Intramolecular Donor-stabilized Tetra-Coordinated Germanium(IV) Di-Cations and their Lewis Acidic Properties

Balakrishna Peddi,^a Souvik Khan,^a Rajesh. G. Gonnade,^b Cem B. Yildiz^{*c} and Moumita Majumdar^{*a}

Table of Contents

Experimental Detail	S2
X-ray Data	S60
Computational Detail	S70

 Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India.
E-mail: moumitam@iiserpune.ac.in.

b. Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, Maharashtra, India

c. Department of Aromatic and Medicinal Plants, Aksaray University, 68100 Aksaray, Türkiye

Experimental Procedures

General Procedure

All manipulations were carried out under a protective atmosphere of argon applying standard Schlenk techniques or in a dry box. Tetrahydrofuran (THF) was refluxed over sodium/benzophenone. Dichloromethane (DCM) and acetonitrile (MeCN) were stirred and refluxed over calcium hydride and kept over 3 Å molecular sieves. All solvents were distilled and stored under argon and degassed prior to use. CDCl₃ was dried, distilled and stored under argon and degassed prior to use. CD₂Cl₂, CD₃CN ampoules were purchased from Sigma Aldrich and used as it is. All chemicals were used as purchased.¹H and ¹³C{¹H} NMR spectra were referenced to external SiMe₄ using the residual signals of the deuterated solvent (¹H) or the solvent itself (¹³C). ¹⁹F{¹H} and ³¹P{¹H} NMR were referenced to external C₆H₅CF₃ (TFT) and 85% H₃PO₄ respectively. NMR spectra were recorded on Bruker AVANCE III HD ASCEND 9.4 Tesla/400 MHz, Jeol 9.4 Tesla/400 MHz and Bruker AVANCE III HD ASCEND 14.1 Tesla/600 MHz. Melting points were determined under argon in closed NMR tubes and are uncorrected. Elemental analyses were performed on Elementar vario EL analyzer and FLASH 2000 Elemental CHNS/O Analyser. Single crystal data were collected on both Bruker SMART APEX four-circle diffractometer equipped with a CMOS photon 100 detector (Bruker Systems Inc.) with a Cu K α radiation (1.5418 Å), and Bruker SMART APEX Duo, Bruker APEX-II CCD diffractometers using Mo K α radiation (0.71073 Å). Mass spectra were measured in AB Sciex 4800 plus HRMS on the Waters Synapt, USA.

Synthesis of L^{*p***r}-Br** ^{S1} 5,6-Dibromoacenaphthene (6.00 g, 19.2 mmol) was dissolved in tetrahydrofuran (THF) (100 mL) and cooled to -78°C. *n*-BuLi (12.0 mL of 1.6 M solution in hexane, 19 mmol) was added dropwise to it, maintaining -78°C and stirred for 2 hours at the same temperature. Chlorodiisopropylphosphine (3.0 mL, 19.2 mmol) taken in THF (25 mL) was added dropwise to the resultant mixture maintaining -78°C. The solution mixture was then allowed to warm to room temperature and stirred overnight. The solvent was removed completely by evaporation and toluene was added to the solid residue. The toluene solution was separated from the suspended solid through filtration. The toluene extract was completely evaporated to give 5-Bromo,6-(diisopropylphosphino)acenaphthene L^{*i*Pr} as yellow solid in 76% (5.1 g) yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.77 (d, J = 7.4 Hz, 1H, Acn-CH), 7.69 (dd, J = 7.3, 2.5 Hz, 1H, Acn-CH), 7.30 (td, J = 7.2, 1.4 Hz, 1H, Acn-CH), 7.09 (dd, J = 7.4, 1.4 Hz, 1H, Acn-CH), 3.39 – 3.27 (m, 4H, Acn-CH₂), 2.24 (doublet of septet, J = 7.1, 1.9 Hz, 2H, /Pr-CH), 1.19 (dd, ³*J*_{PH} = 12.7, ³*J*_{HH} = 6.9 Hz, 6H, /Pr-CH₃), 1.07 (dd, ³*J*_{PH} = 13.5, ³*J*_{HH} = 7.0 Hz, 6H, /Pr-CH₃) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 148.01 (s, Acn-*C*), 147.05 (d, J = 1.7 Hz, Acn-*C*), 141.67 (d, J = 4.4 Hz, Acn-*C*), 135.38 (s, Acn-*C*), 134.93 (d, J = 2.2 Hz, Acn-*C*), 134.12 (d, J = 18.6 Hz, Acn-*C*), 130.29 (d, J = 34.3 Hz, Acn-*C*H), 120.34 (s, Acn-*C*H), 119.70 (s, Acn-*C*H), 115.65 (s, Acn-*C*H), 30.20 (s, Acn-*C*H₂), 29.80 (s, Acn-*C*H₂), 25.61 (d, ¹ $J_{PC} = 17.8$ Hz, ⁱPr-*C*H), 20.69 (d, ² $J_{PC} = 15.4$ Hz, ⁱPr-*C*H₃), 19.35 (d, ² $J_{PC} = 16.4$ Hz, ⁱPr-*C*H₃) ppm.

³¹P{¹H} NMR (162 MHz, CDCl₃) δ -1.58 (s) ppm.

Fig. S1 ¹H NMR spectrum (400 MHz, CDCI₃, 298 K) of L^{iPr}-Br.

Fig. S2 ¹³C{¹H} NMR spectrum (101 MHz, CDCI₃, 298 K) of L^{iPr}-Br.

Fig. S3. ³¹P{¹H} NMR spectrum (162 MHz, CDCI₃, 298 K) of L^{*i*Pr}-Br.

Synthesis of L^{Ph}-Br: ^{S2} 5,6-Dibromo acenaphthene (4.50 g, 14.4 mmol) was dissolved in THF (100 mL) and cooled to -78 °C. *n*-BuLi (9.0 mL of 1.6 M solution in hexane, 14.4 mmol) was added dropwise to it maintaining -78 °C and stirred for 2 hours at the same temperature. Chlorodiphenylphosphine (2.6 mL, 14.4 mmol) taken in THF (25 mL) was added dropwise to the resultant mixture maintaining -78 °C. The solution mixture was then allowed to warm to room temperature and stirred overnight. The solvent was removed completely by evaporation and dichloromethane (DCM) was added to the solid residue. The DCM solution was separated from the suspended solid through filtration. The DCM extract was completely evaporated to give 5-Bromo,6-(diphenylphosphino) acenaphthene L^{Ph} as yellow solid. Yellow crystals of L^{Ph} have been obtained in 52% yield (3.1 g) from concentrated DCM solution.

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.4 Hz, 1H), 7.32 (m, 6H), 7.29 (m, 4H), 7.12 (m, 2H), 7.08 (d, *J* = 4.4 Hz, 1H), 3.34 (s, 4H, Acn-C*H*₂) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.67 (s, Acn-*C*), 146.93 (d, J = 2.0 Hz, Acn-*C*), 141.71 (d, J = 4.1 Hz, Acn-*C*), 139.35 (d, J = 14.2 Hz, Acn-*C*H), 138.01 (s, Acn-*C*), 134.84 (s, Acn-*C*H), 134.32 (d, J = 20.1 Hz, Acn-*C*), 133.49 (d, J = 18.6 Hz, Ph-*C*H), 130.11 (d, J = 33.3 Hz, Ph-*C*), 128.64 (d, J = 6.8 Hz, Ph-*C*H), 128.55 (s, Ph-*C*H), 120.85 (s, Acn-*C*H), 120.40 (s, Acn-*C*H), 115.97 (s, Acn-*C*Br), 30.28 (s, Acn-*C*H₂), 30.04 (s, Acn-*C*H₂) ppm.

³¹P{¹H} NMR (162 MHz, CDCl₃) δ -9.40 ppm.

Fig. S4 ^1H NMR spectrum (400 MHz, CDCl_3, 298 K) of $L^{Ph}\text{-}Br.$

Fig. S5 ¹³C{¹H} NMR spectrum (101 MHz, CDCI₃, 298 K) of L^{Ph}-Br.

Fig. S6 ³¹P{¹H} NMR spectrum (162 MHz, CDCI₃, 298 K) of L^{Ph}-Br.

Synthesis of 1^{*i***Pr}:** 5-Bromo,6-(diisopropylphosphino)acenaphthene L^{*i*Pr} (4.50 g, 12.9 mmol) was dissolved in THF (50 mL) and cooled to -78 °C. *n*-BuLi (8.1 mL of 1.6 M solution in hexane, 13 mmol) was added dropwise to it maintaining -78 °C and stirred for 2 hours at the same temperature. Germanium tetrachloride (1.0 mL, 8.6 mmol) taken in THF (20 mL) was added dropwise to the resultant mixture maintained at -78 °C. The solution mixture was then allowed to warm to room temperature and stirred overnight. The solvent was removed completely by evaporation and dichloromethane (DCM) was added to the solid residue. The dichloromethane solution was separated from the suspended solid through filtration. The dichloromethane extract was evaporated completely to give crude yellow solid. The crude yellow solid was dissolved in minimum volume of THF. Colorless single crystals of 1^{*i*Pr} were obtained from concentrated THF solution maintained at room temperature in 75% (2.7 g) yield. Single crystals were also obtained from concentrated MeCN solution in similar yield. Melting point: > 200°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (td, *J* = 7.2, 1.8 Hz, 2H, Acn-C*H*), 7.93 (m, *J* = 6.8, 3.3 Hz, 2H, Acn-C*H*), 7.68 (m, *J* = 7.2, 5.8 Hz, 4H, Acn-C*H*), 3.57 (s, 8H, Acn-C*H*₂), 3.09 – 2.99 (m, 4H, ^{*i*}Pr-C*H*), 1.26 (q, *J* = 7.0 Hz, 12H, ^{*i*}Pr-C*H*₃), 1.16 (q, *J* = 8.0 Hz, 12H, ^{*i*}Pr-C*H*₃) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.14 (t, J = 1.4 Hz, Acn-C), 152.23 (s, Acn-C), 139.76 (t, J = 4.7 Hz, Acn-C), 139.16 (t, J = 10.0 Hz, Acn-C), 135.99 (t, J = 5.8 Hz, Acn-C), 135.03 (s, Acn-C), 133.04 – 131.60 (m, Acn-CH), 121.29 (t, J = 2.9 Hz, Acn-CH), 120.99 (t, J = 1.6 Hz, Acn-CH), 114.39 – 114.10 (m, Acn-CH), 31.24 (s, Acn-CH₂), 30.74 (s, Acn-CH₂), 25.18 (br., Pr-CH) 19.13 (t, J = 2.9 Hz, Pr-CH₃), 18.01 (s, Pr-CH₃) ppm.

³¹P{¹H} NMR (162 MHz, CDCl₃) δ -11.06 ppm.

Elemental Analysis: Calcd. for C₃₆H₄₄Cl₄Ge₂P₂: C, 52.36; H, 5.37. Found: C, 52.40; H, 5.31.

³¹P{¹H} NMR (162 MHz, CDCl₃) of the crude yellow solid: δ -11.06, -19.52 ppm.

Proposed structure of the oxidized product showing peak at -19.5 ppm in ³¹P{¹H} NMR spectrum:

Fig. S7 ESI-MS (dichloromethane) found m/z 341.0691, calculated for $[C_{18}H_{24}Cl_2P]^+$ m/z 341.0988.

Fig. S9 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of 1^{*i*Pr}. (* = peak for THF)

Fig. S10 ³¹P{¹H} NMR spectrum (162 MHz, CDCl3, 298 K) of 1^{iPr}.

Fig. S11 ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 298 K) of the crude yellow solid from the reaction mixture of 1^{Pr}.

Synthesis of 1^{Ph}: 5-Bromo,6-(diphenylphosphino) acenaphthene L^{Ph} (4 g, 9.6 mmol) was dissolved in THF (30 mL) and cooled to -78 °C. *n*-BuLi (6 mL of 1.6 M solution in hexane, 9.6 mmol) was added dropwise to it maintaining -78 °C and stirred for 2 hours at the same temperature. Germanium tetrachloride (0.56 mL, 4.8 mmol) taken in THF (10 mL) was added drop wise to the resultant mixture maintaining -78 °C. The solution mixture was then allowed to warm to room temperature and stirred overnight. The solvent was removed completely by evaporation and dichloromethane

was added to the solid residue. The dichloromethane solution was separated from the suspended solid through filtration. The dichloromethane extract was evaporated completely to give crude solid. The crude solid was dissolved in minimum volume of THF. Colorless single crystals of 1^{Ph} were obtained from concentrated THF solution maintained at room temperature in 60% (2.4 g) yield. Melting point: >200 °C.

¹**H NMR** ¹H NMR (400 MHz, Chloroform-*d*) δ 8.96 (d, *J* = 7.4 Hz, 2H), 7.48 (d, *J* = 7.4 Hz, 2H), 7.37 – 7.31 (m, 2H), 7.27 (s, 2H), 7.25 (br, 2H), 7.14 (br, 10H), 6.66 (br, 4H), 6.11 (br, 4H), 3.44 (s, 8H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 150.42 (s, Acn-*C*), 148.66 (m, Acn-*C*), 139.93 (s, Acn-*C*), 139.84 (s, Acn-*C*), 137.95 (m, Acn-*C*H), 135.55 (s, Acn-*C*), 132.88 (s, Ph-*C*), 132.72 (s, Ph-*C*H), 129.19 (s, Acn-*C*H), 128.38 (s, Ph-*C*H), 128.19 (m, Ph-*C*H), 127.94 (m, Ph-*C*H), 125.45 (s, Acn-*C*H), 120.95 (s, Acn-*C*H), 120.04 (s, Acn-*C*), 30.77 (s, Acn-*C*H₂), 30.19 (s, Acn-*C*H₂) ppm.

³¹**P**{¹**H**} NMR (162 MHz, Chloroform-*d*) δ -34.79 ppm.

Elemental Analysis: Calcd. for C₄₈H₃₆Cl₂GeP₂: C, 70.45; H, 4.43. Found: C, 70.29; H, 5.15.

Fig. S12 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 1^{Ph}.

Fig. S13 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of 1^{Ph} (* = peak for THF)

Fig. S14 ³¹P{¹H} NMR spectrum (162 MHz, CDCl3, 298 K) of 1^{Ph}

<u>Synthesis of 2^{*i*Pr</sub></u>: One equivalent of 1^{*i*Pr} (0.1 g, 0.12 mmol) was dissolved in 10 mL of THF and was mixed with one equivalent of trimethylsilyl trifluoromethanesulfonate (TMSOTf) (22 μ L, 0.12 mmol) dissolved in 5 mL of THF. The reaction mixture was stirred for 4 hours. The solution was concentrated and kept for crystallization under room temperature conditions. Colorless single crystals of 2^{*i*Pr} appeared after five days in 86% (0.08 g) yield. Single crystals</u>}

were also obtained from DCM solution in similar yield. Melting point: >200° C.

¹**H NMR** (600 MHz, CDCl₃) δ 8.11 (d, J = 7.2 Hz, 2H, Acn-CH), 8.05 (br., 2H, Acn-CH), 7.71 (d, J = 7.1 Hz, 2H, Acn-CH), 7.65 (d, J = 7.2 Hz, 2H, Acn-CH), 3.58 (m, 8H, Acn-CH₂), 3.17 (br., 4H, /Pr-CH), 1.31 (q, J = 7.4 Hz, 12H, /Pr-CH₃), 1.19 (q, J = 8.2 Hz, 12H, /Pr-CH₃) ppm.

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 153.29 (s, Acn-*C*), 153.01 (br, Acn-*C*), 139.69 (t, *J* = 4.6 Hz, Acn-*C*), 136.43 (br, Acn-*C*), 135.45 (br, Acn-*C*), 121.60 (br, Acn-*C*), 121.40 (br, Acn-*CH*), 121.09 (q, *J* = 320.9 Hz, OTf), 113.33 (br, Acn-*CH*), 31.25 (s, Acn-*C*H₂), 30.81 (s, Acn-*C*H₂), 25.16 (br., ^{*i*}Pr-*C*H), 18.99 (s, ^{*i*}Pr-*C*H₃), 17.83 (s, ^{*i*}Pr-*C*H₃).

³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -10.77 ppm.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ = -78.08 ppm.

Fig. S15 ¹H NMR spectrum (600 MHz, CDCl₃, 298 K) of 2^{*i*Pr}. (* = peak for THF)

Fig. S16 $^{13}C{^{1}H}$ NMR spectrum (151 MHz, CDCl₃, 298 K) of 2^{*i*Pr}. (* = peak for THF)

Fig. S17 ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 298 K) of 2^{*i*Pr}.

Fig. S18 ¹⁹F{¹H} NMR spectrum (377 MHz, CDCI₃, 298 K) of 2^{*i*Pr}.

<u>Synthesis of 2^{Ph}:</u> One equivalent of 1^{Ph} (0.1 g, 0.12 mmol) was dissolved in 10 mL of dichloromethane and one equivalent of trimethylsilyl trifluoromethanesulfonate (TMSOTf) (22 μ L, 0.12 mmol) was added to it. The reaction mixture was stirred overnight. The solution was evaporated completely to get a white solid. The white solid was dissolved in THF. Colorless single crystals of 2^{Ph} were obtained in 84% (0.1 g) yield from the THF solution layered with pentane and kept at room temperature. Melting point: >200 °C.

¹**H NMR** (600 MHz, Methylene Chloride-*d*₂, 298 K) δ 8.15 (d, *J* = 7.0 Hz, 1H, Acn-C*H*), 7.89-7.82 (m, 1H, Acn-C*H*), 7.63 (d, *J* = 7.2 Hz, 1H, Acn-C*H*), 7.43 (d, *J* = 7.1 Hz, 1H, Acn-C*H*), 7.31 (t, *J* = 7.2 Hz, 2H, Ph-C*H*), 7.11 (t, *J* = 7.4 Hz, 4H, Ph-C*H*), 6.89 (s, 4H, Ph-C*H*), 3.60-3.49 (m, 4H, Acn-C*H*₂) ppm.

¹³C{¹H} NMR (151 MHz, Methylene Chloride- d_2) δ 154.73 (s, Acn-C), 153.50 (s, Acn-C), 140.45 – 140.21 (m, Acn-C), 139.57 (s, Acn-C), 139.40 – 139.09 (m, Acn-CH), 138.58 (s, Acn-C), 132.85 (s, Ph-CH), 131.61 (s, Ph-C), 129.50 (s, Acn-CH), 128.07 – 127.61 (m, Ph-CH), 125.39 (m, Ph-CH), 122.44 (s, Acn-CH), 121.90 (s, Acn-CH), 121.63 (q, J = 322.1 Hz, OTf), 119.79 – 118.87 (m, Acn-C), 31.53 (s, Acn-CH₂), 31.19 (s, Acn-CH₂) ppm.

³¹P{¹H} NMR (162 MHz, Methylene Chloride-*d*₂, 298 K) δ -13.20 ppm.

³¹P{¹H} NMR (162 MHz, Methylene Chloride-*d*₂, 203 K) δ -3.0 (d, ²*J*_{P-P} = 110 Hz), -20.5 (d, ²*J*_{P-P} = 110 Hz) ppm.

¹⁹**F**{¹**H**} **NMR** (377 MHz, Methylene Chloride-*d*₂) δ -78.84 ppm.

Elemental Analysis: Calcd. for C₄₉H₃₆ClF₃GeO₃P₂S: C, 63.15; H, 3.89; S, 3.44. Found: C, 63.94; H, 3.83; S, 2.98.

Fig. S19 ¹H NMR spectrum (600 MHz, CD_2CI_2 , 298 K) of 2^{Ph} . (* = peak for THF)

Fig. S20 ¹H NMR spectrum (400 MHz, CD₂Cl₂, 203 K) of 2^{Ph}. (* = peak for THF)

Fig. S21 ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz, CD₂Cl₂, 298 K) of 2^{Ph}. (* = peak for THF)

Fig. S22 ³¹P{¹H} NMR spectrum (162 MHz, CD₂Cl₂, 298 K) of 2^{Ph}.

at 203 K

Fig. S23 ³¹P{¹H} NMR spectrum (162 MHz, CD₂Cl₂) of **2**^{Ph} at 298 K and 203 K.

Fig. S24 ¹⁹F{¹H} NMR spectrum (377 MHz, CD₂Cl₂, 298 K) of 2^{Ph}

Synthesis of 3^{*i***Pr}**: One equivalent of 1^{*i*Pr} (0.1 g, 0.12 mmol) was dissolved in 10 mL of DCM and was mixed with two equivalents of TMSOTf (43 μ L, 0.24 mmol) dissolved in 5 mL of DCM. The reaction mixture was stirred for 4 hours at room temperature. The solution was then evaporated completely to get a white solid. Colorless single crystals of 3^{*i*Pr} (yield = 82 % (0.09 g)) were obtained by dissolving the white solid in DCM solvent and layering with pentane; maintaining room temperature conditions. Single crystals were also obtained from concentrated THF solution in

similar yield. Melting point: 138-140° C.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 8.42 – 8.35 (m, 2H, Acn-C*H*), 7.86 (d, *J* = 7.1 Hz, 2H, Acn-C*H*), 7.80 (d, *J* = 7.2 Hz, 2H, Acn-C*H*), 7.65 (d, *J* = 7.2 Hz, 2H, Acn-C*H*), 3.80 – 3.70 (m, 2H, 'Pr-C*H*), 3.70 – 3.59 (m, 8H, Acn-C*H*₂), 3.52 – 3.41 (m, 2H, 'Pr-C*H*), 1.78 (dd, *J* = 18.2, 6.7 Hz, 6H, 'Pr-C*H*₃), 1.48 (dd, *J* = 20.9, 6.8 Hz, 6H, 'Pr-C*H*₃), 1.36 (dd, *J* = 21.2, 7.0 Hz, 6H, 'Pr-C*H*₃), 1.25 (dd, *J* = 20.9, 6.9 Hz, 6H, 'Pr-C*H*₃) ppm.

¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 157.03 (s, Acn-*C*), 154.81 (s, Acn-*C*), 141.84 (s, Acn-*C*), 140.08 (t, J = 4.5 Hz, Acn-*C*), 138.46 (s, Acn-*C*), 136.98 (s, Acn-*C*), 123.64 (s, Acn-*CH*), 123.07 (s, Acn-*CH*), 119.88 (s, Acn-*CH*), 110.65 (s, Acn-*CH*), 31.95 (s, Acn-*C*H₂), 31.67 (s, Acn-*C*H₂), 26.99 – 25.84 (m, ^{*i*}Pr-*C*H), 25.79 – 24.82 (m, ^{*i*}Pr-*C*H), 19.83 (s, ^{*i*}Pr-*C*H₃), 18.56 (d, J = 12.1 Hz, ^{*i*}Pr-*C*H₃), 17.16 (s, ^{*i*}Pr-*C*H₃) ppm.

 $^{31}P{^{1}H} NMR$ (162 MHz, CD₂Cl₂) δ = + 28.37 ppm.

¹⁹F{¹H} NMR (377 MHz, CD₂Cl₂) δ = -78.84 ppm.

¹**H NMR** (600 MHz, CD₃CN, 273 K) δ 8.36 (t, J = 6 Hz, 2H, Acn-CH), 7.95 (d, J = 12 Hz, 2H, Acn-CH), 7.85 (d, J = 6 Hz, 2H, Acn-CH), 7.65 (d, J = 12 Hz, 2H, Acn-CH), 3.65 (br., 2H, 'Pr-CH), 3.61 (m, 8H, Acn-CH₂), 3.19 (br., 2H, 'Pr-CH), 1.68 (d, J = 18, 6H, 'Pr-CH₃), 1.40 (d, J = 18 Hz, 6H, 'Pr-CH₃), 1.28 (d, J = 18 Hz, 6H, 'Pr-CH₃), 1.14 (d, J = 18 Hz, 6H, 'Pr-CH₃) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, CD₃CN) δ = + 26.95 ppm.

ESI-MS (acetonitrile) found m/z 306.1060, calculated for [C₃₆H₄₄GeP₂]²⁺ m/z 306.1060.

Elemental Analysis: Calcd. for C₃₈H₄₄F₆GeO₆P₂S₂: C, 50.19; H, 4.88. Found: C, 51.99; H, 4.46.

Fig. S25 ¹H NMR spectrum (600 MHz, CD_2CI_2 , 298 K) of 3^{*i*Pr}. (* = peak for hexane)

Fig. S26 ¹³C{¹H} NMR spectrum (101 MHz, CD₂Cl₂, 298 K) of 3^{*i*Pr}.

Fig. S27 ³¹P{¹H} NMR spectrum (162 MHz, CD₂Cl₂, 298 K) of 3^{*i*Pr}.

Fig. S28 $^{19}F\{^{1}H\}$ NMR spectrum (377 MHz, CD_2Cl_2, 298 K) of $3^{I\!Pr}.$

Fig. S29 ¹H NMR spectrum (400 MHz, CD₃CN, 273 K) of 3^{iPr} . (* = peak for THF)

Fig. S30 ³¹P{¹H} NMR spectrum (162 MHz, CD₃CN, 298 K) of 3^{*i*Pr}.

Fig. S31 ESI-MS for 3^{iPr}

Synthesis of 3^{Ph}: One equivalent of 1^{Ph} (0.1 g, 0.12 mmol) was dissolved in 10 mL of DCM and two equivalents of TMSOTf (44 μ L, 0.24 mmol) was added to it. The reaction mixture was stirred overnight at room temperature. The solution was then evaporated completely to get a white solid. Colorless single crystals of 3^{Ph} (yield = 81 % (0.1 g)) were obtained by dissolving the white solid in DCM solvent and layering with pentane; maintaining room temperature

conditions. Melting point: 155-157 °C.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.94 (dd, *J* = 10.8, 7.3 Hz, 1H, Acn-C*H*), 7.77 (d, *J* = 7.1 Hz, 1H, Acn-C*H*), 7.71-7.63 (m, 5H, Acn-C*H*, Ph-C*H*), 7.54 (br., 2H, Ph-C*H*), 7.43 (br., 1H, Ph-C*H*), 7.40 (d, *J* = 7.1 Hz, 1H, Ph-C*H*), 7.21 (br., 2H, Ph-C*H*), 6.99 (d, *J* = 7.1 Hz, 1H, Ph-C*H*), 3.85 – 3.47 (m, 4H) ppm.

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 156.83 (s, Acn-*C*), 153.73 (s, Acn-*C*), 141.89 – 141.39 (m, Acn-*C*), 139.77 – 139.56 (m, Acn-*C*), 137.50 (s, Acn-*C*H), 137.30 (m, Acn-*C*), 134.75 (br., Ph-*C*), 134.49 (s, Ph-*C*H), 130.46 (m, Acn-*C*H), 122.56 (s, Ph-*C*H), 120.47 (q, J = 321.2 Hz, OTf), 117.15 – 116.28 (m, Acn-*C*H), 116.09 – 115.08 (m, Acn-*C*H), 113.95 – 112.82 (m, Acn-*C*), 31.61 (s, Acn-*C*H₂), 31.38 (s, Acn-*C*H₂) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, Chloroform-*d*) δ -6.32 ppm.

¹⁹**F**{¹**H**} **NMR** (565 MHz, Chloroform-*d*) δ -79.74 ppm.

ESI-MS (acetonitrile) found m/z 374.0751, calculated for $[C_{48}H_{36}GeP_2]^{2+}$ m/z 374.0747.

Fig. S32 ¹H NMR spectrum (600 MHz, CDCl₃, 298 K) of 3^{Ph}.

Fig. S33 $^{13}C\{^{1}H\}$ NMR spectrum (151 MHz, CDCI_3, 298 K) of $3^{Ph}.$

Fig. S34 $^{31}P\{^{1}H\}$ NMR spectrum (162 MHz, CDCl₃, 298 K) of $3^{Ph}.$

Fig. S35 ¹⁹F{¹H} NMR spectrum (565 MHz, CD₂Cl₂, 298 K) of 3^{Ph}.

Fig. S36 ESI-MS for 3Ph

Reaction of 3^{*Pr*} with Et₃PO (Effective Lewis acidity determination by Guttmann Beckett method):

To a solution of 3^{IPr} (0.03 g, 0.03 mmol, 1 equiv.) in CD₂Cl₂, triethylphosphine oxide (OPEt₃) was successively added (0.2 equiv. to 3 equiv.) and the reaction was monitored by ³¹P{¹H} NMR spectroscopy.

Fig. S37 ³¹P{¹H} NMR spectra (162 MHz, CD₂Cl₂, 298 K) from the addition of varying equivalents of Et₃PO to 3^{iPr} . (* = peak for compound 3^{iPr})

Low temperature *in-situ* NMR scale reaction between 3^{*i*Pr} and Et₃PO:

An NMR tube was charged with 3^{IPr} (0.03 g, 0.03 mmol) and Et₃PO (0.004 g, 0.03 mmol) in 0.6 mL CD₂Cl₂ at -78 °C. The reaction mixture was analyzed by ³¹P{¹H} NMR measurements at -78 °C and subsequently raised to room temperature and recorded.

