\prime}: 5^{\prime}, 2^{\prime \prime}$-terthiophene ($124 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 1.0$ eq.), ethyl 4 -iodobenzoate ($690 \mathrm{mg}, 2.50 \mathrm{mmol}, 5.0 \mathrm{eq}$.) and a reaction time of 3 days and isolated by column chromatography ($10 \% \mathrm{EtOAc} /$ cyclohexane to $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$). The product was further purified by crystallization from cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and isolated as orange solid that is barely soluble in EtOAc and well soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(142 \mathrm{mg}, 0.26 \mathrm{mmol}, 52 \%)$ (QNMR: $\mathbf{8 5 \%}$). ${ }^{1} \mathrm{H} \mathbf{N M R}$ (400 MHz , Chloroformd) $\delta 8.11-8.08(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H})$, $4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 166.51,142.10,139.63$,
138.26, 136.34, 130.38, 129.46, 126.22, 124.89, 122.82, 121.03, 61.17, 14.52. HRMS (ESI) m/z calc. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 545.0909$, found: 545.0920.

4,4"-bis(3-bromophenyl)-2,2':5',2"-terthiophene (TTT ${ }_{3}$)

The product TTT_{3} was synthesized via the general procedure C using 2, $2^{\prime}: 5^{\prime}, 2^{\prime \prime}$-terthiophene (124 $\mathrm{mg}, 0.5$ mmol, 1.0 eq.), 3-bromoiodobenzene ($707 \mathrm{mg}, 2.50 \mathrm{mmol}, 5.0 \mathrm{eq}$.) and a reaction time of 3 days and isolated by column chromatography ($10 \% \mathrm{EtOAc} /$ cyclohexane to $90 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$). The product was further purified by a crystallization from cyclohexane and isolated as brownish solid ($168 \mathrm{mg}, 0.29 \mathrm{mmol}$, 58% (QNMR: 68\%). Further purification can be achieved by vacuum sublimation to obtain a clear yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{ddd}, J=7.8,1.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (ddd, $J=$ $8.0,2.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.47,138.05,137.43,136.18,130.39,130.35,129.35,124.89,124.67,123.02$, 122.59, 120.17. HRMS (ESI) m/z calc. for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~S}_{3}{ }^{+}[\mathrm{M}]^{+}$: 555.8619 , found: 555.8584 .

diethyl 4,4'-([2,2':5',2":5',2'"'-quaterthiophene]-4,4"'-diyl)dibenzoate (TTTT ${ }^{\prime \prime}$)

The product TTTT $_{1}$ was synthesized via the general procedure C using 2,2':5', $2^{\prime \prime}: 5^{\prime \prime}, 2^{\prime \prime \prime}$-quaterthiophene ($165 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq}$), ethyl 4-iodobenzoate ($690 \mathrm{mg}, 2.50 \mathrm{mmol}, 5.0 \mathrm{eq}$.) and a reaction time of 3 days and was isolated by column chromatography (10/90/0 to 50/25/25 EtOAc/cyclohexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The product was further purified by crystallization from cyclohexane and isolated as brownish solid (59.0 mg ,
$94.1 \mu \mathrm{~mol}, 19 \%)\left(\right.$ QNMR: 20\%) as the main product. Unreacted 2,2':5', $2^{\prime \prime}: 5^{\prime \prime}, 2^{\prime \prime \prime}$-quaterthiophene could be recovered and purified by sublimation ($127 \mathrm{mg}, 0.38 \mathrm{mmol}, 77 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ - 8.08 $(\mathrm{m}, 4 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.37,141.95$, $139.49,138.15,136.22,136.00,130.24,129.31,126.07,124.82,124.47,122.63,120.86,61.02,14.37$. HRMS (ESI) m / z calc. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~S}_{4}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 627.0787, found: 627.0787.

Fluorescence measurements

Materials and methods

Reagent

Spectroscopic grade of 1,2 dichloroethane (DCE) was purchase from VWR. It was contacted with $\mathrm{K}_{2} \mathrm{CO}_{3}$ to remove HCl for 12 hours and then filtered

Sample preparation

An aliquot ($\sim 0.5 \mathrm{mg}$) of synthesis product was precisely weight on an XA105 balance (Mettler Toledo) and dilute in a 5 ml volumetric flask with DCE. The solutions were freshly prepared before using. All volumes were collected with Hamilton syringe in order to prepare the samples in quartz suprasil cuvette (Hellma) to measure absorption, excitation and emission spectra. The optical path length was 1 cm .

Optical properties of synthesis products

To remain under linear conditions, excitation and emission spectra recorded with solution with an absorbance of less than 0.1 in DCE. ${ }^{[13]}$

All absorption spectra were converted in electronics spectrum by dividing the values of absorbance by concentration (M) of product. All excitation and emission spectra were normalised to those of spectra absorption. So, following figures, on the vertical axis, the emission and excitation values are normalized intensities.