Fig. S38 ³¹P{¹H} Variable Temperature NMR spectra (162 MHz, CD_2Cl_2) from the addition of one equivalent of Et₃PO to **3**^{*i*Pr}. (peak at +27.2 obtained at 195 K is for compound **3**^{*i*Pr})

In-situ NMR reaction of 3^{Ph} with Et₃PO (Effective Lewis acidity determination by Guttmann Beckett method):

An NMR tube was charged with 3^{Ph} (0.03 g, 0.03 mmol, 1 equiv.) in CDCI₃ and triethylphosphine oxide (OPEt₃) in 0.2 equiv. was added to it. The ³¹P{¹H} NMR spectra was measured after one hour of the addition.

Similar reaction was performed using 2 equiv. of OPEt₃ and was monitored by ³¹P{¹H} NMR study.

Fig. S39 ³¹P{¹H} NMR spectrum (162 MHz, CDCI₃, 298 K) of 3^{Ph} + 0.2 equivalent of Et₃PO added and measured after 1 hour of addition.

Fig. S40 ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 298 K) of 3^{Ph} + 2 equivalent of Et₃PO added and measured after 1 hour of addition.

<u>Synthesis of 3^{Ph}OPEt₃:</u> Et₃PO (0.004 g, 0.03 mmol) was added to 3^{Ph} (0.03 g, 0.03 mmol) dissolved in 10 mL of DCM, maintaining temperature of the reaction mixture at -35 °C. The resultant solution was shaken well and then layered with pentane. Colorless single crystals of 3^{Ph}OPEt₃ were obtained after 4 days from the DCM/pentane layering kept at -35 °C in 79% (0.03 g) yield.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.93 (t, J = 8.5 Hz, 2H), 7.76 (d, J = 6.9 Hz, 2H), 7.69 – 7.61 (m, 10H), 7.53 (s, 4H), 7.40 (d, J = 6.7 Hz, 4H), 7.20 (s, 4H), 7.03 (d, J = 6.8 Hz, 2H), 3.83 – 3.48 (m, 8H, Acn-CH₂), 1.74 (dq, J = 15.4, 7.7 Hz, 6H, Et-CH₂), 1.15 (dt, J = 15.9, 7.7 Hz, 9H, Et-CH₃) ppm.

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 156.60 (s, Acn-*C*), 153.57 (s, Acn-*C*), 141.41 (t, J = 9.9 Hz, Acn-*C*), 140.22 – 139.14 (m, Acn-*C*), 137.44 (s, Acn-*C*H), 137.14 (br., Acn-*C*), 134.59 (s, Ph-*C*), 134.19 (s, Ph-*C*H), 130.46 (s, Ph-*C*H), 130.08 (s, Ph-*C*H), 122.36 (s, Ph-*C*H), 121.34 – 120.90 (m, Acn-*C*H), 120.43 (q, J = 321.0 Hz, *OTf*), 117.41 – 116.58 (m, Acn-*C*H), 116.27 – 115.53 (m, Acn-*C*H), 113.80 – 113.02 (m, Acn-*C*), 31.48 (s, Acn-*C*H₂), 31.26 (s, Acn-*C*H₂), 19.23 (d, J = 65.6 Hz, Et-*C*H₂), 5.62 (d, J = 4.7 Hz, Et-*C*H₃) ppm.

³¹P{¹H} NMR (162 MHz, Methylene Chloride-*d*₂) δ +68.53, -6.30 (**3**^{Ph}), -20.52 ppm.

¹⁹**F**{¹**H**} **NMR** (565 MHz, Chloroform-*d*) δ -79.70 ppm.

Fig. S41 ¹H NMR spectrum (600 MHz, CDCl₃, 298 K) of **3**^{Ph}**Et₃PO** depicting the equilibrium in mono-adduct formation.

Fig. S42 $^{13}C{^{1}H}$ NMR spectrum (151 MHz, CDCl₃, 298 K) of $3^{Ph}Et_3PO$.

Fig. S43 ³¹P{¹H} NMR spectrum (162 MHz, $CDCI_3$, 298 K) of **3**^{Ph}Et₃PO depicting the equilibrium in mono-adduct formation.

Fig. S44 ¹⁹F{¹H} NMR spectrum (565 MHz, CDCl₃, 298 K) of **3**^{Ph}Et₃PO.

Synthesis of 3^{*i*Pr}**DMAP**: Compound **3**^{*i*Pr} (0.06 g, 0.07 mmol) and 4-dimethylamino pyridine (DMAP) (0.008 g, 0.07 mmol) were taken in 1:1 ratio in 10 mL DCM as solvent and stirred overnight at room temperature. Few colorless single crystals of **3**^{*i*Pr}**DMAP** were obtained from dichloromethane/hexane layering maintained at room temperature, along with the formation of 4-(dimethylamino) pyridinium triflate crystals. The crystals of **3** ^{*i*Pr}**DMAP** were however unstable when dissolved in (CDCI₃:DCM taken in 1:1 ratio) solvent mixture for solution-state NMR studies.

Room temperature NMR of **3^{***i***Pr}DMAP** showing the instability and formation of 4-(dimethylamino) pyridinium triflate:

¹H NMR (400 MHz, CDCl₃:DCM (1:1)) δ 12.83 (br, 1H,), 8.25 (br, 1H), 8.04 (d, *J* = 7.2 Hz, 2H), 7.86 (d, *J* = 6.1 Hz, 1H), 7.83 – 7.78 (m, 2H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.51 (dd, *J* = 13.8, 6.9 Hz, 2H), 7.30 (d, *J* = 7.1 Hz, 1H), 6.79 – 6.66 (m, 2H), 3.55 – 3.41 (m, 8H), 3.21 (s, 6H), 2.97 – 2.58 (br, 3H), 1.45 (br, 6H), 1.05 (br, 18H).

Fig. S45 ¹H NMR spectrum of the crystals of **3**^{*i*Pr}**DMAP** (400 MHz, CDCI₃:DCM (1:1), 298 K) showing complex mixture and formation of **[DMAPH][OTf]**.

Fig. S46 ¹³C{¹H} NMR spectrum of the crystals of **3**^{*i*Pr}**DMAP** (151 MHz, CD₂Cl₂, 298 K) showing complex mixture and formation of **[DMAPH][OTf]**.

Low temperature *in-situ* NMR for the preparation of 3^{iPr}DMAP and its subsequent transformation upon raising until room temperature:

An NMR tube was charged with **3**^{*i*Pr} (0.020 g, 0.02 mmol) and DMAP (0.0025 g, 0.02 mmol) in 0.5 mL CD₂Cl₂ at -40 °C. The reaction mixture was analysed through ³¹P{¹H} NMR measurements.

Fig. S47 ³¹P{¹H} NMR spectra (162 MHz, CD_2Cl_2) showing the instability of *in-situ* generated **3**^{*i*Pr}**DMAP** (* = peak for compound **3**^{*i*Pr})

Variable Temperature NMR study for the *in-situ* reaction of 3^{Ph} with DMAP:

An NMR tube was charged with 3^{Ph} (0.04 g, 0.04 mmol) and DMAP (0.005 g, 0.04 mmol) in 0.5 mL CDCl₃ at room temperature. The reaction was monitored by ³¹P{¹H} NMR measurement at varied temperatures from room temperature to – 70 °C.

Fig. S48 Variable temperature ³¹P{¹H} NMR spectra (162 MHz, CD₂Cl₂) showing the adduct formation between **3**^{Ph} and DMAP taken in 1:1 ratio (peak at -6.3 ppm is assigned to **3**^{Ph} generated)

<u>Synthesis of 3^{Ph}(DMAP)₂:</u> Compound 3^{Ph} (0.03 g, 0.03 mmol) and DMAP (0.008 g, 0.06 mmol) were dissolved in 5 - 7 mL DCM, maintaining temperature of the reaction mixture at -35 °C. The resultant solution was shaken well and then layered with pentane. Colorless single crystals of 3^{Ph}(DMAP)₂ were obtained after 3 days in 74% (0.03 g) yield from the DCM/pentane layering kept at -35 °C.

¹**H NMR** (600 MHz, Chloroform-*d*, 298K) δ 7.81 (br, 4H, DMAP-*H*), 7.70 (s, 1H), 7.62 (d, *J* = 7.0 Hz, 2H), 7.46 – 7.40 (m, 3H), 7.35 (s, 4H), 7.27 (br, 4H), 7.08 (br, 6H), 6.88 (br, 4H), 6.60-6.55 (m, 2H), 6.47 (d, *J* = 5.2 Hz, 4H, DMAP-*H*), 6.22 (s, 2H), 3.60 (s, 4H, Acn-C*H*₂), 3.51 – 3.30 (m, 4H, Acn-C*H*₂), 3.08 (s, 12H, DMAP-C*H*₃).

³¹P{¹H} NMR (162 MHz, Methylene Chloride-*d*₂, 298K) δ -18.32, -26.73 (br).

³¹P{¹H} NMR (162 MHz, Methylene Chloride-*d*₂, 238K) δ -29.16.

¹⁹**F**{¹**H**} **NMR** (565 MHz, Chloroform-*d*) δ -79.21.

Fig. S49 ¹H NMR spectrum (600 MHz, CDCl₃, 298 K) of 3^{Ph}(DMAP)₂.

Fig. S50 ${}^{31}P{}^{1}H{}$ NMR spectrum (162 MHz, CDCI₃, 298 K) of ${3}^{Ph}(DMAP)_{2}$.

Fig. S51 ³¹P{¹H} NMR spectrum (162 MHz, CDCI₃, 238 K) of 3^{Ph}(DMAP)₂.

Fig. S52 ¹⁹F{¹H} NMR spectrum (565 MHz, CDCI₃, 298 K) of 3^{Ph}(DMAP)₂.

Synthesis of 3^{iPr}F:

Compound 3^{iPr} (0.1 g, 0.11 mmol) and KF (0.007 g, 0.11 mmol) were taken in 25 mL THF solvent and stirred overnight at room temperature. The solution was then filtered. The filtrate was layered with hexane and kept at -35°C. Colorless single crystals of 3^{iPr} F were obtained in 62% (0.05 g) yield. Melting point: >200 °C.

¹**H NMR** (600 MHz, CD₃CN) δ 8.11 (d, *J* = 7.1 Hz, 2H, Acn-C*H*), 7.99 (dt, *J* = 6.8, 3.3 Hz, 2H, Acn-C*H*), 7.69 (d, *J* = 7.1 Hz, 2H, Acn-C*H*), 7.66 (d, *J* = 7.0 Hz, 2H, Acn-C*H*), 3.56 (q, *J* = 7.8 Hz, 8H, Acn-C*H*₂), 3.07 – 2.98 (m, 4H, , ^{*i*}Pr-C*H*), 1.13 (q, *J* = 6.8 Hz, 12H, ^{*i*}Pr-C*H*₃), 0.96 (q, *J* = 7.6 Hz, 12H, ^{*i*}Pr-C*H*₃) ppm.

¹³C{¹H} NMR) (151 MHz, CD₃CN) δ 153.59 (s, Acn-*C*), 153.15 (s, Acn-*C*), 140.67 (t, J = 9.0 Hz, Acn-*C*), 139.66 (t, J = 4.5 Hz, Acn-*C*), 136.69 (t, J = 4.5 Hz, Acn-*C*), 135.53 (s, Acn-*C*), 121.69 (t, J = 2.8 Hz, Acn-*C*H), 121.58 (q, J = 320.9 Hz, OTf), 121.49 (s, Acn-*C*H), 115.44 – 115.12 (m, Acn-*C*H), 31.34 (s, Acn-*C*H₂), 31.03 (s, Acn-*C*H₂), 23.91 (m, /Pr-*C*H), 18.61 (s, /Pr-*C*H₃), 17.21 (s, /Pr-*C*H₃) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, CDCl₃) δ -10.23 (d, *J* = 184.9 Hz) ppm.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -78.12, -141.03 (t, *J* = 184.9 Hz) ppm.

Fig. S53 ¹H NMR spectrum (600 MHz, CD₃CN, 298 K) of 3^{*i*Pr}F. (* = peak for DCM, # = peak for THF)

Fig. S54 ¹³C{¹H} NMR spectrum (151 MHz, CD₃CN, 298 K) of 3^{*i*Pr}F. (* = peak for DCM, # = peak for THF)

Fig. S55 ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 298 K) of 3^{*i*Pr}F.

Fig. S56 $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum (377 MHz, CDCl_3, 298 K) of $3^{iPr}\text{F}.$

Synthesis of 3^{Ph}F:

Compound 3^{Ph} (0.1 g, 0.1 mmol) and KF (0.006 g, 0.1 mmol) were dissolved in 10 mL DCM and stirred overnight at

room temperature. The solution was then filtered. The filtrate was evaporated to get a white solid. Colorless single crystals of $3^{Ph}F$ were obtained (yield = 64% (0.06 g)) by dissolving the white solid in THF and layering with pentane, kept at room temperature. Melting point: >200 °C

<u>In-situ preparation of $3^{Ph}F</u>$: An NMR tube was charged with compound 3^{Ph} (0.03 g, 0.03 mmol), 18-*crown*-6 (0.008 g, 0.03 mmol) and KF (0.0018 g, 0.03 mmol) in 0.5 mL CDCl₃ under room temperature conditions. The product formation has been analyzed by NMR spectroscopy.</u>

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 (br, 2H), 7.72 (br, 2H), 7.58 (s, 2H), 7.33 (d, *J* = 6.6 H, 2H), 7.29 (br, 2H), 7.21 (br, 4H), 7.08 (s, 8H), 6.87 (br, 6H), 3.61 (18-crown-6), 3.55-3.41 (m, 8H, Acn-C*H*₂) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 153.23-151.74 (s, Acn-*C*), 139.42 (br.), 138.46 (br.), 137.14 (br), 132.21 (s), 130.80 (br.), 128.88 (s), 128.29, 122.40, 121.58, 121.03, 120.98 (q, J = 320.6 Hz, OTf), 69.86 (s, 18-crown-6), 30.79 (s, Acn-*C*H₂), 30.53 (s, Acn-*C*H₂) ppm.

³¹P{¹H} NMR (162 MHz, Chloroform-*d*, 298 K) δ -17.54 (br) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, Chloroform-*d*, 195 K) δ -10.27 (m, *J*_{P-P} = 119.8 Hz, *J*_{P-F} = 98.9 Hz), -23.66 (m, *J*_{P-P} = 119.8 Hz, *J*_{P-F} = 98.9 Hz) ppm.

¹⁹**F**{¹**H**} **NMR** (377 MHz, Chloroform-*d*) δ -150.32 (t, *J* = 100.6 Hz) ppm.

Fig. S57 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *in-situ* generated 3^{Ph}F. (# = peak for 18-crown-6).

Fig. S58 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of *in-situ* generated $3^{Ph}F$ (# = peak for 18-crown-6).

Fig. S59 ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 298 K) of *in-situ* generated 3^{Ph}F

at 195 K

Fig. S60 ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 195 K) of *in-situ* generated 3^{Ph}F

Fig. S61 ¹⁹F{¹H} NMR spectrum (162 MHz, CDCl₃, 298 K) of *in-situ* generated 3^{Ph}F

Reaction of 3^{Ph} and Trityl Chloride:

An NMR tube was charged with 3^{Ph} (0.03 g, 0.03 mmol) and trityl chloride (0.008 g, 0.03 mmol) taken in 0.5 mL of CDCl₃ at room temperature. The reaction was analyzed by ³¹P{¹H} NMR spectroscopy.

³¹P{¹H} NMR (162 MHz, Chloroform-*d*) δ – 6.31 (3^{Ph}), -13.46 (2^{Ph}) ppm.

Single crystals of **2^{Ph}** appeared in the NMR tube upon standing.

Fig. S62 ³¹P{¹H} NMR spectrum (162 MHz, CDCI₃, 298 K) showing the Cl⁻ ion abstraction from Ph₃CCI by the Ge center of 3^{Ph} .

Synthesis of 3^{iPr}H:

To one equivalent of $\mathbf{3}^{IPr}$ (0.06 g, 0.07 mmol) dissolved in 10 mL of THF, was added one equivalent of LiEt₃BH (66 μ L of 1M solution in THF, 0.07 mmol). The reaction mixture was stirred overnight at room temperature. Solvent was evaporated to get a white solid. Colorless single crystals of $\mathbf{3}^{IPr}\mathbf{H}$ (yield = 80 % (0.04 g)) were obtained from THF/pentane layering kept at -35 °C. Melting point: 158-160°C (decomposes).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.95 – 7.88 (m, 3H, Acn-C*H*), 7.83 (d, *J* = 7.1 Hz, 1H, Acn-C*H*), 7.66 – 7.58 (m, 2H, Acn-C*H*), 7.49 (d, *J* = 7.0 Hz, 1H, Acn-C*H*), 7.45 (d, *J* = 7.0 Hz, 1H, Acn-C*H*), 7.22 (t, *J* = 35.7 Hz, 1H, Ge-*H*), 3.54 (s, 8H, Acn-C*H*₂), 2.79 (br, 4H, /Pr-C*H*), 1.41 – 1.30 (m, 9H, /Pr-C*H*₃), 1.28 – 1.16 (m, 9H, /Pr-C*H*₃), 1.06 – 1.01 (m, 6H, /Pr-C*H*₃) ppm.

¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 152.96 (s, Acn-*C*), 151.99 (s, Acn-*C*), 138.35 (t, J = 3.9 Hz, Acn-*C*), 135.24 (s, Acn-*C*), 135.09 (s, Acn-*C*), 121.48 (t, J = 2.7 Hz, Acn-*C*), 121.34 (s, Acn-*C*H), 121.04 (s, Acn-*C*H), 31.32 (s, Acn-*C*H₂), 31.10 (s, Acn-*C*H₂), 25.62 (br., ^{*i*}Pr-*C*H), 24.56 (br., ^{*i*}Pr-*C*H), 19.87 (br, ^{*i*}Pr-*C*H₃), 18.51 (br, ^{*i*}Pr-*C*H₃) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, CD_2Cl_2) δ = -5.15 ppm.

¹⁹F{¹H} NMR (377 MHz, CD₂Cl₂) δ = -77.01 ppm.

Fig. S63 ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of 3^{*i*Pr}H. (* = peak for THF)

Fig. S64 ¹³C{¹H} NMR spectrum (101 MHz, CD₂Cl₂, 298 K) of 3^{*i*Pr}H. (* = peak for THF)

Fig. S65 ³¹P{¹H} NMR spectrum (162 MHz, CD₂Cl₂, 298 K) of 3^{iPr}H.

Fig. S66 ¹⁹F{¹H} NMR spectrum (377 MHz, CD₂Cl₂, 298 K) of 3^{*i*P}rH.

Synthesis of 3^{Ph}H₂:

To the solution of 3^{Ph} (0.1 g, 0.1 mmol) in 15 mL of THF was added LiEt₃BH (0.2 mL of 1 M solution in THF, 0.2 mmol) and the reaction mixture was stirred overnight at room temperature. Solvent was evaporated to get a white

solid. Toluene was added to this and the solid residue was filtered off. Colorless single crystals of **3**^{Ph}**H**₂ were obtained from concentrated toluene solution at room temperature in 73% (0.05 g).

In-situ NMR: An NMR tube was charged with compound 3^{Ph} (0.03 g, 0.03 mmol) and LiEt₃BH (60 µL of 1 M solution in THF, 0.06 mmol) in 0.5 mL CDCl₃ under room temperature conditions. The product formation has been analysed by NMR spectroscopy. The NMR data revealed a mixture of products.

¹H NMR (400 MHz, Chloroform-*d*) δ 6.40 (t, *J* = 20.2 Hz, Ge-*H*₂).

³¹P{¹H} NMR (162 MHz, Chloroform-*d*) δ -19.07, -19.82, -20.06.

Fig. S67 ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of the reaction mixture showing the formation of 3^{Ph}H₂.

Fig. S68 Bottom: ${}^{31}P{}^{1}H$; Top: ${}^{31}P$ NMR spectra (162 MHz, CD₂Cl₂, 298 K) of the reaction mixture showing the formation of ${\bf 3}^{Ph}H_2$.

Fig. S69 ¹⁹F{¹H} NMR spectrum (377 MHz, CD₂Cl₂, 298 K) of the reaction mixture

Synthesis of 3^{Ph}Et, 3^{Ph}H(Et):

To the solution of 3^{Ph} (0.1 g, 0.1 mmol) in 15 mL of THF was added LiEt₃BH (0.1 mL of 1 M solution in THF, 0.1 mmol) and the reaction mixture was stirred overnight at room temperature. Solvent was evaporated to get a white solid. Colorless single crystals of $3^{Ph}Et$ crystals were obtained from THF solution layered with pentane at room temperature.

Colorless single crystals of 3^{Ph}H(Et) were obtained from acetonitrile solution kept at room temperature.

Si-H bond activation reaction by 3^{Pr} from Et₃SiH:

An NMR tube was charged with 3^{iPr} (0.03 g, 0.03 mmol) and four equivalents of Et₃SiH (20 µL, 0.12 mmol) taken in 0.5 mL of CD₂Cl₂ at room temperature. The reaction was analyzed by ¹H, ³¹P{¹H}, 1D HSQC and 2D HSQC NMR spectroscopy.^{S3}

³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K): δ +28.51 (3^{*i*Pr}), +20.28 (*P*-H), +12.16 (*P*^{*i*}Pr₂)

The P-H bond formed showed signals at $\delta({}^{1}\text{H}) = 8.48$ ppm and at $\delta({}^{31}\text{P}) = 20.11$ ppm having ${}^{1}J_{\text{P-H}} = 476$ Hz.

ESI-MS (acetonitrile) found for the reaction mixture containing 3^{Pr} -PH m/z 613.2220, calculated for $[C_{36}H_{45}GeP_2]^+$ m/z 613.2203.

Fig. S70 ³¹P (162 MHz, CD₂Cl₂, 298 K) of the 3^{iPr} + Et₃SiH reaction mixture: A) ³¹P ($J_{P-H} \approx 476$ Hz); B) ³¹P{¹H} (* = peak for compound 3^{iPr})

Fig. S71 1D ¹H-³¹P HSQC with CNST2 optimized at 480 Hz (400 MHz, CD₂Cl₂, 298 K) of the 3^{IPr} + Et₃SiH reaction mixture: A) ¹H-³¹P (¹J_{P-H} = 476 Hz); B) ¹H-{³¹P}

Fig. S72 2D ¹H-³¹P HSQC with CNST2 optimized at 480 Hz (400 MHz/162 MHz, CD₂Cl₂, 298 K) of the 3^{iPr} + Et₃SiH reaction mixture. (Note: additional cross peaks arising from ${}^{3}J_{P-H} = 20$ Hz couplings in $P{CH(CH_{3})_{2}}$ of 3^{iPr} have been observed)

Fig. S73 1D 1H-³¹P HSQC with CNST2 optimized at 480 Hz (400 MHz, CD₂Cl₂, 298 K) of **3**^{*i*Pr}. (Note: control experiment shows the same peaks arising from **3**^{*i*Pr} as represented in Fig. S69-S70)

Fig. S74 ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of the 3^{iPr} + Et₃SiH reaction mixture after 14 days.

Fig. S75 ³¹P{¹H} NMR spectrum (162 MHz, CD₂Cl₂, 298 K) of the **3**^{*i*Pr} + Et₃SiH reaction mixture after 14 days.

Fig. S76 ESI-MS (acetonitrile) found for the reaction mixture containing 3^{iPr}-PH.

Si-H bond activation reaction by 3^{Ph} from Et₃SiH:

An NMR tube was charged with 3^{Ph} (0.03 g, 0.03 mmol) and Et₃SiH (10 µL, 0.06 mmol) taken in 0.5 mL of CDCl₃ at room temperature. The reaction was analyzed by ¹H, ³¹P, ³¹P{¹H} and ¹H-³¹P 1D HSQC NMR measurements after one hour of addition and at 24 hours.

The P-H bond formed showed signals at $\delta({}^{1}\text{H}) = 10.0 \text{ ppm}$ having ${}^{1}J_{P-H} = 534 \text{ Hz}$. (Initially formed in small amounts and then converted into Ge-H within 24 hours)

Fig. S77 1D ¹H-³¹P HSQC with CNST2 optimized at 480 Hz (400 MHz, CDCl₃, 298 K) of the 3^{Ph} + Et₃SiH reaction mixture after 1 hour of addition: A) ¹H-³¹P (¹J_{P-H} = 534 Hz) (top); B) ¹H-{³¹P} (bottom). (*) Peaks are related to 3^{Ph} (see below spectra).

Fig. S78 1D 1H-³¹P HSQC with CNST2 optimized at 480 Hz (400 MHz, CDCI₃, 298 K) of **3**^{Ph}. (Note: control experiment shows the same peaks arising from **3**^{Ph} as represented in Fig. S75).

NMR study after 24 hours showing the formation of 3^{Ph}H:

¹**H NMR** (400 MHz, Methylene Chloride-*d*₂) δ 7.94 (d, *J* = 7.1 Hz, 2H, Acn-C*H*), 7.68 (dt, *J* = 7.4, 4.2 Hz, 2H, Ph-C*H*), 7.55 (d, *J* = 7.3 Hz, 2H, Acn-C*H*), 7.51 (t, *J* = 6.4 Hz, 6H, Acn-C*H*), 7.34 (t, *J* = 7.8 Hz, 8H, Ph-C*H*), 7.19 – 7.12 (m,

8H, Ph-CH), 7.01 (t, J = 30.4 Hz, 1H, Ge-H), 3.57 (s, 8H, Acn-CH₂), 1.08 - 0.93, 0.62 - 0.58 (*Et*₃SiOTf, *Et*₃SiH) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 153.45, 151.87, 140.38 (t, J = 12.5 Hz), 139.90 (t, J = 4.7 Hz), 138.70 (t, J = 4.2 Hz), 137.92, 133.25 (t, J = 6.9 Hz), 131.83, 129.80 (t, J = 4.8 Hz), 128.57, 128.22 (d, J = 25.3 Hz), 123.54 (t, J = 21.8 Hz), 122.02 (t, J = 3.3 Hz), 121.62, 121.45 (d, J = 9.0 Hz), 118.23, 30.99 (s, Acn-*C*H₂), 30.81 (s, Acn-*C*H₂), 8.26 - 2.59 (*Et*₃SiOTf, *Et*₃SiH) ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, Chloroform-*d*) δ -19.0 ppm.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ -19.0 (d, ²*J*_{P-H} = 30.4 Hz) ppm.

¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*) δ -77.43 ppm.

²⁹Si{¹H} NMR (80 MHz, Chloroform-*d*) δ +44.99 (Et₃S*i*OTf), +0.26 (Et₃S*i*H) ppm.

Fig. S79 ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of 3^{Ph} + Et₃SiH resulting in the formation of 3^{Ph}H.

Fig. S80 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of 3^{Ph} + Et₃SiH resulting in the formation of 3^{Ph} H.

Fig. S81 ³¹P NMR spectrum (162 MHz, CDCl₃, 298 K) of 3^{Ph} + Et₃SiH resulting in the formation of 3^{Ph}H.

Fig. S82 ¹⁹F{¹H} NMR spectrum (377 MHz, CDCl₃, 298 K) of 3^{Ph} + Et₃SiH resulting in the formation of 3^{Ph} H.

Fig. S83 ²⁹Si{¹H} NMR spectrum (80 MHz, CD₂Cl₂, 298 K) of 3^{Ph} + Et₃SiH resulting in the formation of 3^{Ph} H and Et₃SiOTf.

Reaction of 3^{Ph} and aldehyde:

An NMR tube was charged with 3^{Ph} (0.03 g, 0.03 mmol) and excess (20 µL) of methyl benzaldehyde taken in 0.5 mL of CDCl₃ (0.5 mL) at room temperature. The reaction is analyzed by ³¹P{¹H} NMR measurement.

³¹P{¹H} NMR (162 MHz, Chloroform-*d*) δ 36.02-32.08, -19.26 ppm.

Single crystals of the product after aldehyde insertion into Ge-P bond **3^{Ph}Oald** were obtained from THF solution.

Fig. S84 ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 298 K) of **3**^{Ph} + *p*-methyl benzaldehyde.

Hydrosilylation of aldehydes by 3^{*i*Pr}:

An NMR tube was charged with methyl benzaldehyde (12 μ L, 0.10 mmol), Et₃SiH (32 μ L, 0.20 mmol), catalyst **3**^{Pr} (0.005 mmol) in CD₂Cl₂ (0.5 mL). The reaction was analyzed by ¹H NMR measurement and conversion was calculated by integration against internal standard C₆(Me)₆.

Triethyl((4-methylbenzyl)oxy)silane: ¹**H NMR** (400 MHz, CD_2Cl_2) δ 7.27 (d, J = 8.0 Hz, 2H, aryl-H), 7.18 (d, J = 8.0 Hz, 2H, aryl-H), 4.51 (s, 2H, CH_2), 2.37 (s, 3H, methyl-H), 1.02 (m, 9H, (CH_3CH_2)₃Si), 0.64 (m, 6H, (CH_3CH_2)₃Si) ppm.

Fig. S85 ¹H NMR (400 MHz, CD₂Cl₂, 298 K) for the hydrosilylation of *p*-Methyl benzaldehyde using Et₃SiH and 5 mol% of **3**^{*P*r} as catalyst (hexamethylbenzene as internal standard) recorded after 24 hours

Fig. S86 2D ¹H-³¹P HSQC with CNST2 optimized at 480 Hz (400 MHz/162 MHz, CD₂Cl₂, 298 K) of the catalytic reaction mixture (*p*-Methyl benzaldehyde+Et₃SiH and 5 mol% of 3^{iPr} as catalyst)

Fig. S87 ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K) of the initial catalytic reaction mixture (*p*-Methyl benzaldehyde+Et₃SiH and 5 mol% of 3^{Pr} as catalyst)

Fig. S88 ²⁹Si{¹H} NMR (80 MHz, CD₂Cl₂, 298 K, no. of scans = 2000, T1 = 15 secs) of the catalytic reaction mixture (*p*-Methyl benzaldehyde+Et₃SiH and 5 mol% of 3^{iPr} as catalyst); no Et₃SiOTf peak observed.

Hydrosilylation of aldehydes by 3^{Ph}:

An NMR tube was charged with methyl benzaldehyde (12 μ L, 0.10 mmol), Et₃SiH (19 μ L, 0.12 mmol), catalyst **3**^{Ph} (0.0001 mmol) in CDCl₃ (0.5 mL). The reaction was analyzed by ¹H NMR measurement and conversion was calculated by integration against internal standard C₆(Me)₆.

Triethyl((4-methylbenzyl)oxy)silane: ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.0 Hz, 2H, aryl-H), 7.18 (d, *J* = 8.0 Hz, 2H, aryl-H), 4.52 (s, 2H, CH₂), 2.36 (s, 3H, *p*-methyl-H), 0.95 (m, 9H, (CH₃CH₂)₃Si), 0.55 (m, 6H, (CH₃CH₂)₃Si) ppm.

Fig. S89 ¹H NMR (400 MHz, CDCl₃, 298 K) for the hydrosilylation of *p*-Methyl benzaldehyde using Et₃SiH and 1 mol% of **3**^{Ph} as catalyst (hexamethylbenzene as internal standard) recorded after 24 hours

Fig. S90 ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) of the initial catalytic reaction mixture (*p*-Methyl benzaldehyde+Et₃SiH and 1 mol% of 3^{Ph} as catalyst)

Fig. S91 ³¹P and ³¹P{¹H} NMR spectra of the initial catalytic reaction mixture in the case of 3^{Ph} as catalyst, depicting the aldehyde insertion into the Ge-P bond predominantly. (peak at -6.3 ppm is for compound 3^{Ph}).

Fig. S92 ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) at the end of the catalytic reaction (*p*-Methyl benzaldehyde + Et₃SiH and 1 mol% of **3**^{Ph} as catalyst)

Fig. S93 ²⁹Si{¹H} NMR (80 MHz, CDCl₃, 298 K, no. of scans = 2000, T1 = 15 secs) of the catalytic reaction mixture (*p*-Methyl benzaldehyde+Et₃SiH and 1 mol% of 3^{Ph} as catalyst); no Et₃SiOTf peak observed.

Control Experiment:

An NMR tube was charged with methyl benzaldehyde (12 μ L, 0.10 mmol), Et₃SiH (32 μ L, 0.20 mmol) in CD₂Cl₂ (0.5 mL). The reaction was analyzed by ¹H NMR measurement after 24 hours. No hydrosilylated product was formed.

Fig. S94 ¹H NMR (400 MHz, CDCl₃, 298 K) for Control Experiment

Single Crystal X-ray Diffraction Analyses

Fig. S95 Molecular structure of 1^{iPr} in the solid state (thermal ellipsoids at 30%, H atoms and solvent molecule are omitted for clarity). Selected bond lengths [Å]: Ge1-C1 = 1.959(5), Ge1-C2 = 1.955(5), Ge1-Cl1 = 2.194(1), Ge1-P1 = 2.544(1), Ge1-P2 = 2.654(1); selected bond angles [°]: C1-Ge1-C2 = 147.3(2), Cl1-Ge1-C1 = 107.1(2), Cl1-Ge1-C2 = 105.4(1), P1-Ge1-P2 = 177.9(1), P1-Ge1-Cl1 = 90.4(1), P1-Ge1-C1 = 99.5(2), P1-Ge1-C2 = 84.0(1).

Fig. S96 Molecular structure of 1^{Ph} in the solid state (thermal ellipsoids at 30%, H atoms and solvent molecules are omitted for clarity). Selected bond lengths [Å]: Ge1-C1 = 1.973(2), Ge1-C2 = 1.973(2), Ge1-Cl1 = 2.233(1), Ge1-Cl2 = 2.245(1), Ge1-P1 = 2.982(1), Ge1-P2 = 2.964(1); selected bond angles [°]: C1-Ge1-C2 = 143.7(1), Cl1-Ge1-C1 = 102.3(1), Cl1-Ge1-C2 = 104.7(1), C2-Ge1-Cl2 = 97.3(1), C1-Ge1-Cl2 = 105.2(1), Cl1-Ge1-Cl2 = 92.8(1).

Fig. S97 Molecular structure of $3^{Ph}OPEt_3$ (H atoms, solvent molecule and triflate anion have been removed for clarity; thermal ellipsoid 30%). Selected bond lengths [Å] and angles [°]: a) Ge1-C1 = 1.918(7), Ge1-C2 = 1.934(7), Ge1-O1 = 1.944(5), Ge1-P1 = 2.362(2), Ge1-P2 = 2.744(2); C1-Ge1-C2 = 126.2(3), C1-Ge1-O1=96.5(3), C2-Ge1-O1 = 96.6(3), C1-Ge1-P1 = 92.1(2), C2-Ge1-P1 = 140.1(2), O1-Ge1-P1 = 88.6(2), C1-Ge1-P2 = 83.8(2), C2-Ge1-P2 = 82.6(2), O1-Ge1-P2 = 179.2(2), P1-Ge1-P2 = 92.1(1), Ge1-O1-P3 = 141.5(3).

Fig. S98 Molecular structure **3**^{*P*}**rDMAP** (H atoms, solvent molecule and triflate anion have been removed for clarity; thermal ellipsoid 30%). Selected bond lengths [Å] and angles [°]: Ge1-N1 = 1.964(6), Ge1-C1 = 1.951(7), Ge1-C2 = 1.954(7), Ge1-P1 = 2.610(3), Ge1-P2 = 2.596(3), and C1-Ge1-C2 = 147.9(3), N1-Ge1-C1 = 104.6(3), N1-Ge1-C2 = 107.5(3), P1-Ge1-P2 = 179.6(1).

Fig. S99 Molecular structure of $3^{Ph}(DMAP)_2$ (H atoms, solvent molecule and triflate anion have been removed for clarity; thermal ellipsoid 30%). Selected bond lengths [Å] and angles [°]: Ge1-C1 = 1.975(5), Ge1-C2 1.980(5), Ge1-N1 = 2.157(4), Ge1-N2 = 2.234(4), Ge1-P2 = 2.597(2), Ge1-P1 = 2.624(1); C1-Ge1-C2 = 177.8(2), P2-Ge1-P1 = 179.5(1), N1-Ge1-N2 = 179.0(2), C1-Ge1-N1 = 91.7(2), C1-Ge1-N2 = 88.1(2), C1-Ge1-P2 = 97.1(2), C1-Ge1-P1 = 83.5(2), N1-Ge1-P1 = 93.7(1), N2-Ge1-P1 = 85.3(1), P1-Ge1-C2 = 95.8(2).

Fig. S100 Molecular structure of $3^{IPr}H$ (H atoms except Ge-H, solvent molecules and triflate anions have been removed for clarity; thermal ellipsoid 30%). Selected bond lengths [Å] and angles [°]: a) Ge1-H1 = 1.54(3), Ge1-C1 = 1.965(6), Ge1-C2 = 1.953(6), Ge1-P1 = 2.551(2), Ge1-P2 = 2.654(2); C1-Ge1-C2 = 138.7(2), H1-Ge1-C1 = 110(4), H1-Ge1-C2 = 112(4), P1-Ge1-P2 = 176.9(1).

Fig. S101 Molecular structure of $3^{Ph}H_2$ (H atoms except Ge-H, solvent molecules and triflate anions have been removed for clarity; thermal ellipsoid 30%). Selected bond lengths [Å] and angles [°]: Ge1-C1 = 1.979(4), Ge1-C2 = 1.977(4), Ge1-H1 = 1.56(3), Ge1-H2 = 1.77(3); C1-Ge1-C2 = 108.0(1), H1-Ge1-H2 = 108.5(15), C2-Ge1-H1 = 118.6(12), C1-Ge1-H1 = 106.7(12), C2-Ge1-H2 = 110.1(10), C1-Ge1-H2 = 104.1(10).

Fig. S102 Molecular structure of **3**^{Ph}**Et** in the solid state (thermal ellipsoids at 30%, H atoms, triflate counter anion and solvent molecule are omitted for clarity). Selected bond lengths [Å]: Ge1-C2 = 1.950(3), Ge1-C3 = 1.952(3), Ge1-C1 = 1.970(3), Ge1-P1 = 2.370(1), Ge1···P2 = 3.326(1); selected bond angles [°]: C2-Ge1-C3 = 118.4(1), C2-Ge1-C1 = 108.5(1), C3-Ge1-C1 = 109.3(1), C2-Ge1-P1 = 116.8(1), C3-Ge1-P1 = 110.8(1), C1-Ge1-P1 = 88.6(1).

Fig. S103 Molecular structure of **3**^{Ph}**H(Et)** in the solid state (thermal ellipsoids at 30%, H atoms except the Ge-H and solvent molecule are omitted for clarity). Selected bond lengths [Å]: Ge1-C3 = 1.963(4), Ge1-C1 = 1.962(2), Ge1-C2 = 1.988(2), Ge1-H1 = 1.61(3), Ge1···P1 = 3.364(1), Ge1···P2 = 3.251(1); selected bond angles [°]: C3-Ge1-C1 = 108.0(2), C3-Ge1-C2 = 107.5(1), C1-Ge1-C2 = 106.4(1), C3-Ge1-H1 = 98.7(1), C1-Ge1-H1 = 126.6(9), C2-Ge1-H1 = 108.2(9).

Fig. S104 Molecular structure of **3**^{Ph}**Oald** in the solid state (thermal ellipsoids at 30%, H atoms and triflate counter anions are omitted for clarity). Selected bond lengths [Å]: Ge1-C1 = 1.916(9), Ge1-C2 = 1.923(9), Ge1-O1 = 1.746(6), Ge1-O2 = 1.868(7), O1-C3 = 1.416(11), C3-P1 = 1.879(9), P2-O2 = 1.559(7); selected bond angles [°]: Ge1-O1-C3 = 121.2(6), O1-C3-P1 = 107.7(6), C1-Ge1-C2 = 122.1(4), C1-Ge1-O1 = 114.8(3), C2-Ge1-O1 = 113.7(3), O1-Ge1-O2 = 97.5(3), Ge1-O2-P2 = 122.0(4).

Note: The inadvertent presence of oxygen as phosphine oxide occurred probably during crystallization period from THF solution.

Table S1 X-ray refinement parameters

	1 ^{iPr}	1 ^{Ph}	2 ^{iPr}	2 ^{Ph}
CCDC Numbers	222276	2256454	777277	2256455
Empirical formula	$C_{2223770}$	C. H. Cl.GeP.	C.H.ClGeP. (CE.	C.H.ClGeP. (CE.
Empirical formula	$C_{36} \Gamma_{44} C O C \Gamma_2, (C \Gamma_3 O C),$	$2(C_4H_8O)$	$C_{36}\Pi_{44}ClOel_2, (Cl^3)$ SO ₃), (CH ₂ Cl ₂)	$C_{48}\Pi_{36}C(Oef_2, (CI_3)$ SO ₃), (C ₄ H ₈ O)
	(C_2H_3N)	-(
Formula weight	866.68	962.40	880.69	1003.92
Temperature	100(2) K	150(2) K	150(2) K	150(2) K
Wavelength	1.54178 Å	1.54178 Å	0.71073 Å	0.71073 Å
Crystal System	monoclinic	Monoclinic	monoclinic	Monoclinic
Space Group	P 21/c	P 2 ₁ /c	P 2/c	P 2 ₁ /c
Unit cell dimensions	a = 8.4966(3) Å,	a = 22.1656(19) Å,	a = 17.954(4) Å,	a = 15.128(4) Å,
	h = 24.3150(8) Å	h = 10.1752(9) Å	h = 9.494(2) Å	b = 10.410(3) Å
	a = 10.5124(6) Å:	a = 20.7402(17) Å:	a = 26.010(5) Å:	a = 20.642(8) Å:
	c = 19.5124(0) A;	c = 20.7492(17) A;	c = 20.010(3) A;	c = 29.042(8) A;
	$\alpha/^{\circ} = 90^{\circ},$	$\alpha/^{\circ} = 90^{\circ},$	$\alpha/^{\circ} = 90.00(3)^{\circ},$	$\alpha/^{\circ} = 90^{\circ},$
	$\beta^{\circ} = 98.653(2)^{\circ},$	$\beta/^{\circ} = 102.393(3)^{\circ},$	$\beta/^{\circ} = 102.93(3)^{\circ},$	$\beta^{\circ} = 102.314(8)^{\circ},$
	$\gamma/^{\circ} = 90^{\circ}$	$\gamma/^{\circ} = 90^{\circ}$	$\gamma/^\circ = 90.00(3)^\circ$	$\gamma/^\circ = 90^\circ$
Volume $(Å^3)$	3985.3(2)	4570.7(7)	4321.4(16)	4561(2)
Ζ	4	4	4	4
Density(calculated)	1.444	1.399	1.354	1.462
(Mg/m^3)				
Absorption coefficient	5.291	2.985	1.063	0.906
F(000)	1776.0	2000	1816	2064.0
Crystal size (mm ³)	$0.258 \times 0.192 \times 0.118$	$0.12 \times 0.11 \times 0.08$	$0.424 \times 0.314 \times 0.253$	0.21 x 0.08 x 0.07
	0.200 0.172 0.110	0.12 0.11 0.00	0.121 0.011 0.200	
Theta range for data collection (°)	2.92 to 66.93	2.041 to 66.830	1.164 to 25.058	2.079 to 25.197
Index ranges	$-10 \le h \le 10$,	$-26 \le h \le 26,$	$-20 \le h \le 20,$	$-18 \le h \le 18,$
	$-27 \leq k \leq 28,$	$-12 \le k \le 12$,	$-10 \le k \le 11$,	$-10 \le k \le 12$,
	22 - 1 - 22	24 - 1 - 24	$-30 \le 1 \le 30$	-35 < 1 < 35
	$-23 \le 1 \le 23$	$-24 \le 1 \le 24$	50 _ 1 _ 50	55 _ 1 _ 55
Reflections collected	52044	68036	45776	71394
Independent reflections	7065	8073	7545	8139
1				
	$[R_{int}=0.0546]$	$[R_{int} = 0.0514]$	$[R_{int} = 0.0920]$	$[R_{int} = 0.0497]$
Completeness to theta	$\theta = 67.001^{\circ}$	$\theta = 66.830^{\circ}$	$\theta = 25.058^{\circ}$	$\theta = 25.197^{\circ}$
	99.5 %	99.5 %	98.4 %	99.2 %
Absorption Correction	multi-scan	multi-scan	multi-scan	multi-scan
Max. and min.	0.753 and 0.613	0.7528 and 0.3001	0.808 and 0.689	0.7452 and 0.5304
Refinement Method	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F^2	squares on F^2	squares on F^2	squares on F^2
Data / restraints /	7065/89/ <i>A</i> 7 <i>A</i>	8073/18/568	75/15/18//70	8139/0/586
parameters	7005/05/474	0075/10/500	7545/16/470	0159/0/500
Goodness-of-fit on F ²	1.174	1.043	1.025	1.090
Final R indices	$R_1 = 0.0659,$	$R_1 = 0.0379,$	$R_1 = 0.0484,$	$R_1 = 0.0492,$
[1>2sigma(1)]	$wR_2 = 0.1407$	$wR_2 = 0.0978$	$wR_2 = 0.1052$	$wR_2 = 0.1183$
R indices (all data)	$R_1 = 0.0721$	$R_1 = 0.0413$	$R_1 = 0.0911$	$R_1 = 0.0522$
it malees (un unu)	$N_1 = 0.0721,$	$10_1 = 0.0713,$	N1 - 0.0711,	N ₁ = 0.0522,
	$wR_2 = 0.1435$	$wR_2 = 0.1007$	$wR_2 = 0.1234$	$wR_2 = 0.1202$

Largest diff, peak and	1.85 and -0.71	0.631 and -0.632	0.861 and -0.980	2.360 and -0.819
hole (e.Å $^{-3}$)				

$ \begin{array}{c ccccc} Numbers & 2223780 & 225456 & 222378 & 225457 & 225458 \\ Empirical formula & CuHLGEP, CuHLGEP, 2CuHLGEN, CHLGEP, 2C CHLGEN, 2C(FLGEN), C(FLGEN), 2(CFLGEN), C(FLGEN), 2(CFLGEN), 2(CFLGEN$		3 ^{iPr}	3 ^{Ph}	3 ^{iPr} (DMAP)	3 ^{Ph} (DMAP) ₂	3 ^{Ph} OPEt ₃
Empirel formula CalLaGePs, 2C CalLa	CCDC Numbers	2223780	2256456	2223784	2256457	2256458
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Empirical formula	C ₃₆ H ₄₄ GeP ₂ ,	C48H36GeP2, 2(C	C43H54GeN2P2, 2(C	C ₆₂ H ₅₆ GeN ₄ P ₂ ,2(CF ₃ O ₃ S),	C ₅₄ H ₅₁ GeOP ₃ , 2(C
$ \begin{array}{ c c c c } \hline Pormula weight & 1215.29 & 1201.40 & 1459.63 & 1347.42 \\ \hline Temperture & 100 (2) K & 150 (2) K & 150 (2) K & 150 (2) K & 150 (2) K \\ \hline Wavelength & 0.71073 A & 0.71073 A & 0.71073 A & 0.71073 A \\ \hline Crystal System & triclinic & Monoclinic & monoclinic & Triclinic & Monoclinic & Space Group \\ \hline P -1 & P 2/c & P 2/c & P -1 & C 2/c \\ \hline Unit cell & a = 11.7903(11) Å, & a = 21.183(6) Å, & a = 11.282(11) Å, & a = 13.652(3) Å, & b = 13.050(3) Å, \\ & b = 13.0614(11) Å, & b = 14.414(4) Å, & b = 30.08(3) Å, & b = 15.573(3) Å, & b = 13.050(3) Å, \\ & c = 15.7650(14) Å; & c = 16.645(4) Å; & c = 15.527(16) Å; & c = 16.333(3) Å; & c = 19.811(4) Å; \\ & a^{cr} = 70.049(2)^{c}, & a^{or} = 90^{c}, & a^{cr} = 90^{c}, & a^{or} = 90^{c}, \\ & \mu^{a} = 70.049(2)^{c}, & a^{or} = 90^{c}, & a^{ar} = 90^{c}, & a^{or} = 70.751(6)^{c}, & \beta^{cr} = 100.229(5)^{c}, \\ & \gamma^{a} = 75.622(3)^{c} & \gamma^{ar} = 90^{c} & \gamma^{ar} = 90^{c} & \gamma^{ar} = 70.751(6)^{c}, & \beta^{cr} = 100.229(5)^{c}, \\ & \gamma^{a} = 75.622(3)^{c} & \gamma^{ar} = 90^{c} & \gamma^{ar} = 90^{c} & \gamma^{ar} = 70.751(6)^{c}, & \beta^{cr} = 100.229(5)^{c}, \\ & \gamma^{a} = 75.622(3)^{c} & \gamma^{ar} = 90^{c} & \gamma^{ar} = 90^{c} & \gamma^{ar} = 10.7718(6)^{c} & \gamma^{cr} = 90^{c} \\ \hline Volume (\Lambda^{3}) & 2210.6(3) & 5046(2) & 5153(9) & 3217.7(11) & 11998(4) \\ \hline Z & 2 & 4 & 4 & 2 & 8 \\ Density(calculated) & 1.475 & 1.600 & 1.549 & 1.507 & 1.492 & 0.7718 & 0.980 \\ \hline Crystal size (nm^{1}) & 0.33 & 1.039 & 1.017 & 0.830 & 0.908 \\ \hline Crystal size (nm^{1}) & 0.11 \times 0.36 \times 0.20 & 0.23 \times 0.18 \times 0.13 & 0.32 \times 0.21 \times 0.11 & 0.16 \times 0.12 \times 0.11 & 0.18 \times 0.09 \times 0.08 \\ \hline Theta range for data collection (P) & 1.459 & 1.738 & 1.901 to 25.027 & 2.398 to 25.027 & 0.458 & 1.162 & 1.168 & 1.815 & 1.81$		$2(CF_3SO_3), C_4H_8O$	F_3O_3S), 2(CH ₂ Cl ₂)	F_3SO_3), 2(CH ₂ Cl ₂)	$2(CH_2Cl_2)$	F_3O_3S), CCl ₂ ,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Formula weight	0.001 / 0	1215 20	1201.40	1450.62	CH ₂ Cl ₂
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Temperature	901.40 100 (2) K	1213.29 150(2) K	1201.40 100 (2) K	1439.05 150 (2) K	1547.42 150 (2) K
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Crystal System	triclinic	Monoclinic	monoclinic	Triclinic	Monoclinic
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Space Group	P -1	$P 2_1/c$	P2 ₁ /c	P -1	C 2/c
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1 1	<u>^</u>	-	-		<u>^</u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Unit cell dimensions	a = 11.7903(11)Å,	a = 21.183(6) Å,	a = 11.282(11) Å,	a = 13.652(3) Å,	a = 47.155(9) Å,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		b = 13.0614(11)Å,	b = 14.414(4) Å,	b = 30.08(3) Å,	b = 15.573(3) Å,	b = 13.050(3) Å,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		c = 15.7650(14)Å;	c = 16.645(4) Å;	c = 15.527(16) Å;	c = 16.333(3) Å;	c = 19.811(4) Å;
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\alpha / ^{\circ} = 70.049(2)^{\circ},$	$\alpha^{\prime \circ} = 90^{\circ},$	$\alpha /^{\circ} = 90^{\circ},$	$\alpha/^{\circ} = 79.755(6)^{\circ},$	$\alpha^{\circ} = 90^{\circ},$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\beta^{\circ} = 85.111(3)^{\circ},$	$\beta^{\circ} = 96.823(9)^{\circ},$	$\beta^{\circ} = 102.04(3)^{\circ},$	$\beta^{\circ} = 79.751(6)^{\circ},$	$\beta^{\circ} = 100.229(5)^{\circ},$
Volume (λ^3) 2210.6(3) 5046(2) 5153(9) 3217.7(11) 11998(4) Z 2 4 4 2 8 Density (calculated) (Mg/m ³) 1.475 1.600 1.549 1.507 1.492 Absorption coefficient (mm ¹) 0.933 1.039 1.017 0.830 0.908 F(000) 1016.0 2464 2472.0 1496.0 5504.0 Crystal size (mm ³) 0.41 × 0.36 × 0.20 0.23 x 0.18 x 0.13 0.32 × 0.21 × 0.11 0.16 x 0.12 x 0.11 0.18 x 0.09 x 0.08 Theta range for data collection (°) 1.43 ≤ 13, -16 ≤ $k \le 14, -19 \le 1 \le 19$.26 .243 to 17.38 1.901 to 25.027 2.398 to 25.027 Index ranges .14 ≤ h ≤ 13, .16 ≤ $k \le 14, -19 \le 1 \le 19$.26 .26 .12 ≤ h $\le 13, -36 \le$ $k \le 36, -18 \le 18$.16<		$\gamma/^{\circ} = 75.622(3)^{\circ}$	$\gamma/^\circ = 90^\circ$	$\gamma/^{\circ} = 90^{\circ}$	$\gamma/^{\circ} = 71.778(6)^{\circ}$	$\gamma/^{\circ} = 90^{\circ}$
Volume (\hat{A}^3) 2210.6(3) 5046(2) 5153(9) 3217.7(11) 11998(4) Z 2 4 4 2 8 Density(calculated) 1.475 1.600 1.549 1.507 1.492 Mg/m ³ 1 0.933 1.039 1.017 0.830 0.908 Complexity(calculated) 0.41 × 0.36 × 0.20 0.23 x 0.18 x 0.13 0.32 × 0.21 × 0.11 0.16 x 0.12 x 0.11 0.18 x 0.09 x 0.08 Theta range for data collection (?) 2.25 to 27.45 1.936 to 26.267 2.43 to 17.38 1.901 to 25.027 2.398 to 25.027 Index ranges $-14 \le h \le 13, -16 \le h \le 15, -17 < = k < 17, -18 -16 < = -16, -16, -16, -16, -15 < 4 \le 15, -17 < = k < 17, -18 < -12 \le 1 \le 13, -36 \le h \le 56, -18 < 15, -17 < = k < 17, -18 < -12 \le 1 \le 13, -36 \le h < 18, -17 < = k < 18, -17 < = k < 18, -17 < = k < 18, -11 < 19 < 1 \le 23 Reflections 34618 110112 114081 66971 108030 Independentcollected 8674 [R_{im} =0.0964] 0.0661[9588 [R_{im} =0.1208] 11368 [R_{im} = 0.1564] 0.0600 [R_{im} =0.2547] Completeness totheta 0 = 25.998° 0 = 25.242° 0 = 25.5° $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Volume (Å ³)	2210.6(3)	5046(2)	5153(9)	3217.7(11)	11998(4)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ζ	2	4	4	2	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Density(calculated)	1.475	1.600	1.549	1.507	1.492
Absorption coefficient (mm ⁻¹) 0.933 1.039 1.017 0.830 0.908 (f000) 1016.0 2464 2472.0 1496.0 5504.0 Crystal size (mm ⁻¹) 0.41 × 0.36 × 0.20 0.23 x 0.18 x 0.13 0.32 × 0.21 × 0.11 0.16 x 0.12 x 0.11 0.18 x 0.09 x 0.08 Theta range for data collection (°) 2.25 to 27.45 1.936 to 26.267 2.43 to 17.38 1.901 to 25.027 2.398 to 25.027 Index ranges $-14 \le h \le 13, -16 \le h \le 6.6$ $-26 < =h <=26, -17 \le h \le 13, -36 \le h \le 56, h \le 56, h \le 56, -18 \le 12 \le 18, -17 < -18 < -17 < -18 < -18 < -18 < -18 < -18 < -18 < -18 < -19 < -21 \le 1 \le 23$	(Mg/m^3)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Absorption coefficient (mm ⁻¹)	0.933	1.039	1.017	0.830	0.908
$ \begin{array}{c} \mbox{Crystal size (mm^3)} & 0.41 \times 0.36 \times 0.20 & 0.23 \times 0.18 \times 0.13 & 0.32 \times 0.21 \times 0.11 & 0.16 \times 0.12 \times 0.11 & 0.18 \times 0.09 \times 0.08 \\ \hline \mbox{Theta range for} \\ \mbox{data collection (°)} & 2.25 to 27.45 & 1.936 to 26.267 & 2.43 to 17.38 & 1.901 to 25.027 & 2.398 to 25.027 \\ \hline \mbox{Index ranges} & -14 \le h \le 13, -16 \le \\ & k \le 14, -19 \le 1 \le 19 & -26 <=h <=26, \\ & k \le 36, -18 \le 1 \le 18 & -16 <=h <=16, \\ & -16 <=h <=16, \\ & -15 \le k \le 15, \\ & -18 <=k <=18, \\ & -15 \le k \le 15, \\ & -18 <=k <=18, \\ & -11 < =k <=120 & -19 <=-21 \le 1 \le 23 \\ \hline \mbox{Collected} & 34618 & 110112 & 114081 & 66971 & 108030 \\ \hline \mbox{Independent} \\ \mbox{reflections} & 3674 [R_{mt} = \\ & 0.0944] & 0.0661] & 0.2588 [R_{imt} = \\ & 0.0661] & 0.1208] & 0 = 25.027^\circ & 0 = 25.027^\circ \\ \mbox{theta} & 99.9 \% & 99.9 \% & 99.9 \% & 99.9 \% \\ \hline \mbox{Ompleteness to} \\ \mbox{theta} & 0.746 and 0.526 & 0.7453 and 0.6733 \\ \mbox{correction} & 0.746 and 0.526 & 0.7453 and 0.6733 \\ \mbox{transmission} & 0.746 and 0.526 & 0.7453 and 0.6733 \\ \mbox{resons} & -1029 & -1029 & 0.745 and 0.634 & 0.745 and 0.392 \\ \mbox{transmission} & 1.030 & 1.029 & 1.029 & 1.053 & 1.083 \\ \mbox{resons} & -2.00472 & R = 0.00722 & R = 0.00722 \\ \mbox{transmission} & R = 0.0763 & R = 0.0072 \\ \mbox{transmission} & R = -0.0763 & R = -0.0472 & R = -0.0933 \ xp = 0 \\ \mbox{transmission} & R = -0.0763 & R = -0.0472 & R = -0.0933 \ xp = 0 \\ \mbox{transmission} & R = -0.0763 & R = -0.0472 & R = -0.0933 \ xp = 0 \\ \mbox{transmission} & R = -0.0763 & R = -0.0472 & R = -0.0933 \ xp = 0 \\ \mbox{transmission} & R = -0.0772 & R = -0.0472 & R = -0.0472 \\ \mbox{transmission} & R = -0.0772 & R = -0.0472 & R = -0.0772 & R = -0.0472 \\ \mbox{transmission} & R = -0.0772 & R = -0.0472 & R = -0.0772 & R = -0.0472 $	F(000)	1016.0	2464	2472.0	1496.0	5504.0
Theta range for data collection (°) 2.25 to 27.45 1.936 to 26.267 2.43 to 17.38 1.901 to 25.027 2.398 to 25.027 Index ranges $-14 \le h \le 13, -16 \le h \le 13, -16 \le h \le 14, -19 \le 1 \le 19$ $-26 < =h < = 26, h < = 26, h \le 36, -18 \le 1 \le 18$ $-16 < =h < = 16, h < = -16, h < = -16, h < = -15 \le h \le 56, h < = 56, h < = 56, h < = 56, h < = -15 \le h \le 12, h < = 12 \le h \le 36, -18 \le 1 \le 18$ $-16 < =h < = 18, h < = -15 \le h \le 15, h < = -15 \le h \le 15, h < = -15 \le h < = 15, h < = -15 \le h < = 15, h < = -15 \le h < = 16, h < = -16 < = -16, h < = -15, h < = $	Crystal size (mm ³)	$0.41 \times 0.36 \times 0.20$	0.23 x 0.18 x 0.13	$0.32 \times 0.21 \times 0.11$	0.16 x 0.12 x 0.11	0.18 x 0.09 x 0.08
Index ranges $-14 \le h \le 13, -16 \le h \le 15, -17 < = h < = 26, = h < = 12, = h < = 13, -36 \le h < = 56, = h < = 16, = h$	Theta range for data collection (°)	2.25 to 27.45	1.936 to 26.267	2.43 to 17.38	1.901 to 25.027	2.398 to 25.027
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Index ranges	$-14 \le h \le 13, -16 \le$	-26<=h<=26,	$-12 \leq h \leq 13, -36 \leq$	-16<=h<=16,	$-56 \le h \le 56$,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$k \le 14, -19 \le l \le 19$		$k \le 36, -18 \le l \le 18$		
Image: collected -18< -18< -21 -21 -21 23 Reflections collected 34618 110112 114081 66971 108030 Independent reflections 8674 [R _{int} = 0.0944] 10060 [R _{int} = 0.0661] 9588 [R _{int} = 0.1208] 11368 [R _{int} = 0.1564] 10600 [R _{int} = 0.2547] Completeness to theta $\theta = 25.998^{\circ}$ $\theta = 25.242^{\circ}$ $\theta = 25.5^{\circ}$ $\theta = 25.027^{\circ}$ $\theta = 25.027^{\circ}$ 99.7 % 99.9 % 99.9 % 99.9 % 99.9 % 99.9 % 99.9 % Absorption Correction multi-scan multi-scan multi-scan multi-scan multi-scan multi-scan Max. and min. transmission 0.746 and 0.526 0.7453 and 0.6733 0.095 and 0.069 0.745 and 0.634 0.745 and 0.392 Refinement Method Full-matrix least- squares on F ² squares on F ² sq			-17<=k<=17,		-18<=k<=18,	$-15 \le k \le 15,$
Reflections collected 34618 110112 114081 66971 108030 Independent reflections 8674 [R _{int} = 0.0944] 10000 [R _{int} = 0.0661] 9588 [R _{int} = 0.1208] 11368 [R _{int} = 0.1564] 10600 [R _{int} = 0.2547] Completeness to theta $\theta = 25.998^{\circ}$ $\theta = 25.242^{\circ}$ $\theta = 25.5^{\circ}$ $\theta = 25.027^{\circ}$ $\theta = 25.027^{\circ}$ Absorption Correction multi-scan multi-scan multi-scan multi-scan multi-scan Max. and min. transmission 0.746 and 0.526 0.7453 and 0.6733 0.095 and 0.069 0.745 and 0.634 0.745 and 0.392 Refinement Method Full-matrix least- squares on F ² Full-matrix least- squares on F ² Data / restraints / F ² 1.030 1.029 1.029 1.053 1.083 Final R indices R = 0.0763 R = 0.00732 R = 0.00732 R = 0.00732			181-20		10 -1 - 10	21 < 1 < 23
Intervision Profile Profile </td <td>Reflections</td> <td>34618</td> <td>110112</td> <td>114081</td> <td>66971</td> <td>108030</td>	Reflections	34618	110112	114081	66971	108030
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	collected	51010	110112	111001	00771	100050
reflections 0.0944] 0.0661] 0.1208] 0.2547] Completeness to theta $\theta = 25.998^{\circ}$ $\theta = 25.242^{\circ}$ $\theta = 25.027^{\circ}$ $\theta = 25.027^{\circ}$ 99.7 % 99.9 % 99.9 % 99.9 % 99.9 % Absorption Correction multi-scan multi-scan multi-scan multi-scan Max. and min. Correction 0.746 and 0.526 0.7453 and 0.6733 0.095 and 0.069 0.745 and 0.634 0.745 and 0.392 Refinement Method Full-matrix least-squares on F ² Full-matrix least-squares on F ² Full-matrix least-squares on F ² squares on F ² squares on F ² squares on F ² Data / restraints / parameters 8674/24/549 100600/0658 9588/12/611 11368 / 6 / 812 10600/31/728 Goodness-of-fit on F ² 1.030 1.029 1.029 1.053 1.083 Final P indices P = 0.0763 P = 0.0472 P = 0.0933 wP = P = 0.0722 P = 0.0922	Independent	8674 [R _{int} =	10060 [R _{int} =	9588 [R _{int} =	11368 [R _{int} = 0.1564]	10600 [R _{int} =
Completeness to theta $\theta = 25.998^{\circ}$ 99.7 % $\theta = 25.242^{\circ}$ 99.9 % $\theta = 25.5^{\circ}$ 99.9 % $\theta = 25.027^{\circ}$ 99.9 % $\theta = 25.027^{\circ}$ 99.9 %Absorption Correctionmulti-scanmulti-scanmulti-scanmulti-scanMax. and min. transmission0.746 and 0.5260.7453 and 0.67330.095 and 0.0690.745 and 0.6340.745 and 0.392Refinement MethodFull-matrix least- squares on F2Full-matrix least- squares on F2Data / restraints / parameters1.0301.0291.0291.0531.083Final P indicesP = 0.0763P = 0.0472P = 0.0933 wP = P = 0.0722P = 0.0922	reflections	0.0944]	0.0661]	0.1208]		0.2547]
theta99.7 %99.9 %99.9 %99.9 %99.9 %Absorption Correctionmulti-scanmulti-scanmulti-scanmulti-scanmulti-scanMax. and min. transmission0.746 and 0.5260.7453 and 0.67330.095 and 0.0690.745 and 0.6340.745 and 0.392Refinement MethodFull-matrix least- squares on F^2 Full-matrix l	Completeness to	$\theta = 25.998^{\circ}$	$\theta = 25.242^{\circ}$	$\theta = 25.5^{\circ}$	$\theta = 25.027^{\circ}$	$\theta = 25.027^{\circ}$
Absorption Correctionmulti-scanmulti-scanmulti-scanmulti-scanMax. and min. transmission0.746 and 0.5260.7453 and 0.67330.095 and 0.0690.745 and 0.6340.745 and 0.392Refinement Method squares on F2Full-matrix least- squares	theta	99.7 %	99.9 %	99.9 %	99.9 %	99.9 %
Max. and min. transmission0.746 and 0.5260.7453 and 0.67330.095 and 0.0690.745 and 0.6340.745 and 0.392Refinement MethodFull-matrix least- squares on F2Full-matrix least- squares on F2Data / restraints / parameters8674/24/54910060/0/6589588/12/61111368 / 6 / 81210600/31/728Goodness-of-fit on F21.0301.0291.0291.0531.083Final P indicesP_ = 0.0763P_ = 0.0472P_ = 0.0933 wP = //2P_ = 0.0722P_ = 0.0992	Absorption Correction	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Max. and min.	0.746 and 0.526	0.7453 and 0.6733	0.095 and 0.069	0.745 and 0.634	0.745 and 0.392
Refinement MethodFull-matrix least- squares on F2Full-matrix least- squares on F2Full-matrix least- squares on F2Full-matrix least- 	transmission					
squares on F^2	Refinement Method	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-squares	Full-matrix least-
Data / restraints / parameters 86/4/24/549 10060/0/658 9588/12/611 11368 / 6 / 812 10600/31/728 Goodness-of-fit on F^2 1.030 1.029 1.029 1.053 1.083 Final P indices P = 0.0763 P = 0.0472 P = 0.0933 wP = 100000000000000000000000000000000000	Defense	squares on F ²	squares on F ²	squares on F ²	on F ²	squares on F ²
Goodness-of-fit on F^2 1.030 1.029 1.029 1.053 1.083 Einal P indices $P_{-0.0763}$ $P_{-0.0772}$ $P_{-0.0933}$ $P_{-0.0722}$ $P_{-0.0992}$	Data / restraints / parameters	80/4/24/549	10060/0/658	9588/12/611	11368 / 6 / 812	10600/31/728
F^2 P P P Final P indices P = 0.0763 P = 0.0933 wP = 0.0722 P = 0.0092	Goodness-of-fit on	1.030	1.029	1.029	1.053	1.083
Einal P indices $P = 0.0763$ $P = 0.0472$ $P = 0.0033$ wP = $P = 0.0722$ $P = 0.0002$	F ²					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Final R indices	$R_1 = 0.0763,$	$R_1 = 0.0472,$	$R_1 = 0.0933, wR_2 =$	$R_1 = 0.0722,$	$R_1 = 0.0992,$
$wR_2 = 0.1602 \qquad wR_2 = 0.1241 \qquad 0.2238 \qquad wR_2 = 0.1826 \qquad wR_2 = 0.1888$	[1>2sigma(1)]	$wR_2 = 0.1602$	$wR_2 = 0.1241$	0.2238	$wR_2 = 0.1826$	$wR_2 = 0.1888$

R indices (all data)	$R_1 = 0.1232,$	$R_1 = 0.0597,$	$R_1 = 0.1293, WR_2 =$	$R_1 = 0.1290,$	$R_1 = 0.1761,$
	$wR_2 = 0.1883$	$wR_2 = 0.1322$	0.2506	$wR_2 = 0.2102$	$wR_2 = 0.2198$
Largest diff. peak and hole $(e, Å^{-3})$	1.86 and -0.85	2.12 and -1.14	3.11 and -2.11	2.40 and -1.37	1.21 and -0.96

	3 ^{iPr} F	3 ^{Ph} F
CCDC Numbers	2223782	2256463
Empirical formula	$C_{36}H_{44}FGeP_2, CF_3SO_3, C_4H_*O$	$C_{48}H_{36}FGeP_2, CF_3O_3S$
Formula weight	851.41	915.37
Temperature	100(2) K	150(2) K
Wavelength	1.54178 Å	0.71073 Å
Crystal System	monoclinic	Monoclinic
Space Group	P2/c	$P2_1/c$
Unit cell dimensions	a= 17.3764(16) Å	a = 10.046(3) Å,
	b = 9.2749(9) Å	b = 18.494(6) Å,
	c = 25.485(2) Å;	c = 23.535(8) Å;
	$\alpha /^\circ = 90^\circ$	$\alpha / \circ = 90^{\circ},$
	$\beta^{\circ} = 103.688(3)^{\circ}$	$\beta^{\circ} = 97.484(12)^{\circ},$
	$\gamma/^\circ=90^\circ$	$\gamma/^\circ = 90^\circ$
Volume (Å 3)	3990.6(6)	4335(3)
volume (A ⁺)	3770.0(0)	4
L Density(calculated)	4	4
Density(calculated)	1.417	1.402
(Mg/m ³)	2 701	0.000
(mm ⁻¹)	2.791	0.888
F(000)	1776.0	1872.0
Crystal size (mm ³)	$0.428 \times 0.314 \times 0.254$	0.11 x 0.09 x 0.08
Theta range for data collection (°)	3.90 to 65.26	1.75 to 25.26
Index ranges	$-20 \le h \le 20$,	
		-11<=h<=11,
	$-10 \le k \le 10,$	-21<=k<=22
	-29 < 1 < 29	<u></u> ,
		-28<=1<=27
Deflections collected	64694	40020
Independent reflections	6821 [P - 0.0030]	40939 7709 [P = 0.0.0933]
Completeness to theta	0.00000000000000000000000000000000000	$7709 [K_{int} = 0.0.0933]$
Completeness to meta	0 = 03.343	$\theta = 23.242$
	99.2 %	98.4 %
Absorption Correction	multi-scan	multi-scan
Max. and min.	0.753 and 0.613	0.745 and 0.326
transmission Definement Method	Full motrin loost	Eull moterin loost
Kennement Method	Full-matrix least-	Full-matrix least-
Data / restraints /	squares on F ⁻	squares on F ⁻
parameters	0021/3/400	//09/2/341
Goodness-of-fit on F ²	1.050	1.050
Final R indices	$R_1 = 0.0307, wR_2 =$	$R_1 = 0.0441, wR_2 =$
[I>2sigma(I)]	0.0767	0.0998
R indices (all data)	$R_1 = 0.0437, wR_2 =$	$R_1 = 0.0776, wR_2 =$
	0.0789	0.1135

Largest diff. peak and	0.62 and -0.56	0.61 and -0.39
hole (e.Å ⁻³)		

	3 ^{iPr} H	3 ^{Ph} H ₂	3 ^{Ph} Et	3 ^{Ph} HEt	3 ^{Ph} Oald
CCDC Numbers	2223781	2256466	2256467	2256468	2256567
Empirical formula	C ₃₆ H ₄₅ GeP ₂ ,	C4 ₈ H ₃₈ GeP ₂ ,	C ₅₀ H ₄₁ GeP ₂ , C	C ₅₀ H4 ₂ GeP ₂	C56 H44 Ge O2
	CF ₂ SO ₂ , 4(C ₄ H ₂ O)	$0.5(C_{14})$	F_3O_3S , C_4H_8O		P2, 2(C F3 O3 S)
Formula weight	1049.73	833 38	997.53	777.36	1183.29
Temperature	100(2) K	150(2) K	150 (2) K	150(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal System	monoclinic	Triclinic	Monoclinic	Monoclinic	triclinic
Smaaa Crown	De	D 1	D 21/n	D 21/m	D 1
Space Gloup	ru	r-1	F 21/11	F 21/11	F -1
Unit cell dimensions	a = 13.481(3) Å,	a = 11.025 (6) Å,	a = 12.192(2) Å,	a = 12.221(3) Å	a = 9.896(5) Å
	b = 9.414(2) Å,	b = 13.376(8) Å,	b = 21.924(4) Å,	b = 18.490(4) Å	b = 15.315(8) Å
	c = 21.087(4) Å;	c = 14.809(8) Å;	c = 18.159(4) Å;	c = 16.895(4) Å	c = 17.580(8) Å
	$\alpha/^{\circ} = 90^{\circ},$	$\alpha/^{\circ} = 99.098(16)^{\circ}$	$\alpha/^{\circ} = 90^{\circ},$	$\alpha / \circ = 90^{\circ},$	$\alpha / \circ =$
	$\beta^{\circ} = 96.178(7)^{\circ},$	$\beta/^\circ=91.984(15)^\circ$	$\beta^{\circ} = 103.59(3)^{\circ},$	$\beta/^{\circ} = 93.001(8)^{\circ},$	$105.270(13)^{\circ}$,
	$\gamma /^\circ = 90^\circ$	$\gamma/^{\circ} = 102.355(19)^{\circ}$	$\gamma /^\circ = 90^\circ$	$\gamma/^\circ=90^\circ$	$\beta^{0} = 93.870(14)$ °,
					$\gamma/^{\circ} =$
					100.521(14) °
Volume (Å ³)	2660.7(10)	2101(2)	4718.0(17)	3812.3(15)	2508(2)
Ζ	2	2	4	4	2
Density(calculated)	1.310	1.317	1.404	1.354	1.567
(Mg/m ³)					
Absorption coefficient	0.735	0.843	0.821	0.923	0.840
F(000)	1112.0	860	2064		
				1616	1210
Crystal size (mm ³)	$0.2 \times 0.16 \times 0.15$	0.14 x 0.12 x 0.09	0.19 x 0.08 x 0.06	0.14 x 0.11 x 0.08	0.13 x 0.11 x 0.08
Theta range for data collection (°)	2.37 to 28.34	2.19 to 24.45	1.953 to 25.073	1.999 to 25.082	1.409 to 25.243
Index ranges	$-18 \le h \le 17, -12 \le k$ $< 12, -28 \le 1 \le 27$	-13<=h<=13,	-13<=h<=14,	-14<=h<=14,	-11<=h<=11,
	, _o ,	-15<=k<=15,	-26<=k<=26,	-21<=k<=22,	-18<=k<=18,
		-16<=l<=17	-21<=l<=21	-20<=l<=19	-20<=l<=20
Reflections collected	74267	33447	84884	72290	28610
Independent reflections	12086 [$R_{int} = 0.1814$]	7377 [R _{int} = 0.0865]	8338 [R _{int} = 0.0637]	6754 [R _{int} = 0.0547]	8911 [R _{int} = 0.1357]
Completeness to theta	$\theta = 28.577^{\circ}$	$\theta = 25.028^{\circ}$	$\theta = 25.073^{\circ}$	$\theta = 25.082^{\circ}$	$\theta = 25.242^{\circ}$
	99.6 %	00.5.%	99.6.%	00.7.%	08.1.%
Absorption Correction	99.0 % multi-scan	77.5 % multi-scan	77.0 % multi-scan	77./ %	70.1 %
Max. and min.	0.746 and 0.659	0.745 and 0.685	0.7452 and 0.6772	0.7452 and 0.6326	0.7452 and
transmission					0.4970
Refinement Method	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-
Data / restraints /	squares on F^2	squares on F^2	squares on F^2	squares on F^2	squares on F^2
parameters	12000/157/574	1311/0/394	0220/0/290	0/34/0/483	0911/034/708
Goodness-of-fit on F ²	1.052	1.018	1.054	1.007	1.041

Final R indices	$R_1 = 0.0561, wR_2 =$	$R_1 = 0.0525, wR_2 =$	R1 = 0.0383, wR2 =	R1 = 0.0356, wR2 =	R1 = 0.1035,
[I>2sigma(I)]	0.1493	0.1040	0.0938	0.0901	wR2 = 0.2554
R indices (all data)	$R_1 = 0.1244, wR_2 =$	$R_1 = 0.0907, wR_2 =$	R1 = 0.0480, wR2 =	R1 = 0.0440, wR2 =	R1 = 0.1962,
	0.1805	0.1168	0.1006	0.0951	wR2 = 0.3296
Largest diff. peak and	1.01 and -0.65	0.452 and -0.352	0.88 and -0.46	0.599 and -0.612	2.090 and -1.189
hole (e.Å ⁻³)					

Computational Study

The gas-phase optimizations of the initial geometries originated from corresponding X-ray files were performed using ORCA 5.0.0 package program at the TPSS-D3(BJ)/def2-TZVPP level of theory.^{S4} The RIJCOSX (RI approximation for the Coulomb integrals) was applied in all cases with combinations of corresponding auxiliary basis set.⁵⁵ We have corrected that the optimized geometries are minima on their potential energy surface (PES) with the help of frequency calculations. Then the NBO (natural bond orbital) output files were prepared from the optimized geometries using Gaussian 16 Rev.B.01 at the B3LYP-D3(BJ)/def2-TZVPP level of theory.^{S6} From NBO analyses, we have produced selected NBO partial charges, donor-acceptor interactions, and Wiberg bond indexes.^{S7,S8} Additionally, we also examine the maps of the molecular ESP to find out the positively and negatively charged sides of the studied compounds. For a meaningful comparison, we chose the same range of the ESP bars in all figures with 0.05 (red) – 0.45(blue). In order to get deeper insights on bonding situations of the corresponding structures, we have also employed atoms in molecule (AIM) analysis using Multiwfn 3.8 package program.^{S9} To gain more insights on the H migration mechanisms from P to Ge atoms for 3^{Pr} and 3^{Ph} cases, we have performed calculations to find out related transition states at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-31G(d,p) level of theory with Gaussian 16 Rev.B.01 package program. The optimized structures were identified by characterization of their Hessian matrix as a minimum or transition state (with an imaginary frequency). All the figures were prepared by Gaussview 5.0 package program.^{S10}

The fluoride ion affinities (FIA) and hydride ion affinities (HIA) of $3o^{iPr}$, $3o^{Ph}$, SbF_5 , and $B(PhF_5)_3$ with respect to the scheme proposed by Krossing (TMS system).^{S11} Additionally, the solvation correction was performed with CPCM(CH₂Cl₂) to get solvated models of FIA and HIA as implemented in ORCA.

$$LA + Me_{3}SiF \xrightarrow{\Delta H} [LA-F]^{-} + Me_{3}Si^{+} eq. 1$$

$$Me_{3}SiF \xrightarrow{\Delta H} Me_{3}Si^{+} + F^{-} eq. 2$$

$$LA + F^{-} \longrightarrow [LA-F]^{-} = eq. 1- eq. 2$$

Deformation and preparation energies were calculated for the first FIA of **30^{iPr}**, and **30^{Ph}**. The interaction energies were derived from the equation below depending on the single point energies.^{S12}

$$\begin{split} &\mathsf{E}_{\rm int} = \mathsf{E}_{[3o}{}^{\rm iPr} \cdot \mathsf{F}]^{+} - \left(\mathsf{E}_{\mathsf{F}}{}^{-}(\mathsf{frag1}) + \mathsf{E}_{3o}{}^{\rm iPr+2}(\mathsf{frag2})\right) \text{ which is } 901.0 \text{ kj mol}{}^{-1} \text{ for } \mathbf{3o}{}^{\rm iPr} \\ &\mathsf{E}_{\rm int} = \mathsf{E}_{[3o}{}^{\rm Ph} \cdot \mathsf{F}]^{+} - \left(\mathsf{E}_{\mathsf{F}}{}^{-}(\mathsf{frag1}) + \mathsf{E}_{3o}{}^{\rm Ph+2}(\mathsf{frag2})\right) \text{ which is } 884.9 \text{ kj mol}{}^{-1} \text{ for } \mathbf{3o}{}^{\rm Ph} \\ &\mathsf{E}_{\rm def(\mathsf{frag1})} = \mathsf{E}_{\mathsf{SP}(\mathsf{frag1})} - \mathsf{E}_{\rm opt(\mathsf{frag1})} \text{ which is } 0.0 \text{ kj mol}{}^{-1} \text{ for } \mathbf{3o}{}^{\rm iPr} \\ &\mathsf{E}_{\rm def(\mathsf{frag2})} = \mathsf{E}_{\mathsf{SP}(\mathsf{frag2})} - \mathsf{E}_{\rm opt(\mathsf{frag2})} \text{ which is } 126.2 \text{ kj mol}{}^{-1} \text{ for } \mathbf{3o}{}^{\rm iPr} \\ &\mathsf{E}_{\rm def(\mathsf{frag2})} = \mathsf{E}_{\mathsf{SP}(\mathsf{frag2})} - \mathsf{E}_{\rm opt(\mathsf{frag2})} \text{ which is } 148.1 \text{ kj mol}{}^{-1} \text{ for } \mathbf{3o}{}^{\rm Ph} \end{split}$$

Frag1 = F^- Frag2 = **30**^{iPr} or **30**^{Ph}

Table S2 Selected theoretical, and experimental (in parentheses) Bond lengths along with corresponding WBI values in square brackets for $2o^{iPr}$, $2o^{Ph}$, $3o^{iPr}$, and $3o^{Ph}$.

Bond	Ge-C1	Ge-C2	Ge-P1	Ge-P2	Ge-Cl
	1.975	1.975	2.618	2.610	2.206
20 ^{iPr}	(1.951)	(1.960)	(2.653)	(2.544)	(2.194)
	[0.750]	[0.750]	[0.487]	[0.495]	[0.744]
	1.944	1.944	2.383	2.994	2.217
20 ^{Ph}	(1.922)	(1.926)	(2.357)	(3.012)	(2.215)
	[0.750]	[0.803]	[0.712]	[0.183]	[0.738]
	1.937	1.935	2.387	2.380	
30 ^{iPr}	(1.925)	(1.924)	(2.362)	(2.350)	-
	[0.830]	[0.832]	[0.804]	[0.801]	
	1.931	1.930	2.365	2.366	
30 ^{Ph}	(2.349)	(2.340)	(1.920)	(1.926)	-
	[0.835]	[0.835]	[0.770]	[0.770]	

Table S3 Selected donor-acceptor interactions in 20^{iPr} and 20^{Ph}.

Table S4 Selected bonding orbitals and hybridizations for $2o^{iPr}, 2o^{Ph}, 3o^{iPr}$, and $3o^{Ph}$.

	BD _{Ge-P1}	BD _{Ge-P2}	BD _{Ge-C1}	BD _{Ge-C2}	LP* _{Ge}	LP _{P1}	LP _{P2}
20 ^{iPr}	- No BD	- No BD	Ge sp ^{1.18} C1 sp ^{2.64}	Ge sp ^{1.18} C2 sp ^{2.64}	Ge sp ¹ (LP*1) Ge sp ^{11.36} (LP*2)	P sp ^{1.13}	P sp ^{1.13}
20 ^{Ph}	Ge sp ^{3.30} P1 sp ^{3.42}	- No BD	Ge sp ^{2.11} C1 sp ^{2.48}	Ge sp ^{1.45} C2 sp ^{2.69}	Ge sp ^{25.05} (LP*)	No LP	P sp ^{1.25}
	BD _{Ge-P1}	BD_{Ge-P2}	BD _{Ge-C1}	BD _{Ge-C2}	LP* _{Ge}	LP _{P1}	LP_{P2}
30 ^{iPr}	Ge sp ^{4.00}	Ge sp ^{4.11}	Ge sp ^{2.34}	Ge sp ^{2.26}	-	-	-
	P1 sp ^{3.66}	P1 sp ^{3.61}	C1 sp ^{2.60}	C2 sp ^{2.61}	No LP*	No LP	No LP
2 - Ph	Ge sp ^{4.25}	Ge sp ^{4.26}	Ge sp ^{2.21}	Ge sp ^{2.23}	-	-	-
30	P1 sp ^{3.80}	P1 sp ^{3.80}	C1 sp ^{2.62}	C2 sp ^{2.61}	No LP*	No LP	No LP

Table S5 Selected NBO partial charges for 20^{iPr}, 20^{Ph}, 30^{iPr}, and 30^{Ph}.

Ge	P1	P2	CI
1.290	1.033	1.030	-0.410
1.343	1.165	0.942	-0.416
1.136	1.161	1.145	-
1.157	1.174	1.174	-
	Ge 1.290 1.343 1.136 1.157	GeP11.2901.0331.3431.1651.1361.1611.1571.174	GeP1P21.2901.0331.0301.3431.1650.9421.1361.1611.1451.1571.1741.174

	20 ^{iPr}		20	20 ^{Ph}		30 ^{iPr}		30 ^{Ph}	
	Ge-P1	Ge-P2	Ge-Cl	Ge-P1	Ge-P2	Ge-P1	Ge-P2	Ge-P1	Ge-P2
<i>ρ</i> (r)	0.059	0.058	0.095	0.089	0.026	0.089	0.090	0.092	0.092
$\nabla^2 \rho(\mathbf{r})$	-0.006	-0.005	0.128	-0.044	0.031	-0.052	-0.052	-0.052	-0.052
Hb	-0.021	-0.020	-0.040	-0.041	-0.003	-0.041	-0.042	-0.044	-0.044
G(r)	0.019	0.019	0.072	0.030	0.011	0.028	0.029	0.031	0.031
K(r)	0.021	0.020	0.040	0.041	0.003	0.041	0.042	0.044	0.044
V(r)	-0.040	-0.040	-0.112	-0.072	-0.014	-0070	-0.072	-0.075	-0.075
E(r)	0.031	0.033	0.009	0.037	0.026	0.013	0.010	0.011	0.011

Table S6 Selected AIM parameters for the corresponding BCPs in 20^{iPr}, 20^{Ph}, 30^{iPr}, and 30^{Ph}.

Negative Laplacian values at the BCPs are associated with shared interactions, indicating covalent bonds, and positive Laplacian values are reflecting closed shell interactions such as ionic or dative bonds. In the case of $2o^{Ph}$, the higher positive $\nabla^2 \rho(\mathbf{r})$ value on Ge-P2 show dative bonding character. In addition to that, the total electron density at the corresponding BCPs in 30 is determined to be higher compared to that for 20.
Table S7 FIA and HIA calculations at the Ge site for 20^{iPr}, 20^{Ph}, 30^{iPr}, and 30^{Ph}, SbF₅, and B(PhF₅)₃ at the TPSS-D3(BJ)/def2-TZVPP level of theory.

	electr. energy sp LA [kJ mol-1]	total thermal correction LA [kJ mol-1]	electr. energy sp TMSF [kJ mol-1]	total thermal correction TMSF [kJ mol-1]	\rightarrow	electr. energy sp LAF [kJ mol-1]	total thermal correction LAF [kJ mol-1]	electr. energy sp TMS [kJ mol-1]	total thermal correction TMS [kJ mol-1]	deltaH	FIA(gas)
FIA											
30 ^{iPr} _FIA	-10916518,548726	108,5	-1336970,229967	22,2	\rightarrow	-11179631,270812	113,1	-1073775,135490	14,4	79,2	873,3
30 ^{Ph} _FIA	-12105192,398375	112,8	-1336970,229967	22,2	\rightarrow	-12368289,040454	115,8	-1073775,135490	14,4	93,7	858,8
SbF₅	-1942108,495774	19,5	-1336970,229967	22,2	\rightarrow	-2204843,000589	22,3	-1073775,135490	14,4	455,7	496,8
HIA											
3o ^{i₽r} _HIA	-10916518,548726	108,5	-1076072,823952	19,9	\rightarrow	-10918802,900000	110,4	-1073775,135490	14,4	9,8	949,2
30 ^{Ph} _HIA	-12105192,398375	112,8	-1076072,823952	19,9	\rightarrow	-12107453,913536	113,0	-1073775,135490	14,4	30,8	928,2
30 ^{Ph} _HIA2	-12107453,913536	113,0	-1076072,823952	19,9		-12109416,247961	115,7	-1073775,135490	14,4	332,5	626,5
B(PhF₅)₃	-5800599,954353	77,1	-1076072,823952	19,9	\rightarrow	-5802448,926715	76,1	-1073775,135490	14,4	442,1	516,9

Table S8 Solvated models of FIA and HIA at the Ge site for $2o^{iPr}$, $2o^{Ph}$, $3o^{iPr}$, and $3o^{Ph}$, SbF_5 , and**B(PhF_5)**₃ at the TPSS-D3(BJ)/def2-TZVPP level of theory.

	Gas	5	LA		F ¹		\rightarrow	LAF		de	ltaH
	30 ^{iPr} _F	ΊA	-10916518,5	48726	-262213,28	6341	\rightarrow	-11179631,27	0812	-89	<mark>99,4</mark>
	30 ^{Ph} _F	ΊA	-12105192,3	98375	-262213,28	6341	\rightarrow	-12368289,04	0454	-88	<mark>33,4</mark>
	SbF₅		-1942108,49	5774	-262213,28	6341	\rightarrow	-2204843,000)589	-52	<mark>21,2</mark>
	Gas	5	LA		H.		\rightarrow	LAH		de	ltaH
	30 ^{iPr} _H	IIA	-10916518,5	48726	-1322,132	272	\rightarrow	-10918802,90	0000	-96	<mark>62,2</mark>
	30 ^{Ph} _H	IIA	-12105192,3	98375	-1322,132	272	\rightarrow	-12107453,91	3536	-93	<mark>39,4</mark>
	30 ^{Ph} _H	IIA2	-12107453,9	13536	-1322,132	272	\rightarrow	-12109416,24	7961	-64	<mark>40,2</mark>
	B(PhF	5)3	-5800599,95	64353	-1322,132	272	\rightarrow	-5802448,926	6715	-52	<mark>26,8</mark>
S	olv		LA		F ¹	\rightarrow		LAF	delta	aH	FIAsolv
30 ^{iPi}	_FIA	-109	16992,736221	-262	2558,003831	\rightarrow	-111	79770,736910	-220	,0	193,9
30 ^{Ph}	_FIA	-121	05632,267642	2 -262	2558,003831	\rightarrow	-123	68404,924309	-214	,7	190,1
SbF	5	-194	2122,235673	-262	558,003831	\rightarrow	-220	5035,132147	-354	,9	330,5
S	olv		LA		H.	\rightarrow		LAH	delta	аH	HIAsolv
30 ^{iPi}	_HIA	-109	16992,736221	-167	9,274785	\rightarrow	-109	18938,893443	-266	,9	253,9
30 ^{Ph}	_HIA	-121	05632,267642	2 -167	9,274785	\rightarrow	-121	07592,207506	-280	,7	269,4
30 ^{Ph}	_HIA2	-121	07592,207506	6 -167	9,274785	\rightarrow	-121	09464,022351	-192	,5	178,8
B(Pl	1 F ₅)₃	-580	0617,955360	-167	9,274785	\rightarrow	-580	2577,253341	-280	,0	270,1

Fig. S105 Selected FMOs for 2^{*i*Pr} at the B3LYPD3(BJ)/def2-TZVPP//TPSS-B3(DJ)/def2-TZVPP level of theory (Isovalue: 0.03). H atoms are omitted for clarity

Fig. S106 Electrostatic Potential map for **2**^{*i*Pr} at the B3LYPD3(BJ)/def2-TZVPP//TPSS-B3(DJ)/def2-TZVPP level of theory. H atoms are omitted for clarity

Fig. S107 Selected FMOs for 2^{Ph} at the B3LYPD3(BJ)/def2-TZVPP//TPSS-B3(DJ)/def2-TZVPP level of theory (Isovalue: 0.03). H atoms are omitted for clarity

Fig. S108 Electrostatic Potential map for **2**^{Ph} at the B3LYPD3(BJ)/def2-TZVPP//TPSS-B3(DJ)/def2-TZVPP level of theory. H atoms are omitted for clarity

Fig. S109 Selected FMOs for **3**^{*i*Pr} at the B3LYPD3(BJ)/def2-TZVPP//TPSS-B3(DJ)/def2-TZVPP level of theory (Isovalue: 0.03). H atoms are omitted for clarity

Fig. S110 Selected FMOs for 3^{Ph} at the B3LYPD3(BJ)/def2-TZVPP//TPSS-B3(DJ)/def2-TZVPP level of theory (Isovalue: 0.03). H atoms are omitted for clarity

номо

LUMO

LUMO+1

Fig. S111 Optimized geometry of 3^{*i*Pr}PH, 3^{*i*Pr}H, 3^{*i*Pr}H, and 3^{*P*h}H at the B3LYP-D3(BJ)/6-31G(d,p) level of theory.

Fig. S112 Proposed reaction mechanism for the H migration from P to Ge atom for 3^{Pr} and 3^{Ph} systems at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-31G(d,p) level of theory.

Table S9 Cartesian coordinates of 20^{iPr} at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Ge	0.00368451	-0.00332225	0.19666867
CI	-0.00393750	-0.00213356	2.40288655
Р	-1.57738842	2.08234474	0.13261779
Р	1.58229281	-2.08107802	0.13435835
С	4.06243499	1.06073011	-0.30009140
С	2.89161499	0.28105332	-0.16282732
С	4.06103043	2.41516376	-0.69253913
С	1.65887952	2.27423873	-0.75002699
Н	0.71950383	2.79446557	-0.88735715
С	5.36162124	0.57169537	-0.05330445
С	2.84822724	3.02321364	-0.93992735
Н	2.77790516	4.06249718	-1.24649409
С	3.08023108	-1.08720139	0.19371786
С	1.64272994	0.93914647	-0.37497876
С	5.51443689	-0.74292574	0.34389327
Н	6.49068514	-1.16582144	0.55941787
С	-1.71046257	2.92592655	-1.53455438
Н	-0.88816333	3.65163998	-1.55651423
С	6.35737661	1.68829438	-0.29132642
Н	7.09175043	1.40977677	-1.05354483
Н	6.92040258	1.91162600	0.62045189

С	4.36471320	-1.56101067	0.44789698
Н	4.49940169	-2.60138444	0.72862021
С	5.49069805	2.91184676	-0.74305480
Н	5.63512433	3.77430974	-0.08508744
Н	5.75609155	3.23934409	-1.75338622
С	-1.63876311	-0.93922199	-0.37607220
С	-1.48462544	1.88231420	-2.63940858
Н	-2.26532319	1.11652819	-2.61119384
Н	-0.51333998	1.38703854	-2.54038228
Н	-1.51893819	2.36612216	-3.62039655
С	-3.02619219	3.68388580	-1.74555705
Н	-2.99256465	4.19354312	-2.71410163
Н	-3.20044946	4.44333469	-0.97866122
Н	-3.87659764	2.99740872	-1.75637769
С	-2.88670800	-0.28124659	-0.15869873
С	-1.65646136	-2.27267389	-0.75709211
Н	-0.71780201	-2.79186016	-0.90214301
С	-3.07396383	1.08624299	0.20142627
C	1.70419367	-2.94759286	-1.52099705
H	0.89823057	-3.69194194	-1.51034307
С	1.70740739	-3.42253676	1.40873196
H	2.52349771	-4.06798011	1.05865890
C	1.43728891	-1.93200294	-2.64229968
H	2.19686538	-1.14451744	-2.63911960
Н	0.45349022	-1.46315950	-2.54237238
Н	1 47510189	-2 43338529	-3 61434749
C	-1.71542900	3.43400852	1.39433739
H	-2 55513781	4 05287651	1 05245081
C	-0 43770904	4 28812872	1 39580327
н	-0 55278448	5 11067820	2 10816575
Н	-0 22616055	4 72582868	0 41551039
Н	0 42585928	3 69085447	1 70224801
C	2 06738157	-2 88535666	2 80071001
н	1 25327191	-2 28605372	3 21092284
н	2 96813757	-2 26780194	2 78069329
н	2 24523642	-3 73241005	3 47090804
C	3 03382493	-3 67888304	-1 73895525
н	2 99113563	-4 22444234	-2 68734291
н	3 24896049	-4 40496131	-0.95001151
н	3 86376855	-2 97001661	-1 79471750
C	-4 05797736	-1 06027868	-0 29543347
C	-2 84656213	-3 02055098	-0 94691399
н	-2 77751879	-4 05837692	-1 25889785
C	-4 35780415	1 55918094	0 46037634
н	-4 49204039	2 59898012	0.74303351
C	-2 03501060	2.00000012	2 70781/88
н	-1 19260020	2.30103349	3 20246665
н	-2 91245222	2.00022024	2 80000001
н	-2 22267120	3 7/065/22	2.00003034
C	0 40558707	-1 22050602	1 44054842
ч	0.40000191	-5 06262081	2 15265506
н	0.16077800	-4 67452840	2.100000000 0 46608840
• •	0.10011039	7.07 702070	5.4000043

Н	-0.43318174	-3.61564895	1.76203726
С	-4.05819034	-2.41332365	-0.69288983
С	-5.35652870	-0.57211139	-0.04347004
С	-5.48809476	-2.90869965	-0.74379801
Н	-5.63207585	-3.77844882	-0.09540546
Н	-5.75641049	-3.22437906	-1.75733665
С	-5.50804776	0.74126342	0.35812322
Н	-6.48359877	1.16388940	0.57755104
С	-6.35271186	-1.68878951	-0.27815769
Н	-7.09648594	-1.40911435	-1.03071657
Н	-6.90476989	-1.91765715	0.63910061

Table S10 Cartesian coordinates of 30^{iPr} at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Ge	-0.01779106	-0.03589719	-0.04710725
Р	1.49265676	0.71126685	1.63382353
Р	-1.60867867	1.47639540	-0.98534239
С	-2.71724255	-0.83295838	-0.00550319
С	1.47007359	-0.67899600	-1.10920209
С	-3.66673050	-2.98263876	0.79393025
С	2.69120033	-0.68780664	-0.37652169
С	1.43076521	-1.25861809	-2.37461369
Н	0.49541237	-1.28731348	-2.92657827
С	-3.01679705	0.41906404	-0.62394541
С	-2.39769017	-3.43097919	1.11748643
Н	-2.23000765	-4.42040666	1.53071218
С	5.06626925	-1.41933064	-0.37184937
С	-1.42653169	-1.29594003	0.37157572
С	-3.80508251	-1.69554653	0.23488375
С	2.89057862	-0.17325983	0.94256203
С	-4.34387421	0.74421883	-0.91222532
Н	-4.57912169	1.70252583	-1.36538332
С	3.80520272	-1.29338509	-0.99026402
С	-1.28803550	-2.57660818	0.90075233
Н	-0.30039823	-2.95198762	1.15188286
С	3.76854893	-1.85949914	-2.28130814
С	-5.41514016	-0.13692620	-0.63563942
Н	-6.42632698	0.16899109	-0.88258667
С	5.22964023	-0.93418773	0.91530639
Н	6.17385011	-1.01917657	1.44285009
С	-5.14307181	-1.37002459	-0.06658519
С	2.57384311	-1.83795216	-2.98005976
Н	2.48524983	-2.26926992	-3.97191419
С	-1.98870137	3.11387222	-0.21374274
Н	-2.96339773	3.34441552	-0.66694041
С	0.06818885	2.12158209	-3.16758845
Н	0.16589891	3.18060409	-2.92311660
Н	0.21727226	2.01540407	-4.24582749
Н	0.86451236	1.56569899	-2.66538311
С	1.14174969	0.21083547	3.36896908
Н	2.03226076	0.54634935	3.91699293
С	5.14015368	-2.41155777	-2.60384193

С	-1.32671973	1.58167548	-2.81249208
Н	-1.38598412	0.52636268	-3.11163233
С	1.85336888	2.52466045	1.53691353
Н	0.89061955	3.02700808	1.68465363
С	-5.03829981	-3.61430174	0.89314804
С	2.82747705	2.95862553	2.64367332
Н	2.42799829	2.78565141	3.64534572
Н	3.01700204	4.03090812	2.53978517
Н	3.78720001	2.44318807	2.54810830
С	4.13533321	-0.31032698	1.55919603
Н	4.28031717	0.06574857	2.56762902
С	6.00293739	-2.12346589	-1.32853654
С	-2.45559947	2.35367999	-3.51509079
Н	-2.47398516	3.40439980	-3.21328603
Н	-3.43562671	1.91055102	-3.32680370
Н	-2.27842765	2.32226946	-4.59392534
С	-6.02393991	-2.53193859	0.33550737
С	-2.18916414	2.92664785	1.29719231
Н	-1.24225150	2.68520979	1.78855200
Н	-2.90797305	2.13497836	1.52109122
Н	-2.56071135	3.86043108	1.72738225
С	2.40371049	2.84815522	0.13939427
Н	3.38138033	2.38246224	-0.00517328
Н	2.52228789	3.93065224	0.03989312
Н	1.74408919	2.50164566	-0.66253601
С	-1.00993513	4.24583891	-0.54339877
Н	-1.34546879	5.15450452	-0.03566000
Н	-0.96670388	4.46032211	-1.61204183
Н	-0.00057249	4.02012347	-0.19384719
С	1.01699071	-1.31389555	3.49319926
Н	0.09601355	-1.66405891	3.02144882
Н	0.97332249	-1.57988804	4.55281944
Н	1.86775154	-1.83369890	3.04579072
С	-0.09519605	0.94483860	3.90838787
Н	0.00177799	2.03213080	3.84550954
Н	-0.23310981	0.68514712	4.96149914
Н	-0.99535925	0.63685293	3.36750573
Н	-6.59886469	-2.90550484	-0.51735422
Н	-5.27661373	-3.88548362	1.92611089
Н	-6.75318653	-2.22345492	1.09150547
Н	-5.08484790	-4.53866670	0.30886119
Н	5.09210640	-3.48213570	-2.82535910
Н	5.55895440	-1.92791988	-3.49194765
Н	6.87056906	-1.49725239	-1.55920931
Н	6.39305363	-3.04584779	-0.88722476

Table S11 Cartesian coordinates of 20^{Ph} at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Ge	7.18590000	6.19240000	16.61840000
CI	8.20520000	5.02600000	15.03190000
Р	6.01550000	7.73260000	18.90480000
Р	8.13760000	5.08480000	18.50240000
С	5.49250000	5.28780000	16.92710000

С	7.24560000	8.01720000	15.95060000
С	5.49860000	4.46430000	18.08480000
С	3.17680000	4.60400000	16.45010000
Ĉ	6 36730000	9 02600000	16 46210000
Ĉ	4 32430000	3 74500000	18 37420000
C C	9 30240000	3 75240000	18 12380000
C C	3 16200000	3 80570000	17 57660000
0	6 47120000	2 40520000	20.05790000
	0.47120000	3.40320000	20.03760000
	6.68010000	8.81240000	20.23120000
	6.59660000	4.28440000	18.98260000
C	6.25560000	10.20210000	15.67660000
C	4.35020000	5.34210000	16.13980000
С	5.61100000	9.00970000	17.67150000
С	4.46240000	6.29270000	20.70550000
С	4.63950000	11.21440000	17.14200000
С	4.78060000	10.08680000	17.97910000
С	7.00140000	10.44300000	14.50170000
С	8.45550000	6.10270000	21.09630000
C	5.26950000	2.70780000	20.32530000
Ċ	8,89100000	6.11800000	19,76680000
C.	4 18870000	2 88190000	19 47780000
C C	6 63190000	11 80400000	13 95200000
U Ц	6 25720000	11 72040000	12 02630000
	7 50620000	12 46220000	12.92030000
	7.30020000 F 40270000	12.40230000	15.91000000
	5.40270000	11.27970000	15.99230000
	2.79410000	2.29320000	19.46090000
C	7.98120000	8.26900000	14.79600000
C	6.10650000	8.96380000	21.49920000
C	8.83110000	2.66500000	17.36980000
С	2.10640000	2.91510000	18.19780000
С	10.20850000	7.65780000	21.68270000
С	7.82370000	9.55820000	19.90570000
Н	8.26970000	9.45900000	18.92000000
С	7.81040000	10.57570000	22.09700000
С	4.44220000	7.08800000	19.54680000
С	10.63740000	3.78370000	18.54750000
С	8.37900000	10.43820000	20.82920000
Ĉ	9.69200000	1.62320000	17.04400000
Ĉ	9 97920000	6 92290000	19 39310000
Č	6 67/80000	9.83760000	22 /2720000
C	3 23220000	7 25060000	18 85070000
C	11 40260000	2 72270000	10.00970000
	7 90110000	2.73370000	10.21020000
	7.69110000	9.46250000	14.07 150000
	9.11360000	0.07050000	22.04970000
	11.02380000	1.65730000	17.46410000
C	3.29610000	5.70000000	21.17990000
C	2.06710000	6.64700000	19.33210000
C	10.63900000	7.68210000	20.35500000
С	5.54070000	12.34950000	14.93030000
С	2.09320000	5.87630000	20.49380000
Н	4.34340000	5.96550000	15.25010000
Н	9.25830000	11.01580000	20.56070000
Н	11.69330000	0.84240000	17.20810000
Н	4.24250000	10.07210000	18.92290000
Н	5.83060000	13.30970000	15.36820000
Н	1.13650000	6.78390000	18.79000000
Н	8.63030000	7.48960000	14.41080000
н	10.30780000	6.95300000	18.35780000
н	7.60380000	5,49540000	21.38160000
н	2.31280000	4,68500000	15,79750000

Н	2.25190000	2.54320000	20.37840000
Н	8.24450000	11.26110000	22.81790000
Н	5.20570000	8.42020000	21.76150000
Н	11.48120000	8.30210000	20.06580000
Н	4.58810000	12.51380000	14.41590000
Н	6.21670000	9.95050000	23.40510000
Н	3.20340000	7.84170000	17.95090000
Н	1.77560000	2.14090000	17.49860000
Н	1.21970000	3.49460000	18.47290000
Н	5.39660000	6.13250000	21.23320000
Н	3.97070000	12.01850000	17.43310000
Н	8.49950000	9.61710000	13.18260000
Н	3.32860000	5.09590000	22.08120000
Н	11.00540000	4.61050000	19.14440000
Н	7.79760000	2.63760000	17.04080000
Н	2.82840000	1.20050000	19.40370000
Н	12.52430000	2.75730000	18.55180000
Н	10.71750000	8.25960000	22.42790000
Н	8.76630000	6.87300000	23.07710000
Н	9.32490000	0.78570000	16.46010000
Н	5.22410000	2.04060000	21.18030000
Н	7.32650000	3.22740000	20.70320000
Н	1.18200000	5.41710000	20.86440000

Table S12 Cartesian coordinates of 30^{Ph} at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Ge	3.37660000	7.68790000	8.35720000
Р	5.26400000	6.82410000	7.22110000
Р	3.09870000	7.01530000	10.60750000
С	1.64090000	6.97950000	7.89470000
С	5.25440000	9.54430000	7.41660000
С	7.83380000	9.91690000	6.23880000
Н	8.81980000	10.01910000	5.79770000
С	0.81740000	5.48960000	11.28340000
Н	1.23530000	5.37670000	12.27970000
С	-0.27530000	6.43050000	6.45380000
Н	-0.73420000	6.49670000	5.47250000
С	7.29820000	8.62300000	6.43600000
Н	7.89350000	7.76270000	6.14360000
С	3.34460000	10.68490000	8.39950000
Н	2.37440000	10.65360000	8.88620000
С	1.00890000	6.33020000	8.99350000
С	4.67510000	6.11360000	5.67940000
С	1.53020000	6.20230000	10.31830000
С	2.93850000	8.51070000	11.58990000
С	0.99830000	7.01850000	6.66050000
Н	1.47900000	7.50860000	5.81910000
С	-0.89950000	5.78290000	7.50580000
С	4.27280000	5.87060000	11.34250000
С	7.08310000	11.02080000	6.61200000
С	5.81590000	10.81640000	7.19530000
С	3.76430000	5.04370000	5.72920000
Н	3.41790000	4.65910000	6.68430000
С	6.03490000	8.42370000	6.99480000
С	-0.97860000	5.03780000	9.73530000
С	3.97970000	9.49660000	8.04930000
С	-0.24730000	5.74020000	8.75580000
С	-0.43890000	4.90340000	11.00500000
Н	-0.95520000	4.36190000	11.79080000
С	6.38720000	5.70470000	8.06710000

С	5.09590000	6.63010000	4.44570000
Н	5.78380000	7.46810000	4.40990000
С	8.20380000	4.05150000	9.37390000
Н	8.92060000	3.41020000	9.87620000
С	4.36630000	4.57830000	10.79870000
Н	3.74870000	4.29430000	9.95150000
С	8.01570000	5.36380000	9.81730000
Н	8.58160000	5.74040000	10.66250000
С	4.01510000	9.41420000	11.62530000
Н	4.92390000	9.21050000	11.06620000
С	7.10850000	6.19360000	9.16950000
Н	6.97680000	7.22000000	9.49910000
С	5.16990000	12.02010000	7.54580000
С	3.90960000	10.58050000	12.37650000
Н	4.74080000	11.27680000	12.41130000
С	1.75310000	8.79220000	12.28370000
Н	0.91640000	8.10340000	12.23750000
С	6.00790000	4.01530000	12.47710000
Н	6.67640000	3.28860000	12.92690000
С	-2.22120000	5.05520000	7.63030000
Н	-2.28590000	4.22520000	6.91990000
Н	-3.05820000	5.72350000	7.40520000
С	6.57050000	4.38820000	7.62370000
Н	6.02600000	4.01830000	6.76170000
С	5.05150000	6.23560000	12.44860000
Н	4.96590000	7.22790000	12.87810000
С	2.73260000	10.85560000	13.07750000
Н	2.65230000	11.76740000	13.66010000
С	3.29980000	4.48070000	4.54460000
Н	2.60160000	3.65120000	4.57930000
С	3.92440000	11.95390000	8.14560000
Н	3.38100000	12.84880000	8.43140000
С	6.06350000	13.17630000	7.15020000
Н	6.30630000	13.80470000	8.01260000
Н	5.56370000	13.82440000	6.42340000
С	1.65750000	9.96700000	13.02760000
Н	0.74320000	10.18670000	13.56840000
С	5.91780000	5.30000000	13.01270000
Н	6.51060000	5.57270000	13.87930000
С	3.72760000	4.98830000	3.31510000
Н	3.36130000	4.54890000	2.39320000
С	-2.26930000	4.55210000	9.11320000
Н	-3.13680000	4.95110000	9.64820000
Н	-2.34520000	3.46150000	9.16870000
С	5.23350000	3.65520000	11.37050000
Н	5.30180000	2.65370000	10.95980000
С	4.61890000	6.06140000	3.26630000
Н	4.94460000	6.45640000	2.30990000
C	7.48360000	3.56600000	8.28260000
Н	7.64100000	2.55130000	1.93260000
C	7.34350000	12.50940000	6.54070000
Н	7.51460000	12.82920000	5.50800000
Н	8.24500000	12.77650000	7.10140000

 $\label{eq:constraint} \textbf{Table S13} \ \text{Cartesian coordinates of } \textbf{3o}^{\text{iPr}} _ \text{FIA at the TPSS-D3(BJ)/def2-TZVPP level of theory.}$

Ge	9.42140000	1.50840000	6.18890000
Р	9.69730000	2.59090000	8.50390000

Р	9.69450000	0.42570000	3.87380000
F	11.21520000	1.50780000	6.18830000
С	8.17310000	3.57390000	4.44870000
Н	7.91950000	2.76060000	3.77980000
С	9.67070000	4.26770000	7.84490000
С	9.23710000	6.84530000	6.75040000
С	9.10000000	-1.35210000	5.84120000
С	8.76080000	3.28520000	5.67350000
С	11.22930000	2.33520000	9.50970000
Н	11.10870000	2.96760000	10.39800000
С	9.83930000	6.72150000	7.98780000
Н	10.14770000	7.58890000	8.56300000
С	7.89770000	4.89340000	4.00690000
н	7.42090000	5.04270000	3.04290000
С	9.10510000	4.36950000	6.53630000
С	8.87310000	-2.65810000	6.32930000
С	10.03500000	5.42610000	8.52590000
н	10.48250000	5.34330000	9.51180000
C	8.75830000	-0.26730000	6.70450000
C	11.22680000	0.68020000	2.86820000
H	11.10460000	0.05020000	1.97830000
C	8.85590000	8.05070000	5.91570000
C	8.26960000	-2.93530000	7.57310000
C	9.82870000	-3.70530000	4.38890000
H	10 13510000	-4 57320000	3 81330000
C	9 22730000	-3 82820000	5 62670000
C	10 02650000	-2 41020000	3 85090000
с Н	10.47360000	-2.32820000	2 86470000
C	8 27680000	5 95380000	4 80460000
C	8 17080000	-0.55520000	7 92970000
H	7 91920000	0 25850000	8 59890000
C	7 89310000	-1 87430000	8.37130000
е Н	7 41660000	-2 02280000	9.33560000
C	8 39840000	3 53110000	10 87110000
ч	8 41810000	4 56750000	10.52330000
н	9 29630000	3 34160000	11 46470000
н	7 53360000	3 41820000	11 53320000
C	8 25870000	2 55880000	9 69350000
ч	8 24430000	1 53580000	10 08930000
C	9 66500000	-1 25120000	4 53230000
C	8 88040000	5 67580000	6.04820000
C	12 49690000	2 77130000	8 76170000
ч	13 357/0000	2.65920000	9./2890000
н	12 44080000	3 81650000	9.42030000 8.44770000
н	12.44000000	2 15520000	7 87590000
C C	8 84510000	-5.03300000	6 46100000
C C	8 25600000	0.46110000	2 68/30000
ц	8 2/3200000	1 /8/50000	2 28050000
с С	12 /0270000	0.22020000	2.2030000
с ц	12.49370000	0.23300000	4 50250000
Ц	12.00490000	0.00200000	2 04700000
Ц	12 42620000	-0.33310000	2.341 30000
11	12.43030000	-0.00030000	3.32310000

С	8.18760000	7.45580000	4.63010000
С	8.17680000	-4.43710000	7.74700000
С	6.96160000	2.82150000	8.91160000
Н	6.09930000	2.71210000	9.57620000
Н	6.83370000	2.13040000	8.07240000
Н	6.95620000	3.83920000	8.51130000
С	11.30020000	2.15440000	2.43490000
Н	10.41030000	2.47060000	1.88210000
Н	12.16770000	2.30200000	1.78460000
Н	11.41300000	2.80440000	3.30750000
С	8.39450000	-0.51020000	1.50570000
Н	9.29350000	-0.32230000	0.91330000
Н	7.53070000	-0.39440000	0.84290000
Н	8.41130000	-1.54710000	1.85240000
С	11.29990000	0.86200000	9.94650000
Н	11.40830000	0.20920000	9.07550000
Н	10.41090000	0.55000000	10.50300000
Н	12.16910000	0.71370000	10.59450000
С	6.95830000	0.19960000	3.46570000
Н	6.95160000	-0.81820000	3.86560000
Н	6.09640000	0.31010000	2.80070000
Н	6.83080000	0.89070000	4.30500000
Н	8.68780000	-4.76490000	8.65760000
Н	8.16090000	-5.69260000	5.91900000
Н	9.73860000	8.64880000	5.66720000
Н	7.13370000	-4.75650000	7.83960000
Н	8.17210000	8.71070000	6.45860000
Н	8.70010000	7.78230000	3.71990000
Н	7.14530000	7.77750000	4.53640000
Н	9.72720000	-5.63170000	6.71080000

Table S14 Cartesian coordinates of 30^{Ph} _FIA at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Ge	7.15600000	6.26670000	16.68040000
Р	6.00230000	7.79000000	18.88770000
Р	8.16750000	5.11970000	18.51310000
С	5.50800000	5.27580000	16.95450000
С	7.16940000	8.05100000	15.93380000
С	5.53270000	4.45860000	18.11700000
С	3.20550000	4.54010000	16.48590000
С	6.31670000	9.07690000	16.44300000
С	4.37120000	3.72340000	18.41780000
С	9.33350000	3.80650000	18.06910000
С	3.20830000	3.75350000	17.62050000
С	6.52220000	3.45060000	20.10780000
С	6.69690000	8.83360000	20.22290000
С	6.63520000	4.30900000	19.01510000
С	6.18130000	10.23100000	15.63290000
С	4.36110000	5.30440000	16.17180000
С	5.59530000	9.08310000	17.67310000
С	4.43740000	6.35480000	20.69170000

С	4.62660000	11.28500000	17.13310000
С	4.78210000	10.17070000	17.98720000
С	6.87290000	10.42540000	14.41730000
С	8.39490000	6.15750000	21.11110000
С	5.33050000	2.74150000	20.39010000
С	8.93330000	6.08760000	19.82190000
С	4.24880000	2.87890000	19.53730000
С	6.48950000	11.77430000	13.84550000
Н	6.06310000	11.67300000	12.84260000
Н	7.36700000	12.42200000	13.74900000
С	5.34850000	11.32140000	15.95490000
С	2.86320000	2.26890000	19.53180000
С	7.84820000	8.24860000	14.73390000
С	6.09170000	9.03560000	21.46860000
С	9.02910000	2.99410000	16.96500000
С	2.16860000	2.85150000	18.25370000
С	10.24510000	7.54470000	21.80610000
С	7.89330000	9.50390000	19.92460000
н	8.36510000	9.36160000	18.95620000
С	7.87250000	10.54690000	22.10360000
С	4.43140000	7.13600000	19.52370000
C	10.47120000	3.54050000	18.84450000
C	8.47250000	10.35900000	20.85640000
C	9.86300000	1.92920000	16.64120000
C	10.12840000	6.76250000	19.52320000
C	6.68330000	9.88500000	22.40500000
C	3.23340000	7.27840000	18.81120000
C	11.30000000	2.47030000	18.50970000
C	7.72640000	9.43800000	13.97220000
C	9.05260000	6.88590000	22.10010000
C	10.99890000	1.66680000	17.41050000
C	3.26850000	5.75390000	21.14900000
C	2.06610000	6.66630000	19.26650000
C	10.78090000	7.48470000	20.51750000
С	5.45240000	12.36150000	14.85930000
C	2.07810000	5.90760000	20.43630000
H	4.33550000	5.93070000	15.28430000
Н	9.39500000	10.87600000	20.61150000
Н	11.64890000	0.83710000	17.15220000
Н	4.26440000	10.17380000	18.94250000
Н	5.77750000	13.32750000	15.25840000
Н	1.14510000	6.78720000	18.70470000
н	8.47390000	7.44870000	14.35240000
Н	10.54880000	6.71290000	18.52270000
Н	7.46640000	5.64640000	21.33760000
н	2.33930000	4.59820000	15.83380000
Н	2.31520000	2.53260000	20.44200000
н	8.32600000	11.21170000	22.83180000
н	5.15290000	8.54790000	21.70680000
н	11.70500000	8.00420000	20.28600000
н	4.47960000	12.52910000	14.38540000
н	6.20310000	10.03790000	23.36670000

Н	3.21630000	7.86300000	17.89780000
Н	1.86020000	2.05660000	17.56740000
Н	1.26640000	3.41450000	18.51200000
Н	5.36050000	6.21380000	21.24330000
Н	3.97240000	12.09910000	17.42970000
Н	8.28680000	9.53630000	13.04770000
Н	3.28960000	5.16160000	22.05830000
Н	10.70720000	4.15790000	19.70410000
Н	8.15730000	3.20320000	16.35590000
Н	2.91340000	1.17580000	19.50070000
Н	12.17990000	2.26650000	19.11140000
Н	10.75330000	8.11350000	22.57750000
Н	8.62730000	6.94530000	23.09600000
Н	9.62940000	1.30670000	15.78380000
Н	5.29440000	2.09260000	21.25950000
Н	7.37900000	3.30200000	20.75860000
Н	1.16510000	5.44170000	20.79370000
F	8.06140000	5.39660000	15.40160000

 $\label{eq:table_transform} \textbf{Table S15} \ \text{Cartesian coordinates of } \textbf{3o}^{\text{iPr}} \text{-} \text{HIA at the TPSS-D3(BJ)/def2-TZVPP level of theory.}$

Ge	-1.12800000	4.64370000	8.82510000
Н	-1.20070000	6.18240000	8.79100000
Р	1.02340000	4.79030000	7.36330000
Р	-3.28680000	4.67830000	10.29030000
С	2.10090000	4.88170000	8.80830000
С	3.43740000	5.27360000	8.81340000
Н	3.87590000	5.67950000	7.90660000
С	4.26330000	5.15570000	9.95770000
Н	5.29680000	5.48380000	9.90450000
С	3.73500000	4.59740000	11.10630000
С	2.37830000	4.21430000	11.11390000
С	1.51380000	4.37180000	10.00780000
С	0.14190000	4.02610000	10.19730000
С	-0.23790000	3.48570000	11.41790000
Н	-1.27770000	3.22590000	11.57590000
С	0.66330000	3.27110000	12.49410000
Н	0.29470000	2.83050000	13.41570000
С	1.97750000	3.66300000	12.34870000
С	3.17210000	3.63310000	13.28030000
Н	3.42110000	2.60500000	13.56300000
Н	2.96980000	4.17440000	14.20950000
С	4.33420000	4.29540000	12.46470000
Н	4.68760000	5.21250000	12.94710000
Н	5.19990000	3.63130000	12.38020000
С	1.67260000	3.32940000	6.40020000
Н	1.01200000	3.25650000	5.52760000
С	1.51770000	2.06250000	7.25570000
Н	1.82190000	1.18520000	6.67690000
Н	0.48470000	1.91310000	7.58480000
Н	2.15120000	2.11990000	8.14540000

С	3.11310000	3.50150000	5.90570000
Н	3.23550000	4.39160000	5.28270000
Н	3.39280000	2.63170000	5.30220000
Н	3.81060000	3.56190000	6.74550000
С	1.31490000	6.28860000	6.31950000
Н	2.38310000	6.29720000	6.06920000
С	0.98070000	7.56490000	7.10520000
Н	-0.08730000	7.61400000	7.33530000
Н	1.23800000	8.44190000	6.50340000
Н	1.53780000	7.61760000	8.04450000
С	0.49450000	6.17940000	5.02450000
Н	0.78940000	5.31520000	4.42250000
Н	0.64400000	7.07690000	4.41650000
Н	-0.57410000	6.09270000	5.24660000
С	-2.34650000	3.86430000	7.48920000
С	-1.93050000	3.29000000	6.29610000
Н	-0.87640000	3.08970000	6.14780000
С	-2.81430000	2.96330000	5.23340000
Н	-2.41620000	2.50180000	4.33470000
С	-4.15130000	3.27570000	5.36110000
С	-4.58940000	3.85890000	6.56840000
С	-3.73920000	4.12520000	7.66460000
С	-4.36190000	4.64640000	8.84120000
С	-5.72120000	4.94850000	8.81940000
Н	-6.18740000	5.36120000	9.70910000
С	-6.53490000	4.72610000	7.68180000
Н	-7.58780000	4.98740000	7.72100000
С	-5.96850000	4.15190000	6.55960000
C	-6.54340000	3.74890000	5.21700000
H	-6.95040000	4.61890000	4.69120000
Н	-7.36760000	3.03820000	5.33170000
С	-5.34000000	3.12200000	4.43420000
Н	-5.52200000	2.06690000	4.20470000
Н	-5.17130000	3.62700000	3.47830000
С	-3.68980000	6.18160000	11.29030000
H	-4.76000000	6.13080000	11.52620000
С	-3.42170000	7.45590000	10.47680000
Н	-2.35410000	7.56870000	10.26790000
Н	-3.74820000	8.32970000	11.04930000
Н	-3.95910000	7.44980000	9.52460000
С	-2.88630000	6.15880000	12.60040000
H	-3.13590000	5.29300000	13.22030000
н	-3.10390000	7.05980000	13.18210000
Н	-1.81040000	6.13670000	12.39840000
C	-3.83620000	3.20370000	11.29410000
Ĥ	-3 18560000	3 20980000	12 17750000
C	-5 29220000	3 28310000	11 76650000
H	-5.98170000	3.26520000	10.91830000
H	-5.48710000	4.18110000	12.35920000
H	-5.51470000	2.41470000	12.39530000
C	-3.57160000	1.92470000	10.48550000
Ĥ	-3.80760000	1.04650000	11.09410000

Н	-2.52710000	1.84890000	10.16750000
Н	-4.20050000	1.89720000	9.59090000

Table S16 Cartesian coordinates of $3o^{Ph}$ _HIA at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Ge	7.25120000	6.12340000	16.53020000
Р	6.01480000	7.72400000	18.95930000
Р	8.16560000	5.14080000	18.49680000
С	5.55840000	5.22520000	16.90160000
С	7.21290000	7.96670000	15.94080000
С	5.55390000	4.45410000	18.09640000
С	3.23340000	4.53400000	16.46040000
С	6.36170000	8.98960000	16.46890000
С	4.37970000	3.74650000	18.41350000
С	9.32010000	3.81130000	18.05690000
С	3.21900000	3.77600000	17.61440000
С	6.51560000	3.50160000	20.12800000
С	6.62990000	8.82880000	20.29030000
С	6.64230000	4.32710000	19.01270000
С	6.23410000	10.15700000	15.67050000
С	4.40960000	5.25450000	16.11990000
С	5.63920000	8.99350000	17.69960000
С	4.37290000	6.33330000	20.72050000
С	4.67400000	11.20400000	17.16960000
С	4.82630000	10.08280000	18.01280000
С	6.93360000	10.37250000	14.46150000
С	8.43700000	6.20120000	21.07480000
С	5.31800000	2.80270000	20.41470000
С	8.95090000	6.13330000	19.77490000
С	4.24250000	2.93130000	19.55380000
С	6.55950000	11.73010000	13.90650000
Н	6.14430000	11.64560000	12.89730000
Н	7.44000000	12.37640000	13.82960000
С	5.40290000	11.24830000	15.99760000
С	2.84830000	2.34040000	19.55780000
С	7.89780000	8.19570000	14.74760000
С	6.02410000	9.00300000	21.53960000
С	8.92040000	2.92370000	17.04360000
С	2.16150000	2.91200000	18.27040000
С	10.28300000	7.61430000	21.72750000
С	7.80400000	9.54140000	19.99730000
Н	8.27980000	9.41920000	19.02780000
С	7.75650000	10.56720000	22.18390000
С	4.40600000	7.10990000	19.54940000
С	10.55300000	3.62940000	18.69610000
С	8.35800000	10.40820000	20.93310000
С	9.75090000	1.87150000	16.67280000
С	10.12720000	6.82680000	19.44850000
С	6.59010000	9.86460000	22.48160000
С	3.22440000	7.26850000	18.81360000
С	11.37930000	2.57090000	18.31810000
С	7.79050000	9.39560000	14.00340000

;	9.10570000	6.93970000	22.04790000
, ,	10.98290000	1.69580000	17.30780000
;	3.18390000	5.75940000	21.16060000
;	2.03670000	6.68150000	19.24920000
;	10.78980000	7.56210000	20.42750000
;	5.51450000	12.30310000	14.91790000
;	2.01000000	5.93230000	20.42500000
ł	4.39790000	5.84760000	15.20930000
ł	9.26260000	10.95710000	20.68950000
ł	11.63010000	0.87480000	17.01660000
ł	4.30950000	10.08160000	18.96860000
ł	5.83500000	13.26410000	15.33250000
ł	1.12940000	6.81560000	18.66820000
ł	8.53020000	7.40560000	14.34940000
ł	10.52420000	6.78660000	18.43820000
ł	7.51340000	5.68860000	21.31820000
ł	2.36770000	4.59670000	15.80800000
ł	2.30440000	2.62700000	20.46320000
ł	8.19000000	11.24070000	22.91640000
ł	5.10210000	8.48410000	21.77820000
ł	11.69850000	8.09800000	20.17380000
ł	4.54550000	12.47570000	14.43820000
ł	6.10690000	9.99450000	23.44530000
ł	3.23550000	7.84520000	17.89500000
ł	1.82860000	2.11110000	17.60280000
ł	1.27650000	3.50420000	18.52250000
ł	5.28450000	6.17300000	21.28730000
ł	4.02120000	12.01760000	17.47090000
ł	8.35910000	9.51020000	13.08580000
ł	3.17570000	5.17270000	22.07390000
ł	10.86410000	4.30230000	19.48750000
ł	7.95770000	3.04730000	16.55550000
ł	2.88340000	1.24640000	19.54330000
ł	12.33240000	2.43110000	18.81800000
ł	10.79860000	8.19290000	22.48660000
ł	8.69810000	6.99920000	23.05110000
1	9.43810000	1.18790000	15.89030000
ł	5.27080000	2.17560000	21.29940000
1	7.36300000	3.37190000	20.79490000
ł	1.08090000	5.48790000	20.76830000
ł	8.07230000	5.37690000	15.44830000
1 1 1	7.36300000 1.08090000 8.07230000	3.37190000 5.48790000 5.37690000	20.7949 20.7683 15.4483

 $\label{eq:table_star} Table \ S17 \ \mbox{Cartesian coordinates of } 30^{Ph} \ \mbox{HIA2 at the TPSS-D3(BJ)/def2-TZVPP level of theory.}$

Ge	2.93010000	7.41470000	10.23570000
Р	0.77630000	5.31050000	11.24270000
Р	5.02410000	5.14790000	9.22520000
С	4.82870000	4.44250000	10.91160000
С	0.54860000	4.77300000	9.51660000
С	4.39830000	4.71180000	13.27140000
С	2.19110000	6.54870000	8.60930000
С	3.38120000	2.90200000	8.59210000
Н	3.14860000	2.83710000	9.64830000
С	1.23350000	5.49080000	8.47920000

С	0.92510000	5.07470000	7.15270000
С	0.05870000	4.00530000	6.83810000
С	3.99280000	5.38420000	14.44480000
С	4.27430000	3.88070000	8.13590000
С	4.29640000	5.25830000	11.96140000
С	2.34930000	6.70800000	6.13400000
Н	2.80100000	7.20240000	5.27810000
С	-0.74610000	6.26150000	11.59460000
С	2.70470000	7.11300000	7.44180000
Ĥ	3.44980000	7.89880000	7.53880000
C	-0.29110000	3.71260000	9,18990000
Ĥ	-0 78070000	3 17790000	9 99910000
C	-0 54440000	3 30580000	7 86020000
Ĥ	-1 20760000	2 46620000	7 67000000
C	3 65270000	6 53160000	11 85370000
C	0.53140000	3 76070000	12 18880000
C	1 /610000	5 66660000	5 99060000
C	3 20560000	7 180000000	13 02730000
	2 70420000	8 15200000	12 0/770000
C C	5 22010000	2 19150000	12.94770000
	5.33910000	2 59070000	10.40170000
	3.75750000	2.36970000	14,22690000
	3.47210000	0.05200000	14.32000000
	3.10120000	7.22970000	15.19330000
	4.89860000	3.42390000	13.55430000
	1.53070000	1.68950000	12.97630000
H	2.38400000	1.01850000	13.01350000
C	6.82650000	4.85040000	8.98760000
C	4.53280000	3.96140000	6.75720000
Н	5.20150000	4.73070000	6.38090000
С	-1.75710000	6.49190000	10.65360000
Н	-1.68470000	6.04230000	9.66860000
С	1.62150000	2.87690000	12.25580000
Н	2.54880000	3.12870000	11.75010000
С	-0.64420000	3.43590000	12.87970000
Н	-1.49280000	4.11160000	12.84320000
С	5.36060000	2.64140000	12.51640000
Н	5.75680000	1.64300000	12.68030000
С	3.94960000	3.06100000	5.86960000
Н	4.17440000	3.12920000	4.80890000
С	-0.00380000	3.83510000	5.33470000
Н	-1.03020000	3.92980000	4.96430000
Н	0.35020000	2.84110000	5.04190000
С	3.07530000	2.07900000	6.33940000
Н	2.62010000	1.37690000	5.64700000
С	-2.85300000	7.29410000	10.97620000
Н	-3.62870000	7.46700000	10.23550000
С	0.35460000	1.37320000	13.66110000
Н	0.28540000	0.45160000	14.23150000
С	-2.95710000	7.86820000	12.24270000
Н	-3.81190000	8.48970000	12.49200000
С	7.68880000	5.84430000	9.47600000
н	7.26690000	6.73520000	9.93470000
C	9.61280000	4.56060000	8.77670000
н	10.68970000	4,44790000	8,69320000
С	9.07100000	5.69650000	9.38110000
Ĥ	9,72510000	6.47210000	9,76890000
C	4,78940000	3,15970000	15.04150000
Ĥ	5 75230000	2 87230000	15 47610000
H	4.09490000	2.33350000	15.23190000
C	4.24960000	4.49670000	15.64580000
-			

3.33860000	4.33670000	16.23160000
4.98440000	4.95130000	16.31970000
7.37970000	3.71510000	8.38020000
6.72750000	2.94170000	7.98620000
-0.84840000	6.86270000	12.86140000
-0.05670000	6.70920000	13.59060000
0.92290000	4.95770000	4.76670000
1.73650000	4.53860000	4.16540000
0.36970000	5.64580000	4.11810000
2.78560000	2.01000000	7.70140000
2.09150000	1.26410000	8.07590000
8.76360000	3.57440000	8.27330000
9.17860000	2.68930000	7.79910000
-1.95110000	7.64770000	13.18710000
-2.02140000	8.09780000	14.17320000
-0.72870000	2.25090000	13.61300000
-1.64650000	2.01200000	14.14290000
3.99620000	8.36790000	9.63990000
1.81680000	8.30900000	10.84220000
	3.33860000 4.98440000 7.37970000 6.72750000 -0.84840000 -0.05670000 0.92290000 1.73650000 2.78560000 2.09150000 8.76360000 9.17860000 -1.95110000 -2.02140000 -0.72870000 -1.64650000 3.99620000 1.81680000	3.338600004.336700004.984400004.951300007.379700003.715100006.727500002.94170000-0.848400006.86270000-0.056700006.709200000.922900004.957700001.736500004.538600000.369700005.645800002.785600002.010000002.091500001.264100008.763600002.68930000-1.951100007.64770000-2.021400008.09780000-0.728700002.25090000-1.646500008.367900001.816800008.30900000

Table S18 Cartesian coordinates of SbF_5 at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Sb	-0.31810000	2.24030000	0.66130000
F	-1.25800000	3.86080000	0.66130000
F	-0.31610000	2.24030000	2.54350000
F	1.55540000	2.24030000	0.66130000
F	-1.25810000	0.61980000	0.66130000
F	-0.31610000	2.24030000	-1.22090000

Table S19 Cartesian coordinates of \mathbf{SbF}_6 at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Sb	-0.31850000	2.24030000	0.66130000
F	-1.84110000	3.40860000	0.66130000
F	-0.31850000	2.24030000	2.58030000
F	1.20410000	1.07200000	0.66130000
F	-1.48680000	0.71770000	0.66130000
F	-0.31850000	2.24030000	-1.25770000
F	0.84980000	3.76290000	0.66130000

Table S20 Cartesian coordinates of $B(PhF_5)_3$ at the TPSS-D3(BJ)/def2-TZVPP level of theory.

-4.40370000	20.18610000	15.67490000
-4.15970000	15.60150000	16.66450000
-1.90620000	17.24280000	12.88480000
-5.58530000	19.52750000	12.79590000
-0.27620000	19.29850000	14.65930000
-5.05480000	18.11180000	17.25570000
-3.94360000	18.96430000	15.33550000
-4.28850000	17.91150000	16.17370000
-2.58800000	15.18320000	14.47350000
-2.12020000	20.94070000	10.58650000
2.18880000	19.49140000	13.60360000
-3.81160000	21.11280000	12.96520000
-7.40580000	21.43260000	12.26360000
-0.16540000	19.73970000	13.38980000
	-4.40370000 -4.15970000 -1.90620000 -5.58530000 -0.27620000 -3.94360000 -3.94360000 -4.28850000 -2.58800000 -2.12020000 2.18880000 -3.81160000 -7.40580000 -0.16540000	-4.4037000020.18610000-4.1597000015.60150000-1.9062000017.24280000-5.5853000019.52750000-0.2762000019.29850000-5.0548000018.11180000-3.9436000018.96430000-4.2885000017.91150000-2.5880000015.18320000-2.1202000020.940700002.1888000019.49140000-3.8116000021.11280000-7.4058000019.73970000

С	-3.12590000	18.80940000	14.20540000
F	-2.20750000	22.87320000	13.08370000
С	-6.12610000	21.77260000	12.47530000
С	-1.31240000	20.11130000	12.67130000
С	-3.02050000	16.41960000	14.76060000
С	-3.82790000	16.62880000	15.87820000
В	-2.74820000	20.01130000	13.27970000
С	-5.16640000	20.80900000	12.75930000
С	-2.67720000	17.50250000	13.96060000
С	-1.08200000	20.58220000	11.36910000
F	0.35510000	21.10660000	9.55010000
F	-6.65710000	24.05460000	12.15420000
F	2.52090000	20.39040000	11.04860000
F	-4.05310000	24.75920000	12.56820000
С	-3.47890000	22.47340000	12.87640000
С	1.11990000	19.83620000	12.87130000
С	1.29370000	20.29980000	11.56750000
С	0.18520000	20.67010000	10.80650000
С	-4.41350000	23.46870000	12.61920000
С	-5.74600000	23.11280000	12.41180000

Table S21 Cartesian coordinates of B(PhF₅)₃-H at the TPSS-D3(BJ)/def2-TZVPP level of theory.

F	-4.10930000	20.05000000	16.33350000
F	-4.41920000	15.34890000	16.18780000
F	-2.14540000	17.60990000	12.73950000
F	-5.19620000	19.48090000	12.72530000
F	0.18150000	20.04320000	14.90730000
F	-4.96670000	17.74010000	17.41560000
С	-3.79200000	18.90140000	15.68340000
С	-4.25470000	17.72350000	16.26320000
F	-2.99470000	15.32240000	13.84570000
F	-2.36690000	20.43250000	10.89830000
F	2.43900000	19.93660000	13.44630000
С	-3.71950000	21.28970000	13.24520000
F	-7.07260000	21.10740000	11.71860000
С	0.05600000	20.13730000	13.55910000
С	-3.05490000	18.95270000	14.49760000
F	-2.42340000	23.25890000	13.59890000
С	-5.91860000	21.63080000	12.19720000
С	-1.20810000	20.27990000	12.98300000
С	-3.25540000	16.50110000	14.46000000
С	-3.98100000	16.50780000	15.64540000
В	-2.53110000	20.40150000	13.94210000
С	-4.92730000	20.81280000	12.73700000
С	-2.81800000	17.70760000	13.91610000
С	-1.20130000	20.33850000	11.58960000
F	-0.10140000	20.34550000	9.46420000
F	-6.66340000	23.81670000	11.61600000
F	2.32670000	20.09320000	10.71050000
F	-4.31500000	24.87050000	12.56500000
С	-3.56640000	22.67540000	13.15580000

С	1.24040000	20.07270000	12.82930000
С	1.19040000	20.15040000	11.44170000
С	-0.04390000	20.28370000	10.81610000
С	-4.52340000	23.53310000	12.62100000
С	-5.71600000	23.00460000	12.13820000
Н	-2.18340000	21.02630000	14.91610000

Table S22 Cartesian coordinates of Me₃SiF at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Si	-0.87460000	1.46140000	0.00000000
С	-0.21810000	2.28520000	1.54690000
Н	-0.55490000	3.32710000	1.60670000
Н	-0.56540000	1.77130000	2.45010000
Н	0.87740000	2.28870000	1.56240000
С	-2.74490000	1.39400000	-0.00010000
Н	-3.17230000	2.40400000	-0.00010000
Н	-3.12450000	0.87250000	-0.88570000
Н	-3.12460000	0.87250000	0.88540000
С	-0.21790000	2.28500000	-1.54690000
Н	0.87760000	2.28850000	-1.56220000
Н	-0.56510000	1.77110000	-2.45000000
Н	-0.55480000	3.32690000	-1.60680000
F	-0.33480000	-0.07330000	0.00010000

Table S23 Cartesian coordinates of Me₃SiH at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Si	-0.86370000	1.43030000	0.00000000
С	-0.22280000	2.29620000	1.54590000
Н	-0.56900000	3.33570000	1.58400000
Н	-0.57060000	1.79640000	2.45660000
Н	0.87230000	2.30940000	1.57080000
С	-2.74760000	1.40460000	-0.00010000
Н	-3.15290000	2.42330000	-0.00010000
Н	-3.13980000	0.89090000	-0.88470000
Н	-3.13990000	0.89090000	0.88450000
С	-0.22260000	2.29600000	-1.54580000
Н	0.87250000	2.30930000	-1.57060000
Н	-0.57020000	1.79610000	-2.45660000
Н	-0.56880000	3.33560000	-1.58410000
Н	-0.36700000	0.02420000	0.00010000

Table S24 Cartesian coordinates of Me₃Si at the TPSS-D3(BJ)/def2-TZVPP level of theory.

Si	-1.05180000	1.96440000	0.00000000
С	-0.20390000	2.31580000	1.58820000
Н	-0.42250000	3.36320000	1.85630000
Н	-0.57850000	1.69000000	2.40350000
Н	0.88290000	2.22400000	1.50500000
С	-2.79870000	1.40460000	-0.00010000
Н	-3.43550000	2.30520000	0.00130000
Н	-3.04930000	0.83390000	-0.89900000
Н	-3.04870000	0.83170000	0.89760000

С	-0.20370000	2.31570000	-1.58810000
Н	0.88330000	2.22670000	-1.50420000
Н	-0.57630000	1.68770000	-2.40260000
Н	-0.42500000	3.36200000	-1.85800000

Table S25 Cartesian coordinates and energies of $3^{i\!Pr}_PH$ at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-311G(d,p) level of theory.

Ge	0.28485900	-0.56368800	-0.93582400
Н	-1.71695100	-1.60734000	-0.97756800
Р	-3.09403600	-1.21149600	-0.87822100
Р	1.34294100	-1.21655300	1.19433300
С	-3.13232600	0.32383900	0.06891000
С	-4.38583100	0.64675700	0.59951600
Н	-5.18860500	-0.08289400	0.54750600
С	-4.68215800	1.88893600	1.19244200
Н	-5.67121900	2.07528000	1.59829800
С	-3.69304700	2.84659800	1.19580000
С	-2.41984700	2.54019400	0.65913100
С	-2.03561900	1.27469400	0.11683300
С	-0.66083200	1.13924700	-0.30624100
С	0.12427000	2.29316400	-0.25912000
Н	1.15115400	2.21732400	-0.59837400
С	-0.29536000	3.55484800	0.22410000
Н	0.39706100	4.39193300	0.21909800
С	-1.57006300	3.67027800	0.71996400
С	-2.30509200	4.84092200	1.33710400
Н	-2.37736200	5.67598800	0.63171600
Н	-1.78208700	5.22532100	2.21906200
С	-3.71271000	4.27399200	1.69686800
Н	-3.89832700	4.30303400	2.77647500
Н	-4.52089800	4.84693700	1.23008300
С	-3.63749900	-0.92339600	-2.63466600
Н	-3.47134300	-1.89204300	-3.12357900
С	-2.73256800	0.12521500	-3.30792800
Н	-3.05393500	0.25191700	-4.34618800
Н	-1.68346700	-0.18153900	-3.31297400
Н	-2.80501300	1.09666500	-2.81164700
С	-5.12526100	-0.55436200	-2.73413900
Н	-5.78152600	-1.32916800	-2.32668200
Н	-5.39152200	-0.42200300	-3.78709900
Н	-5.33736900	0.38685500	-2.21841300
С	-4.11886100	-2.55044900	-0.10218300
Н	-5.16078700	-2.21213600	-0.14835100
С	-3.73119100	-2.76623900	1.37005600
Н	-2.70029100	-3.12024100	1.46049100
Н	-4.38251400	-3.53111700	1.80343600
Н	-3.83687500	-1.85588100	1.96400400
С	-3.99018600	-3.84702700	-0.92421700
Н	-4.34338700	-3.73242700	-1.95219200
Н	-4.59629900	-4.62803500	-0.45597300
Н	-2.95583600	-4.20442900	-0.95221000
С	2.08806800	0.15511500	-1.38784300

С	2.40758800	0.73348800	-2.61113400	
Н	1.62797500	0.84405100	-3.36230100	
С	3.70807700	1.20763800	-2.94508000	
Н	3.87765000	1.64996200	-3.92277200	
С	4.72206000	1.09064400	-2.01963700	
С	4.42069000	0.50180900	-0.77308900	
С	3.13776600	0.03104200	-0.42764200	
С	3.00652000	-0.55005200	0.87354600	
С	4.11094600	-0.61690600	1.71803100	
н	4.01501400	-1.07067200	2.69997700	
С	5.38465600	-0.11821400	1.33892500	
Н	6.21364600	-0.19225700	2.03638800	
С	5.53741000	0.44142900	0.08580200	
C	6.73236500	1.04810200	-0.62596700	
H	7.55295700	0.32726500	-0.70892600	
Н	7.12966300	1.90535200	-0.07144300	
C	6.19098500	1.47333700	-2.03590000	
H	6.32484800	2 54648700	-2 20987200	
н	6 72804800	0.96012000	-2 84093100	
C	1 53580700	-3 08028500	1 21257400	
е Н	2 12852300	-3 32309200	2 10267500	
C	2 30354100	-3 55685300	-0.03167800	
е Н	1 76234900	-3 31690000	-0.95314500	
н	2 42222500	-4 64441600	0.01216100	
н	3 29874800	-3 11224900	-0.09299400	
C	0 16492700	-3 76460200	1 31189100	
е Н	0.28722100	-4 85215300	1,33763300	
н	-0.44193100	-3 51525300	0 43416100	
н	-0.38585900	-3 47325200	2 21223200	
C	0.69102500	-0.68565800	2 87563000	
Ĥ	-0.39012200	-0 85932000	2 79166300	
C	1 22658100	-1 50421200	4 06133300	
е Н	2 30554700	-1.37519700	4 18798600	
н	1 01814300	-2 57312900	3 97266300	
н	0 74973800	-1 15310000	4 98268200	
C	0.91940700	0.82011300	3 08591000	
е Н	0.41824600	1 13872300	4 00567300	
н	0.52543000	1 41155200	2 25775500	
н	1 98481500	1 04535200	3 18709300	
	1.00401000	1.04000200	0.10100000	
Zero-point co	orrection=	0.	711609 (Hartree/Particle)	
Thermal cor	rection to Ene	erav=	0.746294	
Thermal cor	rection to Entl	halov=	0 747238	
Thermal correction to Gibbs Free Energy= 0.646678				
Sum of elec	tronic and zer	o-point Energie	es= -4156.608995	
Sum of electronic and thermal Energies= -4156 574310				
Sum of elec:	tronic and the	rmal Enthalpie	s= -4156.573366	
Sum of electronic and thermal Free Energies= -4156.673926				

Table S26 Cartesian coordinates and energies of ${}^{3\text{Ph}}_\text{PH}$ at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-311G(d,p) level of theory.

Ge 0.50638300 0.60682000 0.94527900

Н	-1.67773000	1.47900200	-0.50848100
Р	-2.63265900	0.82374500	0.28050100
Р	1.48837100	0.23370700	-1.29162300
С	-2.48748800	-0.98080500	0.20817900
С	-3.64386000	-1.63266100	-0.23518500
Н	-4.46941000	-1.04450700	-0.61799500
С	-3.80622600	-3.03208300	-0.19882300
Н	-4.72464100	-3.47581700	-0.56955000
С	-2,79276400	-3.78781800	0.34656600
Č	-1.61637100	-3.14732700	0.79901800
Ĉ	-1 36720500	-1 74682700	0 72847700
C	-0.07565000	-1 29971300	1 15823200
C C	0 79100100	-2 24952800	1 69825300
н	1 76482700	-1 90979100	2 03783900
C	0 50109000	-3 62885700	1 81520200
ц	1 23507200	-4 30132500	2 2/88/300
C	-0.70430500	-4.08502100	1 33662500
0	1 20200400	-4.00302100 5.47672200	1.33002300
	-1.29000400	-0.47073200	1.20091100
	-1.41123400	-3.90902300	2.20090000
	-0.65381100	-6.16088800	0.70460400
	-2.68098200	-5.27990200	0.57016000
н	-2.73684300	-5.81987700	-0.38168100
H	-3.50900300	-5.65128500	1.18344100
C	2.38152700	0.56477900	1.59473900
С	2.77070300	0.65325700	2.92642300
Н	2.00784000	0.65074300	3.70249100
С	4.12668500	0.76599700	3.34926200
Н	4.34761700	0.82814900	4.41126800
С	5.12417200	0.81143700	2.40063600
С	4.75271100	0.72157400	1.04209500
С	3.41828300	0.57790500	0.61239800
С	3.22352800	0.47961600	-0.80053200
С	4.31043800	0.55240000	-1.66612100
Н	4.14725000	0.48689200	-2.73841200
С	5.63842100	0.70885800	-1.19382300
Н	6.45504000	0.76294800	-1.90753600
С	5.85735800	0.78458100	0.16855500
С	7.12140000	0.93936700	0.99377700
Н	7.64889400	1.86474500	0.73756100
н	7.82388400	0.12086500	0.80216500
C	6.63388700	0.94730900	2.48525300
Ĥ	7.07892700	0.12421100	3.05504900
Н	6 92594500	1 87093500	2 99651000
C	-2.50187000	1.46678200	1.96457900
Ĉ	-2 31386200	2 84614600	2 14696000
C	-2 61527900	0.61269900	3.06826000
C	-2 24894000	3 36573900	3 43485900
й	-2 20383700	3 50532400	1 20001400
C	-2.20303700	1 1/560000	1.23031400
	-2.34704100	-0.45408200	2 02627200
C C	2 26297600	2 51567500	2.92021200
	-2.30307000	2.01007000	4.54039200
	-2.09990700	4.43067200	3.57970000
	-2.0331/400	0.400000000	5.21521400
	-2.30832200	2.9250/100	0.04412100
	-4.21848800	1.3///3900	-0.414/5600
	-5.37203200	1.47303900	0.3/9/2100
C a	-4.26/34000	1.73988300	-1.77028100
C	-6.56698200	1.91213200	-0.18/15800
Н	-5.33447300	1.21404500	1.43309300
C	-5.46702300	2.17835300	-2.32900800

Н	-3.37378500	1.68775400	-2.38671000
С	-6.61503200	2.26228400	-1.53882000
Н	-7.45850000	1.98742100	0.42703700
Н	-5.50306800	2.46080400	-3.37618400
Н	-7.54701000	2.60829200	-1.97458100
С	1.05403200	1.54963400	-2.49566300
С	1.14507100	1.36208600	-3.88362300
С	0.66824100	2.80601400	-1.99611700
С	0.85299600	2.41220700	-4.75484400
Н	1.43817300	0.39812100	-4.28600000
С	0.38330300	3.85286900	-2.87262500
Н	0.60507300	2.96637000	-0.92215800
С	0.47243200	3.65750600	-4.25226200
Н	0.92770200	2.25695600	-5.82682600
Н	0.09494500	4.82232100	-2.47752200
Н	0.24976300	4.47350200	-4.93291800
С	1.32595000	-1.35709700	-2.17441600
С	2.34845800	-2.31642000	-2.14277300
С	0.11473000	-1.66834600	-2.81618100
С	2.16997400	-3.55362400	-2.76331800
Н	3.28546500	-2.09450800	-1.64408000
С	-0.05671600	-2.90340700	-3.43725000
Н	-0.68992700	-0.93953900	-2.84839100
С	0.97149200	-3.84870400	-3.41289200
Н	2.97260500	-4.28434800	-2.74155500
Н	-0.99197200	-3.12740200	-3.94121800
Н	0.83806400	-4.80993000	-3.89962600

Zero-point correction= 0.702677 (Hartree/Particle) Thermal correction to Energy= 0.737790 Thermal correction to Enthalpy= 0.738735 Thermal correction to Gibbs Free Energy= 0.635871 Sum of electronic and zero-point Energies= -4608.777021 Sum of electronic and thermal Energies= -4608.741908 Sum of electronic and thermal Enthalpies= -4608.740964 Sum of electronic and thermal Free Energies= -4608.843828

Table S27 Cartesian coordinates and energies of $TS_3^{iPr}_PH$ at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-311G(d,p) level of theory.

-0.29188600	0.38259100	-0.72287800
1.21427900	1.45867700	-0.93985700
2.85569800	1.39191900	-0.92394100
-1.41951300	1.11175400	1.31488300
3.16693600	-0.17731100	-0.03231700
4.48048700	-0.40840800	0.38285600
5.21990300	0.37484500	0.25334100
4.92749500	-1.62083000	0.94833300
5.96370800	-1.72471700	1.25473700
4.02523100	-2.65333500	1.05396700
2.68910500	-2.44720500	0.63735400
2.17063900	-1.21992100	0.12624500
0.75822700	-1.21258900	-0.17609300
0.05698400	-2.41197100	-0.05532000
-0.99677200	-2.41057600	-0.31680300
0.61169800	-3.62959100	0.40252000
-0.00877900	-4.51885100	0.46543900
1.93238700	-3.63572700	0.78036100
2.80691100	-4.74129600	1.33289900
2.87301200	-5.57783000	0.62860500
	-0.29188600 1.21427900 2.85569800 -1.41951300 3.16693600 4.48048700 5.21990300 4.92749500 5.96370800 4.02523100 2.68910500 2.17063900 0.75822700 0.65698400 -0.99677200 0.61169800 -0.00877900 1.93238700 2.8691100 2.87301200	-0.291886000.382591001.214279001.458677002.855698001.39191900-1.419513001.111754003.16693600-0.177311004.48048700-0.408408005.219903000.374845004.92749500-1.620830005.96370800-1.724717004.02523100-2.653335002.68910500-2.447205002.17063900-1.219921000.75822700-1.212589000.05698400-2.41197100-0.99677200-2.410576000.61169800-3.62959100-0.00877900-4.518851001.93238700-3.635727002.80691100-4.741296002.87301200-5.57783000

Н	2.39610700	-5.15115600	2.26168300
С	4.19737200	-4.07023600	1.55695300
Н	4.48391100	-4.07665900	2.61457700
Н	4.99654300	-4.58968300	1.01780100
С	3.27535600	1.09368400	-2.72896500
Н	3.24230600	2.09617400	-3.17394400
С	2.17687800	0.24402600	-3.39754300
Н	2.47357600	0.01037000	-4.42495800
Н	1.22329400	0.77837600	-3.43804900
Н	2.01184300	-0.70322300	-2.87347600
С	4.67506900	0.50409700	-2.94935600
Н	5.46524700	1.12350100	-2.51419000
Н	4.87269000	0.43099600	-4.02388300
Н	4.75582800	-0.50033000	-2.52490400
С	4.02611400	2.71723400	-0.29463100
Н	5.04729700	2.38341100	-0.51721400
С	3.88516200	2.91414400	1.22261800
Н	2.88755200	3.28145800	1.48196000
Н	4.60923200	3.66198400	1.56103000
Н	4.06533400	1,99366300	1.78213300
С	3,77353500	4.03300500	-1.05234800
H	3.95176200	3,94333500	-2.12692400
Н	4.45141100	4.80413300	-0.67343100
н	2,74948800	4,39092000	-0.90346200
С	-2.04203700	-0.30891600	-1.30438500
C	-2.28848500	-0.94674700	-2.51433400
Н	-1.46065000	-1.12691600	-3.19623300
С	-3.57925300	-1.39031200	-2.91614000
Н	-3.69593100	-1.88378300	-3.87667200
С	-4.65163500	-1.17912700	-2.07667100
С	-4.41820500	-0.53352600	-0.84342200
С	-3.14628400	-0.09426200	-0.42504100
С	-3.08544600	0.54143800	0.85699000
С	-4.24709100	0.69575600	1.60899000
Н	-4.20373300	1.19004100	2.57495500
С	-5.51016100	0.23662200	1.15439400
Н	-6.38524600	0.38191900	1.78045300
С	-5.59252500	-0.38265800	-0.07725500
С	-6.75640400	-0.97761900	-0.84695500
Н	-7.53245200	-0.22743400	-1.03334600
Н	-7.23539500	-1.78284500	-0.27940700
С	-6.12963400	-1.50629200	-2.18405700
Н	-6.29341500	-2.58237200	-2.30601100
Н	-6.58240300	-1.02342100	-3.05669600
С	-1.48228500	2.97895200	1.36278300
Н	-2.14305200	3.24024800	2.19836900
С	-2.09110400	3.53394900	0.06469100
Н	-1.46236700	3.30311700	-0.80214800
Н	-2.16782500	4.62338300	0.13898900
Н	-3.09154700	3.13807000	-0.12181500
С	-0.08434100	3.56009800	1.61980100
Н	-0.13610700	4.65241500	1.66722300
Н	0.59441500	3.29204000	0.80324300
Н	0.35263200	3.20852700	2.55951300
С	-0.89742400	0.49413200	3.00782000
Н	0.18830500	0.65810200	3.00817900
С	-1.51512200	1.26719100	4.18373500
Н	-2.60025800	1.13499200	4.22705600
Н	-1.29894800	2.33789300	4.15399600
Н	-1.10504100	0.87679100	5.12096400

С	-1.15665600	-1.01634200	3.12670800
Н	-0.73635900	-1.38318200	4.06837900
Н	-0.69594500	-1.57207400	2.30826900
Н	-2.22883800	-1.23297000	3.12941200

Zero-point correction=	0.708221 (Hartree/Particle)
Thermal correction to Energy=	0.742492
Thermal correction to Enthalpy=	0.743437
Thermal correction to Gibbs Free Ene	ergy= 0.644310
Sum of electronic and zero-point Ener	rgies= -4156.603720
Sum of electronic and thermal Energie	es= -4156.569449
Sum of electronic and thermal Enthalp	oies= -4156.568505
Sum of electronic and thermal Free E	nergies= -4156.667631

Table S28 Cartesian coordinates and energies of $TS_3^{Ph}_PH$ at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-311G(d,p) level of theory.

Ge	-0.56548700	-0.19707200	-0.95453800
Н	1.02269300	0.77068900	-1.00024100
Р	2.59727500	0.53720100	-0.76460500
Р	-1.70102200	0.90563600	0.88471700
С	2.65654000	-0.92080900	0.32882100
С	3.87443500	-1.18603700	0.95870800
Н	4.67507400	-0.45837600	0.87305000
С	4.12903200	-2.36024300	1.69871300
Н	5.09768400	-2.50293700	2.16768600
С	3.13169500	-3.30536000	1.77683600
С	1.88690000	-3.05093700	1.15456400
С	1.56095600	-1.86379900	0.43740300
С	0.21041500	-1.77742900	-0.05923800
С	-0.63547900	-2.86764500	0.14170200
Н	-1.64770100	-2.80463400	-0.24693000
С	-0.27254100	-4.04966000	0.82633300
Н	-0.99426300	-4.85329600	0.93991600
С	0.99513400	-4.13234300	1.35055000
С	1.67844000	-5.22440900	2.14647300
Н	1.73149800	-6.15577300	1.57210500
Н	1.12520900	-5.45752700	3.06253400
С	3.10012200	-4.65870400	2.45437100
Н	3.27410500	-4.56268600	3.53188600
Н	3.89239200	-5.31111000	2.07178800
С	-2.34550500	-0.67625000	-1.63402000
С	-2.61889000	-1.47086900	-2.74083200
Н	-1.79996900	-1.97412600	-3.24953900
С	-3.92907900	-1.65628800	-3.26547500
Н	-4.06687200	-2.29669500	-4.13191200
С	-4.98873600	-1.00221900	-2.67489200
С	-4.72874800	-0.19069800	-1.54998200
С	-3.44482800	-0.02606800	-0.99550100
С	-3.36339200	0.81332700	0.16053700
С	-4.50154900	1.45213700	0.64346700
Н	-4.42208400	2.11148900	1.50352500
С	-5.77476400	1.27489800	0.04419800
Н	-6.63386800	1.79599200	0.45556200
С	-5.88754900	0.43761900	-1.04928300
С	-7.07082100	0.02570000	-1.90478400
Н	-7.54475800	0.89803400	-2.36783600
Н	-7.84470200	-0.46292300	-1.30294600
С	-6.47404000	-0.94646500	-2.98194100
Н	-6.93140500	-1.93996200	-2.92064400

Н	-6.65987700	-0.58218900	-3.99791800
С	3.00244300	-0.02116400	-2.45157800
С	2.27883000	0.54054200	-3.51683500
С	3.99492500	-0.97775000	-2.71260600
С	2.56165400	0.16082800	-4.82924400
Н	1.48730700	1.25822900	-3.32000200
С	4.27430000	-1.35029000	-4.02630100
Н	4.54238000	-1.43216700	-1.89276800
С	3.56000700	-0.78049600	-5.08348100
Н	2.00159600	0.59739700	-5.65015900
Н	5.04611300	-2.08713500	-4.22541100
н	3,77846900	-1.07562500	-6.10513900
С	3.83656700	1.75803800	-0.22716200
C	4,78832200	2.27839600	-1.11847200
C	3.76252100	2.26806400	1.08186500
Ċ	5.65970500	3.28394900	-0.69880400
Ĥ	4.85371900	1.89650800	-2.13145900
C	4.64160800	3.26573300	1,49427100
Ĥ	3.02496800	1.88016500	1.77854800
C	5.59075600	3.77657500	0.60465800
Ĥ	6.39719300	3.67687000	-1.39168600
Н	4.58409900	3.64796900	2.50866700
Н	6.27272900	4.55681400	0.92767000
С	-1.23548600	2.65757700	1.12023200
Ċ	-1.33274300	3.28445000	2.37118800
С	-0.79988900	3.39364300	0.00552200
С	-1.00435000	4.63438100	2.50147700
Н	-1.65756200	2.72225500	3.24057600
С	-0.47680400	4.74202000	0.14366100
Н	-0.71744000	2.91366700	-0.96624200
С	-0.57833600	5.36346000	1.39052900
Н	-1.08279000	5.11492900	3.47174300
Н	-0.14384600	5.30722900	-0.72121000
Н	-0.32399800	6.41359600	1.49541900
С	-1.65900900	0.10396300	2.52039400
С	-2.82068500	-0.26913000	3.21002200
С	-0.40047000	-0.16800400	3.08293900
С	-2.72265100	-0.88164500	4.46030800
Н	-3.79687400	-0.08694800	2.77410300
С	-0.31010500	-0.77179600	4.33451500
Н	0.50587900	0.08814400	2.54267000
С	-1.47109200	-1.12892000	5.02481100
Н	-3.62605400	-1.16514300	4.99115600
Н	0.66522100	-0.97243300	4.76676500
Н	-1.39908600	-1.60378800	5.99838200

Zero-point correction=	0.699178 (Hartree/Particle)
Thermal correction to Energy=	0.734765
Thermal correction to Enthalpy=	0.735709
Thermal correction to Gibbs Free I	Energy= 0.629846
Sum of electronic and zero-point E	nergies= -4608.772712
Sum of electronic and thermal Ene	ergies= -4608.737126
Sum of electronic and thermal Ent	halpies= -4608.736181
Sum of electronic and thermal Fre	e Energies= -4608.842045

Table S29 Cartesian coordinates and energies of $3'^{Pr}H'$ at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-311G(d,p) level of theory.

Ge	0.37793200	-0.13628700	-0.89961100
Н	0.00002900	-1.09652600	-2.03644100
Р	-2.65281000	-1.31129000	-0.69659800
Р	1.27513400	-1.47912600	0.85287800
С	-3.11560700	0.30972700	0.04827300
С	-4.40509200	0.55819900	0.51624300
Ĥ	-5.14006900	-0.23821700	0.47255100
C	-4.82910300	1.79737500	1.04658400
Ĥ	-5 85101800	1 91485200	1 39475300
C	-3 92393200	2 83099700	1 08315600
C	-2 60810700	2 60539900	0.61486500
Č	-2 13/78300	1 36107700	0.01400000
C	-0 74451400	1 3/235600	-0.20250000
C	-0.00537100	2 52160700	-0 17670500
	1 02920700	2.52109700	0.16720600
C C	0.51095700	2.51070100	0.40720000
	-0.51965700	3.74041000	0.30370400
	0.12473400	4.01090000	0.35159700
	-1.82949600	3.78284900	0.71587300
C	-2.66/41/00	4.90646100	1.28689400
Н	-2.73507700	5.74134000	0.58085300
Н	-2.21990400	5.31100100	2.20108100
С	-4.06397500	4.26318900	1.55561700
Н	-4.33015300	4.30452100	2.61753500
Н	-4.86232300	4.78397200	1.01639400
С	-3.29278400	-1.11203400	-2.48541000
Н	-2.85034700	-1.96813800	-3.01193800
С	-2.75946300	0.17912900	-3.13629000
Н	-2.98223400	0.16483600	-4.20828900
Н	-1.68156600	0.32165200	-3.02583800
Н	-3.25042100	1.05840100	-2.70900900
С	-4.81856300	-1.16746100	-2.64848800
Н	-5.25142200	-2.11352700	-2.31532000
Н	-5.08091900	-1.04660000	-3.70566000
Н	-5.30474900	-0.35489200	-2.09888300
С	-3.84005100	-2.55581400	0.07341300
Ĥ	-4.87025800	-2.21447800	-0.07653800
C	-3 58741500	-2 68457400	1 58313100
Ĥ	-2 57837600	-3.06298100	1 78368600
н	-4 29289400	-3 39684200	2 02461500
н	-3 70/00300	-1 73138000	2.02401000
C	-3 68783400	-3 91915800	-0 62359000
Ч	-3 01650500	-3 87256000	-1 6017/300
Ц	-3.91039300	-4.64727000	-0.17360800
н Ц	-4.37121900	-4.04727900	-0.17300000
11 C	-2.07100000	-4.31101000	1 22240600
	2.17799600	0.53775200	-1.23349600
	2.60748600	1.30381800	-2.31046400
H	1.89783500	1.5/128/00	-3.08982700
C	3.94027300	1.78293900	-2.44217000
Н	4.20629200	2.37812200	-3.31057400
C	4.85992200	1.48/1/600	-1.45780300
С	4.44469500	0.68946000	-0.37071900
С	3.13599900	0.18778300	-0.23775300
С	2.90001800	-0.66952900	0.88737400
С	3.92748100	-0.92776400	1.79042800
Н	3.75597900	-1.59470300	2.62977100
С	5.22128800	-0.36393200	1.64468100
Н	5.98521600	-0.59176700	2.38149700

С	5.48229800	0.43820400	0.55079400	
С	6.73466600	1.15059900	0.07731500	
Н	7.56428000	0.44871100	-0.05809600	
Н	7.07032600	1.88674100	0.81584000	
С	6.32541300	1.83463100	-1.27366100	
Н	6.47834500	2.91841000	-1.23904100	
Н	6.92840600	1.46328500	-2.10911700	
С	1.54804100	-3.24274900	0.29787100	
Н	2.07566400	-3.72724700	1.12930500	
С	2.44985200	-3.28435700	-0.94804100	
Н	1.97750400	-2.79297100	-1.80480200	
Н	2.62307700	-4.32923400	-1.22258300	
Н	3.42082900	-2.81719300	-0.77344500	
С	0.20732100	-3.94402400	0.04480200	
н	0.38653100	-4.96428200	-0.30784400	
н	-0.36109600	-3.40430900	-0.71744000	
Н	-0.40928800	-4.00688000	0.94577700	
C	0.36495900	-1.41/15500	2.47699500	
Н	-0.65772000	-1.69928300	2.19829300	
	0.88999200	-2.41606600	3.52035700	
п	1.90529400	-2.16945000	3.84418500	
	0.00141000	-3.44674900	3.10194000	
	0.24664600	-2.3/10/100	4.40020000	
	0.34400000	0.02007300	3.00970900	
	-0.20100100	0.00940900	2.27482100	
	1 2/22/200	0.72140000	2.27405100	
11	1.34000000	0.30239100	5.26275400	
Zero-point correction= 0.711994 (Hartree/Particle)				
Thermal correction to Energy= 0.748085				
Thermal correction to Enthalpy= 0.749029				
Thermal correction to Gibbs Free Energy= 0.642587				
Sum of electronic and zero-point Energies= -4156.629202				
Sum of electronic and thermal Energies= -4156.593111				
Sum of	electronic and the	rmal Enthalpie	s= -4156.592167	
Sum of	electronic and the	rmal Free Ener	rgies= -4156.698609	

Table S30 Cartesian coordinates and energies of $3^{Ph}H'$ at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-311G(d,p) level of theory.

Ge	0.73069300	-0.49471400	0.82047100
Н	0.18985800	0.32364400	1.98709300
Р	-2.26108500	0.56073900	0.57440500
Р	1.49957200	1.00615300	-0.86120600
С	-2.69185300	-1.17173600	0.07656400
С	-4.00865000	-1.52757700	-0.20608900
Н	-4.78539200	-0.78113600	-0.08400900
С	-4.39747400	-2.80744500	-0.66167800
Н	-5.44565800	-3.01228500	-0.85831200
С	-3.42222300	-3.75894100	-0.84893000
С	-2.07755300	-3.41969700	-0.57465000
С	-1.64931300	-2.14782200	-0.10224600
С	-0.23321900	-2.02141300	0.13181200
С	0.59795900	-3.10596100	-0.15105300
Н	1.66585700	-3.00191400	0.01068200
С	0.13706800	-4.35075500	-0.63640100
Н	0.84625200	-5.15009600	-0.82844200
С	-1.21336100	-4.50841200	-0.83847500
С	-2.02030500	-5.69319100	-1.32616700
Н	-1.88395000	-6.56015200	-0.67074700

Н	-1.69599000	-6.00719300	-2.32433800
С	-3.50021500	-5.19398200	-1.32732400
Н	-3.94968100	-5.25774800	-2.32418500
Н	-4.13076300	-5.79719500	-0.66519000
С	2.58173100	-0.92678500	1.23830500
Ċ	3.05018800	-1.84644000	2,16845100
Ĥ	2 34111400	-2 48128500	2 69391700
C	4 42782900	-2 00074200	2 48701600
н	4 72119500	-2 74155500	3 22476700
C	5 35534000	-1 19156800	1 86570200
C	4 89576600	-0.24808000	0 0223/300
C	3 53018800	-0 10505700	0.52254500
C	3 24761500	0.00605500	-0.30707200
C	4 26722600	1 70210400	0.00704000
	4.20723000	2 40260900	1 61506200
	4.02707100	2.49200000	-1.01000000
	0.02120000	1.55005700	-0.52364700
	0.30101100	2.17642300	-0.94600100
	5.93525600	0.54009800	0.38742600
	7.24767200	0.09648000	1.00460400
н	7.73505700	0.92394800	1.53129600
Н	7.95271900	-0.23870400	0.23629500
С	6.86262900	-1.06592100	1.98475600
Н	7.36226800	-2.00183700	1.71265000
Н	7.16404700	-0.84124000	3.01324200
С	-2.47490800	0.54265700	2.41044400
С	-2.74861600	1.73694600	3.09837800
С	-2.20722200	-0.61647200	3.15854600
С	-2.79074000	1.76124600	4.49250500
Н	-2.94631500	2.64987000	2.54451500
С	-2.24659400	-0.58721100	4.55342200
Н	-1.96796500	-1.54688000	2.65238300
С	-2.54343600	0.59898500	5.22500300
Н	-3.01953600	2.69031000	5.00631100
Н	-2.05023000	-1.49610500	5.11456500
Н	-2.57977700	0.61873500	6.30977000
С	-3.66121100	1.58732100	-0.04097500
С	-4.90664400	1.69182800	0.60255500
С	-3.45401100	2.30376800	-1.23044000
С	-5.91887200	2.48337800	0.05988600
H	-5.08166700	1.16320500	1.53406500
C	-4.47061300	3.08811500	-1.77654100
H	-2.48834000	2.25416200	-1.72604400
C	-5 70472300	3 17887700	-1 13212600
Ĥ	-6 87575000	2 55642400	0 56805900
н	-4 29582800	3 63470700	-2 69841000
н	-6 49465200	3 79405700	-1 55209900
C	0.40400200	2 72730100	-0 77868700
C	0.02100000	3 49818400	-1 94075800
C	0.77507000	3 20500200	0 48041100
C	0.00017100	J.29J09200	-1 83808100
	0.05024000	2 06065000	2 01677900
11 C	0.93934000	3.00003000	-2.91077000
	0.20140000	4.03040900	0.37074600
11 C	0.10144400	2.0303/100	1.30103000
	0.142/8/00	5.40038400	-0.58/13/00
п	0.27559700	5.43153500	-2.138/0600
п	0.08462500	5.06838600	1.54397900
Н	-0.16018300	6.43999700	-0.51234/00
C	1.23080200	0.33900900	-2.53088000
C	2.25681200	0.31288300	-3.48/25800
C	-0.04216900	-0.15854200	-2.85659200

С	2.00222100	-0.18345600	-4.76549100
Н	3.25094400	0.66590800	-3.23547200
С	-0.28811300	-0.64765200	-4.13786000
Н	-0.83432200	-0.16554700	-2.11573100
С	0.73152100	-0.66009100	-5.09188500
Н	2.79824800	-0.20164700	-5.50300500
Н	-1.27374700	-1.02757900	-4.38684000
Н	0.53743300	-1.04648600	-6.08758500

Zero-point correction=0.702474 (Hartree/Particle)Thermal correction to Energy=0.738225Thermal correction to Enthalpy=0.739170Thermal correction to Gibbs Free Energy=0.634858Sum of electronic and zero-point Energies=-4608.801510Sum of electronic and thermal Energies=-4608.765758Sum of electronic and thermal Enthalpies=-4608.764814Sum of electronic and thermal Free Energies=-4608.869125

Table S31 Cartesian coordinates and energies of $3^{iPr}H$ at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-311G(d,p) level of theory.

Ge	-1.12800000	4.64370000	8.82510000
Н	-1.20070000	6.18240000	8.79100000
Р	1.02340000	4.79030000	7.36330000
Р	-3.28680000	4.67830000	10.29030000
С	2.10090000	4.88170000	8.80830000
С	3.43740000	5.27360000	8.81340000
Н	3.87590000	5.67950000	7.90660000
С	4.26330000	5.15570000	9.95770000
Н	5.29680000	5.48380000	9.90450000
С	3.73500000	4.59740000	11.10630000
С	2.37830000	4.21430000	11.11390000
С	1.51380000	4.37180000	10.00780000
С	0.14190000	4.02610000	10.19730000
С	-0.23790000	3.48570000	11.41790000
Н	-1.27770000	3.22590000	11.57590000
С	0.66330000	3.27110000	12.49410000
Н	0.29470000	2.83050000	13.41570000
С	1.97750000	3.66300000	12.34870000
С	3.17210000	3.63310000	13.28030000
Н	3.42110000	2.60500000	13.56300000
Н	2.96980000	4.17440000	14.20950000
С	4.33420000	4.29540000	12.46470000
Н	4.68760000	5.21250000	12.94710000
Н	5.19990000	3.63130000	12.38020000
С	1.67260000	3.32940000	6.40020000
Н	1.01200000	3.25650000	5.52760000
С	1.51770000	2.06250000	7.25570000
Н	1.82190000	1.18520000	6.67690000
Н	0.48470000	1.91310000	7.58480000
Н	2.15120000	2.11990000	8.14540000
С	3.11310000	3.50150000	5.90570000
Н	3.23550000	4.39160000	5.28270000
Н	3.39280000	2.63170000	5.30220000
Н	3.81060000	3.56190000	6.74550000
С	1.31490000	6.28860000	6.31950000
Н	2.38310000	6.29720000	6.06920000
С	0.98070000	7.56490000	7.10520000
Н	-0.08730000	7.61400000	7.33530000
Н	1.23800000	8.44190000	6.50340000

Н	1.53780000	7.61760000	8.04450000
С	0.49450000	6.17940000	5.02450000
Н	0.78940000	5.31520000	4.42250000
Н	0.64400000	7.07690000	4.41650000
Н	-0.57410000	6.09270000	5.24660000
С	-2.34650000	3.86430000	7.48920000
С	-1.93050000	3.29000000	6.29610000
Н	-0.87640000	3.08970000	6.14780000
С	-2.81430000	2.96330000	5.23340000
Н	-2.41620000	2.50180000	4.33470000
С	-4.15130000	3.27570000	5.36110000
С	-4.58940000	3.85890000	6.56840000
С	-3.73920000	4.12520000	7.66460000
С	-4.36190000	4.64640000	8.84120000
С	-5.72120000	4.94850000	8.81940000
Н	-6.18740000	5.36120000	9.70910000
С	-6.53490000	4.72610000	7.68180000
Н	-7.58780000	4.98740000	7.72100000
С	-5.96850000	4.15190000	6.55960000
С	-6.54340000	3.74890000	5.21700000
Н	-6.95040000	4.61890000	4.69120000
Н	-7.36760000	3.03820000	5.33170000
С	-5.34000000	3.12200000	4.43420000
Н	-5.52200000	2.06690000	4.20470000
Н	-5.17130000	3.62700000	3.47830000
С	-3.68980000	6.18160000	11.29030000
Н	-4.76000000	6.13080000	11.52620000
С	-3.42170000	7.45590000	10.47680000
Н	-2.35410000	7.56870000	10.26790000
Н	-3.74820000	8.32970000	11.04930000
Н	-3.95910000	7.44980000	9.52460000
С	-2.88630000	6.15880000	12.60040000
Н	-3.13590000	5.29300000	13.22030000
Н	-3.10390000	7.05980000	13.18210000
Н	-1.81040000	6.13670000	12.39840000
С	-3.83620000	3.20370000	11.29410000
Н	-3.18560000	3.20980000	12.17750000
С	-5.29220000	3.28310000	11.76650000
Н	-5.98170000	3.26520000	10.91830000
Н	-5.48710000	4.18110000	12.35920000
Н	-5.51470000	2.41470000	12.39530000
С	-3.57160000	1.92470000	10.48550000
Н	-3.80760000	1.04650000	11.09410000
Н	-2.52710000	1.84890000	10.16750000
Н	-4.20050000	1.89720000	9.59090000

Zero-point correction=	0.712918 (Hartree/Particle)
Thermal correction to Energy=	0.747827
Thermal correction to Enthalpy=	0.748771
Thermal correction to Gibbs Free Ene	ergy= 0.648678
Sum of electronic and zero-point Ener	rgies= -4156.634173
Sum of electronic and thermal Energie	es= -4156.599265
Sum of electronic and thermal Enthal	oies= -4156.598320
Sum of electronic and thermal Free E	nergies= -4156.698414

Table S32 Cartesian coordinates and energies of $\mathbf{3}^{Ph}\mathbf{H}$ at the B3LYP-D3(BJ)/def2-SVP//B3LYPD3(BJ)/6-311G(d,p) level of theory.

Ge	0.73069300	-0.49471400	0.82047100
Н	0.18985800	0.32364400	1.98709300

Р	-2.26108500	0.56073900	0.57440500
Р	1.49957200	1.00615300	-0.86120600
С	-2.69185300	-1.17173600	0.07656400
С	-4.00865000	-1.52757700	-0.20608900
Н	-4.78539200	-0.78113600	-0.08400900
С	-4.39747400	-2.80744500	-0.66167800
Н	-5.44565800	-3.01228500	-0.85831200
С	-3,42222300	-3.75894100	-0.84893000
Ċ	-2.07755300	-3.41969700	-0.57465000
Č	-1.64931300	-2.14782200	-0.10224600
Ĉ	-0 23321900	-2 02141300	0 13181200
C	0.59795900	-3 10596100	-0 15105300
Ĥ	1 66585700	-3 00191400	0.01068200
C	0 13706800	-4 35075500	-0.63640100
ч	0.10700000	-5 15009600	-0.82844200
C	-1 21336100	-4 50841200	-0.02044200
C	2 02020500	5 60210100	1 22616700
	1 99205000	-5.09319100	-1.32010700
	-1.00393000	-0.30013200	-0.07074700
	-1.09099000	-0.007 19300	-2.32433000
	-3.50021500	-5.19396200	-1.32732400
н	-3.94968100	-5.25774800	-2.32418500
H	-4.13076300	-5.79719500	-0.66519000
C	2.58173100	-0.92678500	1.23830500
С	3.05018800	-1.84644000	2.16845100
Н	2.34111400	-2.48128500	2.69391700
С	4.42782900	-2.00074200	2.48701600
Н	4.72119500	-2.74155500	3.22476700
С	5.35534000	-1.19156800	1.86570200
С	4.89576600	-0.24898900	0.92234300
С	3.53918800	-0.10595700	0.57407700
С	3.24761500	0.90605500	-0.39707200
С	4.26723600	1.70310400	-0.90794000
Н	4.02767100	2.49260800	-1.61506300
С	5.62126500	1.53005700	-0.52384700
Н	6.38161100	2.17842300	-0.94800100
С	5.93525600	0.54009800	0.38742600
С	7.24767200	0.09648000	1.00460400
Н	7.73505700	0.92394800	1.53129600
Н	7.95271900	-0.23870400	0.23629500
С	6.86262900	-1.06592100	1.98475600
Ĥ	7.36226800	-2.00183700	1.71265000
н	7.16404700	-0.84124000	3.01324200
С	-2.47490800	0.54265700	2.41044400
Ċ	-2.74861600	1.73694600	3.09837800
Ĉ	-2 20722200	-0 61647200	3 15854600
C C	-2 79074000	1 76124600	4 49250500
Ĥ	-2 94631500	2 64987000	2 54451500
C	-2 24659400	-0 58721100	4 55342200
Ч	-1 06706500	-1 5/688000	2 65238300
C	-2 5/3/3600	0 50808500	5 22500300
с ц	-2.0404000	2 60031000	5.00631100
	2 05022000	2.09031000	5.00051100
н Ц	-2.00020000	0 61972500	6 20077000
· · ·	-2.01911100	0.010/0000	0.00911000
	-3.00121100	1.00/02100	-0.0409/500
		1.09182800	0.0020000
	-3.45401100	2.303/6800	-1.23044000
	-5.9188/200	2.48337800	0.05988600
Н	-5.08166700	1.16320500	1.53406500
C	-4.4/061300	3.08811500	-1.77654100
н	-2.48834000	2.25416200	-1.72604400
С	-5.70472300	3.17887700	-1.13212600
---	-------------	-------------	-------------
Н	-6.87575000	2.55642400	0.56805900
Н	-4.29582800	3.63470700	-2.69841000
Н	-6.49465200	3.79405700	-1.55209900
С	0.92198300	2.72730100	-0.77868700
С	0.77587000	3.49818400	-1.94075800
С	0.66617100	3.29509200	0.48041100
С	0.38714100	4.83477100	-1.83898100
Н	0.95934000	3.06065000	-2.91677800
С	0.28148600	4.63040900	0.57074600
Н	0.75744400	2.69637100	1.38183600
С	0.14278700	5.40038400	-0.58713700
Н	0.27559700	5.43153500	-2.73870600
Н	0.08462500	5.06838600	1.54397900
Н	-0.16018300	6.43999700	-0.51234700
С	1.23080200	0.33900900	-2.53088000
С	2.25681200	0.31288300	-3.48725800
С	-0.04216900	-0.15854200	-2.85659200
С	2.00222100	-0.18345600	-4.76549100
Н	3.25094400	0.66590800	-3.23547200
С	-0.28811300	-0.64765200	-4.13786000
Н	-0.83432200	-0.16554700	-2.11573100
С	0.73152100	-0.66009100	-5.09188500
Н	2.79824800	-0.20164700	-5.50300500
Н	-1.27374700	-1.02757900	-4.38684000
Н	0.53743300	-1.04648600	-6.08758500

Zero-point correction=	0.702474 (Hartree/Particle)
Thermal correction to Energy=	0.738225
Thermal correction to Enthalpy=	0.739170
Thermal correction to Gibbs Free Ene	rgy= 0.634858
Sum of electronic and zero-point Ener	gies= -4608.801510
Sum of electronic and thermal Energie	es= -4608.765758
Sum of electronic and thermal Enthalp	oies= -4608.764814
Sum of electronic and thermal Free Er	nergies= -4608.869125

References

S1. P. Wawrzyniak, A. L. Fuller, A. M. Slawin, P. Kilian, Inorg. Chem. 2009, 48, 2500-2506.

S2. J. Beckmann, T. G. Do, S. Grabowsky, E. Hupf, E. Lork, S. Mebs, *Z. Anorg. Allg. Chem.* 2013, **639**, 2233-2249.

S3. Y. Barekatain, S. Khadka, K. Harris, J. Delacerda, V. C. Yan, K. -C. Chen, C. -D. Pham, Md. N. Uddin, R. Avritcher, E. J. Eisenberg, R. Kalluri, S. W. Millward, F. L. Muller, *Anal. Chem.* 2022, **94**, 10045-10053.

S4. Neese, F., Software Update: The ORCA program system, Version 5.0. WIREs Comput. Mol. Sci. 2022, **12(5**), e1606.

S5. Weigend, F. Accurate coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* 2006, **8(9)**, 1057-1065.

S6. Gaussian 16, Revision B.01, 2016, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene,

M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian; Inc., Wallingford CT

S7. NBO Version 3.1, Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F.

S8. Wiberg, K.B. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. *Tetrahedron* 1968, **24**, 1083-1096.

S9. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyser. *J. Comput. Chem.* 2012, **33**, 580–592.

S10. Nielsen, A.B.; Holder, A.J. (2009) Gauss View 5.0, User's Reference. GAUSSIAN Inc., Pittsburgh. S11. a) Muller, L. O.; Himmel, D.; Stauffer, J.; Steinfeld, G.; Slattery, J.; Santiso-Quinones, G.; Brecht, V.; Krossing, I., Simple access to the non-oxidizing Lewis superacid PhF \rightarrow Al(OR^F)₃ (R^F = C(CF₃)₃). *Angew. Chem. Int. Edit.* 2008, **47 (40)**, 7659-7663. b) Bohrer, H.; Trapp, N.; Himmel, D.; Schleep, M.; Krossing, I., From unsuccessful H₂-activation with FLPs containing B(Ohfip)₃ to a systematic evaluation of the Lewis acidity of 33 Lewis acids based on fluoride, chloride, hydride and methyl ion affinities. *Dalton Trans.* 2015, **44 (16)**, 7489-7499.

S12. a) Braunschweig, H.; Radackia, K.; Shanga, R. σ-Coordination of metal–boryl bonds to gold(I). *Chem. Commun.* 2013, **49**, 9905-9907. b) Braunschweig, H.; Radackia, K.; Shanga, R. Side-on coordination of boryl and borylene complexes to cationic coinage metal fragments. *Chem. Sci.* 2015, **6**, 2989-2996

IISER, Pune Chemistry Department CHNS Elemental Analysis Report

1^{*i*Pr}

Graphic report

	Weight [mg]	Name	N [%]	C [%]	H [%]	S [%]	Date Time
35	5.5550	1 IPR 2	0.56	52.40	5.315	0.057	07.09.2023 18:51

	*	
Temperatures		
	Comb. tube	1150
	Reduct. Tube	850
	CO2 col.standby	0
	H2O col.standby	0
	SO2 col.standby	140
	Cool temp.	170
Time values		
	Flush time	10
	O2 delay	30
	Integrator reset delay peak N	20
	Integrator reset delay peak C	10
	Integrator reset delay peak H	3
	Integrator reset delay peak S	25
	H2O col.delay	1
Ball valve		
	Min. permitted ball valve current	20
	Max. permitted ball valve current	100
	Critical ball valve current	250
	Acoustic signal	no

IISER, Pune Chemistry Department CHNS Elemental Analysis Report

Methods report

Name	O2 dosing time	Autozero delay N	Autozero delay C	Autozero delay S	Peak anticipation N	Peak anticipation C	Peak anticipation H	Peak anticipation S	Desorpt.CO2	Desorpt.H2O	Desorpt.SO2	H2O col.delay
10mg120s	120	2	2	15	85	90	60	60	240	150	220	
10mg120sIRMS	120	2	2	15	150	210	240	120	260	170	230	
10mg120sIRMS_cal	120	2	2	15	85	90	60	60	130	150	220	
20mg150s	150	2	2	15	90	120	60	60	240	150	220	
20mg150sIRMS	150	2	2	15	150	210	240	120	260	170	230	
20mg150sIRMS_cal	150	2	2	15	90	120	60	60	130	150	220	
2mg70s	70	2	2	15	85	70	60	60	240	150	220	
2mg70sIRMS	70	2	2	15	150	210	240	120	260	170	230	
2mg70sIRMS_cal	70	2	2	15	85	70	60	60	130	150	220	
2mg80s	80	2	2	15	85	70	60	60	240	150	220	
30mg180s	180	2	2	15	120	120	60	60	240	150	220	
30mg180sIRMS	180	2	2	15	150	210	300	120	260	170	230	
30mg180sIRMS_cal	180	2	2	15	120	120	60	60	130	150	220	
40mg210s	210	2	2	15	150	120	60	60	240	150	220	
5mg90s	90	2	2	15	85	80	60	60	240	150	220	
5mg90s_2	90	2	2	15	85	80	60	60	240	150	230	
5mg90sIRMS	90	2	2	15	150	210	240	120	260	170	230	
5mg90sIRMS_cal	90	2	2	15	85	80	60	60	130	150	220	
Blank with O	60	2	2	15	85	70	60	60	240	150	220	
Blank without O	2	2	2	15	85	90	60	60	240	150	230	
Blnk Without 0	0	2	2	15	85	90	60	60	240	150	230	

Coefficients report

Mode	CHNS			
	Ν	С	Н	S
Coeff. a	-1.734218e-003	-1.190440e-004	1.392304e-003	1.249275e-003
Coeff. b	4.313727e-005	5.272650e-005	2.266024e-005	1.127746e-004
Coeff. c	-3.084791e-009	-8.078815e-011	-2.737666e-009	-1.211686e-010
Coeff. d	4.742319e-013	7.513235e-015	4.195303e-013	0.000000e+000
Coeff. e	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
Min.:	279.00	1241.00	165.00	230.00
Max.:	2781.00	10207.00	2800.00	2011.00
Modification time:				
Coeff. a	3.030178e-003	-1.487859e-002	1.248219e-002	-5.615332e-003
Coeff. b	3.709786e-005	5.342338e-005	1.522943e-005	1.166004e-004
Coeff. c	3.080614e-013	5.327586e-013	-8.301562e-012	-6.857837e-010
Coeff. d	2.886365e-017	6.288573e-019	3.025840e-017	3.598743e-014
Coeff. e	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
Min.:	2781.00	10207.00	2800.00	2011.00
Max.:	83332.00	397880.00	206642.00	17742.00
Modification time:				

IISER, Pune Chemistry Department CHNS Elemental Analysis Report

1Ph

Graphic report

		Weight [mg]	Name	N [%]	C [%]	H [%]	S [%]	Date Time
Ī	49	5.6150	1 PH 1	0.70	70.29	5.149	0.000	07.09.2023 21:28

Temperatures		
	Comb. tube	1150
	Reduct. Tube	850
	CO2 col.standby	0
	H2O col.standby	0
	SO2 col.standby	140
	Cool temp.	170
Time values		
	Flush time	10
	O2 delay	30
	Integrator reset delay peak N	20
	Integrator reset delay peak C	10
	Integrator reset delay peak H	3
	Integrator reset delay peak S	25
	H2O col.delay	1
Ball valve		
	Min. permitted ball valve current	20
	Max. permitted ball valve current	100
	Critical ball valve current	250
	Acoustic signal	no

IISER, Pune Chemistry Department CHNS Elemental Analysis Report

Methods report

Name	O2 dosing time	Autozero delay N	Autozero delay C	Autozero delay S	Peak anticipation N	Peak anticipation C	Peak anticipation H	Peak anticipation S	Desorpt.CO2	Desorpt.H2O	Desorpt.SO2	H2O col.delay
10mg120s	120	2	2	15	85	90	60	60	240	150	220	
10mg120sIRMS	120	2	2	15	150	210	240	120	260	170	230	
10mg120sIRMS_cal	120	2	2	15	85	90	60	60	130	150	220	
20mg150s	150	2	2	15	90	120	60	60	240	150	220	
20mg150sIRMS	150	2	2	15	150	210	240	120	260	170	230	
20mg150sIRMS_cal	150	2	2	15	90	120	60	60	130	150	220	
2mg70s	70	2	2	15	85	70	60	60	240	150	220	
2mg70sIRMS	70	2	2	15	150	210	240	120	260	170	230	
2mg70sIRMS_cal	70	2	2	15	85	70	60	60	130	150	220	
2mg80s	80	2	2	15	85	70	60	60	240	150	220	
30mg180s	180	2	2	15	120	120	60	60	240	150	220	
30mg180sIRMS	180	2	2	15	150	210	300	120	260	170	230	
30mg180sIRMS_cal	180	2	2	15	120	120	60	60	130	150	220	
40mg210s	210	2	2	15	150	120	60	60	240	150	220	
5mg90s	90	2	2	15	85	80	60	60	240	150	220	
5mg90s_2	90	2	2	15	85	80	60	60	240	150	230	
5mg90sIRMS	90	2	2	15	150	210	240	120	260	170	230	
5mg90sIRMS_cal	90	2	2	15	85	80	60	60	130	150	220	
Blank with O	60	2	2	15	85	70	60	60	240	150	220	
Blank without O	2	2	2	15	85	90	60	60	240	150	230	
Blnk Without 0	0	2	2	15	85	90	60	60	240	150	230	

Coefficients report

Mode	CHNS			
	Ν	С	Н	S
Coeff. a	-1.734218e-003	-1.190440e-004	1.392304e-003	1.249275e-003
Coeff. b	4.313727e-005	5.272650e-005	2.266024e-005	1.127746e-004
Coeff. c	-3.084791e-009	-8.078815e-011	-2.737666e-009	-1.211686e-010
Coeff. d	4.742319e-013	7.513235e-015	4.195303e-013	0.000000e+000
Coeff. e	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
Min.:	279.00	1241.00	165.00	230.00
Max.:	2781.00	10207.00	2800.00	2011.00
Modification time:				
Coeff. a	3.030178e-003	-1.487859e-002	1.248219e-002	-5.615332e-003
Coeff. b	3.709786e-005	5.342338e-005	1.522943e-005	1.166004e-004
Coeff. c	3.080614e-013	5.327586e-013	-8.301562e-012	-6.857837e-010
Coeff. d	2.886365e-017	6.288573e-019	3.025840e-017	3.598743e-014
Coeff. e	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
Min.:	2781.00	10207.00	2800.00	2011.00
Max.:	83332.00	397880.00	206642.00	17742.00
Modification time:				

Graphic report

	Weight [mg]	Name	N [%]	C [%]	H [%]	S [%]	Date Time
47	5.0430	2 PH 3	0.77	63.94	3.834	2.980	07.09.2023 21:05

	*	
Temperatures		
	Comb. tube	1150
	Reduct. Tube	850
	CO2 col.standby	0
	H2O col.standby	0
	SO2 col.standby	140
	Cool temp.	170
Time values		
	Flush time	10
	O2 delay	30
	Integrator reset delay peak N	20
	Integrator reset delay peak C	10
	Integrator reset delay peak H	3
	Integrator reset delay peak S	25
	H2O col.delay	1
Ball valve		
	Min. permitted ball valve current	20
	Max. permitted ball valve current	100
	Critical ball valve current	250
	Acoustic signal	no

IISER, Pune Chemistry Department CHNS Elemental Analysis Report

Methods report

Name	O2 dosing time	Autozero delay N	Autozero delay C	Autozero delay S	Peak anticipation N	Peak anticipation C	Peak anticipation H	Peak anticipation S	Desorpt.CO2	Desorpt.H2O	Desorpt.SO2	H2O col.delay
10mg120s	120	2	2	15	85	90	60	60	240	150	220	
10mg120sIRMS	120	2	2	15	150	210	240	120	260	170	230	
10mg120sIRMS_cal	120	2	2	15	85	90	60	60	130	150	220	
20mg150s	150	2	2	15	90	120	60	60	240	150	220	
20mg150sIRMS	150	2	2	15	150	210	240	120	260	170	230	
20mg150sIRMS_cal	150	2	2	15	90	120	60	60	130	150	220	
2mg70s	70	2	2	15	85	70	60	60	240	150	220	
2mg70sIRMS	70	2	2	15	150	210	240	120	260	170	230	
2mg70sIRMS_cal	70	2	2	15	85	70	60	60	130	150	220	
2mg80s	80	2	2	15	85	70	60	60	240	150	220	
30mg180s	180	2	2	15	120	120	60	60	240	150	220	
30mg180sIRMS	180	2	2	15	150	210	300	120	260	170	230	
30mg180sIRMS_cal	180	2	2	15	120	120	60	60	130	150	220	
40mg210s	210	2	2	15	150	120	60	60	240	150	220	
5mg90s	90	2	2	15	85	80	60	60	240	150	220	
5mg90s_2	90	2	2	15	85	80	60	60	240	150	230	
5mg90sIRMS	90	2	2	15	150	210	240	120	260	170	230	
5mg90sIRMS_cal	90	2	2	15	85	80	60	60	130	150	220	
Blank with O	60	2	2	15	85	70	60	60	240	150	220	
Blank without O	2	2	2	15	85	90	60	60	240	150	230	
Blnk Without 0	0	2	2	15	85	90	60	60	240	150	230	

Coefficients report

Mode	CHNS			
	N	С	Н	S
Coeff. a	-1.734218e-003	-1.190440e-004	1.392304e-003	1.249275e-003
Coeff. b	4.313727e-005	5.272650e-005	2.266024e-005	1.127746e-004
Coeff. c	-3.084791e-009	-8.078815e-011	-2.737666e-009	-1.211686e-010
Coeff. d	4.742319e-013	7.513235e-015	4.195303e-013	0.000000e+000
Coeff. e	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
Min.:	279.00	1241.00	165.00	230.00
Max.:	2781.00	10207.00	2800.00	2011.00
Modification time:				
Coeff. a	3.030178e-003	-1.487859e-002	1.248219e-002	-5.615332e-003
Coeff. b	3.709786e-005	5.342338e-005	1.522943e-005	1.166004e-004
Coeff. c	3.080614e-013	5.327586e-013	-8.301562e-012	-6.857837e-010
Coeff. d	2.886365e-017	6.288573e-019	3.025840e-017	3.598743e-014
Coeff. e	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
Min.:	2781.00	10207.00	2800.00	2011.00
Max.:	83332.00	397880.00	206642.00	17742.00
Modification time:				

Document: SANDEEP_13092023 (varioELcube) from: 9/14/2023 10:45:19 AM

IISER, Pune Chemistry Department CHNS Elemental Analysis Report

3^{*i*Pr}

Graphic report

	Weight [mg]	Name	N [%]	C [%]	H [%]	S [%]	Date Time
22	5.1720	BA 3IPR 1	1.72	51.99	4.463	6.609	13.09.2023 17:0

Temperatures		
	Comb. tube	1150
	Reduct. Tube	850
	CO2 col.standby	0
	H2O col.standby	0
	SO2 col.standby	140
	Cool temp.	170
Time values		
	Flush time	10
	O2 delay	30
	Integrator reset delay peak N	20
	Integrator reset delay peak C	10
	Integrator reset delay peak H	3
	Integrator reset delay peak S	25
	H2O col.delay	1
Ball valve		
	Min. permitted ball valve current	20
	Max. permitted ball valve current	100
	Critical ball valve current	250
	Acoustic signal	no

Document: SANDEEP_13092023 (varioELcube) from: 9/14/2023 10:45:19 AM

IISER, Pune Chemistry Department CHNS Elemental Analysis Report

Methods report

Name	O2 dosing time	Autozero delay N	Autozero delay C	Autozero delay S	Peak anticipation N	Peak anticipation C	Peak anticipation H	Peak anticipation S	Desorpt.CO2	Desorpt.H2O	Desorpt.SO2	H2O col.delay
10mg120s	120	2	2	15	85	90	60	60	240	150	220	
10mg120sIRMS	120	2	2	15	150	210	240	120	260	170	230	
10mg120sIRMS_cal	120	2	2	15	85	90	60	60	130	150	220	
20mg150s	150	2	2	15	90	120	60	60	240	150	220	
20mg150sIRMS	150	2	2	15	150	210	240	120	260	170	230	
20mg150sIRMS_cal	150	2	2	15	90	120	60	60	130	150	220	
2mg70s	70	2	2	15	85	70	60	60	240	150	220	
2mg70sIRMS	70	2	2	15	150	210	240	120	260	170	230	
2mg70sIRMS_cal	70	2	2	15	85	70	60	60	130	150	220	
2mg80s	80	2	2	15	85	70	60	60	240	150	220	
30mg180s	180	2	2	15	120	120	60	60	240	150	220	
30mg180sIRMS	180	2	2	15	150	210	300	120	260	170	230	
30mg180sIRMS_cal	180	2	2	15	120	120	60	60	130	150	220	
40mg210s	210	2	2	15	150	120	60	60	240	150	220	
5mg90s	90	2	2	15	85	80	60	60	240	150	220	
5mg90s_2	90	2	2	15	85	80	60	60	240	150	230	
5mg90sIRMS	90	2	2	15	150	210	240	120	260	170	230	
5mg90sIRMS_cal	90	2	2	15	85	80	60	60	130	150	220	
Blank with O	60	2	2	15	85	70	60	60	240	150	220	
Blank without O	2	2	2	15	85	90	60	60	240	150	230	
Blnk Without 0	0	2	2	15	85	90	60	60	240	150	230	

Coefficients report

Mode	CHNS			
	N	С	Н	S
Coeff. a	-1.734218e-003	-1.190440e-004	1.392304e-003	1.249275e-003
Coeff. b	4.313727e-005	5.272650e-005	2.266024e-005	1.127746e-004
Coeff. c	-3.084791e-009	-8.078815e-011	-2.737666e-009	-1.211686e-010
Coeff. d	4.742319e-013	7.513235e-015	4.195303e-013	0.000000e+000
Coeff. e	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
Min.:	279.00	1241.00	165.00	230.00
Max.:	2781.00	10207.00	2800.00	2011.00
Modification time:				
Coeff. a	3.030178e-003	-1.487859e-002	1.248219e-002	-5.615332e-003
Coeff. b	3.709786e-005	5.342338e-005	1.522943e-005	1.166004e-004
Coeff. c	3.080614e-013	5.327586e-013	-8.301562e-012	-6.857837e-010
Coeff. d	2.886365e-017	6.288573e-019	3.025840e-017	3.598743e-014
Coeff. e	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
Min.:	2781.00	10207.00	2800.00	2011.00
Max.:	83332.00	397880.00	206642.00	17742.00
Modification time:				