Electronic spectrum from absorption (blue), excitation spectrum (red) ${ }_{\mathrm{em}}=408 \mathrm{~nm}$ and emission spectrum (green) $]_{\text {exc }}=280 \mathrm{~nm}$ of $\mathrm{TT}_{\mathbf{2}} .1 \%$ attenuation, slit 11 nm

Electronic spectrum from absorption (blue), excitation spectrum (red) $]_{\mathrm{em}}=440 \mathrm{~nm}$ and emission spectrum (green) ? $_{\text {exc }}=360 \mathrm{~nm}$ of TTT_{1}. Slit 8 nm

Electronic spectrum from absorption (blue), excitation spectrum (red) ${ }_{\mathrm{em}}=442 \mathrm{~nm}$ and emission spectrum (green) Dexc $_{\text {ex }}=355 \mathrm{~nm}$ of $\mathrm{TTT}_{2} .1 \%$ attenuation, slit 12 nm

Electronic spectrum from absorption (blue), excitation spectrum (red) ${ }^{2}=445 \mathrm{~nm}$ and emission spectrum (green) ${ }^{\text {exc }}=373 \mathrm{~nm}$ of $\mathrm{TTT}_{3} .1 \%$ attenuation, slit 13 nm

Electronic spectrum from absorption (blue), excitation spectrum (red) ${ }^{2}=460 \mathrm{~nm}$ and emission spectrum (green) $]_{\text {exc }}=392 \mathrm{~nm}$ of TTTT $_{1} .1 \%$ attenuation, slit 10 nm

Superposition of emission spectra from $\mathrm{TT}_{\mathbf{2}}, \mathrm{TTT}_{2}$ and TTTT_{1}.

X-Ray data

Crystal data and structure refinement for 3s (CCDC 2253044).

Identification code	3s (CCDC 2253044).
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~S}_{2}$
Formula weight	270.39
Temperature	120(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	$\begin{aligned} & a=5.93940(10) \AA \quad \text { alpha }=90 \text { deg. } \\ & b=17.7242(4) \AA \quad \text { beta }=95.7350(10) \text { deg. } \\ & c=25.3518(6) \AA \quad \text { gamma }=90 \text { deg. } . \end{aligned}$
Volume	2655.45(10) A 3
Z, Calculated density	$8,1.353 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.379 \mathrm{~mm}^{1}$
F(000)	1136
Crystal size	$0.200 \times 0.200 \times 0.160 \mathrm{~mm}$
Theta range for data collection	1.982 to 27.939 deg.
Limiting indices	$-7<=h<=7,-23<=k<=20,-33<=k=33$
Reflections collected / unique	$51644 / 6355[\mathrm{R}$ (int) $=0.0271$]
Completeness to theta $=25.242$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.7145
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6355 / 0 / 323
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.043
Final R indices [$1>2$ sigma(I]	$\mathrm{R} 1=0.0321, w R 2=0.0874$
R indices (all data)	$R 1=0.0357, w R 2=0.0907$
Extinction coefficient	n/a
Largest diff. peak and hole	0.573 and -0.323 e. \AA^{3}

References

[1] C. Cheng, M. Brookhart, Angew. Chem. Int. Ed. 2012, 51, 9422-9424.
[2] S. Roesner, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55, 10463-10467.
[3] C. Colletto, S. Islam, F. Juliá-Hernández, I. Larrosa, J. Am. Chem. Soc. 2016, 138, 1677-1683.
[4] K. Yuan, H. Doucet, Chem. Sci. 2013, 5, 392-396.
[5] I. A. Kashulin, I. E. Nifant'ev, J. Org. Chem. 2004, 69, 5476-5479.
[6] S. Mao, X. Shi, J.-F. Soulé, H. Doucet, Eur. J. Org. Chem. 2020, 2020, 91-97.
[7] K. Yuan, J. Boixel, A. Chantzis, D. Jacquemin, V. Guerchais, H. Doucet, Chem. - Eur. J. 2014, 20, 10073-10083.
[8] Z.-K. Wen, T.-T. Song, Y.-F. Liu, J.-B. Chao, Chem. Commun. 2018, 54, 3668-3671.
[9] L. Wang, B. P. Carrow, ACS Catal. 2019, 9, 6821-6836.
[10]I. Idris, F. Derridj, S. Djebbar, J.-F. Soulé, H. Doucet, Tetrahedron 2015, 71, 9617-9625.
[11]M. Nambo, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2011, 133, 2402-2405.
[12]L. Chen, H. Min, W. Zeng, X. Zhu, Y. Liang, G. Deng, Y. Yang, Org. Lett. 2018, 20, 7392-7395.
[13]J. Gierschner, J. Shi, B. Milián-Medina, D. Roca-Sanjuán, S. Varghese, S. Park, Adv. Opt. Mater. 2021, 9, 2002251.

Spectra

H斯

[^0]

[^1]

i

miju

\qquad

11

[^2]

 111 リリ｜

\＃

Ul

期䫏

YV! V/V年

[^0]:

[^1]:

[^2]:

